26
1 (c) Heribert Cypionka, www.pmbio.icbm.de Sediment Microbiology WS 2010/11 Sand Residues of algae and mussels Diatoms (brown) FeS Sulfur Microcolonies on a sediment flake from the Black Sea (c) Heribert Cypionka, www.pmbio.icbm.de Dates and topics Practical course Feb 28 – Mar 25 VL08 by Tim Engelhardt on IODP Leg 329 to the South Pacific Gyre (during practical course)

Sediment Microbiology WS 2010/11 - Uni Oldenburg file1 (c) Heribert Cypionka, Sediment Microbiology WS 2010/11 Sand Residues of algae and mussels Diatoms (brown) Sulfur FeS Microcolonies

Embed Size (px)

Citation preview

Page 1: Sediment Microbiology WS 2010/11 - Uni Oldenburg file1 (c) Heribert Cypionka, Sediment Microbiology WS 2010/11 Sand Residues of algae and mussels Diatoms (brown) Sulfur FeS Microcolonies

1

(c) Heribert Cypionka, www.pmbio.icbm.de

Sediment MicrobiologyWS 2010/11

Sand

Residues of algae andmussels

Diatoms (brown)

FeSSulfur

Microcolonies on a sediment flake from the Black Sea

(c) Heribert Cypionka, www.pmbio.icbm.de

Dates and topics

Practical course

Feb 28 – Mar 25

VL08 by Tim Engelhardt on IODP Leg 329 to the South Pacific Gyre(during practical course)

Page 2: Sediment Microbiology WS 2010/11 - Uni Oldenburg file1 (c) Heribert Cypionka, Sediment Microbiology WS 2010/11 Sand Residues of algae and mussels Diatoms (brown) Sulfur FeS Microcolonies

2

(c) Heribert Cypionka, www.pmbio.icbm.de

Literature

Recommended books

- Brock. Biology of Microorganisms

- Ehrlich H. L. (1996) Geomicrobiology, Marcel Dekker, New York- Richard Y. Morita (1997) Bacteria in Oligotrophic Environments, Chapman & Hall- L.A. Meyer-Reil, M. Köster (1993) Mikrobiologie des Meeresbodens. Fischer- Daniel M. Alongi (1998) Coastal Ecosystem Processes. CRC Press- Susan M. Libes (1992) An Introduction to marine biogeochemistry, John Wiley- Tom Fenchel and Bland J. Finlay (1995) Ecology and Evolution in Anoxic Worlds,Oxford University Press

- Jame K. Fredrickson, Madilyn Fletcher (ed. 2001) Subsurface Microbiology andBiogeochemistry, Wiley

- Amy P.S., Haldeman D.L (ed., 1997) The Microbiology of the Terrestrial DeepSubsurface, Lewis Publ. New York

- Schulz HD, Zabel M (ed., 2000) Marine Geochemistry. Springer, Berlin

(c) Heribert Cypionka, www.pmbio.icbm.de

Literature online

Literature on the web

- www.pmbio.icbm.de/litlinks.htm (many journals!)

- isiknowledge.com (Web of Science - from University IP)

- scholar.google.com (Science at Google)

Page 3: Sediment Microbiology WS 2010/11 - Uni Oldenburg file1 (c) Heribert Cypionka, Sediment Microbiology WS 2010/11 Sand Residues of algae and mussels Diatoms (brown) Sulfur FeS Microcolonies

3

(c) Heribert Cypionka, www.pmbio.icbm.de

Questions

Which types of Sediments are known?

What is the origin of sediment material?

How fast do sediments accumulate?

What are stromatolites and banded iron formations?

Which properties characterize sediments?

Which processes do occur within them?

How does the temperature change in the water column and in the sediment?

Which organisms form sediments?

How does new sediment form and old sediment vanish?

(c) Heribert Cypionka, www.pmbio.icbm.de

What are sediments

What are sediments?

latin: sedere = sit

sedimentum = what has settled down

• Particulate material accumulatedon the floor (cover 70 % of the earth'ssurface)

-- of lakes (lacustrine, limnic)

-- of rivers (riverine, fluvial)

-- of the sea (marine, tidal, coastal...)

Page 4: Sediment Microbiology WS 2010/11 - Uni Oldenburg file1 (c) Heribert Cypionka, Sediment Microbiology WS 2010/11 Sand Residues of algae and mussels Diatoms (brown) Sulfur FeS Microcolonies

4

(c) Heribert Cypionka, www.pmbio.icbm.de

Origin of sediment material

What is the origin of sediment material?

-- aeolian = via the air

-- terrigenous = from the land

-- marine, autochthonous = from water column

(c) Heribert Cypionka, www.pmbio.icbm.de

Aeolian particles

Sahara sand coming across the alpes

Sahara sand above the Atlantic Ocean

Aeolian input to sediments

• Input of minerals, especially Fe as an important limiting factor

Page 5: Sediment Microbiology WS 2010/11 - Uni Oldenburg file1 (c) Heribert Cypionka, Sediment Microbiology WS 2010/11 Sand Residues of algae and mussels Diatoms (brown) Sulfur FeS Microcolonies

5

(c) Heribert Cypionka, www.pmbio.icbm.de

Aeolian particles (2)

Ash eruptions from vulcanoes

Ash layer in Mediterranean sediment

(c) Heribert Cypionka, www.pmbio.icbm.de

Terrigenous sediments (2)

Lena river delta (Sibiria)

Page 6: Sediment Microbiology WS 2010/11 - Uni Oldenburg file1 (c) Heribert Cypionka, Sediment Microbiology WS 2010/11 Sand Residues of algae and mussels Diatoms (brown) Sulfur FeS Microcolonies

6

(c) Heribert Cypionka, www.pmbio.icbm.de

Terrigenous sediments (3)

Peat in the backbarrier tidal flat of Spiekeroog, a former moor

(c) Heribert Cypionka, www.pmbio.icbm.de

Hang slip

Mediterranean sediment disturbed by hang slip

Disturbed sediment

Page 7: Sediment Microbiology WS 2010/11 - Uni Oldenburg file1 (c) Heribert Cypionka, Sediment Microbiology WS 2010/11 Sand Residues of algae and mussels Diatoms (brown) Sulfur FeS Microcolonies

7

(c) Heribert Cypionka, www.pmbio.icbm.de

Marine primary production

Euphotic zone <= 200 m

Average production of the oceans:69 g C m -2 a-1

Note:1 chocolate bar per year and m 2

Marine primary production

marine: 146 109 t CO2 a-1

terrestrial:129 109 t CO2 a-1

(c) Heribert Cypionka, www.pmbio.icbm.de

Sedimentation

from Meyer-Reil

Only 0.1 to 1 % of the primary production reach the sediment. Often marine sediments grow only a few mm per 1000 years.

How fast do sediments accumulate?

Page 8: Sediment Microbiology WS 2010/11 - Uni Oldenburg file1 (c) Heribert Cypionka, Sediment Microbiology WS 2010/11 Sand Residues of algae and mussels Diatoms (brown) Sulfur FeS Microcolonies

8

(c) Heribert Cypionka, www.pmbio.icbm.de

Microbial mats

Microbial mats

Farbstreifen-Sandwatt

(c) Heribert Cypionka, www.pmbio.icbm.de

Stromatolites

Stromatolite (pillow stone)

1.3 Ga

Ga = Giga years or billion years

Attention :

Engl. Billion = german Milliarde

Shark Bay, Australia

Undisturbed development in the absence of grazers

Page 9: Sediment Microbiology WS 2010/11 - Uni Oldenburg file1 (c) Heribert Cypionka, Sediment Microbiology WS 2010/11 Sand Residues of algae and mussels Diatoms (brown) Sulfur FeS Microcolonies

9

(c) Heribert Cypionka, www.pmbio.icbm.de

Periodic changes between reducing and oxidizing conditions

Oxidation of Fe2+ to Fe3+ by (oxygenic?) photosynthesis,

Precipitation of oxidized iron salts

Banded Iron Formations (BIF's,gebänderte Eisensteine ) without microfossils, but showing isotope fractionation of 12C/13C as indicator for biological activity

Ditch, Oldenburg University

BIFs

(c) Heribert Cypionka, www.pmbio.icbm.de

Sediment properties

- TOC (total organic carbon): 0.2 - 2 %, sapropels up to 30 %- 50% carbonaceous Sediments (50 - 90 % TIC), less with silicates (Diatoms etc.)

- Water: porosity and permeability decreasing with depth and age- Varying particle size: mud, silt 63 - 200 µm, sand > 63 µm,- Varying density: ~1.5 to ~2.5 g/cm3

- Oxygen: upper mm to meters- Nitrate: slightly below oxygen- Ammonia as a product of degradation- Fe3+, Mn4+ -> Fe2+, Mn2+ with increasing depth- Sulfides- Methane hydrates

By which properties are sediments characterized?

Page 10: Sediment Microbiology WS 2010/11 - Uni Oldenburg file1 (c) Heribert Cypionka, Sediment Microbiology WS 2010/11 Sand Residues of algae and mussels Diatoms (brown) Sulfur FeS Microcolonies

10

(c) Heribert Cypionka, www.pmbio.icbm.de

Tidal flat sediment

(c) Heribert Cypionka, www.pmbio.icbm.de

Carbon in Pacific sedimentCarbon in Pacific sediment

Page 11: Sediment Microbiology WS 2010/11 - Uni Oldenburg file1 (c) Heribert Cypionka, Sediment Microbiology WS 2010/11 Sand Residues of algae and mussels Diatoms (brown) Sulfur FeS Microcolonies

11

(c) Heribert Cypionka, www.pmbio.icbm.de

Mediterranean sapropels

2407-2410

Meteor Leg M40-4 (1998)

Sapropel layers with up to 30 % organic carbon and increased microbial activity

(c) Heribert Cypionka, www.pmbio.icbm.de

Porosity

Porosity

Page 12: Sediment Microbiology WS 2010/11 - Uni Oldenburg file1 (c) Heribert Cypionka, Sediment Microbiology WS 2010/11 Sand Residues of algae and mussels Diatoms (brown) Sulfur FeS Microcolonies

12

(c) Heribert Cypionka, www.pmbio.icbm.de

Tidal flat sediment (2)

(c) Heribert Cypionka, www.pmbio.icbm.de

Sediments at ODP Site 1231

Sediment slurries at ODP Site 1231

Oxidized iron and manganese as important electron accptors in low-carbon sediments

Page 13: Sediment Microbiology WS 2010/11 - Uni Oldenburg file1 (c) Heribert Cypionka, Sediment Microbiology WS 2010/11 Sand Residues of algae and mussels Diatoms (brown) Sulfur FeS Microcolonies

13

(c) Heribert Cypionka, www.pmbio.icbm.de

Tidal Flats

Janssand

Neuharlingersieler Nacken

Gradients!

How can we detect processes inside the sediment column?

(c) Heribert Cypionka, www.pmbio.icbm.de

Sand-korn

Seawater

Diffusive boundary layer

Oxygen

Sediment

Oxygen profile Gradients

Page 14: Sediment Microbiology WS 2010/11 - Uni Oldenburg file1 (c) Heribert Cypionka, Sediment Microbiology WS 2010/11 Sand Residues of algae and mussels Diatoms (brown) Sulfur FeS Microcolonies

14

(c) Heribert Cypionka, www.pmbio.icbm.de

Sulfate-methane interfacesSulfate-methane interfaces

ODP Site 1229

- Methanogenesis and sulfate reduction as dominant terminal processes

- Anaerobic methane oxidation as important process

(c) Heribert Cypionka, www.pmbio.icbm.de

Shallow versus deep biosphere

Engelen & Cypionka 2009

Page 15: Sediment Microbiology WS 2010/11 - Uni Oldenburg file1 (c) Heribert Cypionka, Sediment Microbiology WS 2010/11 Sand Residues of algae and mussels Diatoms (brown) Sulfur FeS Microcolonies

15

(c) Heribert Cypionka, www.pmbio.icbm.de

Methane hydrates

Methane hydrate

(ODP Site 1230)

The most important reservoir of reduced carbon on earth

(c) Heribert Cypionka, www.pmbio.icbm.de

Sediment under pressure

Methane-bearing deep-sea sediment

1 bar pressure increase per 10 m water depth

Page 16: Sediment Microbiology WS 2010/11 - Uni Oldenburg file1 (c) Heribert Cypionka, Sediment Microbiology WS 2010/11 Sand Residues of algae and mussels Diatoms (brown) Sulfur FeS Microcolonies

16

(c) Heribert Cypionka, www.pmbio.icbm.de

Sand at 50x magnification (stacked with PICOLAY)

A: Borkum

B: Puerto Rico

C: Mallorca

(c) Heribert Cypionka, www.pmbio.icbm.de

Sediment-forming organisms

- Carbonates

- Silicates

Page 17: Sediment Microbiology WS 2010/11 - Uni Oldenburg file1 (c) Heribert Cypionka, Sediment Microbiology WS 2010/11 Sand Residues of algae and mussels Diatoms (brown) Sulfur FeS Microcolonies

17

(c) Heribert Cypionka, www.pmbio.icbm.de

Coccolithophorids

CoccolithophoridsCell size: 2-20 m m

Cell wall: CaCO3 coccoliths or scales

Chloroplasts: none, single thylakoid membrane

Photo-pigments: chlorophyll a & c, carotenoids

Reproduction: simple cell division, rarely sexual reproduction

Ecological roles: biflagellated, produce chalk deposits

Common genus: Emiliania

Emiliania huxleyi

Botanical Bulletin of Academia Sinica, Vol. 42, 2001

lat. coccus = round, gr. lithos = stone, gr. pherein = carry

(c) Heribert Cypionka, www.pmbio.icbm.de

Sediment-forming organisms

English Channel 1999 Chalk cliffs of Rügen

Page 18: Sediment Microbiology WS 2010/11 - Uni Oldenburg file1 (c) Heribert Cypionka, Sediment Microbiology WS 2010/11 Sand Residues of algae and mussels Diatoms (brown) Sulfur FeS Microcolonies

18

(c) Heribert Cypionka, www.pmbio.icbm.de

ForaminiferaForaminifera

Mallorca Sand

(c) Heribert Cypionka, www.pmbio.icbm.de

Foraminifera

"Sand" at the Bight of Alcudia, Mallorca

Page 19: Sediment Microbiology WS 2010/11 - Uni Oldenburg file1 (c) Heribert Cypionka, Sediment Microbiology WS 2010/11 Sand Residues of algae and mussels Diatoms (brown) Sulfur FeS Microcolonies

19

(c) Heribert Cypionka, www.pmbio.icbm.de

Foraminifera

lat. foramen = hole, lat. ferre = carry

Deutsch: Foraminiferen, Kammerlinge, Klasse der Rhizopoda (Wurzelfüßer)

Foraminifera

www.picolay.de

(c) Heribert Cypionka, www.pmbio.icbm.de

DiatomsDiatoms (Kieselalgen)

Benthic diatoms(tidal flat): pennate

Pelagic diatoms (Pacific): centric

Page 20: Sediment Microbiology WS 2010/11 - Uni Oldenburg file1 (c) Heribert Cypionka, Sediment Microbiology WS 2010/11 Sand Residues of algae and mussels Diatoms (brown) Sulfur FeS Microcolonies

20

(c) Heribert Cypionka, www.pmbio.icbm.de

Diatoms (Kieselalgen)

Sediment off Namibia

(For cross- or parallel viewing)

(For red-green glasses)

Pictures for stereo-viewing produced by means of PICOLAY

(c) Heribert Cypionka, www.pmbio.icbm.de

RadiolariansRadiolarians (Strahlentierchen)

From Haeckel: "Kunstformen der Natur"

Page 21: Sediment Microbiology WS 2010/11 - Uni Oldenburg file1 (c) Heribert Cypionka, Sediment Microbiology WS 2010/11 Sand Residues of algae and mussels Diatoms (brown) Sulfur FeS Microcolonies

21

(c) Heribert Cypionka, www.pmbio.icbm.de

TemperatureSediment Temperature

-> Seafloor mostly around 0 - 2 °C

-> Temperature increase with depth,depending on geological parameters

-> Hydrothermal vents with temperatures above 300 °C

(c) Heribert Cypionka, www.pmbio.icbm.de

Oxygen isotopes

-> Natural 18O:16O ratio about 1:500, determined in microfossils, that use O for shell formation (benthic and planktonic foraminifers, coccolithophorids)

-> Variation of delta 18O values controlled by temperature: preferred evaporationof light H2

16O molecules compared to heavier H218O.

-> Cold air carries relatively less H218O, which remains enriched in the water.

-> 1% increase of delta 18O corresponds to about 1 °C temperature decrease.

Oxygen isotope fractionation as a proxy for the ocean water temperature

Page 22: Sediment Microbiology WS 2010/11 - Uni Oldenburg file1 (c) Heribert Cypionka, Sediment Microbiology WS 2010/11 Sand Residues of algae and mussels Diatoms (brown) Sulfur FeS Microcolonies

22

(c) Heribert Cypionka, www.pmbio.icbm.de

How old are sediments? Pangaea

Only 200 Mio. years before present there was only one continent, Pangaea

Online Biology Book

Mike Farabee

www.emc.maricopa.edu/faculty/farabee/BIOBK/BioBookTOC.html

(c) Heribert Cypionka, www.pmbio.icbm.de

Eemian sapropel, about 160 000 years old

8 m per 160 000 years = 5 cm per 1000 years

Page 23: Sediment Microbiology WS 2010/11 - Uni Oldenburg file1 (c) Heribert Cypionka, Sediment Microbiology WS 2010/11 Sand Residues of algae and mussels Diatoms (brown) Sulfur FeS Microcolonies

23

(c) Heribert Cypionka, www.pmbio.icbm.de

Plate tectonics

Plate tectonics

(c) Heribert Cypionka, www.pmbio.icbm.de

Hydrothermal vents (1)

Page 24: Sediment Microbiology WS 2010/11 - Uni Oldenburg file1 (c) Heribert Cypionka, Sediment Microbiology WS 2010/11 Sand Residues of algae and mussels Diatoms (brown) Sulfur FeS Microcolonies

24

(c) Heribert Cypionka, www.pmbio.icbm.de

Hydrothermal vents (2)

(c) Heribert Cypionka, www.pmbio.icbm.de

• Mid-oceanic ridges (spreading centers) form the longest mountain chain on earth.Inorganic reduced compounds are released, e.g., 30 Mio t H2S per year(Ocean water moves through the earth crust on average in 8 Mio a)

• Hydrothermal vent production, 0.02 % of total primary production = 10 % of the sea-floor production

• Rich communities based of bacterial chemosynthesis, e.g. Riftia pachyptila: huge worm without mouth and after, living from symbiotic autotrophic H2S oxidizers

• Energy from the oxidation of H2S, H2, Fe2+ etc. with oxygen (from photosynthesis!)

Hydrothermal vents (3)

Page 25: Sediment Microbiology WS 2010/11 - Uni Oldenburg file1 (c) Heribert Cypionka, Sediment Microbiology WS 2010/11 Sand Residues of algae and mussels Diatoms (brown) Sulfur FeS Microcolonies

25

(c) Heribert Cypionka, www.pmbio.icbm.de

Spiekeroog Janssand NeuharlingersielSchillbalje

+5 m

0 m

-10 m

-20 m

+5 m

0 m

-10 m

-20 m

1 km

Geol. Karte von Niedersachsen 1:25.0002212 SpiekeroogHolocene

NNW SSE

Location of the 20 m-cores

North Sea tidal flats

Core JS-Afilled channeluniform sediment structure

Core JS-Breflects historical sedimentationalternating sediment layers

(c) Heribert Cypionka, www.pmbio.icbm.de

Sediment structure and paleo-environment

300,000 -128,000 yrs

128,000 -115,000 yrs

ca. 325,000 yrs

115,000 -10,700 yrs

10,700 yrs -present

Page 26: Sediment Microbiology WS 2010/11 - Uni Oldenburg file1 (c) Heribert Cypionka, Sediment Microbiology WS 2010/11 Sand Residues of algae and mussels Diatoms (brown) Sulfur FeS Microcolonies

26

(c) Heribert Cypionka, www.pmbio.icbm.de

Engelen B and Cypionka H (2009) The subsurface of ti dal flats as a model for the deep biosphere. Ocean Dynamics 59:385–391

Reinhard Wilms et al. (2006) Deep biosphere-related bacteria within the subsurface of tidal flat sediments. Environ Microbi ol 8:709-719

Reinhard Wilms et al. (2006) Specific bacterial, arc haeal, and eukaryotic communities in tidal-flat sediment along a vertical profile of several meters. Appl Environ Microbiol 72:2756-2764

Jörg Fichtel et al. (2007) Spore dipicolinic acid co ntents used for estimating the number of endospores in sediments. F EMS Microbiol Ecol 61:522–532

Literature

(c) Heribert Cypionka, www.pmbio.icbm.de

• www. mikrobiologischer-garten.de