14
1 Advanced Cover Cropping Strategies for Organic Food Grain Crop Production Final Report to the New World Foundation’s Local Economies Project Project Summary Two cover crop management practices were tested at the Hudson Valley Farm Hub in 2014. In one experiment, soybeans were notill planted into mulch from a winter cereal cover crop that was mechanically terminated with a rollercrimper. This cover cropbased notill system is designed for organic production and has been shown to be a viable practice in New York State. Five soybean planting densities were compared and we measured crop population, weed suppression, and crop yield. An economic analysis of the data shows that profitability was maximized at 315,000 seeds/acre, which is more than double the recommended seeding rate in conventional soybean production. This information contributes to an ongoing effort to define management recommendations for organic no till soybean production. The second practice that we tested in a separate experiment involved interseeding cover crops into heritage corn cv. ‘Bloody Butcher’. Late cover crop establishment after grain harvest in the fall often leads to poor growth and few benefits. Here we interseeded the cover crop in midsummer using a new machine that drills the seed between rows of corn. Although research on this practice in other areas has shown that it can be successful, the cover crops that were interseeded at the Farm Hub performed poorly. High soil moisture during cover crop establishment, competition from weeds, and herbivory from slugs and arthropods might have contributed to the poor cover crop performance at this site. More research is needed on cover crop interseeding to identify the factors that limit cover crop growth and to determine the effects on host corn crop performance. Information generated in this project was disseminated to farmers at two field days and through a factsheet distributed at the NOFANY winter conference. Background Information Weed and soil fertility management are among the largest hurdles to organic grain crop production and are consistently ranked as top research priorities by organic farmers. Many organic farmers rely on tillage and cultivation to suppress weeds, but this can degrade soil health and leave soil susceptible to erosion. Integrating legume forage crops, such as alfalfa, into crop rotations has long been recognized for providing pest suppression and soil fertility benefits. However, some farmers transitioning to organic grain crop production cannot use forage crops because they lack equipment and markets for these crops. Cover crops are tools that can help farmers overcome challenges when transitioning to organic production. Cover crops can replace external inputs such as nitrogen fertilizer and herbicides and they can enhance agroecosystem performance and overall productivity by increasing supporting and regulating ecosystem services (i.e. benefits that humans obtain from ecosystems) such as pollination and biological pest control 1 . Not only can cover crops offset the negative impacts of tillage by increasing soil organic matter, they can also enable organic farmers to reduce tillage by providing weed suppressive mulches. However, more research is needed to develop new cover crop management recommendations for organic farmers.

Ryan Farm Hub Report 7-30-15(final)...2015/07/30  · ! 10! Cover(Crop(Interseedinginto(Heritage(Corn((Objective(2)(Materialsand(Methods(We!tested!theeffects!ofcovercropinterseedingintoherita

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Ryan Farm Hub Report 7-30-15(final)...2015/07/30  · ! 10! Cover(Crop(Interseedinginto(Heritage(Corn((Objective(2)(Materialsand(Methods(We!tested!theeffects!ofcovercropinterseedingintoherita

 

  1  

Advanced  Cover  Cropping  Strategies  for  Organic  Food  Grain  Crop  Production  Final  Report  to  the  New  World  Foundation’s  Local  Economies  Project  

 Project  Summary  

Two  cover  crop  management  practices  were  tested  at  the  Hudson  Valley  Farm  Hub  in  2014.  In  one  experiment,  soybeans  were  no-­‐till  planted  into  mulch  from  a  winter  cereal  cover  crop  that  was  mechanically  terminated  with  a  roller-­‐crimper.  This  cover  crop-­‐based  no-­‐till  system  is  designed  for  organic  production  and  has  been  shown  to  be  a  viable  practice  in  New  York  State.  Five  soybean  planting  densities  were  compared  and  we  measured  crop  population,  weed  suppression,  and  crop  yield.  An  economic  analysis  of  the  data  shows  that  profitability  was  maximized  at  315,000  seeds/acre,  which  is  more  than  double  the  recommended  seeding  rate  in  conventional  soybean  production.  This  information  contributes  to  an  on-­‐going  effort  to  define  management  recommendations  for  organic  no-­‐till  soybean  production.  The  second  practice  that  we  tested  in  a  separate  experiment  involved  interseeding  cover  crops  into  heritage  corn  cv.  ‘Bloody  Butcher’.  Late  cover  crop  establishment  after  grain  harvest  in  the  fall  often  leads  to  poor  growth  and  few  benefits.  Here  we  interseeded  the  cover  crop  in  mid-­‐summer  using  a  new  machine  that  drills  the  seed  between  rows  of  corn.  Although  research  on  this  practice  in  other  areas  has  shown  that  it  can  be  successful,  the  cover  crops  that  were  interseeded  at  the  Farm  Hub  performed  poorly.  High  soil  moisture  during  cover  crop  establishment,  competition  from  weeds,  and  herbivory  from  slugs  and  arthropods  might  have  contributed  to  the  poor  cover  crop  performance  at  this  site.  More  research  is  needed  on  cover  crop  interseeding  to  identify  the  factors  that  limit  cover  crop  growth  and  to  determine  the  effects  on  host  corn  crop  performance.  Information  generated  in  this  project  was  disseminated  to  farmers  at  two  field  days  and  through  a  factsheet  distributed  at  the  NOFA-­‐NY  winter  conference.    Background  Information  

Weed  and  soil  fertility  management  are  among  the  largest  hurdles  to  organic  grain  crop  production  and  are  consistently  ranked  as  top  research  priorities  by  organic  farmers.  Many  organic  farmers  rely  on  tillage  and  cultivation  to  suppress  weeds,  but  this  can  degrade  soil  health  and  leave  soil  susceptible  to  erosion.  Integrating  legume  forage  crops,  such  as  alfalfa,  into  crop  rotations  has  long  been  recognized  for  providing  pest  suppression  and  soil  fertility  benefits.  However,  some  farmers  transitioning  to  organic  grain  crop  production  cannot  use  forage  crops  because  they  lack  equipment  and  markets  for  these  crops.      Cover  crops  are  tools  that  can  help  farmers  overcome  challenges  when  transitioning  to  organic  production.  Cover  crops  can  replace  external  inputs  such  as  nitrogen  fertilizer  and  herbicides  and  they  can  enhance  agroecosystem  performance  and  overall  productivity  by  increasing  supporting  and  regulating  ecosystem  services  (i.e.  benefits  that  humans  obtain  from  ecosystems)  such  as  pollination  and  biological  pest  control1.  Not  only  can  cover  crops  offset  the  negative  impacts  of  tillage  by  increasing  soil  organic  matter,  they  can  also  enable  organic  farmers  to  reduce  tillage  by  providing  weed  suppressive  mulches.  However,  more  research  is  needed  to  develop  new  cover  crop  management  recommendations  for  organic  farmers.    

Page 2: Ryan Farm Hub Report 7-30-15(final)...2015/07/30  · ! 10! Cover(Crop(Interseedinginto(Heritage(Corn((Objective(2)(Materialsand(Methods(We!tested!theeffects!ofcovercropinterseedingintoherita

 

  2  

Cover  crop-­‐based,  organic  rotational  no-­‐till  management  relies  on  mulch  from  cover  crops  instead  of  cultivation  to  suppress  weeds  and  is  a  promising  approach  to  increasing  ecosystem  services  in  organic  cropping  systems.  Unlike  mechanical  weed  management,  using  cover  crops  as  mulch  moderates  soil  temperature,  reduces  erosion,  conserves  soil  moisture,  and  creates  a  favorable  environment  for  beneficial  insects.  Farmers  are  interested  in  cover  crop-­‐based,  organic  rotational  no-­‐till  because  it  can  save  time  and  energy.  For  example,  compared  to  traditional  tillage-­‐based  production  methods  in  an  organic  corn-­‐soybean-­‐wheat  rotation,  rotational  no-­‐till  requires  27%  less  diesel  fuel  and  31%  less  labor2.  Our  previous  research  also  shows  that  this  method  of  reducing  tillage  can  produce  corn  and  soybean  yields  that  are  comparable  to  traditional  tillage-­‐based  organic  production.      Despite  the  myriad  of  services  that  cover  crops  provide,  the  relatively  small  window  of  opportunity  for  cover  crop  seeding  after  corn  and  soybean  harvest  and  the  associated  labor,  fuel,  and  seed  expenses  can  limit  cover  crop  utilization.  Whereas  labor,  fuel,  and  seed  input  costs  could  be  justified  if  the  benefits  of  cover  crops  outweigh  them,  the  short  window  of  opportunity  for  establishment  after  summer  crops  are  harvested  is  a  serious  limitation  to  achieving  cover  crop  benefits3.  In  a  recent  survey  of  over  1,200  corn  and  soybean  farmers  in  Iowa,  61%  agreed  or  strongly  agreed  with  the  statement  "There  is  rarely  enough  time  between  harvest  and  winter  to  justify  the  use  of  cover  crops"4.  In  a  different  survey,  64%  of  US  farmers  surveyed  (n  =  812)  said  they  do  not  use  cover  crops  because  there  is  “not  enough  time  to  get  a  cover  crop  established  with  harvest  challenges”5.  Removing  barriers  to  cover  crop  use  and  increasing  cover  crop  performance  will  benefit  organic  growers  and  lead  to  greater  adoption  of  organic  agriculture.      Results  from  an  increasing  body  of  literature  show  that  early  establishment  of  winter  annual  cover  crops  is  critical  for  maximizing  cover  crop  growth,  nutrient  scavenging,  biological  nitrogen  fixation,  weed  suppression,  and  soil  erosion  control.  Cover  crop  establishment  timing  is  an  important  factor  in  nutrient  management  policy.  For  example,  the  Maryland  Department  of  Agriculture  provides  a  greater  cost  share  to  farmers  who  seed  cover  crops  early  in  the  fall  and  terminate  them  late  in  the  spring6.  Another  downside  to  late  seeding  in  the  fall  is  that  cover  crop  selection  is  limited  to  grasses  because  many  legume  cover  crops  will  not  survive  winter  or  provide  adequate  benefits  when  seeded  late.      One  potential  solution  to  overcoming  cover  crop  establishment  timing  problems  is  to  establish  winter  cover  crops  prior  to  harvesting  crops  in  the  fall.  Previous  research  in  New  York  demonstrated  that  several  cover  crop  species,  including  white  clover,  red  clover,  barrel  medic,  alfalfa,  annual  ryegrass,  and  creeping  red  fescue,  could  be  successfully  established  in  soybean  prior  to  harvest  without  reducing  yields  or  interfering  with  soybean  combining7.  More  recently,  researchers  in  Maryland  compared  winter  cereal  cover  crops  established  with  a  grain  drill  to  cover  crops  established  by  broadcast  seeding  using  a  spinner-­‐type  fertilizer  spreader.  They  also  included  treatments  with  and  without  soil  incorporation  by  disking.  Cover  crop  establishment  with  broadcast  seeding  was  highly  dependent  on  soil  moisture,  and  in  all  cases  soil  incorporation  improved  establishment  of  broadcasted  cover  crops.  They  concluded  that  broadcast  seeding  cover  crops  into  soybean  prior  to  leaf  drop  was  effective  and  could  improve  soil  and  water  conservation8.    

Page 3: Ryan Farm Hub Report 7-30-15(final)...2015/07/30  · ! 10! Cover(Crop(Interseedinginto(Heritage(Corn((Objective(2)(Materialsand(Methods(We!tested!theeffects!ofcovercropinterseedingintoherita

 

  3  

Project  Objectives    

Our  goal  was  to  test  and  demonstrate  advanced  cover  cropping  practices  that  improve  soil  health  and  weed  suppression  in  organic  grain  crop  production.  Project  objectives  included:  1. Conduct  a  field  experiment  on  cover  crop-­‐based,  organic  no-­‐till  tofu  soybean  

production  and  quantify  the  effects  of  soybean  seeding  rates  on  a  series  of  performance  indicators,  including  weed  suppression  and  soybean  yield.    

2. Conduct  a  field  experiment  on  cover  crop  interseeding  into  heritage  corn  and  evaluate  the  effects  of  different  cover  crops  and  interseeding  methods  (broadcast  vs.  drill  interseeding)  on  cover  crop  establishment,  weed  suppression,  cover  crop  biomass  production,  and  nitrogen  availability  in  the  following  spring.    

3. Disseminate  new  information  from  field  experiments  and  empower  farmers  in  the  region  with  practical  knowledge  to  assist  them  with  producing  organic  food  grain  crops.  

 No-­‐Till  Tofu  Soybean  Seeding  Rates  (Objective  1)  

Materials  and  Methods  This  experiment  was  focused  on  no-­‐till  planting  organic  tofu  soybeans  into  rolled-­‐crimped  winter  cereal  cover  crops.  Our  previous  research  has  shown  that  seeding  recommendations  based  on  conventional  soybean  production  are  inappropriate  for  organic  soybean  production  and  that  organic  farmers  can  realize  greater  yields  and  profits  with  higher  seeding  rates.  However,  at  extremely  high  rates,  soybean  plants  can  lodge  (i.e.  fall  over)  and  make  harvesting  difficult,  especially  when  no-­‐till  planted  into  rolled-­‐crimped  cover  crops.  To  better  understand  these  tradeoffs,  we  compared  five  different  soybean  seeding  rates  ranging  from  80,000  to  370,000  seeds/a.  We  used  an  early  maturing  clear  hilum  tofu  soybean  variety  (IA2053,  group  2.1  relative  maturity).      Results  and  Discussion  

A  local  commercial  agribusiness  established  the  cover  crop  in  the  fall  of  2013  in  field  ‘Paul  9’  at  the  Farm  Hub.  Although  the  cover  crop  was  supposed  to  be  a  pure  stand  of  triticale,  it  was  comprised  of  approximately  50%  cereal  rye  (Photograph  1).  Prior  to  no-­‐till  planting  the  soybean  seed,  we  mechanically  terminated  the  cover  crop  with  a  10-­‐ft  wide  roller-­‐crimper  (I  &  J  Manufacturing)  on  June  10,  2014.  This  provided  a  uniform  layer  of  mulch  (Photograph  2).  Cover  crop  termination  was  near  complete,  but  a  few  plants  rebounded  and  remained  upright  after  rolling.  This  was  likely  due  to  uneven  field  micro-­‐topography  resulting  from  soil  disking  prior  to  seeding  the  cover  crop  the  previous  fall.  We  rolled  the  cover  crop  parallel  to  ridges  in  the  soil,  which  allowed  some  of  the  cover  crop  to  escape  the  full  down-­‐force  pressure  of  the  roller-­‐crimper.  Rolling  perpendicular  to  the  ridges  would  likely  result  in  a  more  complete  termination  of  the  cover  crop,  but  this  might  also  make  for  an  uncomfortable  ride  for  the  operator.  We  used  an  8-­‐row  John  Deere  no-­‐till  planter  to  plant  the  soybeans  in  this  experiment  (Photograph  3).  This  planter  was  equipped  with  the  capacity  to  adjust  planting  rates  in  the  cab,  which  expedited  the  planting  process.      

Page 4: Ryan Farm Hub Report 7-30-15(final)...2015/07/30  · ! 10! Cover(Crop(Interseedinginto(Heritage(Corn((Objective(2)(Materialsand(Methods(We!tested!theeffects!ofcovercropinterseedingintoherita

 

  4  

 Photograph  1.  Winter  cereal  cover  crop  consisting  of  triticale  (shorter)  and  cereal  rye  (taller)  was  terminated  with  a  roller-­‐crimper.      Soybean  establishment  was  fairly  good,  despite  somewhat  poor  seed  furrow  closure  (Photographs  4  and  5).  However,  soybean  establishment  decreased  at  the  higher  planting  rates  (Figure  1).  Weed  suppression  increased  with  soybean  planting  density  and  plots  planted  at  the  highest  rate  were  weed-­‐free  (Figure  2).  This  is  congruent  with  our  previous  research  and  shows  that  increasing  planting  rates  increases  shading  by  the  crop  and  is  an  effective  cultural  weed  management  practice.  Weeds  decreased  soybean  yield  with  the  lowest  yield  observed  in  the  plot  with  the  greatest  weed  biomass  (Figure  3).      Interestingly,  we  did  not  observe  soybean  lodging  in  this  experiment  (Photograph  6).  Previous  research  showed  that  soybean  lodging  could  be  exacerbated  at  the  high  planting  rates.  Even  at  the  370,000  seeds/acre  rate,  soybean  plants  did  not  lodge.  Non-­‐linear  regression  was  used  to  model  the  effect  of  planting  density  on  soybean  yield  (Figure  4).  Soybean  yields  were  maximized  at  the  315,000  seeds/acre  planting  rate  and  decreased  slightly  at  the  highest  planting  rate.  We  conducted  a  partial  budget  analysis  to  determine  the  economic  optimum  using  the  actual  soybean  seed  cost  from  our  supplier  (Lakeview  Organic  Grains)  and  2014  USDA  AMS  market  value  for  food  grade  soybean  (Table  1).  Our  results  show  that  profitability  was  maximized  at  the  315,000  seeds/a  planting  rate,  which  is  more  than  double  the  recommended  planting  rate  for  conventional  soybean  production.  This  is  likely  due  to  the  enhanced  weed  suppression  at  higher  soybean  planting  rates,  which  is  typically  not  considered  with  conventional  herbicide  resistant  soybean  production.  Collectively,  the  enhanced  weed  suppression,  slight  yield  advantage,  and  high  market  value  point  to  advantages  with  high  soybean  planting  rates.  Our  results  indicate  that  organic  farmers  using  the  rolled  cover  crop  system  should  plant  soybeans  close  to  300,000  seeds/acre  to  maximize  weed  suppression,  soybean  yield,  and  profitability.    

Page 5: Ryan Farm Hub Report 7-30-15(final)...2015/07/30  · ! 10! Cover(Crop(Interseedinginto(Heritage(Corn((Objective(2)(Materialsand(Methods(We!tested!theeffects!ofcovercropinterseedingintoherita

 

  5  

 

Photograph  2.  Flattened  cover  crop  after  rolling  just  prior  to  no-­‐till  planting  soybean.    

 

Photograph  3.  No-­‐till  planting  soybean  into  the  cover  crop  mulch.    

 

Page 6: Ryan Farm Hub Report 7-30-15(final)...2015/07/30  · ! 10! Cover(Crop(Interseedinginto(Heritage(Corn((Objective(2)(Materialsand(Methods(We!tested!theeffects!ofcovercropinterseedingintoherita

 

  6  

 

Photograph  4.  The  no-­‐till  planter  was  equipped  with  spike-­‐tooth  closing  wheels  and  residue  managers  in  front  of  the  coulter.  However,  the  field  was  planted  with  the  residue  managers  in  the  raised  position  to  maintain  mulch  around  the  seed  furrow.    

 

Photograph  5.  Under  the  high  soil  moisture  conditions,  the  spike-­‐tooth  closing  wheels  indented  the  soil,  but  did  not  facilitate  seed  furrow  closure.    

Page 7: Ryan Farm Hub Report 7-30-15(final)...2015/07/30  · ! 10! Cover(Crop(Interseedinginto(Heritage(Corn((Objective(2)(Materialsand(Methods(We!tested!theeffects!ofcovercropinterseedingintoherita

 

  7  

 Figure  1.  Actual  soybean  population  at  harvest  across  target  soybean  planting  rates.  Complete  (100%)  emergence  is  shown  as  a  reference  with  the  dotted  line.    

 Photograph  6.  Soybean  plants  standing  tall  in  field  ‘Paul  9’  on  August  29,  2014.    

 

75,000

150,000

225,000

300,000

375,000

75,000 150,000 225,000 300,000 375,000Soybean planting rate (seed a−1)

Soyb

ean

popu

latio

n (p

lant

s a−

1 )

Page 8: Ryan Farm Hub Report 7-30-15(final)...2015/07/30  · ! 10! Cover(Crop(Interseedinginto(Heritage(Corn((Objective(2)(Materialsand(Methods(We!tested!theeffects!ofcovercropinterseedingintoherita

 

  8  

 Figure  2.  Weed  biomass  across  relativized  soybean  populations  (0  =  80,000  seeds/acre).  

 Figure  3.  Soybean  yield  loss  as  a  function  of  weed  biomass.    

0

1,000

2,000

3,000

0 1 2 3 4Relativized soybean population

Wee

d bi

omas

s (lb

a−1

)

20

30

40

50

60

0 1,000 2,000 3,000Weed biomass (lb a−1)

Soyb

ean

yiel

d (b

u a−

1 )

Page 9: Ryan Farm Hub Report 7-30-15(final)...2015/07/30  · ! 10! Cover(Crop(Interseedinginto(Heritage(Corn((Objective(2)(Materialsand(Methods(We!tested!theeffects!ofcovercropinterseedingintoherita

 

  9  

 Figure  4.  Soybean  yield  as  a  function  of  soybean  planting  rate.      

Table  1.  Partial  budget  analysis  of  the  five  different  soybean  planting  rates  using  soybean  yields,  seed  costs,  and  2014  market  value.    

Soybean  planting  rate  (seed  a-­‐1)  

Soybean  seed  cost1  ($  a-­‐1)  

Average  soybean  yield  

(bu  a-­‐1)  

2014  soybean  market  value2  

($  bu-­‐1)  

Partial  profit  ($  a-­‐1)  

80,000   $25   31.1   $29   $876  

170,000   $53   40.9   $29   $1,132  

250,000   $79   45.0   $29   $1,225  

315,000   $99   50.4   $29   $1,364  

370,000   $116   45.4   $29   $1,199  

1Seed  costs  are  from  actual  seed  purchased  from  Lakeview  Organic  Grain.  http://www.lakevieworganicgrain.com/info_docs/seed_spring_prices1.html    2Food  grade  soybean  price  from  USDA.  http://www.ams.usda.gov/mnreports/lsbnof.pdf      

 

20

30

40

50

60

75,000 150,000 225,000 300,000 375,000Soybean planting rate (seed a−1)

Soyb

ean

yiel

d (b

u a−

1 )

Page 10: Ryan Farm Hub Report 7-30-15(final)...2015/07/30  · ! 10! Cover(Crop(Interseedinginto(Heritage(Corn((Objective(2)(Materialsand(Methods(We!tested!theeffects!ofcovercropinterseedingintoherita

 

  10  

Cover  Crop  Interseeding  into  Heritage  Corn  (Objective  2)  

Materials  and  Methods  

We  tested  the  effects  of  cover  crop  interseeding  into  heritage  corn  (cv.  ‘Bloody  Butcher’)  using  a  split-­‐plot  randomized  complete  block  design.  The  five  main  plot  treatments  were  focused  on  cover  crop  species  and  included:    

1. Untreated  control  –  no  cover  crop  2. Annual  Ryegrass  (20  lb/a)  3. Annual  Ryegrass  (10  lb/a)  and  Forage  Radish  (5  lb/a)  4. Red  Clover  (10  lb/a),  Crimson  Clover  (20  lb/a),  and  Hairy  Vetch  (15  lb/a)  5. Annual  Ryegrass  (10  lb/a),  Red  Clover  (5  lb/a),  Crimson  Clover  (10  lb/a),  and  Hairy  

Vetch  (7.5  lb/a)  The  split  plot  treatments  compared  drill  interseeding  with  the  InterSeeder  to  aerial  broadcasting  interseeding  with  an  EarthWay  spreader.  Legume  cover  crop  seed  was  inoculated  with  an  appropriate  inoculant  prior  to  seeding.    Corn  cv.  ‘Bloody  Butcher’  was  planted  into  tilled  soil  on  May  12,  2014.  We  transported  the  InterSeeder  from  Cornell  University  to  the  Farm  Hub  on  June  30,  2014.  This  was  later  than  ideal  as  the  corn  was  rather  tall  and  had  a  completely  closed  canopy  (Photographs  7  and  8).  Rain  and  wet  soil  conditions  prevented  us  from  interseeding  earlier.    

Cover  crop  establishment  was  assessed  on  July  29,  2014  using  a  visual  rating  of  0  to  10  where  0  =  no  cover  crop  and  10  =  excellent  stand  (complete  ground  cover).  Corn  was  harvested  on  November  19,  2014  and  yield  was  quantified  with  a  Brent  weigh  wagon  that  was  transported  from  Cornell  University.  This  was  done  to  evaluate  whether  or  not  the  host  corn  crop  was  affected  by  the  cover  crop  interseeding  either  through  physical  damage  or  through  competition  from  the  cover  crop  for  limited  resources  (e.g.  nutrients  or  water).    

Results  and  Discussion  

Average  corn  population  ranged  from  19,000  plants/acre  in  the  control  treatment  to  21,500  plants/acre  in  the  annual  ryegrass  treatment.  The  lack  of  variability  in  corn  population  and  the  fact  that  the  lowest  population  was  observed  in  the  control  treatment  where  the  drill  interseeder  was  not  used  indicates  that  drill  interseeding  did  not  reduce  corn  populations.    

A  visual  assessment  of  cover  crop  establishment  and  performance  indicated  that  all  cover  crops  successfully  emerged  (Photograph  9).  However,  by  this  time  very  little  light  was  penetrating  the  canopy  and  the  cover  crops  were  somewhat  spindly.  Visual  ratings  were  used  to  compare  aerial  broadcast  interseeding  to  drill  interseeding.  Average  cover  crop  stands  ranged  from  2.5  in  the  Annual  Ryegrass  and  Forage  Radish  mixture  to  5.75  in  the  Annual  Ryegrass  and  Legume  mixture.  Surprisingly,  no  difference  between  aerial  broadcast  interseeding  and  drill  interseeding  was  observed  (Table  2).  This  is  an  interesting  finding  when  the  cost  of  the  different  approaches  is  considered.  However,  it  is  important  to  note  that  broadcast  interseeding  might  have  performed  better  than  usual  because  of  the  wet  conditions  after  seeding.  More  research  is  needed  across  a  larger  range  of  environmental  conditions  to  better  understand  the  effect  of  soil  moisture  on  cover  crop  establishment.    

Page 11: Ryan Farm Hub Report 7-30-15(final)...2015/07/30  · ! 10! Cover(Crop(Interseedinginto(Heritage(Corn((Objective(2)(Materialsand(Methods(We!tested!theeffects!ofcovercropinterseedingintoherita

 

  11  

 

Photograph  7.  Cover  crops  were  interseeded  on  June  30,  2014.  Chris  Pelzer  is  shown  above  operating  the  cover  crop  InterSeeder.    

Photograph  8.  We  compared  drill  interseeding  to  broadcast  interseeding,  which  was  simulated  by  hand  spreading.  Brian  Caldwell  is  shown  above  spreading  seed  with  a  hand-­‐held  EarthWay  spinner  spreader.    

 

Page 12: Ryan Farm Hub Report 7-30-15(final)...2015/07/30  · ! 10! Cover(Crop(Interseedinginto(Heritage(Corn((Objective(2)(Materialsand(Methods(We!tested!theeffects!ofcovercropinterseedingintoherita

 

  12  

 

Photograph  9.  Drill  interseeded  cover  crops  across  treatments  on  July  29,  2014.    

Table  2.  Results  from  analysis  of  variance  of  visual  rating  data  showing  no  effect  of  cover  crop  treatment  or  interseeding  method.    

Effect     Num  DF   Den  DF   F  value   P  value  Cover  Crop  Treatment   3   9   1.17   0.3753  Interseeding  Method     1   12   0.04   0.8483  Cover  Crop  x  Method     3   12   0.57   0.6434  

 Average  corn  yield  ranged  from  82-­‐92  bu/a  at  15.5%  moisture  across  treatments.  Analysis  of  variance  showed  significant  treatment  effects  on  corn  yield  (P  =  0.04).  Corn  yield  in  the  Control  and  Legume  treatments  was  significantly  greater  than  in  the  Annual  Ryegrass  and  Annual  Ryegrass  and  Forage  Radish  treatments.  The  Annual  Ryegrass  and  Legume  treatment  was  not  significantly  different  than  any  of  the  other  treatments.  It  is  interesting  that  the  two  treatments  that  were  not  significantly  different  from  the  control  contained  legumes.  Although  this  could  indicate  that  the  corn  was  nitrogen  limited  and  that  the  cover  crop  competed  with  the  corn  for  nitrogen,  the  fact  that  the  cover  crops  were  interseeded  rather  late  after  the  critical  weed-­‐free  period  in  corn  suggests  that  other  factors  are  responsible  for  the  difference.  More  research  is  needed  to  further  explore  competition  between  interseeded  cover  crops  and  host  cash  crops.    

Annual&Ryegrass&(10&lb/a)&and&Forage&Radish&(5&lb/a)&

Red&Clover&(10&lb/a),&Crimson&Clover&(20&lb/a),&and&Hairy&Vetch&(15&lb/a)&

Annual&Ryegrass&(20&lb/a)&

Annual&Ryegrass&(10&lb/a),&Red&Clover&(5&lb/a),&&&Crimson&Clover&(10&lb/a),&and&Hairy&Vetch&(7.5&lb/a)&

Page 13: Ryan Farm Hub Report 7-30-15(final)...2015/07/30  · ! 10! Cover(Crop(Interseedinginto(Heritage(Corn((Objective(2)(Materialsand(Methods(We!tested!theeffects!ofcovercropinterseedingintoherita

 

  13  

 

Figure  5.  Visual  rating  of  cover  crop  performance  ranging  from  0  to  10,  where  0  represents  no  cover  crop  present  and  10  represents  complete  ground  cover.    

 

Figure  6.  Corn  yield  across  cover  crop  treatments.  Similar  letters  above  bars  indicate  no  significant  difference  (P  >  0.05).  

0  1  2  3  4  5  6  7  8  

Annual  ryegrass  

Annual  ryegrass  and  

radish  

Legumes   Annual  ryegrass  and  legumes  

Visual  rating  (0-­‐10)  

Drill  interseeded   Broadcast  

0  10  20  30  40  50  60  70  80  90  100  

Control   Annual  ryegrass  

Annual  ryegrass  and  radish  

Legumes   Annual  ryegrass  and  

legumes  

Corn  Yield  (bu/a)  at  15.5%

 moisture   A   A    

B   B AB  

Page 14: Ryan Farm Hub Report 7-30-15(final)...2015/07/30  · ! 10! Cover(Crop(Interseedinginto(Heritage(Corn((Objective(2)(Materialsand(Methods(We!tested!theeffects!ofcovercropinterseedingintoherita

 

  14  

The  cornfield  was  disked  and  the  experiment  was  terminated  on  December  4,  2014,  and  thus  no  spring  cover  crop  biomass  was  collected.  On  December  5,  2014,  John  Gill  reported  the  following:  “We  took  a  look  and  could  not  find  hardly  any  thing  but  dead  weeds  and  stalks.  If  there  was  a  10%  stand  of  cover  crop,  that  was  the  most.  The  only  place  we  found  any  was  along  the  outside  southern  most  rows.”  Despite  the  strong  start  with  these  cover  crops,  potential  benefits  were  limited  with  poor  fall  growth.    

Outreach  Activities    

Information  from  this  project  was  disseminated  to  farmers  and  other  stakeholders  through  a  variety  of  outlets.  A  mid-­‐project  report  titled  ‘Organic  No-­‐till  Tofu  Soybean  Production  at  the  Hudson  Valley  Farm  Hub’  was  created  and  distributed  at  the  2015  Northeast  Organic  Farming  Association  of  New  York  (NOFA-­‐NY)  Winter  Meeting  in  Saratoga  Springs,  NY.  On  July  18,  2015  we  hosted  a  twilight  tour  of  our  research  plots  at  the  Musgrave  Research  Farm  in  Aurora,  NY.  This  event  was  titled  ‘Ready  To  Roll?  New  Field  Research  On  Organic  No-­‐Till  Soybean  With  Rolled-­‐Crimped  Cover  Crops’  and  was  co-­‐sponsored  by  NOFA-­‐NY.  Approximately  30  people  attended,  including  several  local  conventional  farmers  who  were  considering  the  transition  to  organic  production.  Jeff  Liebert  presented  on  his  research  on  the  cover  crop-­‐based,  organic  rotational  no-­‐till  system,  including  his  soybean  planting  rate  experiment  at  the  Farm  Hub.  He  reported  on  his  economic  analysis  of  different  soybean  planting  rates  and  emphasized  that  profitability  was  optimized  at  approximately  double  the  recommended  planting  rate  for  conventional  soybeans.  A  summary  of  the  twilight  tour,  the  handout  that  was  distributed,  and  photographs  from  the  tour  are  posted  on-­‐line  at:  https://scslabcu.wordpress.com/2015/07/08/twilight-­‐tour-­‐at-­‐musgrave-­‐research-­‐farm/.  On  July  2,  2015,  Brian  Caldwell  presented  at  the  ‘3rd  Annual  Small  Grains  Field  Day’  at  the  Farm  Hub.  Given  the  focus  on  small  grains  at  this  event,  Brian  Caldwell  focused  his  presentation  on  organic  cropping  systems,  crop  rotation,  and  the  use  of  cover  crops.  Information  from  this  project  will  also  be  presented  at  several  upcoming  farmer-­‐focused  field  days  and  workshops.        

References:  1. Bommarco,  R.,  Kleijn,  D.  &  Potts,  S.  G.  Ecological  intensification:  harnessing  ecosystem  services  for  food  security.  

Trends  Ecol.  Evol.  28,  230–238  (2013).  2. Mirsky,  S.  B.  et  al.  Conservation  tillage  issues:  Cover  crop-­‐based  organic  rotational  no-­‐till  grain  production  in  the  mid-­‐

Atlantic  region,  USA.  Renew.  Agric.  Food  Syst.  27,  31–40  (2012).  3. Baker,  J.  M.  &  Griffis,  T.  J.  Evaluating  the  potential  use  of  winter  cover  crops  in  corn–soybean  systems  for  sustainable  

co-­‐production  of  food  and  fuel.  Agric.  For.  Meteorol.  149,  2120–2132  (2009).  4. PMR  2012.  http://www.mccc.msu.edu/states/Iowa/2011_IA_Attitudes_toward_CC.pdf    5. CTIC  2010.  

http://www.ctic.org/media/pdf/Cover%20Crops/CTIC_HGBF_CroppingDecisionsSurvey_CoverCropSummary.pdf    6. MDA  2012.  http://mda.maryland.gov/resource_conservation/Pages/cover_crop.aspx    7. Hively,  W.  D.  &  Cox,  W.  J.  Interseeding  Cover  Crops  into  Soybean  and  Subsequent  Corn  Yields.  Agron.  J.  93,  308  (2001).  8. Fisher,  K.  A.,  Momen,  B.  &  Kratochvil,  R.  J.  Is  Broadcasting  Seed  an  Effective  Winter  Cover  Crop  Planting  Method?  Agron.  

J.  103,  472  (2011).  

 For  more  information  about  this  project  contact  Matthew  Ryan  at  [email protected]  (Lead  Investigator),  Jeff  Liebert  [email protected]  (Soybean  Experiment  Coordinator),  or  Chris  Pelzer  [email protected]  (Cover  Crop  Interseeding  Experiment  Coordinator)  or  visit  our  website  at  https://scslabcu.wordpress.com/.