14
MAPLD2005 / Submission 222 1 Lak e Reliability Analysis of the Aeroflex ViaLink™ FPGA MAPLD International Conference September 8, 2005 Session D: Reliability Ronald Lake Aeroflex Colorado Springs www.aeroflex.com/radhardFPGA

Reliability Analysis of the Aeroflex ViaLink™ FPGA

Embed Size (px)

DESCRIPTION

Reliability Analysis of the Aeroflex ViaLink™ FPGA. MAPLD International Conference September 8, 2005 Session D: Reliability Ronald Lake Aeroflex Colorado Springs www.aeroflex.com/radhardFPGA. Agenda. Background Aeroflex begins QML-Q / QML-V Qualification of RadHard Eclipse FPGA - PowerPoint PPT Presentation

Citation preview

Page 1: Reliability Analysis of the Aeroflex ViaLink™ FPGA

MAPLD2005 / Submission 2221Lake

Reliability Analysis of the Aeroflex ViaLink™ FPGA

MAPLD International Conference

September 8, 2005

Session D: Reliability

Ronald Lake

Aeroflex Colorado Springs

www.aeroflex.com/radhardFPGA

Page 2: Reliability Analysis of the Aeroflex ViaLink™ FPGA

MAPLD2005 / Submission 2222Lake

Agenda

Background– Aeroflex begins QML-Q / QML-V Qualification of RadHard Eclipse FPGA

– Original approach followed MIL-PRF-38535 standards

– Approach outlined in previously published papers

– Then the world changed (Industry Tiger Team, Aerospace Corp., NASA GSFC, etc.)

New Approach– November 2004: Aeroflex received “Aerospace Requirements for FPGAs in Space”

– Aeroflex adopts enhanced MIL-PRF-38535 QML Qualification with Aerospace Corporation guidelines

Un-programmed burn-in Operating life test (HTOL / LTOL)

Current Status– Aeroflex completes QML-Q / QML-V qualification: August 2005

– Standard Microcircuit Drawing (SMD) #:5962R04229

– Aeroflex announces QML results: September 2005 (MAPLD)

– Aeroflex ships first Rad-Assured QML materials: September 2005

Page 3: Reliability Analysis of the Aeroflex ViaLink™ FPGA

MAPLD2005 / Submission 2223Lake

QML Qualification Compliance Matrix

Aeroflex vs. Aerospace Corp. Guidance

Condition Aeroflex AerospaceGroup A MIL-PRF-38535 MIL-PRF-38535Group B MIL-PRF-38535 MIL-PRF-38535Group C MIL-PRF-38535 MIL-PRF-38535Group D MIL-PRF-38535 MIL-PRF-38535

Dynamic Burn-InCore=3.4V, I/O=4.6V,

125C, 16HrsCore=2.75V, I/O=3.6V,

125C, 240Hrs

LTOLCore=2.75V, I/O=3.6V, -55C, Read Pts: 96, 500,

1000Hrs

Core=2.75V, I/O=3.6V, -55C, Read Pts: 500, 1000,

2000, 3000, 4000, 5000, 6000 Hrs

HTOLCore=3.2V, I/O=4.1V,

125C, Read Pts: 96, 500, 1000Hrs

Core=2.75V, I/O=3.6V, 125C, Read Pts: 500,

1000, 2000, 3000, 4000, 5000, 6000 Hrs

Page 4: Reliability Analysis of the Aeroflex ViaLink™ FPGA

MAPLD2005 / Submission 2224Lake

Aerospace Evaluation Structural Evaluation

– Using focused ion beam techniques

– Output – 3 dimension model (colorized)

Follow-on evaluations

– Effect on adjacent ViaLinks

– Lot to Lot variation

– Via Links vs Programming

– Spatial Wafer Evaluation (center to edge)

– Lot to Lot variations

– Failed ViaLink (if possible)

3Q2005ElementalStructural

ProgrammedUn-Programmed

ElementalStructural

Task

4Q20051, 3 and 5 pulse programmed ViaLinks (bi-directional)Uni-Directionally Programmed ViaLinkUnprogrammed ViaLink

CompletionSample Type/Description

Page 5: Reliability Analysis of the Aeroflex ViaLink™ FPGA

MAPLD2005 / Submission 2225Lake

Un-programmed ViaLink Cross Section

Figure removed untilProprietary issues are resolve.This was a late arriving paperand I apologize for this, I wastoo nice and will fix that forMAPLD 2006. -- rk

Page 6: Reliability Analysis of the Aeroflex ViaLink™ FPGA

MAPLD2005 / Submission 2226Lake

Reliability Design for ViaLink Operating Life

Goal: Create worst case design for ViaLink stress

– Adhere to NASA OLD guidelines for reliability test vehicles for fuse based FPGAs

Design

– Use all FPGA logic, memory and I/O resources

– Use all wiring types, with associated ViaLinks

– Force high fan-out structures for flip flops and logic

– Maximize current density through ViaLinks

– Manually fix placement to force use of long wires and worst case ViaLinks

– Use dedicated and global clocks for synchronous logic

– Synchronize reset to insure initialization conditions

– Create long combinatorial and synchronous chains for AC delay measurements

Page 7: Reliability Analysis of the Aeroflex ViaLink™ FPGA

MAPLD2005 / Submission 2227Lake

Life Test Environment for RadHard Eclipse

Goal: Subject RadHard Eclipse to real world environment during life test to stress ViaLinks

Life test conditions

– Do not de-couple or terminate I/O signals

– Allow voltage spikes on inputs

– Allow noise on I/O and within wiring array of ViaLinks

– Evaluate multiple power sequencing conditions

– Use extended times in stress chambers

– Closely monitor power supplies

Page 8: Reliability Analysis of the Aeroflex ViaLink™ FPGA

MAPLD2005 / Submission 2228Lake

Test Environment for Characterization

Goal: Create repeatable and accurate test environment for measurement of RadHard Eclipse ViaLink characteristics

Test Conditions

– Use Teradyne Tiger tester for accurate measurements of quiescent current and propagation delay

– Test all temperature conditions: -55ºC, 25ºC and 125ºC

– Test all voltage conditions: 2.3V core and 3.0V I/O; 2.5V core and 3.3V I/O; 2.7V core and 3.6V I/O

– Use control units to verify test environment does not change between stress read points

– Review all test results prior to next stress, comparing worst case deltas to means

Page 9: Reliability Analysis of the Aeroflex ViaLink™ FPGA

MAPLD2005 / Submission 2229Lake

Un-programmed burn-in

Applied to 100% of un-programmed units passing manufacturing stress Standard step in Aeroflex QML manufacturing flow 240 hrs of 125°C burn-in at maximum operating conditions (Vcc=2.7V, Vccio=3.6V) FPGAs dynamically stimulated during burn-in After burn-in devices tested for quiescent current (Icc, Iccio) and un-programmed electrical test (3 temperature, min/typ/max voltage) Percent defective allowable (PDA) <5%

Lot ID # units # pass % defectiveQL0882 377 367 2.65%RD0910 59 59 0%RD0947 288 287 0.30%

Page 10: Reliability Analysis of the Aeroflex ViaLink™ FPGA

MAPLD2005 / Submission 22210Lake

Operating Life AC Deltas LTOL: 77 test units + 3 control

– No ViaLink failures at 1000 Hrs stress

– <3% change in propagation delay HTOL: 77 test units + 3 control

– No ViaLink failures at 1000 Hrs stress

– <10% change in propagation delay Delay deltas calculated for all voltage &

temperature combinations

Worst Case 251 Bit NAND Chain

100

120

140

160

180

200

0 200 400 600 800 1000Operating Life Stress (Hrs)

Pro

pag

atio

n D

elay

(n

s)

HTOL

LTOL

Reliability Design Feature

Details Clock

Synchronous Scan Chains

560 bit fast data quadrant

Two 360 bit Chains - high fan-out (16), fast data

dedicated

Two 225 bit Chain - high fan-out (16), fast data

global

SRAM 3072x18 quadrant

Register File 64x8 quadrant

Registered I/O Buffers

global

Combinatorial Chains

NAND w/ fanout 16

251 bit NAND w/ placement, 251 bit NAND, autoplace

Page 11: Reliability Analysis of the Aeroflex ViaLink™ FPGA

MAPLD2005 / Submission 22211Lake

Co60 AC Deltas

Delta’s calculated at room temperature for all voltage combinations

<5% change in delay at 100 krad(Si) <15% change in delay at 300 krad(Si) Irradiated at 1 rad(Si)/sec Propagation delays stay within simulation

limits

Worst Case 251 Bit NAND Chain

100

120

140

160

180

200

0 100 200 300

Total Ionizing Dose (krad(Si))

Pro

pag

atio

n D

elay

(n

s))

NAND Delay

Reliability Design Feature

Details Clock

Synchronous Scan Chains

560 bit fast data quadrant

Two 360 bit Chains - high fan-out (16), fast data

dedicated

Two 225 bit Chain - high fan-out (16), fast data

global

SRAM 3072x18 quadrant

Register File 64x8 quadrant

Registered I/O Buffers

global

Combinatorial Chains

NAND w/ fanout 16

251 bit NAND w/ placement, 251 bit NAND, autoplace

Page 12: Reliability Analysis of the Aeroflex ViaLink™ FPGA

MAPLD2005 / Submission 22212Lake

Radiation Testing

ConditionsVDD I/O, VDD

Core, TempSN Ion

Normal LET, MeV-cm²/mg

Angledegrees

Flux

ions/cm2-sLatchup

Fluence (normal)

ions/cm2

Effective Fluence

ions/cm2

Effective LET MeV-cm²/mg

3.6, 2.7, 125C 24 Au 90.3 41 7.8E+04 0 1.3E+7 1.0E+7 1203.6, 2.7, 125C 10 Au 90.3 41 6.9E+04 0 1.3E+8 1.0E+8 1203.6, 2.7, 125C 22 Au 90.3 41 6.0E+04 0 1.3E+7 1.0E+7 1203.6, 2.7, 125C 2 Au 90.3 41 6.3E+04 0 1.3E+7 1.0E+7 120

FPGAComponent

Temp(C)

VddCore, I/O

(V)

Numberof storage

cells

WeibullShape

WeibullWidth

SaturatedX-section

(cm2/bit)

Onset LET

(MeV-cm2)

Error-rate(Errors/bit-

day)RegF 25 2.25/3.00 1,024 1.6 100 2.10E-07 23 4.40E-09ShiftR 25 2.25/3.00 1,120 1.4 85 4.50E-07 15 2.20E-08

ShiftR w/ TMR 25 2.25/3.00 400 2 20 8.00E-08 76 1.90E-10RAM 25 2.25/3.00 55,296 1.95 125 9.60E-08 17.5 6.90E-10

1.0E-10

1.0E-09

1.0E-08

1.0E-07

1.0E-06

0 20 40 60 80 100 120

LET (MeV-cm2/mg)

Cro

ss

Se

cti

on

(c

m2 /b

it)

SN 20

SN 27

SN 7

SN 4

weibull

Single Event Effects

SerialNumber

Temp VDDCore & I/O

Pulse WidthFWHM (ns)

Latch-up(y/n)

Dose Rateat Die(rad/sec)

70 125C 2.75V/3.6V 35 n 6.37E+1169 125C 2.75V/3.6V 35 n 5.58E+1168 125C 2.75V/3.6V 35 n 5.73E+1167 125C 2.75V/3.6V 35 n 5.62E+1165 125C 2.75V/3.6V 35 n 6.09E+1166 125C 2.75V/3.6V 35 n 5.98E+1164 125C 2.75V/3.6V 35 n 5.25E+1163 125C 2.75V/3.6V 35 n 5.84E+1162 125C 2.75V/3.6V 35 n 6.16E+1161 125C 2.75V/3.6V 35 n 5.91E+1171 125C 2.75V/3.6V 35 n 5.82E+11

Lowest AllFail Limit

(rad/sec(Si))

Highest AllPass Limit

(rad/sec(Si))

Specification(rad/sec(Si))

SurvivalProbability

(%)

Number ofSamplesIrradiated

ConfidenceLimit (%)

1.18E+10 8.95E+09 8.7E+09 90.00 11 901.18E+10 8.95E+09 7.7E+09 99.00 11 901.18E+10 8.95E+09 6.9E+09 99.90 11 901.18E+10 8.95E+09 6.2E+09 99.99 11 90

Propagation Delay vs. Total Ionizing Dose

0

10

20

30

40

50

60

0.01 0.10 1.00 10.00MegaRad (Si)

Pro

pag

atio

n D

elay

(n

S)

NAND2 Delay Chain (866 Elements)

44 Stage Input Buffer NAND Tree

Input Buffer to PCI Compliant Output BufferPre-Rad ACs

Aeroflex SEC Test ChipExample Propagation Delay Paths

2.75V @ 25oC

Total Ionizing Dose

Dose Rate

Page 13: Reliability Analysis of the Aeroflex ViaLink™ FPGA

MAPLD2005 / Submission 22213Lake

Timing Characterization

QuickLogic Timing Release Flow

Oscillator Design

(34 types)

Initial Data

Collection

• Pre Release Data

• Aeroflex

Timing Generation

Re-Simulate Oscillator

Designs

• Aeroflex • QuickLogic • Aeroflex

Silicon

Vs Simulation

• Aeroflex

Spde Release

• QuickLogic

Verification Loop Current Status

– Aeroflex speed grade -5 primitive library provides >10% guard band vs. silicon for combinatorial and most synchronous delays

– Margins maintained for material after TID of 300krads (Si)

– Some exceptions exist due to Aeroflex removal of charge pump on FPGA

– Delay library undergoing updates for 4Q2005 release

Page 14: Reliability Analysis of the Aeroflex ViaLink™ FPGA

MAPLD2005 / Submission 22214Lake

Summary

Aeroflex Colorado Springs has embraced the Aerospace Corporation’s guidelines to enhance the QML qualification flow

Burn-in analysis demonstrates <3 % defective after 3 temperature testing (QML lot acceptance PDA<5%)

Worst case conditions used for ViaLink™ operating life test– LTOL delay analysis demonstrates <3 % change in

propagation delay after 1000 Hrs of stress– HTOL delay analysis demonstrates <10% change in

propagation delay after 1000 Hrs of stress TID delay analysis demonstrates <5% change in

propagation delay at 100krad and <12% change at 300krad ViaLink structural and elemental analysis underway with

Aerospace Corporation RadHard Eclipse FPGA qualified as Rad-Assured QML Q/V