29
5DGDU 3RODULPHWU\ (ULF 3277,(5 E. Pottier – 01 / 13 $ ELW RI +LVWRU\ 5$'$5 32/$5,0(75< $LUERUQH DQG 6SDFHERUQH 3RODULPHWULF 6$5 6HQVRUV 6RIWZDUH 7RROER[ E. Pottier – 01 / 13 /HDUQLQJ 7UDLQLQJ 5HVXOWV x y ( ) & Ezt , Radar Polarimetry 0 z Radar Polarimetry (Polar : polarisation Metry: measure) i th i f ii i d l i E. Pottier – 01 / 13 is the science of acquiring, processing and analysing the polarization state of an electromagnetic field Radar Polarimetry deals with the full vector nature of polarized electromagnetic waves

Radar Polarimetry (1)

Embed Size (px)

Citation preview

  • E. Pottier 01 / 13

    E. Pottier 01 / 13

    xy

    ( )E z t,

    Radar Polarimetry

    0z

    Radar Polarimetry (Polar : polarisation Metry: measure)i th i f i i i d l i

    E. Pottier 01 / 13

    is the science of acquiring, processing and analysing the polarization state of an electromagnetic field

    Radar Polarimetry deals with the full vector nature of polarized electromagnetic waves

  • The POLARISATION informationContained in the waves backscattered

    from a given medium is highly related to:

    Radar Polarimetry

    E. Pottier 01 / 13

    its geometrical structurereflectivity, shape and orientation

    its geophysical properties such as humidity, roughness,

    SAR Polarimetry Applications

    E. Pottier 01 / 13Courtesy of Dr. I. Hajnsek

    A Bit Of History

    E. Pottier 01 / 13

    Radar Polarimetry

  • Discovery of the Phenomena of Polarized Electromagnetic Energy

    AD 1000Use of the polarizedskylight to locate a

    hidden sun1669

    First knownQuantitative work 1677

    W t

    Corpuscular model or longitudinal waves

    on light observation Wave natureof light discovery

    Explanation of thedouble refraction

    1808Discovery of the

    polarization of light( intrinsic propertyof light and not of

    crystals)

    1704Corpuscular

    Model of light

    E. Pottier 01 / 13

    Crystal of calciteIceland Spar

    Sunstone Huygens

    MalusX-1795

    Bartholinus

    Discovery of the doublerefraction in calcite Newton

    Non Exhaustive Chronological List of the Main Pionners who contributed to the discovery

    of Polarization leading to Radar Polarimetry

    Brewster

    Fresnel

    Faraday

    Stokes

    Maxwell

    Helmholtz

    Rayleigh

    Kirchhoff

    18161820

    1832

    1852

    1873

    E. Pottier 01 / 13

    1873

    1881

    1881

    1883

    Transverse natureof light waves

    Electromagnetictheory of light

    Non Exhaustive Chronological List of the Main Pionners who contributed to the discovery

    of Polarization leading to Radar Polarimetry

    Hertz

    Drude

    Sommerfeld

    Poincar

    Wiener

    MarconiLorentz

    Lie

    1897

    1892

    1896

    1889

    1886

    E. Pottier 01 / 13

    1928

    19221908

    1897

  • PauliDeschamp

    Non Exhaustive Chronological List of the Main Pionners who contributed to the discovery

    of Polarization leading to Radar Polarimetry

    Wolf

    Born

    1954

    1954

    Deschamp

    1950

    1951

    E. Pottier 01 / 13

    Kennaugh

    1952

    KennaughHuynen

    W M Boerner

    Non Exhaustive Chronological List of the Main Pionners who contributed to the discovery

    of Polarization leading to Radar Polarimetry

    1952

    W. M. Boerner

    1970

    1980

    The

    E. Pottier 01 / 13

    TheRadar Polarimetric

    Triptych

    KennaughHuynen

    W M Boerner

    Non Exhaustive Chronological List of the Main Pionners who contributed to the discovery

    of Polarization leading to Radar Polarimetry

    1952

    W. M. Boerner

    1970

    1980

    1990 - 2000

    J.J. Van Zyl A. Freeman R. Touzi

    T. Ainsworth

    C. Lopez

    J.S. Lee

    Y. Yamaguchi

    E. PottierS.R. CloudeP. Dubois

    E. Pottier 01 / 13

    1990 2000Radar PolarimetryScientific Progress

    H. Mott

    Z. Czyz

    E. Lueneburg

    K. Papathanassiou J.C. Souyris

    Y.L. DesnosA. Moreira

    E. Krogager

    I. HajnsekT. Le Toan

  • Polarimetric SAR

    E. Pottier 01 / 13

    Airborne Sensors

    Airborne PolSAR Sensors

    DOSAREADS / Dornier GmbH (D)

    DO 228 (89), C160 (98), G222 (00)S, C, X-Band (Quad), Ka-Band (VV)

    AIRSARNASA / JPL (USA)

    DC8P, L, C-Band (Quad)

    AES1InterMap Technologies (D)

    GulfStream CommanderX-Band (HH), P-Band (Quad)

    AuSAR - INGARAD.S.T.O (Aus)

    DC3 (97) KingAir 350 (00) Beach 1900CX-Band (Quad) S, C, X Band (Quad), Ka Band (VV)P, L, C Band (Quad)X Band (HH), P Band (Quad)

    EMISARDCRS (DK)G3 Aircraft

    L, C-Band (Quad)

    ESARDLR (D)DO 228

    P, L, S-Band (Quad)C, X-Band (Sngl)

    MEMPHIS / AER II-PAMIRFGAN (D)

    Transal C160Ka, W-Band (Quad) / X-Band (Quad)

    STORMUVSQ / CETP (F)

    Merlin IVC-Band (Quad)

    X Band (Quad)

    E. Pottier 01 / 13

    PISARNASDA / CRL (J)

    GulfStreamL, X-Band (Quad)

    PHARUSTNO - FEL (NL)

    CESSNA Citation IIC-Band (Quad)

    RAMSESONERA (F)

    Transal C160P, L, S, C, X, Ku, Ka, W-Band (Quad)

    SAR580Environnement Canada (CA)

    Convair CV-580C, X-Band (Quad)

    AIRSAR

    Airborne PolSAR Sensors

    AIRSAR

    E. Pottier 01 / 13

    Google Earth San Francisco Bay (1988) (L-Band)

  • AIRSAR

    Airborne PolSAR SensorsTx Rx

    E. Pottier 01 / 13

    Google Earth San Francisco Bay (1988) (L-Band)

    |HH|dB

    AIRSAR

    Airborne PolSAR SensorsTx Rx

    E. Pottier 01 / 13

    Google Earth San Francisco Bay (1988) (L-Band)

    |VV|dB

    AIRSAR

    Airborne PolSAR SensorsTx Rx

    E. Pottier 01 / 13San Francisco Bay (1988) (L-Band)

    |HV|dB Google Earth

  • Tx Rx Tx Rx Tx Rx

    AIRSAR

    Airborne PolSAR Sensors

    E. Pottier 01 / 13-15dB 0dB-30dB

    |HH|dB |HV|dB |VV|dB

    AIRSAR

    Airborne PolSAR Sensors

    E. Pottier 01 / 13

    |HH+VV| |HV | |HH-VV| Google Earth San Francisco Bay (1988) (L-Band)

    TopoSAR (AeS-1)InterMAP

    GullStream Commander

    IECASIECAS - MOTL (C)

    Upcoming Airborne PolSAR Sensors

    GullStream CommanderP, L-Band (Quad) P, X-Band (Quad)

    E. Pottier 01 / 13E. Pottier 11 / 09

  • SETHIONERA (F)Mystere 20

    Upcoming Airborne PolSAR Sensors

    yP, L, S, C, X (Quad - Pol)

    E. Pottier 01 / 13E. Pottier 11 / 09

    P-Band Quad-PolB=70MHz

    (P-Vh, X-Hh, L-Vh)

    FSARDLR (G)DO 228

    S-Band

    Upcoming Airborne PolSAR Sensors

    S, X (Quad - Pol)

    E. Pottier 01 / 13E. Pottier 11 / 09

    (HH-VV, HV, HH+VV)

    UAVSARGulf-Stream IIIL (Quad - Pol)

    Salton Sea California ( March 2008 )

    Upcoming Airborne PolSAR Sensors

    ( )

    E. Pottier 01 / 13E. Pottier 11 / 09

    (HH-VV, HV, HH+VV)

  • Polarimetric SAR

    E. Pottier 01 / 13

    Spaceborne Sensors

    Space-borne Sensors

    SEASATNASA/JPL (USA)

    L-Band, 1978

    ERS-1European Space Agency (ESA)

    C-Band, 1991-2000

    SIR-C/X-SARNASA/JPL, L- and C-Band (quad)

    DLR / ASI, X-bandApril and October 1994

    J-ERS-1Japanese Space Agency (NASDA)

    L-Band, 1992-1998 April and October 1994

    RadarSAT-1Canadian Space Agency (CSA)

    C-Band, 1995-todayERS-2

    European Space Agency (ESA)C-Band, 1995-today

    Shuttle Radar Topography Mission (SRTM)NASA/JPL (C-Band), DLR (X-Band)

    February 2000

    ENVISAT / ASAREuropean Space Agency (ESA)

    C-Band (dual), 2002-today

    E. Pottier 01 / 13

    ALOS / PALSARJapanese Space Agency (JAXA)

    L-Band (quad), 2006

    TerraSAR-XGerman Aerospace Center (DLR) / Astirum

    X-Band (dual), 2007

    RadarSAT-IICanadian Space Agency (CSA)

    C-Band (quad), 2007

    COSMO-SkyMedItalian Space Agency (ASI)

    X-Band, 2007

    Space-borne Sensors

    SEASATNASA/JPL (USA)

    L-Band, 1978

    ERS-1European Space Agency (ESA)

    C-Band, 1991-2000

    SIR-C/X-SARNASA/JPL, L- and C-Band (quad)

    DLR / ASI, X-bandApril and October 1994

    J-ERS-1Japanese Space Agency (NASDA)

    L-Band, 1992-1998 April and October 1994

    RadarSAT-1Canadian Space Agency (CSA)

    C-Band, 1995-todayERS-2

    European Space Agency (ESA)C-Band, 1995-today

    Shuttle Radar Topography Mission (SRTM)NASA/JPL (C-Band), DLR (X-Band)

    February 2000

    ENVISAT / ASAREuropean Space Agency (ESA)

    C-Band (dual), 2002-today

    E. Pottier 01 / 13

    ALOS / PALSARJapanese Space Agency (JAXA)

    L-Band (quad), 2006

    TerraSAR-XGerman Aerospace Center (DLR) / Astirum

    X-Band (dual), 2007

    RadarSAT-IICanadian Space Agency (CSA)

    C-Band (quad), 2007

    COSMO-SkyMedItalian Space Agency (ASI)

    X-Band, 2007

  • T

    RXAX

    Scattering Coefficient

    XXS XXS XXS XXS

    X X X XT

    RX

    E. Pottier 01 / 13

    TRANSMITTER: XRECEIVER: X

    {{{{ }}}}XXS

    XX XX XX XX

    BACKSCATTERINGCOEFFICIENT

    NO POLARIMETRY

    T

    RXAXAY

    Wave Polarimetry

    RY

    S

    XXS

    S

    XXS

    S

    XXS

    S

    XXS

    X X X XT

    RX

    RY

    E. Pottier 01 / 13

    TRANSMITTER: XRECEIVERS: X & Y

    ====YX

    XXS S

    SE

    YXS YXS YXS YXS

    JONES VECTORS

    WAVE POLARIMETRY

    Space-borne PolSAR Sensors

    SEASATNASA/JPL (USA)

    L-Band, 1978

    ERS-1European Space Agency (ESA)

    C-Band, 1991-2000

    SIR-C/X-SARNASA/JPL, L- and C-Band (quad)

    DLR / ASI, X-bandApril and October 1994

    J-ERS-1Japanese Space Agency (NASDA)

    L-Band, 1992-1998 April and October 1994

    RadarSAT-1Canadian Space Agency (CSA)

    C-Band, 1995-todayERS-2

    European Space Agency (ESA)C-Band, 1995-today

    Shuttle Radar Topography Mission (SRTM)NASA/JPL (C-Band), DLR (X-Band)

    February 2000

    ENVISAT / ASAREuropean Space Agency (ESA)

    C-Band (dual), 2002-today

    E. Pottier 01 / 13

    TerraSAR-XGerman Aerospace Center (DLR) / Astirum

    X-Band (dual), 2007

    ALOS / PALSARJapanese Space Agency (JAXA)

    L-Band (quad), 2006

    RadarSAT-IICanadian Space Agency (CSA)

    C-Band (quad), 2007

    COSMO-SkyMedItalian Space Agency (ASI)

    X-Band, 2007

  • T

    RXAXAY

    Scattering Polarimetry

    RY

    S

    XXS

    S

    XYS

    S

    XXS

    S

    XYS

    X Y X YT

    RX

    RY

    E. Pottier 01 / 13

    [[[[ ]]]] ====YY

    XY

    YX

    XX

    SS

    SS

    S

    YXS YYS YXS YYS

    SINCLAIR MATRICES

    SCATTERING POLARIMETRY

    TRANSMITTER: X & YRECEIVERS: X & Y

    Space-borne PolSAR Sensors

    SEASATNASA/JPL (USA)

    L-Band, 1978

    ERS-1European Space Agency (ESA)

    C-Band, 1991-2000

    SIR-C/X-SARNASA/JPL, L- and C-Band (quad)

    DLR / ASI, X-bandApril and October 1994

    J-ERS-1Japanese Space Agency (NASDA)

    L-Band, 1992-1998 April and October 1994

    RadarSAT-1Canadian Space Agency (CSA)

    C-Band, 1995-todayERS-2

    European Space Agency (ESA)C-Band, 1995-today

    Shuttle Radar Topography Mission (SRTM)NASA/JPL (C-Band), DLR (X-Band)

    February 2000

    ENVISAT / ASAREuropean Space Agency (ESA)

    C-Band (dual), 2002-today

    E. Pottier 01 / 13

    ALOS / PALSARJapanese Space Agency (JAXA)

    L-Band (quad), 2006

    TerraSAR-XGerman Aerospace Center (DLR) / Astirum

    X-Band (quad), 2007

    RadarSAT-IICanadian Space Agency (CSA)

    C-Band (quad), 2007

    COSMO-SkyMedItalian Space Agency (ASI)

    X-Band, 2007

    ALOS - PALSARJanuary 2006

    L-Band (Sngl / Twin / Quad)

    Space-borne PolSAR Sensors

    E. Pottier 01 / 13

    ALOS : Advanced Land Observing SatellitePALSAR : Phase Array L-Band SAR

  • TerraSAR - X

    Space-borne PolSAR Sensors

    E. Pottier 01 / 13

    June 2007X-Band (Sngl / Twin / Quad ?)

    RADARSAT - 2 December 2007C-Band (Quad)

    Space-borne PolSAR Sensors

    E. Pottier 01 / 13

    What About The Future ?

    E. Pottier 01 / 13

    From Tomorrow

  • RISAT

    Future Space-Borne PolSARPol-InSAR Sensors

    Sentinel 1

    BIOMASS

    ALOS 2

    RCM

    SAOCOM

    E. Pottier 01 / 13

    TanDEML DESDynil

    What About

    E. Pottier 01 / 13

    Software / Toolbox ?

    PolSARpro v5.0

    E. Pottier 01 / 13

  • PolSARpro v5.0

    E. Pottier 01 / 13

    E. Pottier 01 / 13

    E. Pottier 01 / 13

  • Learning / Training

    Next P.I Generations

    E. Pottier 01 / 13

    Polarimetric Radar Imaging: From basics to applications

    Books On Polarimetric RadarSAR, Polarimetric Interferometry

    Jong-Sen LEE Eric POTTIERCRC Press; 1st ed., February 2009, pp 422ISBN: 978-1420054972

    Polarisation: Applications in Remote Sensing

    E. Pottier 01 / 13

    Polarisation: Applications in Remote SensingShane R. CLOUDEOxford University Press, October 2009, pp 352ISBN: 978-0199569731

    Questions ?

    E. Pottier 01 / 13

  • y( )

    0

    x ( )E z t,

    z

    E.Pottier(2013)

    BASIC CONCEPTS

    xy

    ( )E z t,

    0z

    E.Pottier(2013)

    WAVE POLARIMETRY

    (((( ))))t,zEREAL ELECTRIC FIELD VECTOR

    (((( ))))tBMAXWELL EQUATIONS

    PROPAGATION EQUATION

    (((( )))) (((( ))))

    (((( )))) (((( ))))(((( )))) (((( ))))(((( )))) 0t,zB

    t,zt,zDt,zJt,zHt

    t,zBt,zE

    T

    ========

    ====

    ====

    (((( ))))

    MAXWELL FARADAY EQUATION

    MAXWELL AMPERE EQUATION

    GAUSS THEOREM

    E.Pottier(2013)

    (((( )))) (((( )))) (((( ))))

    (((( )))) (((( ))))(((( )))) (((( ))))(((( )))) (((( ))))t,zEt,zD

    t,zHt,zBt,zEt,zJ

    tt,zDt,zJt,zJ

    C

    CT

    ============

    ++++====

  • xy

    ( )E z t,

    POLARISATION ELLIPSE

    0

    z

    E.Pottier(2013)

    (((( ))))(((( ))))(((( ))))

    ============

    ====0E

    kztcosEEkztcosEE

    t,zE

    z

    yy0y

    xx0x

    REAL ELECTRIC FIELD VECTOR

    y ( )E z t0 ,x

    y( )E z t,

    POLARISATION ELLIPSE

    z0

    x0

    z

    E.Pottier(2013)

    (((( )))) (((( )))) 22

    y0

    y

    y0x0

    yx2

    x0

    x sinEE

    cosEEEE

    2EE ====++++

    THE REAL ELECTRIC FIELD VECTOR MOVES IN TIME ALONG AN ELLIPSE

    With: xy ====

    yy0

    x0( )E z t, = 0

    POLARISATION ELLIPSE

    0A

    x,zn

    E.Pottier(2013)

    A : WAVE AMPLITUDE

    ORIENTATION ANGLE ELLIPTICITY ANGLE

    ABSOLUTE PHASE

    22

    40

  • POLARISATION HANDENESS

    ROTATION SENSE: LOOKING INTO THE DIRECTION OF THE WAVE PROPAGATION

    xy

    0

    z

    ++++

    E.Pottier(2013)

    ANTI-CLOCKWISE ROTATION CLOCKWISE ROTATION

    LEFT HANDED POLARISATION RIGHT HANDED POLARISATION

    ELLIPTICITY ANGLE : ELLIPTICITY ANGLE : 44

    REAL ELECTRIC FIELD VECTOR

    (((( ))))(((( ))))(((( ))))====

    ========

    0EkztcosEEkztcosEE

    t,zE yy0yxx0x

    ========

    ====y

    x

    joyy

    joxx

    eEEeEE

    E

    PHASOR = JONES VECTOR

    JONES VECTOR

    ==== 0Ez

    GEOMETRICAL PARAMETERS

    ABSOLUTE PHASE

    x ==== 2y02x0 EEA ++++====

    AMPLITUDE

    (((( )))) (((( ))))==== kztjeEt,zE With:

    E.Pottier(2013)

    cosEE

    EE22tan 2

    y02x0

    y0x0

    ====

    y

    sinEE

    EE22sin 2

    y02x0

    y0x0

    ++++====

    ORIENTATION ANGLE ELLIPTICITY ANGLE

    POLARISATION HANDENESS: Sign()

    Special Unitary Matrices Group and Jones Vector

    JONES VECTOR

    ++++

    ============

    ====)sin()cos(j)cos()sin()sin()sin(j)cos()cos(jAe

    eEEeEE

    Ey

    x

    joyy

    joxx

    )y,x(

    ====

    )sin(j)cos(

    )cos()sin()sin()cos(jAeE )y,x(

    )()(j)()(oyy

    E.Pottier(2013)

    ====01

    je00je

    )cos()sin(j)sin(j)cos(

    )cos()sin()sin()cos(

    AE )y,x(

  • HORIZONTAL POLARISATION STATE

    E z t( , )

    y

    E z t( , )

    y

    ====01

    H ====10

    V

    VERTICAL POLARISATION STATE

    JONES VECTOR

    0 zx

    0 zx

    00

    ========

    02

    ====

    ====

    E z t( , )

    y

    E z t( , )

    y

    ====11RC

    LEFT CIRCULAR POLARISATION STATE RIGHT CIRCULAR POLARISATION STATE

    ====11LC

    E.Pottier(2013)

    0 zx

    0 z

    x

    ==

    j2RC

    4

    22

    ++++====

    ++++

    ==j2

    LC

    4

    22

    ====

    ++++

    y

    y0 x0

    yy0

    ORTHOGONAL JONES VECTOR

    0A

    x,zn

    y

    0

    x,zn

    x0

    E.Pottier(2013)

    ORTHOGONALITY CONDITIONS

    (((( ))))====

    ++++====

    2,

    CHANGE OF POLARISATION HANDENESS

    (((( ))))[[[[ ]]]] (((( )))) (((( ))))(((( )))) (((( ))))(((( )))) (((( ))))(((( )))) (((( ))))

    ====

    jj

    00e

    ijsinjcos

    isincos

    ,,U

    SU(2) : SPECIAL UNITARY TRANSFORMATION MATRIX

    ELLIPTICAL BASIS TRANSFORMATION

    (((( )))) (((( )))) (((( )))) (((( )))) je0cossinjcossin

    (((( )))) (((( ))))[[[[ ]]]] (((( ))))[[[[ ]]]]==== ,,UU 1BBAAELLIPTICAL BASIS TRANSFORMATION MATRIX

    E.Pottier(2013)

    (((( )))) (((( ))))[[[[ ]]]] (((( ))))[[[[ ]]]](((( )))) (((( ))))

    (((( )))) (((( ))))(((( )))) (((( ))))(((( )))) (((( ))))

    ====

    cossinsincos

    cossinjsinjcos

    e00e

    ,,UU

    j

    jB,BA,A

  • 0

    xy

    z 0

    xy

    z

    PARTIALLY POLARISED WAVES

    RANDOM SCATTERINGDETERMINISTIC SCATTERING

    E.Pottier(2013)

    PARTIALLY POLARISED WAVECOMPLETELY POLARISED WAVE

    Polarisation Ellipse varies in timeAmplitude, Phase: Random processes

    STATISTICAL DESCRIPTION

    PARTIALLY POLARISED WAVES

    WAVE COVARIANCE MATRIX

    [[[[ ]]]] ======== 2**yx

    2x*T

    EEEEEJ 2

    y*xy EEE

    DIAGONAL ELEMENTS : INTENSITIES ON EACH OF THE 2 ORTHOGONALCOMPONENTS OF THE WAVE

    OFF-DIAGONAL ELEMENTS : CROSS-CORRELATIONS BETWEEN THE 2ORTHOGONAL COMPONENTS OF THE WAVE

    E.Pottier(2013)

    [[[[ ]]]](((( )))) 22y2x AEEJTrace ====++++==== TOTAL WAVE INTENSITY

    THE WAVE COVARIANCE MATRIX IS A 2x2 HERMITIAN POSITIVE SEMI-DEFINITE MATRIX

    EIGENVALUES DECOMPOSITION

    [[[[ ]]]] [[[[ ]]]] [[[[ ]]]] *T*T11 U0UJ

    PARTIALLY POLARISED WAVES

    2 ORTHOGONAL EIGENVECTORS

    [[[[ ]]]] [[[[ ]]]] [[[[ ]]]] T222T111122

    12 uuuuU0

    UJ

    ++++========

    [[[[ ]]]] [[[[ ]]]]212 u,uU ====

    {{{{ }}}}2221

    E.Pottier(2013)

    2 REAL EIGENVALUES{{{{ }}}}{{{{ }}}}23222102

    23

    22

    2101

    gggg21

    gggg21

    ++++++++====

    ++++++++++++====

  • Degree of Polarisation

    PARTIALLY POLARISED WAVES

    PARTIALLY POLARISED WAVES DESCRIPTORS

    Anisotropy

    [[[[ ]]]](((( ))))[[[[ ]]]](((( ))))====++++

    ====++++++++

    ====JTrace

    Jdet41g

    gggDoP 2

    21

    21

    0

    23

    22

    21

    Polarised Wave PowerTotal Wave Power 1DoP0

    E.Pottier(2013)

    Wave Entropy

    With:(((( ))))====

    ====

    ====2i

    1ii2i plogpH

    21

    iip

    ++++

    ====

    Degree of randomness, statistical disorder

    1H0

    PARTIALLY POLARISED WAVES

    E.Pottier(2013)

    ShannonEntropy

    PARTIALLY POLARISED WAVES

    E.Pottier(2013)

    Anisotropy = DoP

  • Questions ?

    E.Pottier(2013)

    xy

    ( )E z t,

    0z

    E.Pottier(2013)

    SCATTERINGPOLARIMETRY

    T

    RXAXAY

    WAVE POLARIMETRY

    RY

    S

    XXS

    S

    XXS

    S

    XXS

    S

    XXS

    X X X XT

    RX

    RY

    E.Pottier(2013)

    TRANSMITTER: XRECEIVERS: X & Y

    ====YX

    XXS S

    SE

    YXS YXS YXS YXS

    JONES VECTORS

    WAVE POLARIMETRY

  • T

    RXAXAY

    SCATTERING POLARIMETRY

    RY

    S

    XXS

    S

    XYS

    S

    XXS

    S

    XYS

    X Y X YT

    RX

    RY

    E.Pottier(2013)

    [[[[ ]]]] ====YY

    XY

    YX

    XX

    SS

    SS

    S

    YXS YYS YXS YYS

    SINCLAIR MATRICES

    SCATTERING POLARIMETRY

    TRANSMITTER: X & YRECEIVERS: X & Y

    Tx Rx Tx Rx Tx Rx

    SCATTERING POLARIMETRY

    E.Pottier(2013)

    -15dB 0dB-30dB

    |HH|dB |HV|dB |VV|dB

    Sinclair Color Coding

    SCATTERING POLARIMETRY

    E.Pottier(2013)

    |HH| |HV| |VV| Google Earth

  • (((( ))))[[[[ ]]]] (((( )))) (((( ))))[[[[ ]]]] (((( ))))[[[[ ]]]] (((( )))) (((( ))))[[[[ ]]]] ==== B,BA,AA,ATB,BA,AB,B USUSCON-SIMILARITY TRANSFORMATION

    ELLIPTICAL BASIS TRANSFORMATION

    SU(2) SPECIAL UNITARY ELLIPTICALBASIS TRANSFORMATION MATRIX (((( )))) (((( ))))[[[[ ]]]] B,BA,AU

    [[[[ ]]]] (((( ))))[[[[ ]]]] 1

    E.Pottier(2013)

    (((( ))))[[[[ ]]]]2U(((( ))))[[[[ ]]]]2U(((( ))))[[[[ ]]]]2U

    (((( )))) (((( ))))[[[[ ]]]] (((( ))))[[[[ ]]]](((( )))) (((( ))))

    (((( )))) (((( ))))(((( )))) (((( ))))(((( )))) (((( ))))

    ====

    ====

    cossinsincos

    cossinjsinjcos

    e00e

    ,,UU

    j

    j

    1B,BA,A

    (H,V) POLARISATION BASIS

    ELLIPTICAL BASIS TRANSFORMATION

    E.Pottier(2013)

    |HH+VV| |HV | |HH-VV| Google Earth

    (+45,-45) POLARISATION BASIS

    ELLIPTICAL BASIS TRANSFORMATION

    E.Pottier(2013)

    |AA+BB| |AB | |AA-BB|With: A=Linear +45, B=Linear 45

    Google Earth

  • (LC,RC) POLARISATION BASIS

    ELLIPTICAL BASIS TRANSFORMATION

    E.Pottier(2013)

    |LL+RR| |LR | |LL-RR| Google Earth

    SINCLAIR MATRIX

    POLARIMETRIC DESCRIPTORS

    [S] SINCLAIR Matrix

    [[[[ ]]]] ====VV

    HV

    VH

    HH

    SS

    SS

    S

    E.Pottier(2013)

    TRANSMITTER: H & VRECEIVERS: H & V

    k Target Vector

    [T] 3x3 COHERENCY Matrix

    VECTORIZATION OF [S]

    [[[[ ]]]] [[[[ ]]]](((( )))) [[[[ ]]]][[[[ ]]]](((( ))))STraceSVkSSSS

    SVVHV

    HVHH

    21============

    TARGET VECTOR

    SS VVHV 2

    [[[[ ]]]]

    ====0110

    2,10

    012,

    1001

    2P

    SET OF 2x2 COMPLEX MATRICESFROM THE PAULI MATRICES GROUP

    E.Pottier(2013)

    TARGET VECTOR

    [ ]k S S S S SHH VV HH VV HV T= + 12 2

  • TARGET VECTOR k

    [ ]k S S S S SHH VV HH VV HV T= + 12 2

    COHERENCY MATRIX

    COHERENCY MATRIX [T]

    [ ]T k kA C jD H jG

    C jD B B E jFH jG E jF B B

    T= = +

    + + +

    *2 0

    0

    0

    HERMITIAN MATRIX - RANK 1

    E.Pottier(2013)

    HERMITIAN MATRIX RANK 1

    A0, B0+B, B0-B : HUYNEN TARGET GENERATORS

    [T] is closer related to Physical and Geometrical Properties of the ScatteringProcess, and thus allows a better and direct physical interpretation

    PHYSICAL INTERPRETATION

    SINGLE BOUNCE DOUBLE BOUNCE VOLUME

    TARGET GENERATORS

    SINGLE BOUNCESCATTERING

    (ROUGH SURFACE)

    DOUBLE BOUNCESCATTERING

    VOLUMESCATTERING

    E.Pottier(2013)

    2YYXX011 SSA2T ++++========

    2YYXX022 SSBBT ====++++====

    2XY033 S2BBT ========

    TARGET GENERATORS

    E.Pottier(2013)

    -15dB 0dB-30dB

    |HH+VV|dB |HV|dB |HH-VV|dB

  • (H,V) POLARISATION BASIS

    TARGET GENERATORS

    E.Pottier(2013)

    |HH+VV| |HV | |HH-VV| Google Earth

    (((( )))) (((( ))))[[[[ ]]]] (((( ))))i A,AA,As A,A ESE ==== (((( )))) (((( ))))[[[[ ]]]] (((( ))))i B,BB,Bs B,B ESE ====SINCLAIR MATRIX

    ELLIPTICAL BASIS TRANSFORMATION

    (((( ))))[[[[ ]]]] (((( )))) (((( ))))[[[[ ]]]] (((( ))))[[[[ ]]]] (((( )))) (((( ))))[[[[ ]]]] ==== B,BA,AA,ATB,BA,AB,B USUSCON-SIMILARITY TRANSFORMATION

    (((( ))))[[[[ ]]]] (((( )))) (((( ))))[[[[ ]]]] (((( ))))[[[[ ]]]] (((( )))) (((( ))))[[[[ ]]]] 1BBAA3AABBAA3BB UTUT ====COHERENCY MATRIX

    E.Pottier(2013)

    (((( ))))[[[[ ]]]] (((( )))) (((( ))))[[[[ ]]]] (((( ))))[[[[ ]]]] (((( )))) (((( ))))[[[[ ]]]]B,BA,A3A,AB,BA,A3B,B SIMILARITY TRANSFORMATION

    U(3) SPECIAL UNITARY ELLIPTICALBASIS TRANSFORMATION MATRIX (((( )))) (((( ))))[[[[ ]]]] B,BA,A3U

    SPECIAL UNITARY SU(2) GROUP

    [[[[ ]]]] (((( )))) (((( ))))(((( )))) (((( ))))(((( )))) (((( ))))(((( )))) (((( ))))

    ====

    j

    j

    2 e00e

    cossinjsinjcos

    cossinsincos

    U

    (((( ))))[[[[ ]]]] (((( ))))[[[[ ]]]] (((( ))))[[[[ ]]]]

    ELLIPTICAL BASIS TRANSFORMATION

    SPECIAL UNITARY SU(3) GROUP

    (((( ))))[[[[ ]]]]2U (((( ))))[[[[ ]]]]2U (((( ))))[[[[ ]]]]2U

    E.Pottier(2013)

    [U3(2)] [U3(2)] [U3(2)]

    (((( )))) (((( ))))(((( )))) (((( ))))

    (((( )))) (((( ))))

    (((( )))) (((( ))))

    (((( )))) (((( ))))(((( )))) (((( ))))

    10002cos2sinj02sinj2cos

    2cos02sinj010

    2sinj02cos

    2cos2sin02sin2cos0

    001

  • TARGET EQUATIONS

    E.Pottier(2013)

    POLARIMETRIC TARGET DIMENSION

    POLARIMETRIC GOLDEN NUMBER

    [[[[ ]]]] ====YYYX

    XYXX

    SSSS

    S

    POLARIMETRIC TARGET DIMENSION

    XXYYXXXY

    YYXYXX

    ,S,S,S

    5 DEGREES OF FREEDOMCOHERENCY MATRIX [T]

    9 HUYNEN REAL PARAMETERS(A0, B0, B, C, D, E, F, G, H)

    E.Pottier(2013)

    TARGET MONOSTATIC POLARIMETRIC DIMENSION

    5

    =

    9 - 5 = 4 TARGET EQUATIONS

    [[[[ ]]]] ++++++++++++++++

    ======== jFEBBjDCjGHjDCA2

    kkT 00

    T*

    PURE TARGET MONOSTATIC CASE

    TARGET EQUATIONS

    (((( )))) (((( )))) 0HGBBA20DCBBA2 22002200 ========++++

    BBjFEjGH 03x3 HERMITIAN MATRIX - RANK 1

    9 PRINCIPAL MINORS = 0

    E.Pottier(2013)

    (((( )))) (((( ))))

    (((( )))) (((( ))))(((( ))))

    (((( )))) 0DFCEBBH0EDFCBBG0DHCGFA20GEFHBBD0GFEHBBC

    0FEBB0DGCHEA20G0C

    0

    00

    00

    222200

    0000

    ====++++====++++++++========++++====

    ========++++++

  • [[[[ ]]]] ====YYYX

    XYXX

    SSSS

    S

    TARGET EQUATIONS

    XXYYXXXY

    YYXYXX

    ,S,S,S

    5 DEGREES OF FREEDOM COHERENCY MATRIX [T]9 HUYNEN REAL PARAMETERS

    (A0, B0, B, C, D, E, F, G, H)

    9 5 = 4 TARGET EQUATIONS

    E.Pottier(2013)

    TARGET MONOSTATIC POLARIMETRIC DIMENSION

    5

    =

    9 - 5 = 4 TARGET EQUATIONS

    (((( ))))(((( ))))

    DHCGFA2DGCHEA2HGBBA2DCBBA2

    0

    0

    2200

    2200

    ++++========++++====++++====++++

    POLARIMETRIC DESCRIPTORS

    REMOTE SENSING

    [S] SINCLAIR Matrix

    k Target Vector

    [T] 3 3 COHERENCY M t i

    [[[[ ]]]] ====VV

    HV

    VH

    HH

    SS

    SS

    S

    E.Pottier(2013)

    TRANSMITTER: H & VRECEIVERS: H & V

    [T] 3x3 COHERENCY Matrix

    POLARIMETRIC REMOTE SENSING

    Questions ?

    E.Pottier(2013)