62
QUANTUM SIMULATION AND COMPUTING A NEW WAY OF COMPUTING BEYOND SUPERCOMPUTERS JENS EISERT, FU BERLIN HARDWARE HACKING, BIG TECH DAY 11

QUANTUM SIMULATION AND COMPUTING · QUANTUM SIMULATION Simulate interesting physical situations Trotzky, Chen, Flesch, McCulloch, Schollwöck, Eisert, Bloch, Nature Physics 8, 325

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: QUANTUM SIMULATION AND COMPUTING · QUANTUM SIMULATION Simulate interesting physical situations Trotzky, Chen, Flesch, McCulloch, Schollwöck, Eisert, Bloch, Nature Physics 8, 325

QUANTUM SIMULATION AND COMPUTINGA NEW WAY OF COMPUTING BEYOND SUPERCOMPUTERS

JENS EISERT, FU BERLIN HARDWARE HACKING, BIG TECH DAY 11

Page 2: QUANTUM SIMULATION AND COMPUTING · QUANTUM SIMULATION Simulate interesting physical situations Trotzky, Chen, Flesch, McCulloch, Schollwöck, Eisert, Bloch, Nature Physics 8, 325

MOORE’S LAW

▸ Gordon Moore (Intel, 1965): Number of transistors in integrated circuits doubles approximately every two years

Zuse Z3 (1941)

Page 3: QUANTUM SIMULATION AND COMPUTING · QUANTUM SIMULATION Simulate interesting physical situations Trotzky, Chen, Flesch, McCulloch, Schollwöck, Eisert, Bloch, Nature Physics 8, 325

▸ Gordon Moore (Intel, 1965): Number of transistors in integrated circuits doubles approximately every two years

MOORE’S LAW

ENIAC, EDVAC, ORDVAC, BRLESC-I (1945-62)

Zuse Z3 (1941)

Page 4: QUANTUM SIMULATION AND COMPUTING · QUANTUM SIMULATION Simulate interesting physical situations Trotzky, Chen, Flesch, McCulloch, Schollwöck, Eisert, Bloch, Nature Physics 8, 325

▸ Gordon Moore (Intel, 1965): Number of transistors in integrated circuits doubles approximately every two years

Zuse Z3 (1941)

Tran

sist

or c

ount

MOORE’S LAW

ENIAC, EDVAC, ORDVAC, BRLESC-I (1945-62)

Zuse Z3 (1941)

Page 5: QUANTUM SIMULATION AND COMPUTING · QUANTUM SIMULATION Simulate interesting physical situations Trotzky, Chen, Flesch, McCulloch, Schollwöck, Eisert, Bloch, Nature Physics 8, 325

▸ Gordon Moore (Intel, 1965): Number of transistors in integrated circuits doubles approximately every two years

Zuse Z3 (1941)

Tran

sist

or c

ount

▸ Minimum feature size down to that of single atoms

MOORE’S LAW

Page 6: QUANTUM SIMULATION AND COMPUTING · QUANTUM SIMULATION Simulate interesting physical situations Trotzky, Chen, Flesch, McCulloch, Schollwöck, Eisert, Bloch, Nature Physics 8, 325

▸ Gordon Moore (Intel, 1965): Number of transistors in integrated circuits doubles approximately every two years

Tran

sist

or c

ount

▸ Minimum feature size down to that of single atoms

▸ Different physical laws matter

MOORE’S LAW

Page 7: QUANTUM SIMULATION AND COMPUTING · QUANTUM SIMULATION Simulate interesting physical situations Trotzky, Chen, Flesch, McCulloch, Schollwöck, Eisert, Bloch, Nature Physics 8, 325

QUANTUM MECHANICS

Page 8: QUANTUM SIMULATION AND COMPUTING · QUANTUM SIMULATION Simulate interesting physical situations Trotzky, Chen, Flesch, McCulloch, Schollwöck, Eisert, Bloch, Nature Physics 8, 325

QUANTUM MECHANICS

▸ Quantum mechanics is a physical theory

Page 9: QUANTUM SIMULATION AND COMPUTING · QUANTUM SIMULATION Simulate interesting physical situations Trotzky, Chen, Flesch, McCulloch, Schollwöck, Eisert, Bloch, Nature Physics 8, 325

QUANTUM MECHANICS

▸ Quantum mechanics is a physical theory

▸ Theory of atoms, molecules, and light quanta

Page 10: QUANTUM SIMULATION AND COMPUTING · QUANTUM SIMULATION Simulate interesting physical situations Trotzky, Chen, Flesch, McCulloch, Schollwöck, Eisert, Bloch, Nature Physics 8, 325

QUANTUM MECHANICS

▸ Developed 1925-1928

Page 11: QUANTUM SIMULATION AND COMPUTING · QUANTUM SIMULATION Simulate interesting physical situations Trotzky, Chen, Flesch, McCulloch, Schollwöck, Eisert, Bloch, Nature Physics 8, 325

QUANTUM MECHANICS

▸ Developed 1925-1928

▸ Basis of semi-conductors, materials science, lasers

Page 12: QUANTUM SIMULATION AND COMPUTING · QUANTUM SIMULATION Simulate interesting physical situations Trotzky, Chen, Flesch, McCulloch, Schollwöck, Eisert, Bloch, Nature Physics 8, 325

QUANTUM MECHANICS

▸ Developed 1925-1928

▸ Basis of semi-conductors, materials science, lasers

▸ Fine structure constant: 7,297.352.566.4(17) x 10-3

Page 13: QUANTUM SIMULATION AND COMPUTING · QUANTUM SIMULATION Simulate interesting physical situations Trotzky, Chen, Flesch, McCulloch, Schollwöck, Eisert, Bloch, Nature Physics 8, 325

QUANTUM MECHANICS

▸ Developed 1925-1928

▸ Basis of semi-conductors, materials science, lasers

▸ Radically different from classical mechanics▸ Fine structure constant: 7,297.352.566.4(17) x 10-3

Page 14: QUANTUM SIMULATION AND COMPUTING · QUANTUM SIMULATION Simulate interesting physical situations Trotzky, Chen, Flesch, McCulloch, Schollwöck, Eisert, Bloch, Nature Physics 8, 325

RANDOMNESS

Page 15: QUANTUM SIMULATION AND COMPUTING · QUANTUM SIMULATION Simulate interesting physical situations Trotzky, Chen, Flesch, McCulloch, Schollwöck, Eisert, Bloch, Nature Physics 8, 325

RANDOMNESS IN QUANTUM MECHANICS

▸ Measurement outcomes are random

Präparation

0 1 1 0 1 0

Page 16: QUANTUM SIMULATION AND COMPUTING · QUANTUM SIMULATION Simulate interesting physical situations Trotzky, Chen, Flesch, McCulloch, Schollwöck, Eisert, Bloch, Nature Physics 8, 325

RANDOMNESS IN QUANTUM MECHANICS

▸ Measurement outcomes are random

Präparation

0 1 1 0 1 0

▸ We are used to randomness…

▸ … but this has an explanation

Page 17: QUANTUM SIMULATION AND COMPUTING · QUANTUM SIMULATION Simulate interesting physical situations Trotzky, Chen, Flesch, McCulloch, Schollwöck, Eisert, Bloch, Nature Physics 8, 325

RANDOMNESS IN QUANTUM MECHANICS

▸ Measurement outcomes are random

Präparation

Page 18: QUANTUM SIMULATION AND COMPUTING · QUANTUM SIMULATION Simulate interesting physical situations Trotzky, Chen, Flesch, McCulloch, Schollwöck, Eisert, Bloch, Nature Physics 8, 325

RANDOMNESS IN QUANTUM MECHANICS

▸ The randomness of quantum mechanics is absolute

Präparation

Page 19: QUANTUM SIMULATION AND COMPUTING · QUANTUM SIMULATION Simulate interesting physical situations Trotzky, Chen, Flesch, McCulloch, Schollwöck, Eisert, Bloch, Nature Physics 8, 325

RANDOMNESS IN QUANTUM MECHANICS

▸ The randomness of quantum mechanics is absolute

Präparation

▸ Bell inequality violated under assumption of local hidden variables

P (a, b|A,B) =

�d�p(�)⇥A(a,�)⇥B(b,�)

Page 20: QUANTUM SIMULATION AND COMPUTING · QUANTUM SIMULATION Simulate interesting physical situations Trotzky, Chen, Flesch, McCulloch, Schollwöck, Eisert, Bloch, Nature Physics 8, 325

UNCERTAINTY

Page 21: QUANTUM SIMULATION AND COMPUTING · QUANTUM SIMULATION Simulate interesting physical situations Trotzky, Chen, Flesch, McCulloch, Schollwöck, Eisert, Bloch, Nature Physics 8, 325

UNCERTAINTY PRINCIPLE

Page 22: QUANTUM SIMULATION AND COMPUTING · QUANTUM SIMULATION Simulate interesting physical situations Trotzky, Chen, Flesch, McCulloch, Schollwöck, Eisert, Bloch, Nature Physics 8, 325

UNCERTAINTY PRINCIPLE

▸ No measurement without disturbance

Page 23: QUANTUM SIMULATION AND COMPUTING · QUANTUM SIMULATION Simulate interesting physical situations Trotzky, Chen, Flesch, McCulloch, Schollwöck, Eisert, Bloch, Nature Physics 8, 325

SUPERPOSITION

Page 24: QUANTUM SIMULATION AND COMPUTING · QUANTUM SIMULATION Simulate interesting physical situations Trotzky, Chen, Flesch, McCulloch, Schollwöck, Eisert, Bloch, Nature Physics 8, 325

SUPERPOSITION PRINCIPLE

0

1

Page 25: QUANTUM SIMULATION AND COMPUTING · QUANTUM SIMULATION Simulate interesting physical situations Trotzky, Chen, Flesch, McCulloch, Schollwöck, Eisert, Bloch, Nature Physics 8, 325

|1i

|0i

SUPERPOSITION PRINCIPLE

|0i+ |1i

Page 26: QUANTUM SIMULATION AND COMPUTING · QUANTUM SIMULATION Simulate interesting physical situations Trotzky, Chen, Flesch, McCulloch, Schollwöck, Eisert, Bloch, Nature Physics 8, 325

|1i

|0i

SUPERPOSITION PRINCIPLE

|0i+ |1i

▸ Systems can be in “many states at once”

Page 27: QUANTUM SIMULATION AND COMPUTING · QUANTUM SIMULATION Simulate interesting physical situations Trotzky, Chen, Flesch, McCulloch, Schollwöck, Eisert, Bloch, Nature Physics 8, 325

|1i

|0i

SUPERPOSITION PRINCIPLE

|0i+ |1i

▸ State space over complex vector space

▸ For spins

{⇢ : ⇢ � 0, tr(⇢) = 1} HH = C⌦n

2n

Page 28: QUANTUM SIMULATION AND COMPUTING · QUANTUM SIMULATION Simulate interesting physical situations Trotzky, Chen, Flesch, McCulloch, Schollwöck, Eisert, Bloch, Nature Physics 8, 325

QUANTUM TECHNOLOGIES

Page 29: QUANTUM SIMULATION AND COMPUTING · QUANTUM SIMULATION Simulate interesting physical situations Trotzky, Chen, Flesch, McCulloch, Schollwöck, Eisert, Bloch, Nature Physics 8, 325

QUANTUM TECHNOLOGIES

▸ Make use of quantum effects on the single quantum system level to think of new technologies in communication, sensing, computation, simulation

Page 30: QUANTUM SIMULATION AND COMPUTING · QUANTUM SIMULATION Simulate interesting physical situations Trotzky, Chen, Flesch, McCulloch, Schollwöck, Eisert, Bloch, Nature Physics 8, 325

SECURE COMMUNICATION

▸ Classical key distribution

010101 010101

Need to share key

Page 31: QUANTUM SIMULATION AND COMPUTING · QUANTUM SIMULATION Simulate interesting physical situations Trotzky, Chen, Flesch, McCulloch, Schollwöck, Eisert, Bloch, Nature Physics 8, 325

SECURE COMMUNICATION

▸ Classical key distribution

010101 010101

Need to share key

Page 32: QUANTUM SIMULATION AND COMPUTING · QUANTUM SIMULATION Simulate interesting physical situations Trotzky, Chen, Flesch, McCulloch, Schollwöck, Eisert, Bloch, Nature Physics 8, 325

▸ Classical key distribution

010101 010101

Need to share key

SECURE COMMUNICATION

Page 33: QUANTUM SIMULATION AND COMPUTING · QUANTUM SIMULATION Simulate interesting physical situations Trotzky, Chen, Flesch, McCulloch, Schollwöck, Eisert, Bloch, Nature Physics 8, 325

010101 010101

▸ Quantum key distribution for secure communication

SECURE COMMUNICATION

Page 34: QUANTUM SIMULATION AND COMPUTING · QUANTUM SIMULATION Simulate interesting physical situations Trotzky, Chen, Flesch, McCulloch, Schollwöck, Eisert, Bloch, Nature Physics 8, 325

010101 010101No information gain without disturbance

▸ Quantum key distribution for secure communication

SECURE COMMUNICATION

Page 35: QUANTUM SIMULATION AND COMPUTING · QUANTUM SIMULATION Simulate interesting physical situations Trotzky, Chen, Flesch, McCulloch, Schollwöck, Eisert, Bloch, Nature Physics 8, 325

010101 010101No information gain without disturbance

▸ Quantum key distribution for secure communication

SECURE COMMUNICATION

+ + ⇥ + ⇥ ⇥ ⇥ +" ! & " & % % !+ ⇥ ⇥ ⇥ + ⇥ + +" % & % ! % !!

0 1 1 0 1 0 0 1

0 1 0 1

Alice’s bitAlice’s basis

Bob’s basis

Bob’s result

Public partKey

State

! Basis +

⇥! Basis

"= |1i, != |0i

&= |0i+ |1i, %= |0i � |1i

Page 36: QUANTUM SIMULATION AND COMPUTING · QUANTUM SIMULATION Simulate interesting physical situations Trotzky, Chen, Flesch, McCulloch, Schollwöck, Eisert, Bloch, Nature Physics 8, 325

010101 010101No information gain without disturbance

▸ Quantum key distribution for secure communication

▸ Security can be proven

SECURE COMMUNICATION

Page 37: QUANTUM SIMULATION AND COMPUTING · QUANTUM SIMULATION Simulate interesting physical situations Trotzky, Chen, Flesch, McCulloch, Schollwöck, Eisert, Bloch, Nature Physics 8, 325

QUANTUM COMPUTERS

Page 38: QUANTUM SIMULATION AND COMPUTING · QUANTUM SIMULATION Simulate interesting physical situations Trotzky, Chen, Flesch, McCulloch, Schollwöck, Eisert, Bloch, Nature Physics 8, 325

QUANTUM COMPUTING

▸ Computational devices with single quantum systems

Page 39: QUANTUM SIMULATION AND COMPUTING · QUANTUM SIMULATION Simulate interesting physical situations Trotzky, Chen, Flesch, McCulloch, Schollwöck, Eisert, Bloch, Nature Physics 8, 325

QUANTUM COMPUTING

▸ Computational devices with single quantum systems

‣ E.g., 01010011 (bits) replaced by (qubits) ↵|0, 1, 0, 1, 0, 0, 1, 1i + �|1, 1, 0, 0, 1, 1, 1, 0i + �|0, 0, 1, 0, 0, 1, 1, 1i + . . .

Page 40: QUANTUM SIMULATION AND COMPUTING · QUANTUM SIMULATION Simulate interesting physical situations Trotzky, Chen, Flesch, McCulloch, Schollwöck, Eisert, Bloch, Nature Physics 8, 325

QUANTUM COMPUTING

▸ Could solve some problems supercomputers cannot

BQP

Classical probabilistic algorithms

Poly time quantum algorithms

BPP

Page 41: QUANTUM SIMULATION AND COMPUTING · QUANTUM SIMULATION Simulate interesting physical situations Trotzky, Chen, Flesch, McCulloch, Schollwöck, Eisert, Bloch, Nature Physics 8, 325

QUANTUM ALGORITHMS

▸ E.g., factoring of large products of prime numbers

‣ A factor of a large number can be found if the period of

can be identified

N p

f(x) = a

x

modN

‣ Periods can be found using the quantum Fourier transformn�1X

i=0

xi|iin�1X

i=0

yi|ii yk =1pn

n�1X

j=0

xje2⇡ijk/n7! with

Shor, SIAM J Comp 26, 148 (1997)

Page 42: QUANTUM SIMULATION AND COMPUTING · QUANTUM SIMULATION Simulate interesting physical situations Trotzky, Chen, Flesch, McCulloch, Schollwöck, Eisert, Bloch, Nature Physics 8, 325

QUANTUM ALGORITHMS

▸ E.g., factoring of large products of prime numbers

‣ A factor of a large number can be found if the period of

can be identified

N p

f(x) = a

x

modN

‣ Periods can be found using the quantum Fourier transformn�1X

i=0

xi|iin�1X

i=0

yi|ii yk =1pn

n�1X

j=0

xje2⇡ijk/n7! with

‣ Solves NP problem in poly time: Runtime

Shor, SIAM J Comp 26, 148 (1997)

‣ Best known classical algorithm

‣ Generalised to hidden subgroup problem

Page 43: QUANTUM SIMULATION AND COMPUTING · QUANTUM SIMULATION Simulate interesting physical situations Trotzky, Chen, Flesch, McCulloch, Schollwöck, Eisert, Bloch, Nature Physics 8, 325

▸ E.g., factoring of large products of prime numbers

QUANTUM ALGORITHMS

▸ E.g., factoring of large products of prime numbers

▸ Solving linear systemsHarrow, Hassidim, Lloyd, Phys Rev Lett 15, 150502 (2009)

Shor, SIAM J Comp 26, 148 (1997)

Page 44: QUANTUM SIMULATION AND COMPUTING · QUANTUM SIMULATION Simulate interesting physical situations Trotzky, Chen, Flesch, McCulloch, Schollwöck, Eisert, Bloch, Nature Physics 8, 325

▸ E.g., factoring of large products of prime numbers

▸ Solving linear systems

▸ Spectral analysis

▸ Semi-definite programming

QUANTUM ALGORITHMS

Harrow, Hassidim, Lloyd, Phys Rev Lett 15, 150502 (2009)

Steffens, Rebenstrost, Marvian, Eisert, Lloyd, New J Phys 19, 033005 (2017)

Brandão, Kalev, Li, Lin, Svore, Wu, arXiv:1710.02581

Shor, SIAM J Comp 26, 148 (1997)

Page 45: QUANTUM SIMULATION AND COMPUTING · QUANTUM SIMULATION Simulate interesting physical situations Trotzky, Chen, Flesch, McCulloch, Schollwöck, Eisert, Bloch, Nature Physics 8, 325

▸ Can tolerate small errors in all steps (at high cost)

FAULT TOLERANT QUANTUM COMPUTING

E.g., Litinski, Kesselring, Eisert, von Oppen, arXiv:1704.01589

Page 46: QUANTUM SIMULATION AND COMPUTING · QUANTUM SIMULATION Simulate interesting physical situations Trotzky, Chen, Flesch, McCulloch, Schollwöck, Eisert, Bloch, Nature Physics 8, 325

▸ The race for building quantum computers

FAULT TOLERANT QUANTUM COMPUTING

▸ Not there, but with 50 superconducting qubits taking shape

(IBM)

(Google)

(Rigetti)(D-wave)

Page 47: QUANTUM SIMULATION AND COMPUTING · QUANTUM SIMULATION Simulate interesting physical situations Trotzky, Chen, Flesch, McCulloch, Schollwöck, Eisert, Bloch, Nature Physics 8, 325

QUANTUM SIMULATORS

Page 48: QUANTUM SIMULATION AND COMPUTING · QUANTUM SIMULATION Simulate interesting physical situations Trotzky, Chen, Flesch, McCulloch, Schollwöck, Eisert, Bloch, Nature Physics 8, 325

QUANTUM SIMULATION

▸ Quantum simulators: Not all strongly correlated quantum systems/materials can be classically simulated

Page 49: QUANTUM SIMULATION AND COMPUTING · QUANTUM SIMULATION Simulate interesting physical situations Trotzky, Chen, Flesch, McCulloch, Schollwöck, Eisert, Bloch, Nature Physics 8, 325

QUANTUM SIMULATION

▸ Quantum simulators: Not all strongly correlated quantum systems/materials can be classically simulated

▸ Idea: Simulate quantum systems with quantum systems

Richard Feynman

Page 50: QUANTUM SIMULATION AND COMPUTING · QUANTUM SIMULATION Simulate interesting physical situations Trotzky, Chen, Flesch, McCulloch, Schollwöck, Eisert, Bloch, Nature Physics 8, 325

QUANTUM SIMULATION

Cold atoms in optical lattices

▸ Quantum simulators: Not all strongly correlated quantum systems/materials can be classically simulated

▸ Idea: Simulate quantum systems with quantum systems

Page 51: QUANTUM SIMULATION AND COMPUTING · QUANTUM SIMULATION Simulate interesting physical situations Trotzky, Chen, Flesch, McCulloch, Schollwöck, Eisert, Bloch, Nature Physics 8, 325

QUANTUM SIMULATION

▸ Simulate interesting physical situations

Trotzky, Chen, Flesch, McCulloch, Schollwöck, Eisert, Bloch, Nature Physics 8, 325 (2012)

Gring, Kuhnert, Langen, Kitagawa,Rauer, Schreitl, Mazets, Smith, Demler, Schmiedmayer, ,Science 337, 1318 (2012)

Kaufman, Tai, Lukin, Rispoli, Schittko, Preiss, Greiner, Science 353, 794 (2016)

Choi, Hild, Zeiher, Schauß,Rubio-Abadal, Yefsah, Khemani, Huse, Gross, Science 352, 1547 (2016)

Equilibration Pre-thermalization Thermalization

Many-body localization

Page 52: QUANTUM SIMULATION AND COMPUTING · QUANTUM SIMULATION Simulate interesting physical situations Trotzky, Chen, Flesch, McCulloch, Schollwöck, Eisert, Bloch, Nature Physics 8, 325

QUANTUM SIMULATION

▸ Some properties can be obtained beyond supercomputers

Page 53: QUANTUM SIMULATION AND COMPUTING · QUANTUM SIMULATION Simulate interesting physical situations Trotzky, Chen, Flesch, McCulloch, Schollwöck, Eisert, Bloch, Nature Physics 8, 325

QUANTUM SIMULATION

▸ Some properties can be obtained beyond supercomputers

‣ Imbalance as function of time for under Bose-Hubbard Hamiltonian

Trotzky, Chen, Flesch, McCulloch, Schollwoeck, Eisert, Bloch, Nature Phys 8, 325 (2012)

nodd

| (0)i = |0, 1, . . . , 0, 1i

Page 54: QUANTUM SIMULATION AND COMPUTING · QUANTUM SIMULATION Simulate interesting physical situations Trotzky, Chen, Flesch, McCulloch, Schollwöck, Eisert, Bloch, Nature Physics 8, 325

QUANTUM SIMULATION

▸ Some properties can be obtained beyond supercomputers

‣ Imbalance as function of time for under Bose-Hubbard Hamiltonian

Trotzky, Chen, Flesch, McCulloch, Schollwoeck, Eisert, Bloch, Nature Phys 8, 325 (2012)

nodd

Best available classical matrix-product state simulation, bond dimension 5000

| (0)i = |0, 1, . . . , 0, 1i

Page 55: QUANTUM SIMULATION AND COMPUTING · QUANTUM SIMULATION Simulate interesting physical situations Trotzky, Chen, Flesch, McCulloch, Schollwöck, Eisert, Bloch, Nature Physics 8, 325

QUANTUM SIMULATION

▸ Some properties can be obtained beyond supercomputers

‣ Imbalance as function of time for under Bose-Hubbard Hamiltonian

Trotzky, Chen, Flesch, McCulloch, Schollwoeck, Eisert, Bloch, Nature Phys 8, 325 (2012)

nodd

Best available classical matrix-product state simulation, bond dimension 5000

‣ The approximation of dynamics with matrix-product states requires exponential resources in time

| (0)i = |0, 1, . . . , 0, 1i

Page 56: QUANTUM SIMULATION AND COMPUTING · QUANTUM SIMULATION Simulate interesting physical situations Trotzky, Chen, Flesch, McCulloch, Schollwöck, Eisert, Bloch, Nature Physics 8, 325

QUANTUM SIMULATION

▸ Some properties can be obtained beyond supercomputers

Random Periodic Translationally invariant

Bermejo-Vega, Hangleiter, Schwarz, Raussendorf, Eisert, Phys Rev X 8, 021010 (2018)

▸ Simple Ising nearest-neighbor architectures

Page 57: QUANTUM SIMULATION AND COMPUTING · QUANTUM SIMULATION Simulate interesting physical situations Trotzky, Chen, Flesch, McCulloch, Schollwöck, Eisert, Bloch, Nature Physics 8, 325

QUANTUM SIMULATION

▸ Some properties can be obtained beyond supercomputers

Random Periodic Translationally invariant

Relate to logical circuits

Bermejo-Vega, Hangleiter, Schwarz, Raussendorf, Eisert, Phys Rev X 8, 021010 (2018)

▸ Simple Ising nearest-neighbor architectures

BPP

BQP

U U 0Additive error✏

A

x Stockmeyer

Multiplicative

error

sU 0(x)

1/poly(n)

Use complexity theory tools

Page 58: QUANTUM SIMULATION AND COMPUTING · QUANTUM SIMULATION Simulate interesting physical situations Trotzky, Chen, Flesch, McCulloch, Schollwöck, Eisert, Bloch, Nature Physics 8, 325

QUANTUM SIMULATION

▸ Some properties can be obtained beyond supercomputers

Random Periodic Translationally invariant

Relate to logical circuits

Bermejo-Vega, Hangleiter, Schwarz, Raussendorf, Eisert, Phys Rev X 8, 021010 (2018)

▸ Simple Ising nearest-neighbor architectures

BPP

BQP

U U 0Additive error✏

A

x Stockmeyer

Multiplicative

error

sU 0(x)

1/poly(n)

Use complexity theory tools

‣ Present technology (basic) quantum simulators already outperform supercomputers on some tasks (and can be verified)

Page 59: QUANTUM SIMULATION AND COMPUTING · QUANTUM SIMULATION Simulate interesting physical situations Trotzky, Chen, Flesch, McCulloch, Schollwöck, Eisert, Bloch, Nature Physics 8, 325

GETTING GOING…

Page 60: QUANTUM SIMULATION AND COMPUTING · QUANTUM SIMULATION Simulate interesting physical situations Trotzky, Chen, Flesch, McCulloch, Schollwöck, Eisert, Bloch, Nature Physics 8, 325

FLAGSHIP PROGRAM FOR QUANTUM TECHNOLOGIES

▸ 1G€ Euros-Flagship for quantum technologies

Page 61: QUANTUM SIMULATION AND COMPUTING · QUANTUM SIMULATION Simulate interesting physical situations Trotzky, Chen, Flesch, McCulloch, Schollwöck, Eisert, Bloch, Nature Physics 8, 325

OUTLOOK

▸ “Quantum computing is exciting even if you restrict yourself to saying things that are true.”

Page 62: QUANTUM SIMULATION AND COMPUTING · QUANTUM SIMULATION Simulate interesting physical situations Trotzky, Chen, Flesch, McCulloch, Schollwöck, Eisert, Bloch, Nature Physics 8, 325

OUTLOOK

▸ “Quantum computing is exciting even if you restrict yourself to saying things that are true.”

THANKS FOR YOUR ATTENTION