26
Quantum Physics Mach-Zehnder

Quantum Physics Mach-Zehnder. Quantum Physics Mach-Zehnder Interferometer Info P Quantum Particle Two possible states: 1 or 0 (polarization, spin, …)

Embed Size (px)

Citation preview

Page 1: Quantum Physics Mach-Zehnder. Quantum Physics Mach-Zehnder Interferometer Info P Quantum Particle Two possible states: 1 or 0 (polarization, spin, …)

Quantum PhysicsMach-Zehnder

Quantum PhysicsMach-Zehnder

Page 2: Quantum Physics Mach-Zehnder. Quantum Physics Mach-Zehnder Interferometer Info P Quantum Particle Two possible states: 1 or 0 (polarization, spin, …)

Quantum PhysicsMach-Zehnder InterferometerInfo

Quantum PhysicsMach-Zehnder InterferometerInfo

P Quantum Particle

Two possible states:1 or 0 (polarization, spin, …)

Detection of the state by a beam splitter

State 1

State 0

P

P

Beam splitter

Beam splitter

State 1

State 0

Beam splitter

P

P

Illustrates the two possible instatesby two different inpath A and B

A

B

Page 3: Quantum Physics Mach-Zehnder. Quantum Physics Mach-Zehnder Interferometer Info P Quantum Particle Two possible states: 1 or 0 (polarization, spin, …)

Quantum PhysicsMach-Zehnder InterferometerDouble Beam Splitter

Quantum PhysicsMach-Zehnder InterferometerDouble Beam Splitter

PS1

S4

S2

S3

A

B

X

Y

P ParticleS1 – S4 Half-silvered mirrorS2 – S3 Fully silvered mirror

p12

p13 p24

p34

A particle P is coming in path A or B.

At the half-silvered mirror S1

it’s 50/50 percent chancethat the particle will go through the mirrorand travel the path p12

or be reflected and travel the path p13.

The mirrors S2 and S3 are fully silveredso the particle is reflectedand travel the path p24 or p34.

At the half-silvered mirror S4

it’s 50/50 percent chancethat the particle will go through the mirroror be reflected and travel the path X or Y.

Page 4: Quantum Physics Mach-Zehnder. Quantum Physics Mach-Zehnder Interferometer Info P Quantum Particle Two possible states: 1 or 0 (polarization, spin, …)

Quantum PhysicsMach-Zehnder InterferometerClassical Particle

Quantum PhysicsMach-Zehnder InterferometerClassical Particle

An experiment with a classical particle P.

At the moment we have the following situation:

19 particles have travelled the path p12 – p24.18 particles have travelled the path p13 – p34.

17 particles have travelled the path X.19 particles have travelled the path Y.

Ordinary statistical theory tells usthat there will be 50/50 percent of particles travelling the path p12 - p24 or p13 - p34.There will be 50/50 percent of particles travelling the path X or Y.

X

Y

p12

p13 p24

p34

P

A

B

A

p12

p13

X

X

Y

Y

0.5

0.5

0.25

0.25

0.25

0.25

0.5

0.5

Page 5: Quantum Physics Mach-Zehnder. Quantum Physics Mach-Zehnder Interferometer Info P Quantum Particle Two possible states: 1 or 0 (polarization, spin, …)

Quantum PhysicsMach-Zehnder InterferometerQuantum Particle - Result

Quantum PhysicsMach-Zehnder InterferometerQuantum Particle - Result

An experiment with a quantum particle P.

At the moment we have the following situation:

34 particles have been travelling out the path X.0 particles have been travelling out the path Y.

Quantum theory tells us the following:

If the quantum particle is starting in the path A,then every particle will be travelling the out-path X.If the quantum particle is staring in the path B,then every particle will be travelling the out-path Y.

X

Y

P

A

B This result is very surprisingcompared to classical physics.

How to explain this?

P

Page 6: Quantum Physics Mach-Zehnder. Quantum Physics Mach-Zehnder Interferometer Info P Quantum Particle Two possible states: 1 or 0 (polarization, spin, …)

Quantum PhysicsMach-Zehnder InterferometerQuantum Particle - Measurement

Quantum PhysicsMach-Zehnder InterferometerQuantum Particle - Measurement

An experiment with a quantum particle P.

Now we have a measuring instrumentto detect which path the quantum particleis travelling.

At the moment we have the following situation:

22 particles have been travelling the out-path X.22 particles have been travelling the out-path Y.

Quantum theory tells us the following:

If we have a measuring instrument(either in only one or both path) to detectwhich path the quantum particle is travelling,then the detection ’disturbs’ the quantum effectin such a way that now we will have an equalnumber of particles travelling in path X or Y.

P

A

B

X

Y

Measuring instrument

How to explain this?

Page 7: Quantum Physics Mach-Zehnder. Quantum Physics Mach-Zehnder Interferometer Info P Quantum Particle Two possible states: 1 or 0 (polarization, spin, …)

Quantum PhysicsMach-Zehnder InterferometerQuantum Particle - Two orthonormal states

Quantum PhysicsMach-Zehnder InterferometerQuantum Particle - Two orthonormal states

An experiment with a quantum particle P.

There are two possible initial states u1 and u2

for the particle P dependent of the in-path A or B.

Let these two possible instates be:A: u1 = [1,0]B: u2 = [0,1]

These two states are orthonormal.

A

BP

ijji uu

uuuu

uuuu

uu

00

110 0

1

001

11

010 1

0

101

1

02

0

1

1221

2211

1

Page 8: Quantum Physics Mach-Zehnder. Quantum Physics Mach-Zehnder Interferometer Info P Quantum Particle Two possible states: 1 or 0 (polarization, spin, …)

Quantum PhysicsMach-Zehnder InterferometerQuantum Particle - Path A - State after 1 beam splitter

Quantum PhysicsMach-Zehnder InterferometerQuantum Particle - Path A - State after 1 beam splitter

An experiment with a quantum particle P.

The particle P starts in the state u1.The beam splitter is represented mathematicallyby an operator called the Hadamard matrix.

After the beam splitter (mirror)we have equal probability to measurethe particle either in the state u1 or state u2.The Hadamard matrix (operator)is shown in the figure.

5.0

5.0

1

05.0

0

15.0

5.05.0 21

2

11

2

11

uu

uvuucvi

iii

ii

11

115.0H

11 uHv

5.0

5.0

0

1

11

115.011 uHv

OperatorHadamard matrix

Page 9: Quantum Physics Mach-Zehnder. Quantum Physics Mach-Zehnder Interferometer Info P Quantum Particle Two possible states: 1 or 0 (polarization, spin, …)

Quantum PhysicsMach-Zehnder InterferometerQuantum Particle - Path A - State after 1 beam splitter - Reality / Mathematical Space

Quantum PhysicsMach-Zehnder InterferometerQuantum Particle - Path A - State after 1 beam splitter - Reality / Mathematical Space

P

P

P

0

11u

1u

2u

H

1u

5.0

5.0

0

1

11

115.011 uHv

5.0

5.0

1

05.0

0

15.0

5.05.0 21

2

11

2

11

uu

uvuucvi

iii

ii

Reality Mathematical Space

2u

1u

5.0

5.0

1v

0

11u

1v

Page 10: Quantum Physics Mach-Zehnder. Quantum Physics Mach-Zehnder Interferometer Info P Quantum Particle Two possible states: 1 or 0 (polarization, spin, …)

Quantum PhysicsMach-Zehnder InterferometerQuantum Particle - Path A - State after 2 beam splitters

Quantum PhysicsMach-Zehnder InterferometerQuantum Particle - Path A - State after 2 beam splitters

An experiment with a quantum particle P.

The particle P starts in the state u1.The beam splitter is represented mathematicallyby an operator called the Hadamard matrix.

After the beam splitter (mirror)we have equal probability to measurethe particle either in the state u1 or state u2.The Hadamard matrix (operator)is shown in the figure.

2

11

1

0

5.0

5.0

11

115.0

u

vHw

2

12

11

1

0

0

1

02

205.0

0

1

11

115.0

11

115.0

u

uHvHw

11

115.0H

11 uHv OperatorHadamard matrix

11 vHw

P

P

A

B

X

Y

P

Page 11: Quantum Physics Mach-Zehnder. Quantum Physics Mach-Zehnder Interferometer Info P Quantum Particle Two possible states: 1 or 0 (polarization, spin, …)

Quantum PhysicsMach-Zehnder InterferometerQuantum Particle - Path A - State after 2 beam splitters - Reality / Mathematical Space

Quantum PhysicsMach-Zehnder InterferometerQuantum Particle - Path A - State after 2 beam splitters - Reality / Mathematical Space

2u

H

1u

Reality Mathematical Space

2u

1u

5.0

5.0

1v

5.0

5.011 uHv

1v

1w

1w 2

11

1

0

5.0

5.0

11

115.0 u

vHw

2

12

11

1

0

0

1

22

005.0

0

1

11

115.0

11

115.0

u

uHvHw

Page 12: Quantum Physics Mach-Zehnder. Quantum Physics Mach-Zehnder Interferometer Info P Quantum Particle Two possible states: 1 or 0 (polarization, spin, …)

Quantum PhysicsMach-Zehnder InterferometerQuantum Particle - Path B - State after 1 beam splitter

Quantum PhysicsMach-Zehnder InterferometerQuantum Particle - Path B - State after 1 beam splitter

An experiment with a quantum particle P.

The particle P starts in the state u2.The beam splitter is represented mathematicallyby an operator called the Hadamard matrix.

After the beam splitter (mirror)we have equal probability to measurethe particle either in the state u1 or state u2.The Hadamard matrix (operator)is shown in the figure.

5.0

5.0

1

05.0

0

15.0

5.05.0 21

2

12

2

12

uu

uvuucvi

iii

ii

11

115.0H

22 uHv

5.0

5.0

1

0

11

115.022 uHv

OperatorHadamard matrix

A

B

Page 13: Quantum Physics Mach-Zehnder. Quantum Physics Mach-Zehnder Interferometer Info P Quantum Particle Two possible states: 1 or 0 (polarization, spin, …)

Quantum PhysicsMach-Zehnder InterferometerQuantum Particle - Path B - State after 1 beam splitter - Reality / Mathematical Space

Quantum PhysicsMach-Zehnder InterferometerQuantum Particle - Path B - State after 1 beam splitter - Reality / Mathematical Space

P

P

P

0

11u

2u2u

H

1u

5.0

5.0

1

0

11

115.022 uHv

5.0

5.0

1

05.0

0

15.0

5.05.0 21

2

11

2

12

uu

uvuucvi

iii

ii

Reality Mathematical Space

2u

1u

5.0

5.0

2v

1

02u

2v

Page 14: Quantum Physics Mach-Zehnder. Quantum Physics Mach-Zehnder Interferometer Info P Quantum Particle Two possible states: 1 or 0 (polarization, spin, …)

Quantum PhysicsMach-Zehnder InterferometerQuantum Particle - Path B - State after 2 beam splitters

Quantum PhysicsMach-Zehnder InterferometerQuantum Particle - Path B - State after 2 beam splitters

An experiment with a quantum particle P.

The particle P starts in the state u1.The beam splitter is represented mathematicallyby an operator called the Hadamard matrix.

After the beam splitter (mirror)we have equal probability to measurethe particle either in the state u1 or state u2.The Hadamard matrix (operator)is shown in the figure.

1

22

0

1

5.0

5.0

11

115.0

u

vHw

1

22

22

0

1

1

0

02

205.0

1

0

11

115.0

11

115.0

u

uHvHw

11

115.0H

22 uHv OperatorHadamard matrix

22 vHw

P

P

A

B

X

Y

P

Page 15: Quantum Physics Mach-Zehnder. Quantum Physics Mach-Zehnder Interferometer Info P Quantum Particle Two possible states: 1 or 0 (polarization, spin, …)

Quantum PhysicsMach-Zehnder InterferometerQuantum Particle - State B - State after 2 beam splitters - Reality / Mathematical Space

Quantum PhysicsMach-Zehnder InterferometerQuantum Particle - State B - State after 2 beam splitters - Reality / Mathematical Space

2u

H

1u

Reality Mathematical Space

2u

1u

5.0

5.0

2v

5.0

5.022 uHv

2v

2w

1w

1

22

0

1

5.0

5.0

11

115.0 u

vHw

2

22

22

1

0

1

0

22

005.0

1

0

11

115.0

11

115.0

u

uHvHw

Page 16: Quantum Physics Mach-Zehnder. Quantum Physics Mach-Zehnder Interferometer Info P Quantum Particle Two possible states: 1 or 0 (polarization, spin, …)

Quantum PhysicsMach-Zehnder InterferometerQuantum Particle - Hadamard Operator

Quantum PhysicsMach-Zehnder InterferometerQuantum Particle - Hadamard Operator

1u

2u

H1u

2u

1u

5.0

5.0

5.0

5.01v 2u

1u

21 uw

2u2u

1u

2u

1u

5.0

5.0

5.0

5.02v

2u

1u

12 uw H

H

H

Hadamard operator rotates the state vector 450 counterclockwise

11

115.0H

Beam splitter 1 Beam splitter 2

Page 17: Quantum Physics Mach-Zehnder. Quantum Physics Mach-Zehnder Interferometer Info P Quantum Particle Two possible states: 1 or 0 (polarization, spin, …)

Quantum PhysicsMach-Zehnder InterferometerQuantum Particle - Detector

Quantum PhysicsMach-Zehnder InterferometerQuantum Particle - Detector

An experiment with a quantum particle P.

We have one or two detectors to detect the travelling path p12 or p13 of the particle.

ijji uu

uuuu

uuuu

uu

00

110 0

1

001

11

010 1

0

101

1

02

0

1

1221

2211

1

A

BP

Detector

p12

p13

Page 18: Quantum Physics Mach-Zehnder. Quantum Physics Mach-Zehnder Interferometer Info P Quantum Particle Two possible states: 1 or 0 (polarization, spin, …)

Quantum PhysicsMach-Zehnder InterferometerQuantum Particle - State A - Approaching the detector(s)

Quantum PhysicsMach-Zehnder InterferometerQuantum Particle - State A - Approaching the detector(s)

An experiment with a quantum particle P.

The particle P starts in the state u1.The beam splitter is represented mathematicallyby an operator called the Hadamard matrix.

After the beam splitter (mirror)we have equal probability to detectthe particle either in the path p12 or p13.The particle is approaching the detector(s).

5.0

5.0

1

05.0

0

15.0

5.05.0 21

2

11

2

11

uu

uvuucvi

iii

ii

5.0

5.0

0

1

11

115.011 uHv

11

115.0H

11 uHv

OperatorHadamard matrix

A

B Detector

p12

p13

Page 19: Quantum Physics Mach-Zehnder. Quantum Physics Mach-Zehnder Interferometer Info P Quantum Particle Two possible states: 1 or 0 (polarization, spin, …)

Quantum PhysicsMach-Zehnder InterferometerQuantum Particle - State A - Particle is detected in path p12

Quantum PhysicsMach-Zehnder InterferometerQuantum Particle - State A - Particle is detected in path p12

An experiment with a quantum particle P.

The particle P starts in the state u1.The beam splitter is represented mathematicallyby an operator called the Hadamard matrix.

After the beam splitter (mirror)we have equal probability to detectthe particle in the path p12 or p|3.Now the particle is detected in the path p12. The detection of the particle force the particle into one of the eigenstates (here u2)of the detection operator P.

1

021 uvP

A

B

p12

p13

Detector

p24

p34

Page 20: Quantum Physics Mach-Zehnder. Quantum Physics Mach-Zehnder Interferometer Info P Quantum Particle Two possible states: 1 or 0 (polarization, spin, …)

Quantum PhysicsMach-Zehnder InterferometerQuantum Particle - State A - Particle deteced in path p12 approaching beam splitter S2

Quantum PhysicsMach-Zehnder InterferometerQuantum Particle - State A - Particle deteced in path p12 approaching beam splitter S2

An experiment with a quantum particle P.

The particle P starts in the state u1.The beam splitter is represented mathematicallyby an operator called the Hadamard matrix.

After the beam splitter (mirror)we have equal probability to measurethe particle either in the path p12 or path13.The detector has detected the particle in path p12.The particle is now in state u2 and approaches the second beam splitter S4.

A

B

p12

p13

Detector

p24

p34

1

021 uvP

1

02u

Page 21: Quantum Physics Mach-Zehnder. Quantum Physics Mach-Zehnder Interferometer Info P Quantum Particle Two possible states: 1 or 0 (polarization, spin, …)

Quantum PhysicsMach-Zehnder InterferometerQuantum Particle - State A - Particle detected in path p12 passing beam splitter S4

Quantum PhysicsMach-Zehnder InterferometerQuantum Particle - State A - Particle detected in path p12 passing beam splitter S4

An experiment with a quantum particle P.

The particle P starts in the state u1.The beam splitter is represented mathematicallyby an operator called the Hadamard matrix.

After the beam splitter (mirror)we have equal probability to measureThe particle has been detected in path p12

and forced into state u2. After passing the second beam splitter it’s equalt probability to detect the particle in path X or path Y.

A

B Detector

p12

p13 p24

p34

X

Y

1

02u

5.0

5.0

1

0

11

115.022 uHw

5.0

5.0

1

05.0

0

15.0

5.05.0 21

2

12

2

12

uu

uwuucwi

iii

ii

5.0

5.022 uHw

Page 22: Quantum Physics Mach-Zehnder. Quantum Physics Mach-Zehnder Interferometer Info P Quantum Particle Two possible states: 1 or 0 (polarization, spin, …)

Quantum PhysicsMach-Zehnder InterferometerQuantum Particle - State A - Detector in path p12, but no detection there

Quantum PhysicsMach-Zehnder InterferometerQuantum Particle - State A - Detector in path p12, but no detection there

An experiment with a quantum particle P.

The particle P starts in the state u1.The beam splitter is represented mathematicallyby an operator called the Hadamard matrix.

After the beam splitter (mirror)we have equal probability to measurethe particle either in path p12 or p13.Detector in path p12, but no detection there.Anyway the detector change the state and the particle is forced into one of the eigenstate of detection operator P (here u1).

A

B

p12

p13 p24

p34

Detector

0

111 uvP

Page 23: Quantum Physics Mach-Zehnder. Quantum Physics Mach-Zehnder Interferometer Info P Quantum Particle Two possible states: 1 or 0 (polarization, spin, …)

Quantum PhysicsMach-Zehnder InterferometerQuantum Particle - State A - Detector in path p12 ,no detection there - Approaching beam splitter S4

Quantum PhysicsMach-Zehnder InterferometerQuantum Particle - State A - Detector in path p12 ,no detection there - Approaching beam splitter S4

A

B Detector

An experiment with a quantum particle P.

The particle P starts in the state u1.The beam splitter is represented mathematicallyby an operator called the Hadamard matrix.

After the beam splitter (mirror)we have equal probability to measurethe particle either in path p12 or p13.Detector in path p12, but no detection there.Anyway the detector change the state and the particle is forced into one of the eigenstate of detection operator P (here u1). The particle is approaching the second beam splitter S4.

0

111 uvP

0

11u

P

Page 24: Quantum Physics Mach-Zehnder. Quantum Physics Mach-Zehnder Interferometer Info P Quantum Particle Two possible states: 1 or 0 (polarization, spin, …)

Quantum PhysicsMach-Zehnder InterferometerQuantum Particle - State A - Detector in path p12, no detection there - Passing beam splitter S4

Quantum PhysicsMach-Zehnder InterferometerQuantum Particle - State A - Detector in path p12, no detection there - Passing beam splitter S4

An experiment with a quantum particle P.

The particle P starts in the state u1.The beam splitter is represented mathematicallyby an operator called the Hadamard matrix.

After the beam splitter (mirror)we have equal probability to measurethe particle either in the path p12 or p13.Detector in path p12, but no detection there. Particle is forced in into state u1 and equal probability in path X og Yafter second beam splitter.

5.0

5.0

1

05.0

0

15.0

5.05.0 21

2

11

2

11

uu

uwuucwi

iii

ii

5.0

5.0

0

1

11

115.011 uHw

A

B Detector

X

Y

5.0

5.011 uHw

0

11u

Page 25: Quantum Physics Mach-Zehnder. Quantum Physics Mach-Zehnder Interferometer Info P Quantum Particle Two possible states: 1 or 0 (polarization, spin, …)

Quantum PhysicsMach-Zehnder InterferometerQuantum Particle - State A - Approaching the detector(s)

Quantum PhysicsMach-Zehnder InterferometerQuantum Particle - State A - Approaching the detector(s)

An experiment with a quantum particle P.

The particle P starts in the state u1 or u2.The beam splitter is represented mathematicallyby an operator called the Hadamard matrix.

After the beam splitter (mirror)we have equal probability to measurethe particle either in the state u1 or state u2.The particle is approaching the detector(s).

5.0

5.0

0

1

11

115.011 uHv

11

115.0H11 uHv

OperatorHadamard matrix

A

B Detector

22 uHv

5.0

5.0

1

0

11

115.022 uHv

There is no possibility to decide if the particle is coming from A or B using a detectorin the path p12 or p13 after the first beam splitter S1.We have to let the particle be undisturbeduntil passing the second beam splitter S4.

Equal probabilityfor detecting particle in path p12 or p13

independent of particle in-path A or B.

p12

p13

Page 26: Quantum Physics Mach-Zehnder. Quantum Physics Mach-Zehnder Interferometer Info P Quantum Particle Two possible states: 1 or 0 (polarization, spin, …)

Quantum PhysicsMach-Zehnder InterferometerQuantum Particle - Conclusion

Quantum PhysicsMach-Zehnder InterferometerQuantum Particle - Conclusion

5.0

5.0

11 uHv

Let the particle be undisturbed between beam splitter S1 and S2. Detect the particle after beam splitter S2.

P

P

A

B

X

Y

P

5.0

5.0

22 uHv

P

P

A

B

X

Y

P

211 uvHw 122 uvHw

P

P

OperatorHadamard matrix

11

115.0HS1

S4

S1

S4

The particle out-path is X if in-path is A. The particle out-path is Y if in-path is B.