94
Quantum chemistry without wave functions Eugene DePrince Department of Chemistry and Biochemistry Florida State University June 18 th , 2019

Quantum chemistry without wave functions › ... › reu › REU_deprince_6_18_19.pdfQuantum chemistry without wave functions (and I don't mean density functional theory) Eugene DePrince

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Quantum chemistry without wave functions › ... › reu › REU_deprince_6_18_19.pdfQuantum chemistry without wave functions (and I don't mean density functional theory) Eugene DePrince

Quantum chemistry without wave functions

Eugene DePrince Department of Chemistry and Biochemistry

Florida State University

June 18th, 2019

Page 2: Quantum chemistry without wave functions › ... › reu › REU_deprince_6_18_19.pdfQuantum chemistry without wave functions (and I don't mean density functional theory) Eugene DePrince

Quantum chemistry without wave functions (and I don't mean density functional theory)

Eugene DePrince Department of Chemistry and Biochemistry

Florida State University

June 18th, 2019

Page 3: Quantum chemistry without wave functions › ... › reu › REU_deprince_6_18_19.pdfQuantum chemistry without wave functions (and I don't mean density functional theory) Eugene DePrince

electronic structure in complex systems

Class 1: non-dynamical (or strong / static / multireference) electron correlation

Class 2: strong fields, multiple pulses: beyond linear response with real-time methods

- - -- - --

+++ ++ ++E(t)

singlet fission structure/spectra of heavy-atom complexes

spin-state transitions and spin-crossover complexes

JACS, 136, 8050 (2014)

Nat. Commun, 6, 6827 (2015)

Page 4: Quantum chemistry without wave functions › ... › reu › REU_deprince_6_18_19.pdfQuantum chemistry without wave functions (and I don't mean density functional theory) Eugene DePrince
Page 5: Quantum chemistry without wave functions › ... › reu › REU_deprince_6_18_19.pdfQuantum chemistry without wave functions (and I don't mean density functional theory) Eugene DePrince

“The underlying physical laws necessary for the mathematical theory of a large part of physics and the whole of chemistry are thus completely known, and the difficulty is only that the exact application of these laws leads to equations much too complicated to be soluble.

Paul A. M. Dirac, 1929

Page 6: Quantum chemistry without wave functions › ... › reu › REU_deprince_6_18_19.pdfQuantum chemistry without wave functions (and I don't mean density functional theory) Eugene DePrince

“The underlying physical laws necessary for the mathematical theory of a large part of physics and the whole of chemistry are thus completely known, and the difficulty is only that the exact application of these laws leads to equations much too complicated to be soluble.

Paul A. M. Dirac, 1929

the Schrödinger equation: H = E �i~@ @t

= H or

Page 7: Quantum chemistry without wave functions › ... › reu › REU_deprince_6_18_19.pdfQuantum chemistry without wave functions (and I don't mean density functional theory) Eugene DePrince

Paul A. M. Dirac, 1929

“The underlying physical laws necessary for the mathematical theory of a large part of physics and the whole of chemistry are thus completely known, and the difficulty is only that the exact application of these laws leads to equations much too complicated to be soluble.

It therefore becomes desirable that approximate practical methods of applying quantum mechanics should be developed, which can lead to an explanation of the main features of complex atomic systems without too much computation.”

the Schrödinger equation: H = E �i~@ @t

= H or

Page 8: Quantum chemistry without wave functions › ... › reu › REU_deprince_6_18_19.pdfQuantum chemistry without wave functions (and I don't mean density functional theory) Eugene DePrince

dynamical electron correlationHartree-Fock MP2 CCSD CCSD(T) full CI

size

of t

he o

ne-e

lect

ron

basi

s se

t

what physics is included

how well is “space” described

cost of “approximate practical methods”

MP2: 2nd-order perturbation theoryCCSD: coupled cluster with single and double excitationsCCSD(T): CCSD + perturbative triple excitationsfull CI: full configuration interaction … wave function includes all possible electronic configurations

Page 9: Quantum chemistry without wave functions › ... › reu › REU_deprince_6_18_19.pdfQuantum chemistry without wave functions (and I don't mean density functional theory) Eugene DePrince

dynamical electron correlationHartree-Fock MP2 CCSD CCSD(T) full CI

size

of t

he o

ne-e

lect

ron

basi

s se

tcost of “approximate practical methods”

MP2: 2nd-order perturbation theoryCCSD: coupled cluster with single and double excitationsCCSD(T): CCSD + perturbative triple excitationsfull CI: full configuration interaction … wave function includes all possible electronic configurations

Page 10: Quantum chemistry without wave functions › ... › reu › REU_deprince_6_18_19.pdfQuantum chemistry without wave functions (and I don't mean density functional theory) Eugene DePrince

two-body correlations

dynamical electron correlationHartree-Fock MP2 CCSD CCSD(T) full CI

size

of t

he o

ne-e

lect

ron

basi

s se

tcost of “approximate practical methods”

MP2: 2nd-order perturbation theoryCCSD: coupled cluster with single and double excitationsCCSD(T): CCSD + perturbative triple excitationsfull CI: full configuration interaction … wave function includes all possible electronic configurations

Page 11: Quantum chemistry without wave functions › ... › reu › REU_deprince_6_18_19.pdfQuantum chemistry without wave functions (and I don't mean density functional theory) Eugene DePrince

two-body correlations

three-body correlations

dynamical electron correlationHartree-Fock MP2 CCSD CCSD(T) full CI

size

of t

he o

ne-e

lect

ron

basi

s se

tcost of “approximate practical methods”

MP2: 2nd-order perturbation theoryCCSD: coupled cluster with single and double excitationsCCSD(T): CCSD + perturbative triple excitationsfull CI: full configuration interaction … wave function includes all possible electronic configurations

Page 12: Quantum chemistry without wave functions › ... › reu › REU_deprince_6_18_19.pdfQuantum chemistry without wave functions (and I don't mean density functional theory) Eugene DePrince

two-body correlations

three-body correlations

N-body correlations

dynamical electron correlationHartree-Fock MP2 CCSD CCSD(T) full CI

size

of t

he o

ne-e

lect

ron

basi

s se

tcost of “approximate practical methods”

MP2: 2nd-order perturbation theoryCCSD: coupled cluster with single and double excitationsCCSD(T): CCSD + perturbative triple excitationsfull CI: full configuration interaction … wave function includes all possible electronic configurations

Page 13: Quantum chemistry without wave functions › ... › reu › REU_deprince_6_18_19.pdfQuantum chemistry without wave functions (and I don't mean density functional theory) Eugene DePrince

X truth!

two-body correlations

three-body correlations

N-body correlations

dynamical electron correlationHartree-Fock MP2 CCSD CCSD(T) full CI

size

of t

he o

ne-e

lect

ron

basi

s se

tcost of “approximate practical methods”

MP2: 2nd-order perturbation theoryCCSD: coupled cluster with single and double excitationsCCSD(T): CCSD + perturbative triple excitationsfull CI: full configuration interaction … wave function includes all possible electronic configurations

Page 14: Quantum chemistry without wave functions › ... › reu › REU_deprince_6_18_19.pdfQuantum chemistry without wave functions (and I don't mean density functional theory) Eugene DePrince

X truth!

feasible computationstwo-body correlations

three-body correlations

N-body correlations

dynamical electron correlationHartree-Fock MP2 CCSD CCSD(T) full CI

size

of t

he o

ne-e

lect

ron

basi

s se

tcost of “approximate practical methods”

MP2: 2nd-order perturbation theoryCCSD: coupled cluster with single and double excitationsCCSD(T): CCSD + perturbative triple excitationsfull CI: full configuration interaction … wave function includes all possible electronic configurations

Page 15: Quantum chemistry without wave functions › ... › reu › REU_deprince_6_18_19.pdfQuantum chemistry without wave functions (and I don't mean density functional theory) Eugene DePrince

X truth!

feasible computations

dynamical electron correlationHartree-Fock MP2 CCSD CCSD(T) full CI

size

of t

he o

ne-e

lect

ron

basi

s se

tcost of “approximate practical methods”

MP2: 2nd-order perturbation theoryCCSD: coupled cluster with single and double excitationsCCSD(T): CCSD + perturbative triple excitationsfull CI: full configuration interaction … wave function includes all possible electronic configurations

Page 16: Quantum chemistry without wave functions › ... › reu › REU_deprince_6_18_19.pdfQuantum chemistry without wave functions (and I don't mean density functional theory) Eugene DePrince

X truth!feasible computationshow do we move this line?

dynamical electron correlationHartree-Fock MP2 CCSD CCSD(T) full CI

size

of t

he o

ne-e

lect

ron

basi

s se

tcost of “approximate practical methods”

MP2: 2nd-order perturbation theoryCCSD: coupled cluster with single and double excitationsCCSD(T): CCSD + perturbative triple excitationsfull CI: full configuration interaction … include all possible electronic configurations

Page 17: Quantum chemistry without wave functions › ... › reu › REU_deprince_6_18_19.pdfQuantum chemistry without wave functions (and I don't mean density functional theory) Eugene DePrince

X truth!feasible computationshow do we move this line?

1.mild approximations

dynamical electron correlationHartree-Fock MP2 CCSD CCSD(T) full CI

size

of t

he o

ne-e

lect

ron

basi

s se

tcost of “approximate practical methods”

MP2: 2nd-order perturbation theoryCCSD: coupled cluster with single and double excitationsCCSD(T): CCSD + perturbative triple excitationsfull CI: full configuration interaction … include all possible electronic configurations

Page 18: Quantum chemistry without wave functions › ... › reu › REU_deprince_6_18_19.pdfQuantum chemistry without wave functions (and I don't mean density functional theory) Eugene DePrince

X truth!feasible computationshow do we move this line?

1.mild approximations

dynamical electron correlationHartree-Fock MP2 CCSD CCSD(T) full CI

size

of t

he o

ne-e

lect

ron

basi

s se

tcost of “approximate practical methods”

MP2: 2nd-order perturbation theoryCCSD: coupled cluster with single and double excitationsCCSD(T): CCSD + perturbative triple excitationsfull CI: full configuration interaction … include all possible electronic configurations

- local correlation approximations

Page 19: Quantum chemistry without wave functions › ... › reu › REU_deprince_6_18_19.pdfQuantum chemistry without wave functions (and I don't mean density functional theory) Eugene DePrince

X truth!feasible computations

dynamical electron correlationHartree-Fock MP2 CCSD CCSD(T) full CI

size

of t

he o

ne-e

lect

ron

basi

s se

tcost of “approximate practical methods”

MP2: 2nd-order perturbation theoryCCSD: coupled cluster with single and double excitationsCCSD(T): CCSD + perturbative triple excitationsfull CI: full configuration interaction … include all possible electronic configurations

- local correlation approximations

how do we move this line?

1.mild approximations

Page 20: Quantum chemistry without wave functions › ... › reu › REU_deprince_6_18_19.pdfQuantum chemistry without wave functions (and I don't mean density functional theory) Eugene DePrince

X truth!feasible computations

dynamical electron correlationHartree-Fock MP2 CCSD CCSD(T) full CI

size

of t

he o

ne-e

lect

ron

basi

s se

tcost of “approximate practical methods”

MP2: 2nd-order perturbation theoryCCSD: coupled cluster with single and double excitationsCCSD(T): CCSD + perturbative triple excitationsfull CI: full configuration interaction … include all possible electronic configurations

- local correlation approximations

how do we move this line?

1.mild approximations

Page 21: Quantum chemistry without wave functions › ... › reu › REU_deprince_6_18_19.pdfQuantum chemistry without wave functions (and I don't mean density functional theory) Eugene DePrince

X truth!feasible computationshow do we move this line?

1.mild approximations2. improved algorithms and hardware

dynamical electron correlationHartree-Fock MP2 CCSD CCSD(T) full CI

size

of t

he o

ne-e

lect

ron

basi

s se

tcost of “approximate practical methods”

MP2: 2nd-order perturbation theoryCCSD: coupled cluster with single and double excitationsCCSD(T): CCSD + perturbative triple excitationsfull CI: full configuration interaction … include all possible electronic configurations

Page 22: Quantum chemistry without wave functions › ... › reu › REU_deprince_6_18_19.pdfQuantum chemistry without wave functions (and I don't mean density functional theory) Eugene DePrince

X truth!feasible computationshow do we move this line?

1.mild approximations2. improved algorithms and hardware

dynamical electron correlationHartree-Fock MP2 CCSD CCSD(T) full CI

size

of t

he o

ne-e

lect

ron

basi

s se

tcost of “approximate practical methods”

MP2: 2nd-order perturbation theoryCCSD: coupled cluster with single and double excitationsCCSD(T): CCSD + perturbative triple excitationsfull CI: full configuration interaction … include all possible electronic configurations

vs

GPU CCSD: ~3x acceleration

AED, Hammond, JCTC, 7, 12871295 (2011)AED, Kennedy, Sumpter, Sherrill, Mol. Phys. 112, 844-852 (2014)

Mullinax, Koulias, Gidofalvi, Epifanovsky, AED, in prep.

GPU v2RDM-CASSCF: ~3x acceleration

Page 23: Quantum chemistry without wave functions › ... › reu › REU_deprince_6_18_19.pdfQuantum chemistry without wave functions (and I don't mean density functional theory) Eugene DePrince

X truth!feasible computationshow do we move this line?

1.mild approximations2. improved algorithms and hardware3.completely different representations of the electronic structure

dynamical electron correlationHartree-Fock MP2 CCSD CCSD(T) full CI

size

of t

he o

ne-e

lect

ron

basi

s se

tcost of “approximate practical methods”

MP2: 2nd-order perturbation theoryCCSD: coupled cluster with single and double excitationsCCSD(T): CCSD + perturbative triple excitationsfull CI: full configuration interaction … include all possible electronic configurations

Page 24: Quantum chemistry without wave functions › ... › reu › REU_deprince_6_18_19.pdfQuantum chemistry without wave functions (and I don't mean density functional theory) Eugene DePrince

static / strong / non-dynamical / multireference electron correlation

nondynamical correlation

Page 25: Quantum chemistry without wave functions › ... › reu › REU_deprince_6_18_19.pdfQuantum chemistry without wave functions (and I don't mean density functional theory) Eugene DePrince

σg

σu

in bonding region, wave function iswell-described by a single electronicconfiguration

−1.2

−1.1

−1.0

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

ener

gy (E

h)

H−H distance (Å)

Hartree−FockRestrictedE

static / strong / non-dynamical / multireference electron correlation

example: H2 dissociation in a minimal basis

nondynamical correlation

Page 26: Quantum chemistry without wave functions › ... › reu › REU_deprince_6_18_19.pdfQuantum chemistry without wave functions (and I don't mean density functional theory) Eugene DePrince

σg σu

−1.2

−1.1

−1.0

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

ener

gy (E

h)

H−H distance (Å)

Hartree−FockRestrictedE

at dissociation, the MOs become nearly degenerate, the wave function can no longer be described by a single RHF determinant

static / strong / non-dynamical / multireference electron correlation

example: H2 dissociation in a minimal basis

nondynamical correlation

Page 27: Quantum chemistry without wave functions › ... › reu › REU_deprince_6_18_19.pdfQuantum chemistry without wave functions (and I don't mean density functional theory) Eugene DePrince

σg σuRestricted

example: H2 dissociation in a minimal basis E

−1.2

−1.1

−1.0

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

ener

gy (E

h)

H−H distance (Å)

Hartree−FockFull CI

qualitatively correct wave function includes equal contributions from two electronic configurations

(1, 2) =1p2(�2

g � �2u)

nondynamical correlationstatic / strong / non-dynamical / multireference electron correlation

at dissociation, the MOs become nearly degenerate, the wave function can no longer be described by a single RHF determinant

Page 28: Quantum chemistry without wave functions › ... › reu › REU_deprince_6_18_19.pdfQuantum chemistry without wave functions (and I don't mean density functional theory) Eugene DePrince

−109.1

−109.0

−108.9

−108.8

−108.7

−108.6

−108.5

−108.4

1.0 1.5 2.0 2.5 3.0 3.5

ener

gy (E

h)

N−N distance (Å)

To describe N2 dissociation, we must ask: which orbitals are important?

complete active space self consistent field method (CASSCF)

conventional methods for nondynamical correlation

Page 29: Quantum chemistry without wave functions › ... › reu › REU_deprince_6_18_19.pdfQuantum chemistry without wave functions (and I don't mean density functional theory) Eugene DePrince

−109.1

−109.0

−108.9

−108.8

−108.7

−108.6

−108.5

−108.4

1.0 1.5 2.0 2.5 3.0 3.5

ener

gy (E

h)

N−N distance (Å)

To describe N2 dissociation, we must ask: which orbitals are important?

0.0

0.5

1.0

1.5

2.0

1.0 1.5 2.0 2.5 3.0 3.5

occu

patio

n

N−N bond length (Å)

HONO (πu)LUNO (πg)

HONO−1 (σg)LUNO+1 (σu)

π/π*, σ/σ*6 electrons, 6 orbitals

complete active space self consistent field method (CASSCF)

conventional methods for nondynamical correlation

Page 30: Quantum chemistry without wave functions › ... › reu › REU_deprince_6_18_19.pdfQuantum chemistry without wave functions (and I don't mean density functional theory) Eugene DePrince

−109.1

−109.0

−108.9

−108.8

−108.7

−108.6

−108.5

−108.4

1.0 1.5 2.0 2.5 3.0 3.5

ener

gy (E

h)

N−N distance (Å)

To describe N2 dissociation, we must ask: which orbitals are important?

π/π*, σ/σ*6 electrons, 6 orbitals

core

active: (6e,6o)

virtual

complete active space self consistent field method (CASSCF)

conventional methods for nondynamical correlation

Page 31: Quantum chemistry without wave functions › ... › reu › REU_deprince_6_18_19.pdfQuantum chemistry without wave functions (and I don't mean density functional theory) Eugene DePrince

core

virtual

complete active space self consistent field method (CASSCF)

active: (6e,6o)

conventional methods for nondynamical correlation

Page 32: Quantum chemistry without wave functions › ... › reu › REU_deprince_6_18_19.pdfQuantum chemistry without wave functions (and I don't mean density functional theory) Eugene DePrince

core

virtual

complete active space self consistent field method (CASSCF)

active: (6e,6o)

| CIi = (1 + C1 + C2 + C3 + . . . + CN )| 0i

active space often by configuration interaction (CI) - full CI in active space: “CAS”

simultaneous optimization of orbitals - mixing between active/virtual and active/core spaces: “SCF”

conventional methods for nondynamical correlation

Page 33: Quantum chemistry without wave functions › ... › reu › REU_deprince_6_18_19.pdfQuantum chemistry without wave functions (and I don't mean density functional theory) Eugene DePrince

complete active space self consistent field method (CASSCF)

1

100000

1x1010

1x1015

1x1020

1x1025

1x1030

0 5 10 15 20 25 30 35 40 45 50

k

(ke,ko) active space

num

ber

of v

aria

bles

100

105

1010

1015

1020

1025

1030

beyond (18e,18o) intractable

core

virtual

active: (6e,6o)

- CI

active space often by configuration interaction (CI) - full CI in active space: “CAS”

conventional methods for nondynamical correlation

Page 34: Quantum chemistry without wave functions › ... › reu › REU_deprince_6_18_19.pdfQuantum chemistry without wave functions (and I don't mean density functional theory) Eugene DePrince

bonding in actinide complexeswhat orbitals are important?

complete active space self consistent field method (CASSCF)

1

100000

1x1010

1x1015

1x1020

1x1025

1x1030

0 5 10 15 20 25 30 35 40 45 50

k

(ke,ko) active space

num

ber

of v

aria

bles

100

105

1010

1015

1020

1025

1030

beyond (18e,18o) intractable

metal: 5f, 6d, 7s, 7pligands (O,N): 2p

25+ electrons, 25+ total orbitals

- CI

active space often by configuration interaction (CI) - full CI in active space: “CAS”

conventional methods for nondynamical correlation

Page 35: Quantum chemistry without wave functions › ... › reu › REU_deprince_6_18_19.pdfQuantum chemistry without wave functions (and I don't mean density functional theory) Eugene DePrince

bonding in actinide complexeswhat orbitals are important?

complete active space self consistent field method (CASSCF)

1

100000

1x1010

1x1015

1x1020

1x1025

1x1030

0 5 10 15 20 25 30 35 40 45 50

k

(ke,ko) active space

100

105

1010

1015

1020

1025

1030

beyond (18e,18o) intractable

metal: 5f, 6d, 7s, 7pligands (O,N): 2p

25+ electrons, 25+ total orbitals

- CI

num

ber

of v

aria

bles

DMRG-drivena

Firm: Q-Chem, Inc. Topic: A14A-T013 Proposal: A2-6031

[19] S. Burer and R. D. Monteiro, Mathematical Programming 95, 329 (2003).[20] J. Povh, F. Rendl, A. Wiegele, Computing 78, 277 (2006).[21] J. Malick, J. Povh, F. Rendl, and A. Wiegele, SIAM J. Optim. 20, 336 (2009).[22] D. A. Mazziotti, Phys. Rev. Lett. 106, 083001 (2011).[23] Y. Shao, L. Fusti-Molnar, Y. Jung, J. Kussmann, C. Ochsenfeld, S. T. Brown, A. T. B. Gilbert, L.

V. Slipchenko,S. V. Levchenko, D. P. O’Neill, R. A. Distasio Jr., R. C. Lochan, T. Wang, G. J. O.Beran, N. A. Besley, J. M., Herbert, C. Y. Lin, T. Van Voorhis, S. H. Chien, A. Sodt, R. P. Steele,V. A. Rassolov, P. E. Maslen, P. P. Korambath, R. D. Adamson, B. Austin, J. Baker, E. F. C. Byrd,H. Dachsel, R. J. Doerksen, A. Dreuw, B. D. Dunietz, A. D. Dutoi, T. R. Furlani, S. R. Gwaltney, A.Heyden, S. Hirata, C.-P. Hsu, G. Kedziora, R. Z. Khalliulin, P. Klunzinger, A. M. Lee, M. S. Lee, W.Liang, I. Lotan, N. Nair, B. Peters, E. I. Proynov, P. A. Pieniazek, Y. M. Rhee, J. Ritchie, E. Rosta,C. D. Sherrill, A. C. Simmonett, J. E. Subotnik, H. L. Woodcock III, W. Zhang, A. T. Bell, A. K.Chakraborty, D. M. Chipman, F. J. Keil, A. Warshel, W. J. Hehre, H. F. Schaefer III, J. Kong, A. I.Krylov, P. M. W. Gill, M. Head-Gordon, Phys. Chem. Chem. Phys. 8, 3172 - 3191 (2006).

[24] E. Epifanovsky, M. Wormit, T. Ku, A. Landau, D. Zuev, K. Khistyaev, P. Manohar, I. Kaliman,A. Dreuw, and A. I. Krylov, J. Comput. Chem. 34, 2293 (2013).

[25] E. Solomonik, D. Matthews, J. Hammond, and J. Demmel, Cyclops Tensor Framework: reducing com-munication and eliminating load imbalance in massively parallel contractions, Tech. Rep. UCB/EECS-2012-210 (EECS Department, University of California, Berkeley, 2012).

[26] M. Nakata, B. J. Braams, K. Fujisawa, M. Fukuda, J. K. Percus, M. Yamashita, and Z. Zhao, J. Chem.Phys. 128, 164113 (2008).

[27] Turney, J. M.; Simmonett, A. C.; Parrish, R. M.; Hohenstein, E. G.; Evangelista, F. A.; Fermann, J.T.; Mintz, B. J.; Burns, L. A.; Wilke, J. J.; Abrams, M. L.; Russ, N. J.; Leininger, M. L.; Janssen, C.L.; Seidl, E. T.; Allen, W. D.; Schaefer, H. F.; King, R. A.; Valeev, E. F.; Sherrill, C. D.; Crawford, T.D. “Psi4: an open-source ab initio electronic structure program”, WIREs Comput. Mol. Sci. 2, 556-565(2012).

[28] A. J. Coleman, Rev. Mod. Phys. 35, 668 (1963).[29] R. M. Erdahl, Rep. Math. Phys. 15, 147 (1979).[30] G. Gidofalvi and D. A. Mazziotti, Phys. Rev. A 72, 052505 (2005).[31] S. R. White, Phys. Rev. Lett. 69, 2863 (1992); S. R. White, Phys. Rev. B 48, 10345 (1993); S. R.

White and R. L. Martin, J. Chem. Phys. 110, 4127 (1999); G. K.-L. Chan and M. Head-Gordon, J.Chem. Phys. 116, 4462 (2002); G. K.-L. Chan and M. Head-Gordon, J. Chem. Phys. 118, 8551 (2003);G. K.-L. Chan, J. Chem. Phys. 120, 3172 (2004).

[32] D. Ghosh, J. Hachmann, T. Yanai, and G. K.-L. Chan, J. Chem. Phys. 128, 144117 (2008).[33] T. Yanai, Y. Kurashige, D. Ghosh, and G. K.-L. Chan, Int. J. Quantum Chem. 109, 2178 (2009).[34] T. Yanai, Y. Kurashige, E. Neuscamman, and G. K.-L. Chan, J. Chem. Phys. 132, 024105 (2010).[35] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling,

G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley, ScaLAPACK Users’ Guide (Societyfor Industrial and Applied Mathematics, Philadelphia, PA, 1997).

[36] P. Alpatov, G. Baker, C. Edwards, J. Gunnels, G. Morrow, J. Overfelt, and R. V. D. Geijn, “Plapack:Parallel linear algebra libraries design overview,”.

[37] J. Poulson, B. Marker, R. A. van de Geijn, J. R. Hammond, and N. A. Romero, ACM Trans. Math.Softw. 39, 13:1 (2013).

[38] T. Auckenthaler, H.-J. Bungartz, T. Huckle, L. Krmer, B. Lang, and P. Willems, J. Comput. Sci. 2,272 (2011), social Computational Systems.

[39] H. van Aggelen, B. Verstichel, P. Bultinck, D. Van Neck, and P. W. Ayers, J. Chem. Phys. 136, 014110(2012).

[40] E. Perez-Romero, L. M. Tel, and C. Valdemoro, Int. J. Quantum Chem. 61, 55 (1997).[41] J. Fosso-Tande, D. R. Nascimento, and A. E. DePrince III, submitted (2015).[42] J. Hachmann, J. J. Dorando, M. Avils, and G. K.-L. Chan, J. Chem. Phys. 127, 134309 (2007).[43] J. R. Hammond and D. A. Mazziotti, Phys. Rev. A 71, 062503 (2005).[44] D. A. Mazziotti, Phys. Rev. A 72, 032510 (2005).[45] G. Gidofalvi and D. A. Mazziotti, The Journal of Chemical Physics 125, 144102 (2006).[46] P. Pulay, Chem. Phys. Lett. 73, 393 (1980).

variational 2-RDM (v2RDM) drivenb

Firm: Q-Chem, Inc. Topic: A14A-T013 Proposal: A2-6031

E. Epifanovsky, D. Zuev, X. Feng, K. Khistyaev, Y. Shao, and A. I. Krylov, “General imple-mentation of the resolution-of-the-identity and Cholesky representations of electron repulsionintegrals within coupled-cluster and equation-of-motion methods: Theory and benchmarks,”J. Chem. Phys. 139, 134105 (2013).

E. Epifanovsky, M. Wormit, T. Kus, A. Landau, D. Zuev, K. Khistyaev, P. Manohar, I. Kali-man, A. Dreuw, and A.I. Krylov “New implementation of high-level correlated methodsusing a general block-tensor library for high-performance electronic structure calculations,”J. Comput. Chem. 34, 2293 (2013).

VIII. FACILITIES/EQUIPMENT

At the time of submission of this proposal, the DePrince Group at Florida State University has5 modern multi-core Linux servers used for code development and benchmarking. One server isequipped with an NVIDIA Tesla K40c (Kepler) GPU. We have also purchased 160 computer coresat the FSU Research and Computing Center. Q-Chem, Inc. owns six modern multi-core Linuxservers and several other Mac OS, Windows, AIX and Sun Solaris computer servers to support in-house code development and platform porting. The proposed Phase II research e↵ort is limited totheoretical and computational work, and the facilities meet all environmental laws and regulations.

IX. CONSULTANTS

No consultants will be employed during Phase II of this STTR.

X. REFERENCES

[1] C. Garrod, M. V. Mihailovic, and M. Rosina, J. Math. Phys. 16, 868 (1975); M. V. Mihailovic and M.Rosina, Nucl. Phys. A 237, 221 (1975); M. Rosina and C. Garrod, J. Comput. Phys. 18, 300 (1975);R. M. Erdahl, C. Garrod, B. Golli, and M. Rosina, J. Math. Phys. 20, 1366 (1979); R. M. Erdahl, Rep.Math. Phys. 15, 147 (1979).

[2] R. M. Erdahl, Int. J. Quantum Chem. 13, 697 (1978).[3] M. Nakata, H. Nakatsuji, M. Ehara, M. Fukuda, K. Nakata, and K. Fujisawa, J. Chem. Phys. 114,

8282 (2001).[4] D. A. Mazziotti and R. M. Erdahl, Phys. Rev. A 63, 042113 (2001).[5] D. A. Mazziotti, Phys. Rev. A 65, 062511 (2002).[6] D. A. Mazziotti, Phys. Rev. A 74, 032501 (2006).[7] Z. Zhao, B. J. Braams, M. Fukuda, M. L. Overton, and J. K. Percus, J. Chem. Phys. 120, 2095 (2004).[8] M. Fukuda, B. J. Braams, M. Nakata, M. L. Overton, J. K. Percus, M. Yamashita, and Z. Zhao, Math.

Program. 109, 553 (2007).[9] E. Cances, G. Stoltz, and M. Lewin, J. Chem. Phys. 125, 064101 (2006).[10] B. Verstichel, H. van Aggelen, D. Van Neck, P. W. Ayers, and P. Bultinck, Phys. Rev. A 80, 032508

(2009).[11] G. Gidofalvi and D. A. Mazziotti, J. Chem. Phys. 129, 134108 (2008).[12] K. Pelzer, L. Greenman, G. Gidofalvi, and D. A. Mazziotti, J. Phys. Chem. A 115, 5632 (2011).[13] L. Greenman and D. A. Mazziotti, J. Chem. Phys. 133, 164110 (2010).[14] A. V. Sinitskiy, L. Greenman, and D. A. Mazziotti, J. Chem. Phys. 133, 014104 (2010).[15] L. Vandenberghe and S. Boyd, SIAM Rev. 38, 49 (1996).[16] C. Garrod and J. K. Percus, J. Math. Phys. 5, 1756 (1964).[17] D. A. Mazziotti, Phys. Rev. Lett. 93, 213001 (2004).[18] D. A. Mazziotti, ESAIM: Mathematical Modelling and Numerical Analysis 41, 249 (2007).

large-active space CASSCF requires a polynomially scaling approach such as

CASSCF

or

Fosso-Tande, Nguyen, Gidofalvi, AED, JCTC. 12, 2260-2271 (2016).

[a] [b]

active space often by configuration interaction (CI) - full CI in active space: “CAS”

conventional methods for nondynamical correlation

Page 36: Quantum chemistry without wave functions › ... › reu › REU_deprince_6_18_19.pdfQuantum chemistry without wave functions (and I don't mean density functional theory) Eugene DePrince

bonding in actinide complexeswhat orbitals are important?

conventional methods for nondynamical correlationcomplete active space self consistent field method (CASSCF)

1

100000

1x1010

1x1015

1x1020

1x1025

1x1030

0 5 10 15 20 25 30 35 40 45 50

k

(ke,ko) active space

100

105

1010

1015

1020

1025

1030

beyond (18e,18o) intractable

metal: 5f, 6d, 7s, 7pligands (O,N): 2p

25+ electrons, 25+ total orbitals

- 2-RDM

1

100000

1x1010

1x1015

1x1020

1x1025

1x1030

0 5 10 15 20 25 30 35 40 45 50

- CI

num

ber

of v

aria

bles

DMRG-drivena

Firm: Q-Chem, Inc. Topic: A14A-T013 Proposal: A2-6031

[19] S. Burer and R. D. Monteiro, Mathematical Programming 95, 329 (2003).[20] J. Povh, F. Rendl, A. Wiegele, Computing 78, 277 (2006).[21] J. Malick, J. Povh, F. Rendl, and A. Wiegele, SIAM J. Optim. 20, 336 (2009).[22] D. A. Mazziotti, Phys. Rev. Lett. 106, 083001 (2011).[23] Y. Shao, L. Fusti-Molnar, Y. Jung, J. Kussmann, C. Ochsenfeld, S. T. Brown, A. T. B. Gilbert, L.

V. Slipchenko,S. V. Levchenko, D. P. O’Neill, R. A. Distasio Jr., R. C. Lochan, T. Wang, G. J. O.Beran, N. A. Besley, J. M., Herbert, C. Y. Lin, T. Van Voorhis, S. H. Chien, A. Sodt, R. P. Steele,V. A. Rassolov, P. E. Maslen, P. P. Korambath, R. D. Adamson, B. Austin, J. Baker, E. F. C. Byrd,H. Dachsel, R. J. Doerksen, A. Dreuw, B. D. Dunietz, A. D. Dutoi, T. R. Furlani, S. R. Gwaltney, A.Heyden, S. Hirata, C.-P. Hsu, G. Kedziora, R. Z. Khalliulin, P. Klunzinger, A. M. Lee, M. S. Lee, W.Liang, I. Lotan, N. Nair, B. Peters, E. I. Proynov, P. A. Pieniazek, Y. M. Rhee, J. Ritchie, E. Rosta,C. D. Sherrill, A. C. Simmonett, J. E. Subotnik, H. L. Woodcock III, W. Zhang, A. T. Bell, A. K.Chakraborty, D. M. Chipman, F. J. Keil, A. Warshel, W. J. Hehre, H. F. Schaefer III, J. Kong, A. I.Krylov, P. M. W. Gill, M. Head-Gordon, Phys. Chem. Chem. Phys. 8, 3172 - 3191 (2006).

[24] E. Epifanovsky, M. Wormit, T. Ku, A. Landau, D. Zuev, K. Khistyaev, P. Manohar, I. Kaliman,A. Dreuw, and A. I. Krylov, J. Comput. Chem. 34, 2293 (2013).

[25] E. Solomonik, D. Matthews, J. Hammond, and J. Demmel, Cyclops Tensor Framework: reducing com-munication and eliminating load imbalance in massively parallel contractions, Tech. Rep. UCB/EECS-2012-210 (EECS Department, University of California, Berkeley, 2012).

[26] M. Nakata, B. J. Braams, K. Fujisawa, M. Fukuda, J. K. Percus, M. Yamashita, and Z. Zhao, J. Chem.Phys. 128, 164113 (2008).

[27] Turney, J. M.; Simmonett, A. C.; Parrish, R. M.; Hohenstein, E. G.; Evangelista, F. A.; Fermann, J.T.; Mintz, B. J.; Burns, L. A.; Wilke, J. J.; Abrams, M. L.; Russ, N. J.; Leininger, M. L.; Janssen, C.L.; Seidl, E. T.; Allen, W. D.; Schaefer, H. F.; King, R. A.; Valeev, E. F.; Sherrill, C. D.; Crawford, T.D. “Psi4: an open-source ab initio electronic structure program”, WIREs Comput. Mol. Sci. 2, 556-565(2012).

[28] A. J. Coleman, Rev. Mod. Phys. 35, 668 (1963).[29] R. M. Erdahl, Rep. Math. Phys. 15, 147 (1979).[30] G. Gidofalvi and D. A. Mazziotti, Phys. Rev. A 72, 052505 (2005).[31] S. R. White, Phys. Rev. Lett. 69, 2863 (1992); S. R. White, Phys. Rev. B 48, 10345 (1993); S. R.

White and R. L. Martin, J. Chem. Phys. 110, 4127 (1999); G. K.-L. Chan and M. Head-Gordon, J.Chem. Phys. 116, 4462 (2002); G. K.-L. Chan and M. Head-Gordon, J. Chem. Phys. 118, 8551 (2003);G. K.-L. Chan, J. Chem. Phys. 120, 3172 (2004).

[32] D. Ghosh, J. Hachmann, T. Yanai, and G. K.-L. Chan, J. Chem. Phys. 128, 144117 (2008).[33] T. Yanai, Y. Kurashige, D. Ghosh, and G. K.-L. Chan, Int. J. Quantum Chem. 109, 2178 (2009).[34] T. Yanai, Y. Kurashige, E. Neuscamman, and G. K.-L. Chan, J. Chem. Phys. 132, 024105 (2010).[35] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling,

G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley, ScaLAPACK Users’ Guide (Societyfor Industrial and Applied Mathematics, Philadelphia, PA, 1997).

[36] P. Alpatov, G. Baker, C. Edwards, J. Gunnels, G. Morrow, J. Overfelt, and R. V. D. Geijn, “Plapack:Parallel linear algebra libraries design overview,”.

[37] J. Poulson, B. Marker, R. A. van de Geijn, J. R. Hammond, and N. A. Romero, ACM Trans. Math.Softw. 39, 13:1 (2013).

[38] T. Auckenthaler, H.-J. Bungartz, T. Huckle, L. Krmer, B. Lang, and P. Willems, J. Comput. Sci. 2,272 (2011), social Computational Systems.

[39] H. van Aggelen, B. Verstichel, P. Bultinck, D. Van Neck, and P. W. Ayers, J. Chem. Phys. 136, 014110(2012).

[40] E. Perez-Romero, L. M. Tel, and C. Valdemoro, Int. J. Quantum Chem. 61, 55 (1997).[41] J. Fosso-Tande, D. R. Nascimento, and A. E. DePrince III, submitted (2015).[42] J. Hachmann, J. J. Dorando, M. Avils, and G. K.-L. Chan, J. Chem. Phys. 127, 134309 (2007).[43] J. R. Hammond and D. A. Mazziotti, Phys. Rev. A 71, 062503 (2005).[44] D. A. Mazziotti, Phys. Rev. A 72, 032510 (2005).[45] G. Gidofalvi and D. A. Mazziotti, The Journal of Chemical Physics 125, 144102 (2006).[46] P. Pulay, Chem. Phys. Lett. 73, 393 (1980).

variational 2-RDM (v2RDM) drivenb

large-active space CASSCF requires a polynomially scaling approach such as

CASSCF

or

[a] [b]

active space often by configuration interaction (CI) - full CI in active space: “CAS”

Firm: Q-Chem, Inc. Topic: A14A-T013 Proposal: A2-6031

E. Epifanovsky, D. Zuev, X. Feng, K. Khistyaev, Y. Shao, and A. I. Krylov, “General imple-mentation of the resolution-of-the-identity and Cholesky representations of electron repulsionintegrals within coupled-cluster and equation-of-motion methods: Theory and benchmarks,”J. Chem. Phys. 139, 134105 (2013).

E. Epifanovsky, M. Wormit, T. Kus, A. Landau, D. Zuev, K. Khistyaev, P. Manohar, I. Kali-man, A. Dreuw, and A.I. Krylov “New implementation of high-level correlated methodsusing a general block-tensor library for high-performance electronic structure calculations,”J. Comput. Chem. 34, 2293 (2013).

VIII. FACILITIES/EQUIPMENT

At the time of submission of this proposal, the DePrince Group at Florida State University has5 modern multi-core Linux servers used for code development and benchmarking. One server isequipped with an NVIDIA Tesla K40c (Kepler) GPU. We have also purchased 160 computer coresat the FSU Research and Computing Center. Q-Chem, Inc. owns six modern multi-core Linuxservers and several other Mac OS, Windows, AIX and Sun Solaris computer servers to support in-house code development and platform porting. The proposed Phase II research e↵ort is limited totheoretical and computational work, and the facilities meet all environmental laws and regulations.

IX. CONSULTANTS

No consultants will be employed during Phase II of this STTR.

X. REFERENCES

[1] C. Garrod, M. V. Mihailovic, and M. Rosina, J. Math. Phys. 16, 868 (1975); M. V. Mihailovic and M.Rosina, Nucl. Phys. A 237, 221 (1975); M. Rosina and C. Garrod, J. Comput. Phys. 18, 300 (1975);R. M. Erdahl, C. Garrod, B. Golli, and M. Rosina, J. Math. Phys. 20, 1366 (1979); R. M. Erdahl, Rep.Math. Phys. 15, 147 (1979).

[2] R. M. Erdahl, Int. J. Quantum Chem. 13, 697 (1978).[3] M. Nakata, H. Nakatsuji, M. Ehara, M. Fukuda, K. Nakata, and K. Fujisawa, J. Chem. Phys. 114,

8282 (2001).[4] D. A. Mazziotti and R. M. Erdahl, Phys. Rev. A 63, 042113 (2001).[5] D. A. Mazziotti, Phys. Rev. A 65, 062511 (2002).[6] D. A. Mazziotti, Phys. Rev. A 74, 032501 (2006).[7] Z. Zhao, B. J. Braams, M. Fukuda, M. L. Overton, and J. K. Percus, J. Chem. Phys. 120, 2095 (2004).[8] M. Fukuda, B. J. Braams, M. Nakata, M. L. Overton, J. K. Percus, M. Yamashita, and Z. Zhao, Math.

Program. 109, 553 (2007).[9] E. Cances, G. Stoltz, and M. Lewin, J. Chem. Phys. 125, 064101 (2006).[10] B. Verstichel, H. van Aggelen, D. Van Neck, P. W. Ayers, and P. Bultinck, Phys. Rev. A 80, 032508

(2009).[11] G. Gidofalvi and D. A. Mazziotti, J. Chem. Phys. 129, 134108 (2008).[12] K. Pelzer, L. Greenman, G. Gidofalvi, and D. A. Mazziotti, J. Phys. Chem. A 115, 5632 (2011).[13] L. Greenman and D. A. Mazziotti, J. Chem. Phys. 133, 164110 (2010).[14] A. V. Sinitskiy, L. Greenman, and D. A. Mazziotti, J. Chem. Phys. 133, 014104 (2010).[15] L. Vandenberghe and S. Boyd, SIAM Rev. 38, 49 (1996).[16] C. Garrod and J. K. Percus, J. Math. Phys. 5, 1756 (1964).[17] D. A. Mazziotti, Phys. Rev. Lett. 93, 213001 (2004).[18] D. A. Mazziotti, ESAIM: Mathematical Modelling and Numerical Analysis 41, 249 (2007).

Fosso-Tande, Nguyen, Gidofalvi, AED, JCTC. 12, 2260-2271 (2016).

[b]

Page 37: Quantum chemistry without wave functions › ... › reu › REU_deprince_6_18_19.pdfQuantum chemistry without wave functions (and I don't mean density functional theory) Eugene DePrince

variational 2-RDM (v2RDM) methods

E =1

2

X

pqrs

(pr|qs) 2Dpqrs +

X

pq

hpq1Dp

q ,

P. O. Lowdin Phys. Rev. 97, 1474-1489 (1955).

ground state electronic energy can be written exactly in terms of two-electron reduced-density matrix (2-RDM, 2D) and one-electron RDM (1-RDM, 1D)

Page 38: Quantum chemistry without wave functions › ... › reu › REU_deprince_6_18_19.pdfQuantum chemistry without wave functions (and I don't mean density functional theory) Eugene DePrince

variational 2-RDM (v2RDM) methods

*k: number of basis functions

E =1

2

X

pqrs

(pr|qs) 2Dpqrs +

X

pq

hpq1Dp

q ,

P. O. Lowdin Phys. Rev. 97, 1474-1489 (1955).

H H

prob

abili

ty

x

H2 (2e,2o) / cc-pVDZ

1-RDM → probability density O(k2) elements*

ground state electronic energy can be written exactly in terms of two-electron reduced-density matrix (2-RDM, 2D) and one-electron RDM (1-RDM, 1D)

Page 39: Quantum chemistry without wave functions › ... › reu › REU_deprince_6_18_19.pdfQuantum chemistry without wave functions (and I don't mean density functional theory) Eugene DePrince

variational 2-RDM (v2RDM) methods

*k: number of basis functions

E =1

2

X

pqrs

(pr|qs) 2Dpqrs +

X

pq

hpq1Dp

q ,

P. O. Lowdin Phys. Rev. 97, 1474-1489 (1955).

H H

prob

abili

ty

x

H2 (2e,2o) / cc-pVDZ 2-RDM → pair probability densityO(k4) elements

1-RDM → probability density O(k2) elements*

ground state electronic energy can be written exactly in terms of two-electron reduced-density matrix (2-RDM, 2D) and one-electron RDM (1-RDM, 1D)

H Hpr

obab

ility

x

Page 40: Quantum chemistry without wave functions › ... › reu › REU_deprince_6_18_19.pdfQuantum chemistry without wave functions (and I don't mean density functional theory) Eugene DePrince

variational 2-RDM (v2RDM) methods

Since 2D and 1D are much more compact objects than the N-electron wave function, why not invoke the variational principle and minimize E with respect to elements of 2D and 1D?

*k: number of basis functions

E =1

2

X

pqrs

(pr|qs) 2Dpqrs +

X

pq

hpq1Dp

q ,

P. O. Lowdin Phys. Rev. 97, 1474-1489 (1955).J. E. Mayer Phys. Rev. 100, 1579-1586 (1955).

H H

prob

abili

ty

x

H2 (2e,2o) / cc-pVDZ 2-RDM → pair probability densityO(k4) elements

1-RDM → probability density O(k2) elements*

ground state electronic energy can be written exactly in terms of two-electron reduced-density matrix (2-RDM, 2D) and one-electron RDM (1-RDM, 1D)

H Hpr

obab

ility

x

Page 41: Quantum chemistry without wave functions › ... › reu › REU_deprince_6_18_19.pdfQuantum chemistry without wave functions (and I don't mean density functional theory) Eugene DePrince

2D/1D should satisfy a few properties to guarantee they correspond to an antisymmetric N-electron wave function (N-representable) A. J. Coleman, Rev. Mod. Phys. 35, 668-686 (1963).

an ensemble N-representable 1-RDM:

1D(x1|x0

1) = N

Zdx2dx3...dxN

X

k

wk k(x1, x2, x3, ..., xN ) ⇤k(x

01, x2, x3, ..., xN ).

complete ensemble N-representability conditions for the 1-RDM are known (and are simple)

variational 2-RDM (v2RDM) methods

Page 42: Quantum chemistry without wave functions › ... › reu › REU_deprince_6_18_19.pdfQuantum chemistry without wave functions (and I don't mean density functional theory) Eugene DePrince

2D/1D should satisfy a few properties to guarantee they correspond to an antisymmetric N-electron wave function (N-representable) A. J. Coleman, Rev. Mod. Phys. 35, 668-686 (1963).

0 �i 1X

i

�i = N

natural spin-orbital occupation numbers (eigenvalues of 1-RDM) must lie between 0 and 1

an ensemble N-representable 1-RDM:

1D(x1|x0

1) = N

Zdx2dx3...dxN

X

k

wk k(x1, x2, x3, ..., xN ) ⇤k(x

01, x2, x3, ..., xN ).

complete ensemble N-representability conditions for the 1-RDM are known (and are simple)

variational 2-RDM (v2RDM) methods

Page 43: Quantum chemistry without wave functions › ... › reu › REU_deprince_6_18_19.pdfQuantum chemistry without wave functions (and I don't mean density functional theory) Eugene DePrince

2D/1D should satisfy a few properties to guarantee they correspond to an antisymmetric N-electron wave function (N-representable) A. J. Coleman, Rev. Mod. Phys. 35, 668-686 (1963).

an ensemble N-representable 1-RDM:

1D(x1|x0

1) = N

Zdx2dx3...dxN

X

k

wk k(x1, x2, x3, ..., xN ) ⇤k(x

01, x2, x3, ..., xN ).

complete ensemble N-representability conditions for the 1-RDM are known (and are simple)

Tr(1D) = N1Dij +

1Qji = �ij

and

equivalently, the eigenvalues of the 1-RDM and one hole RDM (1Q) must be nonnegative

variational 2-RDM (v2RDM) methods

1D ⌫ 01Q ⌫ 0 (probability of not finding an electron)

Page 44: Quantum chemistry without wave functions › ... › reu › REU_deprince_6_18_19.pdfQuantum chemistry without wave functions (and I don't mean density functional theory) Eugene DePrince

2D/1D should satisfy a few properties to guarantee they correspond to an antisymmetric N-electron wave function (N-representable) A. J. Coleman, Rev. Mod. Phys. 35, 668-686 (1963).

an ensemble N-representable 2-RDM:

2D(x1, x2|x0

1, x02) =

✓N

2

◆Zdx3...dxN

X

k

wk k(x1, x2, x3, ..., xN ) ⇤k(x

01, x

02, x3, ..., xN ).

necessary ensemble N-representability conditions for the 2-RDM include

1. hermiticity2. fixed trace3. antisymmetry with respect to particle exchange

4. nonnegativity of the eigenvalues of 2D (positive semidefiniteness)

2Dpqrs = �2Dqp

rs = �2Dpqsr = 2Dqp

sr

variational 2-RDM (v2RDM) methods

Page 45: Quantum chemistry without wave functions › ... › reu › REU_deprince_6_18_19.pdfQuantum chemistry without wave functions (and I don't mean density functional theory) Eugene DePrince

1. hermiticity2. fixed trace3. antisymmetry with respect to particle exchange

4. nonnegativity of the eigenvalues of 2D (positive semidefiniteness)

2D/1D should satisfy a few properties to guarantee they correspond to an antisymmetric N-electron wave function (N-representable) A. J. Coleman, Rev. Mod. Phys. 35, 668-686 (1963).

an ensemble N-representable 2-RDM:

2D(x1, x2|x0

1, x02) =

✓N

2

◆Zdx3...dxN

X

k

wk k(x1, x2, x3, ..., xN ) ⇤k(x

01, x

02, x3, ..., xN ).

necessary ensemble N-representability conditions for the 2-RDM include

2Dpqrs = �2Dqp

rs = �2Dpqsr = 2Dqp

sr

So, the variational optimization of the ground-state 2-RDM is a semindefinite optimization problem

7

1554354.

[1] P.-O. Lowdin, Phys. Rev. 97, 1474 (1955).[2] A. J. Coleman, Rev. Mod. Phys. 35, 668 (1963).[3] D. A. Mazziotti and R. M. Erdahl, Phys. Rev. A 63,

042113 (2001).[4] C. Garrod and J. K. Percus, J. Math. Phys. 5, 1756

(1964).[5] R. Erdahl, Rep. Math. Phys. 15, 147 (1979).[6] M. Nakata, H. Nakatsuji, M. Ehara, M. Fukuda,

K. Nakata, and K. Fujisawa, J. Chem. Phys. 114, 8282(2001).

[7] D. A. Mazziotti, Phys. Rev. A 65, 062511 (2002).[8] D. A. Mazziotti, Phys. Rev. A 74, 032501 (2006).[9] Z. Zhao, B. J. Braams, M. Fukuda, M. L. Overton, and

J. K. Percus, J. Chem. Phys. 120, 2095 (2004).[10] M. Fukuda, B. J. Braams, M. Nakata, M. L. Overton,

J. K. Percus, M. Yamashita, and Z. Zhao, Math. Prog.109, 553 (2007).

[11] E. Cances, G. Stoltz, and M. Lewin, J. Chem. Phys. 125,064101 (2006).

[12] B. Verstichel, H. van Aggelen, D. Van Neck, P. W. Ayers,and P. Bultinck, Phys. Rev. A 80, 032508 (2009).

[13] B. Verstichel, H. van Aggelen, D. V. Neck, P. Bultinck,and S. D. Baerdemacker, Comput. Phys. Commun. 182,1235 (2011).

[14] J. Fosso-Tande, D. R. Nascimento, and A. E. DePrinceIII, Mol. Phys. 114, 423 (2016).

[15] J. Fosso-Tande, T.-S. Nguyen, G. Gidofalvi, and A. E.DePrince III, J. Chem. Theory Comput. 12, 2260 (2016).

[16] M. Bouten, P. van Leuven, M. Mihailovi, and M. Rosina,Nucl. Phys. A 221, 173 (1974), ISSN 0375-9474.

[17] M. Rosina, Int. J. Quantum Chem. 13, 737 (1978).[18] C. Valdemoro, D. R. Alcoba, O. B. Ona, L. M. Tel, and

E. Perez-Romero, Journal of Mathematical Chemistry50, 492 (2012).

[19] L. Greenman and D. A. Mazziotti, J. Chem. Phys. 128,

114109 (2008).[20] D. A. Mazziotti, Phys. Rev. A 68, 052501 (2003).[21] K. Chatterjee and K. Pernal, J. Chem. Phys. 137, 204109

(2012).[22] H. van Aggelen, B. Verstichel, G. Acke, M. Degroote,

P. Bultinck, P. W. Ayers, and D. V. Neck, Comp. andTheor. Chem. 1003, 50 (2013).

[23] R. E. Borland and K. Dennis, J. Phys. B: At. Mol. Phys.5, 7 (1972).

[24] M. Altunbulak and A. Klyachko, Commun. Math. Phys.282, 287 (2008).

[25] C. Schilling, D. Gross, and M. Christandl, Phys. Rev.Lett. 110, 040404 (2013).

[26] C. L. Benavides-Riveros, J. M. Gracia-Bondıa, andM. Springborg, Phys. Rev. A 88, 022508 (2013).

[27] R. Chakraborty and D. A. Mazziotti, Phys. Rev. A 89,042505 (2014).

[28] C. Schilling, Phys. Rev. A 91, 022105 (2015).[29] I. Theophilou, N. N. Lathiotakis, M. A. L. Marques, and

N. Helbig, J. Chem. Phys. 142, 154108 (2015).[30] T. L. Gilbert, Phys. Rev. B 12, 2111 (1975).[31] E. Perez-Romero, L. M. Tel, and C. Valdemoro, Int. J.

Quantum Chem. 61, 55 (1997).[32] G. Gidofalvi and D. A. Mazziotti, Phys. Rev. A 72,

052505 (2005).[33] J. Povh, F. Rendl, A. Wiegele, Computing 78, 277

(2006).[34] J. Malick, J. Povh, F. Rendl, and A. Wiegele, SIAM J.

Optim. 20, 336 (2009).[35] D. A. Mazziotti, Phys. Rev. Lett. 106, 083001 (2011).[36] J. M. Turney, A. C. Simmonett, R. M. Parrish, E. G. Ho-

henstein, F. A. Evangelista, J. T. Fermann, B. J. Mintz,L. A. Burns, J. J. Wilke, M. L. Abrams, et al., WIRESComput. Mol. Sci. 2, 556 (2012).

7

1554354.

[1] P.-O. Lowdin, Phys. Rev. 97, 1474 (1955).[2] A. J. Coleman, Rev. Mod. Phys. 35, 668 (1963).[3] D. A. Mazziotti and R. M. Erdahl, Phys. Rev. A 63,

042113 (2001).[4] C. Garrod and J. K. Percus, J. Math. Phys. 5, 1756

(1964).[5] R. Erdahl, Rep. Math. Phys. 15, 147 (1979).[6] M. Nakata, H. Nakatsuji, M. Ehara, M. Fukuda,

K. Nakata, and K. Fujisawa, J. Chem. Phys. 114, 8282(2001).

[7] D. A. Mazziotti, Phys. Rev. A 65, 062511 (2002).[8] D. A. Mazziotti, Phys. Rev. A 74, 032501 (2006).[9] Z. Zhao, B. J. Braams, M. Fukuda, M. L. Overton, and

J. K. Percus, J. Chem. Phys. 120, 2095 (2004).[10] M. Fukuda, B. J. Braams, M. Nakata, M. L. Overton,

J. K. Percus, M. Yamashita, and Z. Zhao, Math. Prog.109, 553 (2007).

[11] E. Cances, G. Stoltz, and M. Lewin, J. Chem. Phys. 125,064101 (2006).

[12] B. Verstichel, H. van Aggelen, D. Van Neck, P. W. Ayers,and P. Bultinck, Phys. Rev. A 80, 032508 (2009).

[13] B. Verstichel, H. van Aggelen, D. V. Neck, P. Bultinck,and S. D. Baerdemacker, Comput. Phys. Commun. 182,1235 (2011).

[14] J. Fosso-Tande, D. R. Nascimento, and A. E. DePrinceIII, Mol. Phys. 114, 423 (2016).

[15] J. Fosso-Tande, T.-S. Nguyen, G. Gidofalvi, and A. E.DePrince III, J. Chem. Theory Comput. 12, 2260 (2016).

[16] M. Bouten, P. van Leuven, M. Mihailovi, and M. Rosina,Nucl. Phys. A 221, 173 (1974), ISSN 0375-9474.

[17] M. Rosina, Int. J. Quantum Chem. 13, 737 (1978).[18] C. Valdemoro, D. R. Alcoba, O. B. Ona, L. M. Tel, and

E. Perez-Romero, Journal of Mathematical Chemistry50, 492 (2012).

[19] L. Greenman and D. A. Mazziotti, J. Chem. Phys. 128,

114109 (2008).[20] D. A. Mazziotti, Phys. Rev. A 68, 052501 (2003).[21] K. Chatterjee and K. Pernal, J. Chem. Phys. 137, 204109

(2012).[22] H. van Aggelen, B. Verstichel, G. Acke, M. Degroote,

P. Bultinck, P. W. Ayers, and D. V. Neck, Comp. andTheor. Chem. 1003, 50 (2013).

[23] R. E. Borland and K. Dennis, J. Phys. B: At. Mol. Phys.5, 7 (1972).

[24] M. Altunbulak and A. Klyachko, Commun. Math. Phys.282, 287 (2008).

[25] C. Schilling, D. Gross, and M. Christandl, Phys. Rev.Lett. 110, 040404 (2013).

[26] C. L. Benavides-Riveros, J. M. Gracia-Bondıa, andM. Springborg, Phys. Rev. A 88, 022508 (2013).

[27] R. Chakraborty and D. A. Mazziotti, Phys. Rev. A 89,042505 (2014).

[28] C. Schilling, Phys. Rev. A 91, 022105 (2015).[29] I. Theophilou, N. N. Lathiotakis, M. A. L. Marques, and

N. Helbig, J. Chem. Phys. 142, 154108 (2015).[30] T. L. Gilbert, Phys. Rev. B 12, 2111 (1975).[31] E. Perez-Romero, L. M. Tel, and C. Valdemoro, Int. J.

Quantum Chem. 61, 55 (1997).[32] G. Gidofalvi and D. A. Mazziotti, Phys. Rev. A 72,

052505 (2005).[33] J. Povh, F. Rendl, A. Wiegele, Computing 78, 277

(2006).[34] J. Malick, J. Povh, F. Rendl, and A. Wiegele, SIAM J.

Optim. 20, 336 (2009).[35] D. A. Mazziotti, Phys. Rev. Lett. 106, 083001 (2011).[36] J. M. Turney, A. C. Simmonett, R. M. Parrish, E. G. Ho-

henstein, F. A. Evangelista, J. T. Fermann, B. J. Mintz,L. A. Burns, J. J. Wilke, M. L. Abrams, et al., WIRESComput. Mol. Sci. 2, 556 (2012).

variational 2-RDM (v2RDM) methods

Page 46: Quantum chemistry without wave functions › ... › reu › REU_deprince_6_18_19.pdfQuantum chemistry without wave functions (and I don't mean density functional theory) Eugene DePrince

−24.90

−24.85

−24.80

−24.75

−24.70

−24.65

−24.60

0.5 1.0 1.5 2.0 2.5 3.0 3.5

ener

gy (E

h)

B−H distance (Å)

Full CIBH / STO-6G

2D ⌫ 0

variational 2-RDM (v2RDM) methods

2-RDM

Page 47: Quantum chemistry without wave functions › ... › reu › REU_deprince_6_18_19.pdfQuantum chemistry without wave functions (and I don't mean density functional theory) Eugene DePrince

−29.00

−28.00

−27.00

−26.00

−25.00

−24.00

0.5 1.0 1.5 2.0 2.5 3.0 3.5

ener

gy (E

h)

B−H distance (Å)

Full CI2−RDM (D)v2RDM (P)

BH / STO-6G

2D ⌫ 0

variational 2-RDM (v2RDM) methods

2-RDM

Page 48: Quantum chemistry without wave functions › ... › reu › REU_deprince_6_18_19.pdfQuantum chemistry without wave functions (and I don't mean density functional theory) Eugene DePrince

−24.90

−24.85

−24.80

−24.75

−24.70

−24.65

−24.60

0.5 1.0 1.5 2.0 2.5 3.0 3.5

ener

gy (E

h)

B−H distance (Å)

Full CIBH / STO-6G

2D ⌫ 02Q ⌫ 0

variational 2-RDM (v2RDM) methods

2-RDM

two-hole RDM

Page 49: Quantum chemistry without wave functions › ... › reu › REU_deprince_6_18_19.pdfQuantum chemistry without wave functions (and I don't mean density functional theory) Eugene DePrince

−24.90

−24.85

−24.80

−24.75

−24.70

−24.65

−24.60

0.5 1.0 1.5 2.0 2.5 3.0 3.5

ener

gy (E

h)

B−H distance (Å)

Full CI

−24.90

−24.85

−24.80

−24.75

−24.70

−24.65

−24.60

0.5 1.0 1.5 2.0 2.5 3.0 3.5

ener

gy (E

h)

B−H distance (Å)

Full CI2−RDM (DQ)v2RDM (PQ)

BH / STO-6G

2D ⌫ 02Q ⌫ 0

variational 2-RDM (v2RDM) methods

2-RDM

two-hole RDM

Page 50: Quantum chemistry without wave functions › ... › reu › REU_deprince_6_18_19.pdfQuantum chemistry without wave functions (and I don't mean density functional theory) Eugene DePrince

C. Garrod and J. K. Percus, J. Math. Phys. 5, 1756 (1964).

−24.90

−24.85

−24.80

−24.75

−24.70

−24.65

−24.60

0.5 1.0 1.5 2.0 2.5 3.0 3.5

ener

gy (E

h)

B−H distance (Å)

Full CI2−RDM (DQ)

2−RDM (DQG)v2RDM (PQ)

v2RDM (PQG)

BH / STO-6G

2D ⌫ 02Q ⌫ 02G ⌫ 0

variational 2-RDM (v2RDM) methods

2-RDM

two-hole RDM

particle-hole RDM

Page 51: Quantum chemistry without wave functions › ... › reu › REU_deprince_6_18_19.pdfQuantum chemistry without wave functions (and I don't mean density functional theory) Eugene DePrince

1-positivity: 2-positivity (PQG): partial 3-positivity (T1/T2)

1-positivity < 2-positivity < 3-positivity < N-positivity = Full CI

R. M. Erdahl, Int. J. Quantum Chem. 13, 697 (1978).

D. A. Mazziotti, Phys. Rev. A 74, 032501 (2006).

Z. Zhao, B. J. Braams, M. Fukuda, M. L. Overton, and J. K. Percus, J. Chem. Phys. 120,2095 (2004).

1D, 1Q ⌫ 02D, 2Q, 2G ⌫ 0 T1,T2 ⌫ 0

O(k9)

O(k4)

O(k6) k = number of basis functions

systematically improvable N-representability

C. Garrod and J. K. Percus, J. Math. Phys. 5, 1756 (1964).

Page 52: Quantum chemistry without wave functions › ... › reu › REU_deprince_6_18_19.pdfQuantum chemistry without wave functions (and I don't mean density functional theory) Eugene DePrince

variational 2-RDM-driven CASSCF

−109.2

−109.1

−109.0

−108.9

−108.8

−108.7

−108.6

1.0 1.5 2.0 2.5 3.0 3.5

ener

gy (E

h)

N−N bond length (Å)

CI

N2 / cc-pVQZ / (6e,6o) active space

Fosso-Tande, Nguyen, Gidofalvi, AED, J. Chem. Theory Comput. 12, 2260-2271 (2016).

core

active: (6e,6o)

virtual

Page 53: Quantum chemistry without wave functions › ... › reu › REU_deprince_6_18_19.pdfQuantum chemistry without wave functions (and I don't mean density functional theory) Eugene DePrince

variational 2-RDM-driven CASSCF

Fosso-Tande, Nguyen, Gidofalvi, AED, J. Chem. Theory Comput. 12, 2260-2271 (2016).

−109.2

−109.1

−109.0

−108.9

−108.8

−108.7

−108.6

1.0 1.5 2.0 2.5 3.0 3.5

ener

gy (E

h)

N−N bond length (Å)

CIPQG

N2 / cc-pVQZ / (6e,6o) active space

core

active: (6e,6o)

virtual

- v2RDM can replace CI for describing active space

Page 54: Quantum chemistry without wave functions › ... › reu › REU_deprince_6_18_19.pdfQuantum chemistry without wave functions (and I don't mean density functional theory) Eugene DePrince

variational 2-RDM-driven CASSCF

−0.020

−0.015

−0.010

−0.005

0.000

1.0 1.5 2.0 2.5 3.0 3.5

erro

r (E h

)N−N bond length (Å)

Fosso-Tande, Nguyen, Gidofalvi, AED, J. Chem. Theory Comput. 12, 2260-2271 (2016).

N2 / cc-pVQZ / (6e,6o) active space

−109.2

−109.1

−109.0

−108.9

−108.8

−108.7

−108.6

1.0 1.5 2.0 2.5 3.0 3.5

ener

gy (E

h)

N−N bond length (Å)

CIPQG

- v2RDM can replace CI for describing active space

- two-particle N-representability conditions (PQG) provide qualitative accuracy

Page 55: Quantum chemistry without wave functions › ... › reu › REU_deprince_6_18_19.pdfQuantum chemistry without wave functions (and I don't mean density functional theory) Eugene DePrince

- three-particle conditions (T1T2) provide quantitative accuracy

variational 2-RDM-driven CASSCF

Fosso-Tande, Nguyen, Gidofalvi, AED, J. Chem. Theory Comput. 12, 2260-2271 (2016).

N2 / cc-pVQZ / (6e,6o) active space

−109.2

−109.1

−109.0

−108.9

−108.8

−108.7

−108.6

1.0 1.5 2.0 2.5 3.0 3.5

ener

gy (E

h)

N−N bond length (Å)

CIPQG

PQG+T1T2

−0.020

−0.015

−0.010

−0.005

0.000

1.0 1.5 2.0 2.5 3.0 3.5

erro

r (E h

)N−N bond length (Å)

- two-particle N-representability conditions (PQG) provide qualitative accuracy

- v2RDM can replace CI for describing active space

Page 56: Quantum chemistry without wave functions › ... › reu › REU_deprince_6_18_19.pdfQuantum chemistry without wave functions (and I don't mean density functional theory) Eugene DePrince

huge active spaces!

Page 57: Quantum chemistry without wave functions › ... › reu › REU_deprince_6_18_19.pdfQuantum chemistry without wave functions (and I don't mean density functional theory) Eugene DePrince

0

10

20

30

40

50

60

70

2 3 4 5 6 7 8 9 10 11 12

sing

let-t

riple

t gap

(kca

l mol

-1)

k-acene

PQG (cc-pVDZ)PQG (cc-pVTZ)

DMRG (DZ)experiment

huge active spaces!

- v2RDM-CASSCF with two-particle conditions (PQG) can treat HUGE active spaces

dodecacene: (50e,50o) CASSCF, 1892 orbitals (cc-pVTZ)

conventional (CI-driven) codes are useless beyond 4-acene: (18,18) active space

- performance of PQG is comparable to other state-of-the-art CASSCF-like methods like density-matrix renormalization group (DMRG) … for this problem … other cases require T2

to cross this line,abandon CI-CASSCF

CASSCF (18e,18o)

DMRG results from: J. Hachmann, J.J. Dorando, M. Avils, and G.K.-L. Chan, J. Chem. Phys. 127, 134309 (2007)

Fosso-Tande, Nguyen, Gidofalvi, AED, J. Chem. Theory Comput. 12, 2260-2271 (2016).

Page 58: Quantum chemistry without wave functions › ... › reu › REU_deprince_6_18_19.pdfQuantum chemistry without wave functions (and I don't mean density functional theory) Eugene DePrince

0

10

20

30

40

50

60

70

2 3 4 5 6 7 8 9 10 11 12

sing

let-t

riple

t gap

(kca

l mol

-1)

k-acene

PQG (cc-pVDZ)PQG (cc-pVTZ)

DMRG (DZ)experiment

performance?

dodecacene: (50e,50o) CASSCF, 840 orbitals (cc-pVDZ)

conventional (CI-driven) codes are useless beyond 4-acene: (18,18) active space

to cross this line,abandon CI-CASSCF

CASSCF (18e,18o)

Page 59: Quantum chemistry without wave functions › ... › reu › REU_deprince_6_18_19.pdfQuantum chemistry without wave functions (and I don't mean density functional theory) Eugene DePrince

0

10

20

30

40

50

60

70

2 3 4 5 6 7 8 9 10 11 12

sing

let-t

riple

t gap

(kca

l mol

-1)

k-acene

PQG (cc-pVDZ)PQG (cc-pVTZ)

DMRG (DZ)experiment

performance?

dodecacene: (50e,50o) CASSCF, 840 orbitals (cc-pVDZ)

conventional (CI-driven) codes are useless beyond 4-acene: (18,18) active space

to cross this line,abandon CI-CASSCF

CASSCF (18e,18o)CPU: core i7-6830k (6 cores) 3.2 hours

3.7x faster!!Mullinax, Koulias, Maradzike, Gidofalvi, Epifanovsky, AED, under revision.

GPU: NVIDIA Quadro GP100 0.9 hours

Page 60: Quantum chemistry without wave functions › ... › reu › REU_deprince_6_18_19.pdfQuantum chemistry without wave functions (and I don't mean density functional theory) Eugene DePrince

signatures of polyradical character in polyacenes

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0 5 10 15 20 25 30 35 40 45 50

occu

patio

n

natural orbital number

(a) 2−acene3−acene4−acene5−acene6−acene7−acene8−acene9−acene

10−acene11−acene12−acene

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

1 2 3 4 5 6 7 8 9 10 11 12

occu

patio

n

k−acene

(b)b1ub2gb3gau

- natural orbital occupation numbers convey the onset of polyradical behavior in larger acenes

- linear polyacenes have a history of conflicting predictions from quantum chemical methods (most of which is resolved)

Fosso-Tande, Nguyen, Gidofalvi, AED, J. Chem. Theory Comput. 12, 2260-2271 (2016).

Page 61: Quantum chemistry without wave functions › ... › reu › REU_deprince_6_18_19.pdfQuantum chemistry without wave functions (and I don't mean density functional theory) Eugene DePrince

signatures of polyradical character in polyacenes

Mullinax, Gidofalvi, Epifanovsky and AED, J. Chem. Theory Comput. 15, 276-289 (2019).

- geometric signatures of polyradical character include(i) larger bond length alternation (BLA) toward ends of molecule than in the middle

Page 62: Quantum chemistry without wave functions › ... › reu › REU_deprince_6_18_19.pdfQuantum chemistry without wave functions (and I don't mean density functional theory) Eugene DePrince

signatures of polyradical character in polyacenes

Mullinax, Gidofalvi, Epifanovsky and AED, J. Chem. Theory Comput. 15, 276-289 (2019).

- geometric signatures of polyradical character include(i) larger bond length alternation (BLA) toward ends of molecule than in the middle (ii) increasingly similar structures for the lowest-energy singlet and triplet

0.000

0.010

0.020

0.030

0.040

0.050

2 3 4 5 6 7 8 9 10 11 12

RM

S di

ffere

nce

in C−C

bon

d le

ngth

s (Å

)

k−acene

PQGRB3LYPUB3LYP

Page 63: Quantum chemistry without wave functions › ... › reu › REU_deprince_6_18_19.pdfQuantum chemistry without wave functions (and I don't mean density functional theory) Eugene DePrince

signatures of polyradical character in polyacenes

Mullinax, Gidofalvi, Epifanovsky and AED, J. Chem. Theory Comput. 15, 276-289 (2019).

0.000

0.010

0.020

0.030

0.040

0.050

2 3 4 5 6 7 8 9 10 11 12

RM

S di

ffere

nce

in C−C

bon

d le

ngth

s (Å

)

k−acene

PQGRB3LYPUB3LYP

- geometric signatures of polyradical character include(i) larger bond length alternation (BLA) toward ends of molecule than in the middle (ii) increasingly similar structures for the lowest-energy singlet and triplet

several recent studies suggest that even large CASSCF gets this system wrong …

polyradical character is overestimated unless the σ network is also correlated

Page 64: Quantum chemistry without wave functions › ... › reu › REU_deprince_6_18_19.pdfQuantum chemistry without wave functions (and I don't mean density functional theory) Eugene DePrince

moving beyond the ground state

obvious problem: v2RDM methods can treat only ground states

next goal: v2RDM-CASSCF description of electronic excited states

Page 65: Quantum chemistry without wave functions › ... › reu › REU_deprince_6_18_19.pdfQuantum chemistry without wave functions (and I don't mean density functional theory) Eugene DePrince

extended random phase approximation (ERPA)equations include only one-electron excitations from the corre-lated ground state, such that they formulate a generalized eigen-value problem in terms of the first-order density matrix (1DM)and second-order density matrix (2DM). We can thus apply thismethod to calculate approximate excitation energies from 2DM’sobtained from the variational 2DM (v2DM) method [13–15]. Thisidea forms an alternative to direct variational optimization of theexcited state 2DM, which would require non-trivial excited-stateN-representability conditions. We shall call this method the ‘Ex-tended RPA’ (ERPA) method, in accordance with the work of Pernal[8]. The ERPA method differs from similar methods previously ap-plied to the variationally optimized 2DM’s [12,13] because it doesnot require an approximation to the 3DM.

More specifically, this paper examines the main motivation forusing ERPA over RPA – the inclusion of correlation effects – and itspossible limitations due to two approximations:

! The input 2DM’s in general are not exact, may represent anensemble of states and may not be N-representable.! The ERPA method truncates the description of the excited states

by including only one-electron excitations from the correlatedground state.

Section 4 first of all demonstrates the effect of correlation,ensemble nature, and N-representability errors on the ERPA spec-trum by comparing the ERPA results from uncorrelated and varia-tionally optimized 2DM’s with those from exact 2DM’s; andsecondly demonstrates the effect of the approximations made inthe ERPA method itself by comparing the ERPA spectra to exactand experimentally determined spectra. Section 2 first presentsthe Equations of Motion in the present context and Section 3 com-ments on the details of our calculations.

2. The extended RPA method: a method to extract excitationenergies from ground-state 2DM

The original framework for the Equations of Motion for the RPAwas proposed by Rowe in the 1960s [2]. An exact excited statejWni ¼ bQ ynjW0i satisfies

bH; bQ ynh i

jW0i ¼ ðEn $ E0ÞbQ ynjW0i

Choosing the bra to be an arbitrary state bAyjW0i leads to a set ofequations

W0bA bH; bQ ynh i!!!

!!!W0

D E¼ ðEn $ E0Þ W0

bA bQ yn!!!

!!!W0

D E

Since bQ yn ¼ jWnihW0j, its Hermitian conjugate annihilates the groundstate

bQ njW0i ¼ 0

so the above equations can be cast in a more symmetrical, equiva-lent, form

W0bA; ½H; bQ yn'h i!!!

!!!W0

D E¼ ðEn $ E0Þ W0

bA; bQ ynh i!!!

!!!W0

D E

These are the Equations of Motion, which are in principle exact.However, in order to keep calculations tractable, the excitationoperators bQ yn can be approximated by one-body operators.

The usual RPA then makes an additional approximation: itevaluates the expectation values that occur in the EOM on anuncorrelated Hartree–Fock ground state W0. For such a state,the only terms in the excitation operator that lead to non-vanishing equations are hole-particle and particle-hole excitations,bQ yn ¼

PNh¼1PK

p¼Nþ1Xphaypah $ Yphayhap with N the number of electronsand K the single particle basis dimension. For a correlated ground

state, however, the form of the excitation operators can be general-ized to include all one-electron excitations, bQ yn ¼

PKij¼1cn

ijayj ai. Such

a generalized excitation operator leads to the ‘extended RPA’(ERPA) equationsX

ij

cnij W0 aykal; H;ayj ai

h ih i!!!!!!W0

D E¼ ðEn$E0Þ

X

ij

cnij W0 aykal;a

yj ai

h i!!!!!!W0

D E

ð1Þ

For an uncorrelated Hartree–Fock ground state, these equa-tions reduce to the usual RPA equations. For a correlated groundstate, they depend on the 1DM and 2DM. Even for the exactwave function they depend only on the 1DM and 2DM, whichis a consequence of the one-electron description of the excitationoperator. This generalized eigenvalue problem can thus besolved to obtain approximate excitation energies !n = En $ E0

and the corresponding expansion coefficients of the excitedstates, cn

ij.Like the RPA excitation energies, the ERPA excitation energies

come in pairs (!n, $ !n) due to the special symmetry of the commu-tator matrices. The double commutator matrix on the left-handside and the single-commutator matrix on the right hand side ofEq. (1) are symmetric

W0 aykal; H; ayj ai

h ih i!!!!!!W0

D E¼ W0 ayi aj; H; ayl ak

h ih i!!!!!!W0

D E

W0 aykal; ayj ai

h i!!!!!!W0

D E¼ W0 ayi aj; a

yl ak

" #!! !!W0$ % ð2Þ

and have the additional symmetry

W0 aykal; H; ayj ai

h ih i!!!!!!W0

D E¼ W0 ayl ak; H; ayi aj

h ih i!!!!!!W0

D E

W0 aykal; ayj ai

h i!!!!!!W0

D E¼ $ W0 ayl ak; a

yi aj

" #!! !!W0$ % ð3Þ

These symmetry properties lead to pairs of eigenvalues (!n, $!n) inthe ERPA spectrum.

When the ground state W0 is the exact ground state, thedouble commutator matrix is also positive semi-definite: sinceany state of the form

Pijcija

yj aijW0i has higher energy than the

ground stateX

ijkl

c)kl W0 aykal; H; ayj ai

h ih i!!!!!!W0

D Ecij ¼

X

ijkl

c)kl W0 aykalðH $ E0Þayj ai

!!!!!!W0

D Ecij ð4Þ

þX

ijkl

c)kl W0 ayj aiðH $ E0Þaykal

!!!!!!W0

D Ecij

P 0 ð5Þ

3. Computational details

We used GAMESS [16] to carry out the full diagonalization ofthe CI matrix to obtain the FCI ground state and its exact excitationenergies and subsequently calculated the FCI ground-state 2DMwith our own routines. We computed the variationally optimizedsecond-order density matrices by means of a logarithmic barriermethod [17]. In the variational optimization, we constrained the2DM to have the correct normalization and to satisfy the 2-positiv-ity conditions [17] but did not impose explicit spin conditions [18].The approximate excitation energies for these 2DM’s then followfrom the generalized eigenvalue problem (1). We solved this gen-eralized eigenvalue problem using LAPACK’s dggev routine [19],which yields the generalized eigenvalues as ratio’s a/b. Singulari-ties in the metric matrix on the right hand side of Eq. (1) may giverise to eigenvalues a/0, but these are do not correspond to physicalexcitation energies.

All calculations use the Cartesian cc-pVDZ basis set as listed onthe EMSL Basis Set Exchange [20,21], except for the calculations onthe noble gases, which use the Cartesian aug-cc-pVTZ basis

H. van Aggelen et al. / Computational and Theoretical Chemistry 1003 (2013) 50–54 51

| ni =X

ij

cnij a†j ai| 0i

depends on 2-RDM depends on 1-RDM

Page 66: Quantum chemistry without wave functions › ... › reu › REU_deprince_6_18_19.pdfQuantum chemistry without wave functions (and I don't mean density functional theory) Eugene DePrince

extended random phase approximation (ERPA)equations include only one-electron excitations from the corre-lated ground state, such that they formulate a generalized eigen-value problem in terms of the first-order density matrix (1DM)and second-order density matrix (2DM). We can thus apply thismethod to calculate approximate excitation energies from 2DM’sobtained from the variational 2DM (v2DM) method [13–15]. Thisidea forms an alternative to direct variational optimization of theexcited state 2DM, which would require non-trivial excited-stateN-representability conditions. We shall call this method the ‘Ex-tended RPA’ (ERPA) method, in accordance with the work of Pernal[8]. The ERPA method differs from similar methods previously ap-plied to the variationally optimized 2DM’s [12,13] because it doesnot require an approximation to the 3DM.

More specifically, this paper examines the main motivation forusing ERPA over RPA – the inclusion of correlation effects – and itspossible limitations due to two approximations:

! The input 2DM’s in general are not exact, may represent anensemble of states and may not be N-representable.! The ERPA method truncates the description of the excited states

by including only one-electron excitations from the correlatedground state.

Section 4 first of all demonstrates the effect of correlation,ensemble nature, and N-representability errors on the ERPA spec-trum by comparing the ERPA results from uncorrelated and varia-tionally optimized 2DM’s with those from exact 2DM’s; andsecondly demonstrates the effect of the approximations made inthe ERPA method itself by comparing the ERPA spectra to exactand experimentally determined spectra. Section 2 first presentsthe Equations of Motion in the present context and Section 3 com-ments on the details of our calculations.

2. The extended RPA method: a method to extract excitationenergies from ground-state 2DM

The original framework for the Equations of Motion for the RPAwas proposed by Rowe in the 1960s [2]. An exact excited statejWni ¼ bQ ynjW0i satisfies

bH; bQ ynh i

jW0i ¼ ðEn $ E0ÞbQ ynjW0i

Choosing the bra to be an arbitrary state bAyjW0i leads to a set ofequations

W0bA bH; bQ ynh i!!!

!!!W0

D E¼ ðEn $ E0Þ W0

bA bQ yn!!!

!!!W0

D E

Since bQ yn ¼ jWnihW0j, its Hermitian conjugate annihilates the groundstate

bQ njW0i ¼ 0

so the above equations can be cast in a more symmetrical, equiva-lent, form

W0bA; ½H; bQ yn'h i!!!

!!!W0

D E¼ ðEn $ E0Þ W0

bA; bQ ynh i!!!

!!!W0

D E

These are the Equations of Motion, which are in principle exact.However, in order to keep calculations tractable, the excitationoperators bQ yn can be approximated by one-body operators.

The usual RPA then makes an additional approximation: itevaluates the expectation values that occur in the EOM on anuncorrelated Hartree–Fock ground state W0. For such a state,the only terms in the excitation operator that lead to non-vanishing equations are hole-particle and particle-hole excitations,bQ yn ¼

PNh¼1PK

p¼Nþ1Xphaypah $ Yphayhap with N the number of electronsand K the single particle basis dimension. For a correlated ground

state, however, the form of the excitation operators can be general-ized to include all one-electron excitations, bQ yn ¼

PKij¼1cn

ijayj ai. Such

a generalized excitation operator leads to the ‘extended RPA’(ERPA) equationsX

ij

cnij W0 aykal; H;ayj ai

h ih i!!!!!!W0

D E¼ ðEn$E0Þ

X

ij

cnij W0 aykal;a

yj ai

h i!!!!!!W0

D E

ð1Þ

For an uncorrelated Hartree–Fock ground state, these equa-tions reduce to the usual RPA equations. For a correlated groundstate, they depend on the 1DM and 2DM. Even for the exactwave function they depend only on the 1DM and 2DM, whichis a consequence of the one-electron description of the excitationoperator. This generalized eigenvalue problem can thus besolved to obtain approximate excitation energies !n = En $ E0

and the corresponding expansion coefficients of the excitedstates, cn

ij.Like the RPA excitation energies, the ERPA excitation energies

come in pairs (!n, $ !n) due to the special symmetry of the commu-tator matrices. The double commutator matrix on the left-handside and the single-commutator matrix on the right hand side ofEq. (1) are symmetric

W0 aykal; H; ayj ai

h ih i!!!!!!W0

D E¼ W0 ayi aj; H; ayl ak

h ih i!!!!!!W0

D E

W0 aykal; ayj ai

h i!!!!!!W0

D E¼ W0 ayi aj; a

yl ak

" #!! !!W0$ % ð2Þ

and have the additional symmetry

W0 aykal; H; ayj ai

h ih i!!!!!!W0

D E¼ W0 ayl ak; H; ayi aj

h ih i!!!!!!W0

D E

W0 aykal; ayj ai

h i!!!!!!W0

D E¼ $ W0 ayl ak; a

yi aj

" #!! !!W0$ % ð3Þ

These symmetry properties lead to pairs of eigenvalues (!n, $!n) inthe ERPA spectrum.

When the ground state W0 is the exact ground state, thedouble commutator matrix is also positive semi-definite: sinceany state of the form

Pijcija

yj aijW0i has higher energy than the

ground stateX

ijkl

c)kl W0 aykal; H; ayj ai

h ih i!!!!!!W0

D Ecij ¼

X

ijkl

c)kl W0 aykalðH $ E0Þayj ai

!!!!!!W0

D Ecij ð4Þ

þX

ijkl

c)kl W0 ayj aiðH $ E0Þaykal

!!!!!!W0

D Ecij

P 0 ð5Þ

3. Computational details

We used GAMESS [16] to carry out the full diagonalization ofthe CI matrix to obtain the FCI ground state and its exact excitationenergies and subsequently calculated the FCI ground-state 2DMwith our own routines. We computed the variationally optimizedsecond-order density matrices by means of a logarithmic barriermethod [17]. In the variational optimization, we constrained the2DM to have the correct normalization and to satisfy the 2-positiv-ity conditions [17] but did not impose explicit spin conditions [18].The approximate excitation energies for these 2DM’s then followfrom the generalized eigenvalue problem (1). We solved this gen-eralized eigenvalue problem using LAPACK’s dggev routine [19],which yields the generalized eigenvalues as ratio’s a/b. Singulari-ties in the metric matrix on the right hand side of Eq. (1) may giverise to eigenvalues a/0, but these are do not correspond to physicalexcitation energies.

All calculations use the Cartesian cc-pVDZ basis set as listed onthe EMSL Basis Set Exchange [20,21], except for the calculations onthe noble gases, which use the Cartesian aug-cc-pVTZ basis

H. van Aggelen et al. / Computational and Theoretical Chemistry 1003 (2013) 50–54 51

| ni =X

ij

cnij a†j ai| 0i

depends on 2-RDM depends on 1-RDM

previous efforts to combine v2RDM and ERPA were remarkably disappointingvan Aggelen et al., CTC, 1003, 50-54 (2013).

Page 67: Quantum chemistry without wave functions › ... › reu › REU_deprince_6_18_19.pdfQuantum chemistry without wave functions (and I don't mean density functional theory) Eugene DePrince

extended random phase approximation (ERPA)equations include only one-electron excitations from the corre-lated ground state, such that they formulate a generalized eigen-value problem in terms of the first-order density matrix (1DM)and second-order density matrix (2DM). We can thus apply thismethod to calculate approximate excitation energies from 2DM’sobtained from the variational 2DM (v2DM) method [13–15]. Thisidea forms an alternative to direct variational optimization of theexcited state 2DM, which would require non-trivial excited-stateN-representability conditions. We shall call this method the ‘Ex-tended RPA’ (ERPA) method, in accordance with the work of Pernal[8]. The ERPA method differs from similar methods previously ap-plied to the variationally optimized 2DM’s [12,13] because it doesnot require an approximation to the 3DM.

More specifically, this paper examines the main motivation forusing ERPA over RPA – the inclusion of correlation effects – and itspossible limitations due to two approximations:

! The input 2DM’s in general are not exact, may represent anensemble of states and may not be N-representable.! The ERPA method truncates the description of the excited states

by including only one-electron excitations from the correlatedground state.

Section 4 first of all demonstrates the effect of correlation,ensemble nature, and N-representability errors on the ERPA spec-trum by comparing the ERPA results from uncorrelated and varia-tionally optimized 2DM’s with those from exact 2DM’s; andsecondly demonstrates the effect of the approximations made inthe ERPA method itself by comparing the ERPA spectra to exactand experimentally determined spectra. Section 2 first presentsthe Equations of Motion in the present context and Section 3 com-ments on the details of our calculations.

2. The extended RPA method: a method to extract excitationenergies from ground-state 2DM

The original framework for the Equations of Motion for the RPAwas proposed by Rowe in the 1960s [2]. An exact excited statejWni ¼ bQ ynjW0i satisfies

bH; bQ ynh i

jW0i ¼ ðEn $ E0ÞbQ ynjW0i

Choosing the bra to be an arbitrary state bAyjW0i leads to a set ofequations

W0bA bH; bQ ynh i!!!

!!!W0

D E¼ ðEn $ E0Þ W0

bA bQ yn!!!

!!!W0

D E

Since bQ yn ¼ jWnihW0j, its Hermitian conjugate annihilates the groundstate

bQ njW0i ¼ 0

so the above equations can be cast in a more symmetrical, equiva-lent, form

W0bA; ½H; bQ yn'h i!!!

!!!W0

D E¼ ðEn $ E0Þ W0

bA; bQ ynh i!!!

!!!W0

D E

These are the Equations of Motion, which are in principle exact.However, in order to keep calculations tractable, the excitationoperators bQ yn can be approximated by one-body operators.

The usual RPA then makes an additional approximation: itevaluates the expectation values that occur in the EOM on anuncorrelated Hartree–Fock ground state W0. For such a state,the only terms in the excitation operator that lead to non-vanishing equations are hole-particle and particle-hole excitations,bQ yn ¼

PNh¼1PK

p¼Nþ1Xphaypah $ Yphayhap with N the number of electronsand K the single particle basis dimension. For a correlated ground

state, however, the form of the excitation operators can be general-ized to include all one-electron excitations, bQ yn ¼

PKij¼1cn

ijayj ai. Such

a generalized excitation operator leads to the ‘extended RPA’(ERPA) equationsX

ij

cnij W0 aykal; H;ayj ai

h ih i!!!!!!W0

D E¼ ðEn$E0Þ

X

ij

cnij W0 aykal;a

yj ai

h i!!!!!!W0

D E

ð1Þ

For an uncorrelated Hartree–Fock ground state, these equa-tions reduce to the usual RPA equations. For a correlated groundstate, they depend on the 1DM and 2DM. Even for the exactwave function they depend only on the 1DM and 2DM, whichis a consequence of the one-electron description of the excitationoperator. This generalized eigenvalue problem can thus besolved to obtain approximate excitation energies !n = En $ E0

and the corresponding expansion coefficients of the excitedstates, cn

ij.Like the RPA excitation energies, the ERPA excitation energies

come in pairs (!n, $ !n) due to the special symmetry of the commu-tator matrices. The double commutator matrix on the left-handside and the single-commutator matrix on the right hand side ofEq. (1) are symmetric

W0 aykal; H; ayj ai

h ih i!!!!!!W0

D E¼ W0 ayi aj; H; ayl ak

h ih i!!!!!!W0

D E

W0 aykal; ayj ai

h i!!!!!!W0

D E¼ W0 ayi aj; a

yl ak

" #!! !!W0$ % ð2Þ

and have the additional symmetry

W0 aykal; H; ayj ai

h ih i!!!!!!W0

D E¼ W0 ayl ak; H; ayi aj

h ih i!!!!!!W0

D E

W0 aykal; ayj ai

h i!!!!!!W0

D E¼ $ W0 ayl ak; a

yi aj

" #!! !!W0$ % ð3Þ

These symmetry properties lead to pairs of eigenvalues (!n, $!n) inthe ERPA spectrum.

When the ground state W0 is the exact ground state, thedouble commutator matrix is also positive semi-definite: sinceany state of the form

Pijcija

yj aijW0i has higher energy than the

ground stateX

ijkl

c)kl W0 aykal; H; ayj ai

h ih i!!!!!!W0

D Ecij ¼

X

ijkl

c)kl W0 aykalðH $ E0Þayj ai

!!!!!!W0

D Ecij ð4Þ

þX

ijkl

c)kl W0 ayj aiðH $ E0Þaykal

!!!!!!W0

D Ecij

P 0 ð5Þ

3. Computational details

We used GAMESS [16] to carry out the full diagonalization ofthe CI matrix to obtain the FCI ground state and its exact excitationenergies and subsequently calculated the FCI ground-state 2DMwith our own routines. We computed the variationally optimizedsecond-order density matrices by means of a logarithmic barriermethod [17]. In the variational optimization, we constrained the2DM to have the correct normalization and to satisfy the 2-positiv-ity conditions [17] but did not impose explicit spin conditions [18].The approximate excitation energies for these 2DM’s then followfrom the generalized eigenvalue problem (1). We solved this gen-eralized eigenvalue problem using LAPACK’s dggev routine [19],which yields the generalized eigenvalues as ratio’s a/b. Singulari-ties in the metric matrix on the right hand side of Eq. (1) may giverise to eigenvalues a/0, but these are do not correspond to physicalexcitation energies.

All calculations use the Cartesian cc-pVDZ basis set as listed onthe EMSL Basis Set Exchange [20,21], except for the calculations onthe noble gases, which use the Cartesian aug-cc-pVTZ basis

H. van Aggelen et al. / Computational and Theoretical Chemistry 1003 (2013) 50–54 51

| ni =X

ij

cnij a†j ai| 0i

depends on 2-RDM depends on 1-RDM

previous efforts to combine v2RDM and ERPA were remarkably disappointing

HeLiBeBCNOFNe

0.00-0.01-0.01-0.40-0.85-0.88-1.61-1.59-0.49

0.000.010.002.677.213.396.87

11.31-0.05

errors in ground-state (v2RDM) and excitation(ERPA) energies (eV), relative to full CI:

ground state excitation energy

van Aggelen et al., CTC, 1003, 50-54 (2013).

Page 68: Quantum chemistry without wave functions › ... › reu › REU_deprince_6_18_19.pdfQuantum chemistry without wave functions (and I don't mean density functional theory) Eugene DePrince

extended random phase approximation (ERPA)equations include only one-electron excitations from the corre-lated ground state, such that they formulate a generalized eigen-value problem in terms of the first-order density matrix (1DM)and second-order density matrix (2DM). We can thus apply thismethod to calculate approximate excitation energies from 2DM’sobtained from the variational 2DM (v2DM) method [13–15]. Thisidea forms an alternative to direct variational optimization of theexcited state 2DM, which would require non-trivial excited-stateN-representability conditions. We shall call this method the ‘Ex-tended RPA’ (ERPA) method, in accordance with the work of Pernal[8]. The ERPA method differs from similar methods previously ap-plied to the variationally optimized 2DM’s [12,13] because it doesnot require an approximation to the 3DM.

More specifically, this paper examines the main motivation forusing ERPA over RPA – the inclusion of correlation effects – and itspossible limitations due to two approximations:

! The input 2DM’s in general are not exact, may represent anensemble of states and may not be N-representable.! The ERPA method truncates the description of the excited states

by including only one-electron excitations from the correlatedground state.

Section 4 first of all demonstrates the effect of correlation,ensemble nature, and N-representability errors on the ERPA spec-trum by comparing the ERPA results from uncorrelated and varia-tionally optimized 2DM’s with those from exact 2DM’s; andsecondly demonstrates the effect of the approximations made inthe ERPA method itself by comparing the ERPA spectra to exactand experimentally determined spectra. Section 2 first presentsthe Equations of Motion in the present context and Section 3 com-ments on the details of our calculations.

2. The extended RPA method: a method to extract excitationenergies from ground-state 2DM

The original framework for the Equations of Motion for the RPAwas proposed by Rowe in the 1960s [2]. An exact excited statejWni ¼ bQ ynjW0i satisfies

bH; bQ ynh i

jW0i ¼ ðEn $ E0ÞbQ ynjW0i

Choosing the bra to be an arbitrary state bAyjW0i leads to a set ofequations

W0bA bH; bQ ynh i!!!

!!!W0

D E¼ ðEn $ E0Þ W0

bA bQ yn!!!

!!!W0

D E

Since bQ yn ¼ jWnihW0j, its Hermitian conjugate annihilates the groundstate

bQ njW0i ¼ 0

so the above equations can be cast in a more symmetrical, equiva-lent, form

W0bA; ½H; bQ yn'h i!!!

!!!W0

D E¼ ðEn $ E0Þ W0

bA; bQ ynh i!!!

!!!W0

D E

These are the Equations of Motion, which are in principle exact.However, in order to keep calculations tractable, the excitationoperators bQ yn can be approximated by one-body operators.

The usual RPA then makes an additional approximation: itevaluates the expectation values that occur in the EOM on anuncorrelated Hartree–Fock ground state W0. For such a state,the only terms in the excitation operator that lead to non-vanishing equations are hole-particle and particle-hole excitations,bQ yn ¼

PNh¼1PK

p¼Nþ1Xphaypah $ Yphayhap with N the number of electronsand K the single particle basis dimension. For a correlated ground

state, however, the form of the excitation operators can be general-ized to include all one-electron excitations, bQ yn ¼

PKij¼1cn

ijayj ai. Such

a generalized excitation operator leads to the ‘extended RPA’(ERPA) equationsX

ij

cnij W0 aykal; H;ayj ai

h ih i!!!!!!W0

D E¼ ðEn$E0Þ

X

ij

cnij W0 aykal;a

yj ai

h i!!!!!!W0

D E

ð1Þ

For an uncorrelated Hartree–Fock ground state, these equa-tions reduce to the usual RPA equations. For a correlated groundstate, they depend on the 1DM and 2DM. Even for the exactwave function they depend only on the 1DM and 2DM, whichis a consequence of the one-electron description of the excitationoperator. This generalized eigenvalue problem can thus besolved to obtain approximate excitation energies !n = En $ E0

and the corresponding expansion coefficients of the excitedstates, cn

ij.Like the RPA excitation energies, the ERPA excitation energies

come in pairs (!n, $ !n) due to the special symmetry of the commu-tator matrices. The double commutator matrix on the left-handside and the single-commutator matrix on the right hand side ofEq. (1) are symmetric

W0 aykal; H; ayj ai

h ih i!!!!!!W0

D E¼ W0 ayi aj; H; ayl ak

h ih i!!!!!!W0

D E

W0 aykal; ayj ai

h i!!!!!!W0

D E¼ W0 ayi aj; a

yl ak

" #!! !!W0$ % ð2Þ

and have the additional symmetry

W0 aykal; H; ayj ai

h ih i!!!!!!W0

D E¼ W0 ayl ak; H; ayi aj

h ih i!!!!!!W0

D E

W0 aykal; ayj ai

h i!!!!!!W0

D E¼ $ W0 ayl ak; a

yi aj

" #!! !!W0$ % ð3Þ

These symmetry properties lead to pairs of eigenvalues (!n, $!n) inthe ERPA spectrum.

When the ground state W0 is the exact ground state, thedouble commutator matrix is also positive semi-definite: sinceany state of the form

Pijcija

yj aijW0i has higher energy than the

ground stateX

ijkl

c)kl W0 aykal; H; ayj ai

h ih i!!!!!!W0

D Ecij ¼

X

ijkl

c)kl W0 aykalðH $ E0Þayj ai

!!!!!!W0

D Ecij ð4Þ

þX

ijkl

c)kl W0 ayj aiðH $ E0Þaykal

!!!!!!W0

D Ecij

P 0 ð5Þ

3. Computational details

We used GAMESS [16] to carry out the full diagonalization ofthe CI matrix to obtain the FCI ground state and its exact excitationenergies and subsequently calculated the FCI ground-state 2DMwith our own routines. We computed the variationally optimizedsecond-order density matrices by means of a logarithmic barriermethod [17]. In the variational optimization, we constrained the2DM to have the correct normalization and to satisfy the 2-positiv-ity conditions [17] but did not impose explicit spin conditions [18].The approximate excitation energies for these 2DM’s then followfrom the generalized eigenvalue problem (1). We solved this gen-eralized eigenvalue problem using LAPACK’s dggev routine [19],which yields the generalized eigenvalues as ratio’s a/b. Singulari-ties in the metric matrix on the right hand side of Eq. (1) may giverise to eigenvalues a/0, but these are do not correspond to physicalexcitation energies.

All calculations use the Cartesian cc-pVDZ basis set as listed onthe EMSL Basis Set Exchange [20,21], except for the calculations onthe noble gases, which use the Cartesian aug-cc-pVTZ basis

H. van Aggelen et al. / Computational and Theoretical Chemistry 1003 (2013) 50–54 51

| ni =X

ij

cnij a†j ai| 0i

depends on 2-RDM depends on 1-RDM

previous efforts to combine v2RDM and ERPA were remarkably disappointing

HeLiBeBCNOFNe

0.00-0.01-0.01-0.40-0.85-0.88-1.61-1.59-0.49

0.000.010.002.677.213.396.87

11.31-0.05

errors in ground-state (v2RDM) and excitation(ERPA) energies (eV), relative to full CI:

ground state excitation energy

for open-shell atoms, errors in excitation energies are 10 x larger than errors in the ground state!

what is happening???

van Aggelen et al., CTC, 1003, 50-54 (2013).

Page 69: Quantum chemistry without wave functions › ... › reu › REU_deprince_6_18_19.pdfQuantum chemistry without wave functions (and I don't mean density functional theory) Eugene DePrince

2s2 ! 2s12p1

2s1 ! 2p1

2s22p1 ! 2s12p2

2s22p2 ! 2s12p3

Li

Be

B

C

full CIPQG

2.0 2.5 3.0 3.5 4.0 4.5energy (eV)

failures of v2RDM / ERPA

consider low-lying excitations in several second row atoms / STO-3G basis set

Page 70: Quantum chemistry without wave functions › ... › reu › REU_deprince_6_18_19.pdfQuantum chemistry without wave functions (and I don't mean density functional theory) Eugene DePrince

2s2 ! 2s12p1

2s1 ! 2p1

2s22p1 ! 2s12p2

2s22p2 ! 2s12p3

Li

Be

B

C

full CIPQG

2.0 2.5 3.0 3.5 4.0 4.5energy (eV)

failures of v2RDM / ERPA

consider low-lying excitations in several second row atoms / STO-3G basis set

Page 71: Quantum chemistry without wave functions › ... › reu › REU_deprince_6_18_19.pdfQuantum chemistry without wave functions (and I don't mean density functional theory) Eugene DePrince

Li

Be

B

C

full CIPQG

2.0 2.5 3.0 3.5 4.0 4.5energy (eV)

v2RDM ground state density represents and ensemble of these states

consider low-lying excitations in several second row atoms / STO-3G basis set

failures of v2RDM / ERPA

Page 72: Quantum chemistry without wave functions › ... › reu › REU_deprince_6_18_19.pdfQuantum chemistry without wave functions (and I don't mean density functional theory) Eugene DePrince

ensemble N-representability conditions

- complete ensemble-state N-representability conditions for the 1-RDM

0 �i 1 A.J. Coleman, Rev. Mod. Phys. 35, 668-686 (1963).

X

i

�i = N

natural spin-orbital occupation numbers (eigenvalues of 1-RDM) must lie between 0 and 1

Page 73: Quantum chemistry without wave functions › ... › reu › REU_deprince_6_18_19.pdfQuantum chemistry without wave functions (and I don't mean density functional theory) Eugene DePrince

pure-state N-representability conditions

- pure-state conditions: “generalized Pauli constraints”

Page 74: Quantum chemistry without wave functions › ... › reu › REU_deprince_6_18_19.pdfQuantum chemistry without wave functions (and I don't mean density functional theory) Eugene DePrince

pure-state N-representability conditions

known empirically: 3 electrons in 6 orbitals:

R.E. Borland and K. Dennis, J. Phys. B: At. Mol. Phys. 5, 7 (1972)

�1 + �6 = 1

�2 + �5 = 1

�3 + �4 = 1

�4 � �5 � �6 0

�i � �i+1

1972 - 2008 … this is the only set of pure-state conditions known

- pure-state conditions: “generalized Pauli constraints”

Page 75: Quantum chemistry without wave functions › ... › reu › REU_deprince_6_18_19.pdfQuantum chemistry without wave functions (and I don't mean density functional theory) Eugene DePrince

pure-state N-representability conditions

2008: M. Altunbulak and A. Klyachko, Commun. Math. Phys. 282, 287 (2008).

- pure-state conditions: “generalized Pauli constraints”

�1 + �6 = 1

�2 + �5 = 1

�3 + �4 = 1

�4 � �5 � �6 0

3 electrons 6 spin orbitals4 constraints

The Pauli Principle Revisited 319

Table 3. N -representability inequalities for system ∧4H8

Inequalities v ∈ S8 w ∈ S70 cvw(a)

λ1 ≤ 1 (1) (1) 1λ5 − λ6 − λ7 − λ8 ≤ 0 (1 5 4 3 2) 1λ1 − λ2 − λ7 − λ8 ≤ 0 (2 3 4 5 6) 1λ1 − λ3 − λ6 − λ8 ≤ 0 (3 4 5 7 6) 1λ1 − λ4 − λ6 − λ7 ≤ 0 (4 5 8 7 6) (1 2 3 4 5) 1λ1 − λ4 − λ5 − λ8 ≤ 0 (4 6)(5 7) 1λ3 − λ4 − λ7 − λ8 ≤ 0 (1 3 2)(4 5 6) 1λ2 − λ4 − λ6 − λ8 ≤ 0 (1 2)(4 5 7 6) 1λ2 + λ3 + λ5 − λ8 ≤ 2 (1 2 3 5 4) 1λ1 + λ3 + λ6 − λ8 ≤ 2 (2 3 6 5 4) 1λ1 + λ2 + λ7 − λ8 ≤ 2 (3 7 6 5 4) 1λ1 + λ2 + λ3 − λ4 ≤ 2 (4 5 6 7 8) (1 2 3 4 5) 1λ1 + λ4 + λ5 − λ8 ≤ 2 (2 4)(3 5) 1λ1 + λ2 + λ5 − λ6 ≤ 2 (3 5 4)(6 7 8) 1λ1 + λ3 + λ5 − λ7 ≤ 2 (2 3 5 4)(7 8) 1

Table 4. N -representability inequalities for system ∧3H8

Inequalities v ∈ S8 w ∈ S56 cvw(a)

λ2 + λ3 + λ4 + λ5 ≤ 2 (1 2 3 4 5) 1λ1 + λ2 + λ4 + λ7 ≤ 2 (3 4 7 6 5) (1 2 3 4 5) 1λ1 + λ3 + λ4 + λ6 ≤ 2 (2 3 4 6 5) 1λ1 + λ2 + λ5 + λ6 ≤ 2 (3 5)(4 6) 1λ1 + λ2 − λ3 ≤ 1 (3 4 5 6 7 8) 1λ2 + λ5 − λ7 ≤ 1 (1 2 5 4 3)(7 8) 1λ1 + λ6 − λ7 ≤ 1 (2 6 5 4 3)(7 8) (1 2 3 4 5 6) 1λ2 + λ4 − λ6 ≤ 1 (1 2 4 3)(6 7 8) 1λ1 + λ4 − λ5 ≤ 1 (2 4 3)(5 6 7 8) 1λ3 + λ4 − λ7 ≤ 1 (1 3)(2 4)(7 8) 1λ1 + λ8 ≤ 1 (2 8 7 6 5 4 3) (1 2 3 4 5 6 7) 1λ2 − λ3 − λ6 − λ7 ≤ 0 (1 2)(3 4 5 8 7 6) 1λ4 − λ5 − λ6 − λ7 ≤ 0 (1 4 3 2)(5 8 7 6) (1 2 3 4 5 6 7) 1λ1 − λ3 − λ5 − λ7 ≤ 0 (3 4 6)(5 8 7) 1λ2 + λ3 + 2λ4 − λ5 − λ7 + λ8 ≤ 2 (1 4 8 7 5) 1λ1 + λ3 + 2λ4 − λ5 − λ6 + λ8 ≤ 2 (1 4 8 6 7 5 2) (1 2 3 . . . 10 11) 1λ1 + 2λ2 − λ3 + λ4 − λ5 + λ8 ≤ 2 (1 2)(3 4 8 5 6 7) 1λ1 + 2λ2 − λ3 + λ5 − λ6 + λ8 ≤ 2 (1 2)(3 5 4 8 6 7) 1λ1 + λ2 − 2λ3 − λ4 − λ5 ≤ 0 (3 6 4 7 5 8) (1 2 3 . . . 11 12) 1λ1 − λ2 − λ3 + λ6 − 2λ7 ≤ 0 (2 6)(3 4 5 8 7) 1λ1 − λ3 − λ4 − λ5 + λ8 ≤ 0 (2 8 5 7 4 6 3) (1 2 3 . . . 12 13) 1λ1 − λ2 − λ3 − λ7 + λ8 ≤ 0 (2 8 7 3 4 5 6) 12λ1 − λ2 + λ4 − 2λ5 − λ6 + λ8 ≤ 1 (2 4 3 8 5 7 6) 1λ3 + 2λ4 − 2λ5 − λ6 − λ7 + λ8 ≤ 1 (1 4)(2 3 8 5) 12λ1 − λ2 − λ4 + λ6 − 2λ7 + λ8 ≤ 1 (2 6)(3 8 7 4) (1 2 3 . . . 12 13) 12λ1 + λ2 − 2λ3 − λ4 − λ6 + λ8 ≤ 1 (3 8)(4 5 7 6) 1λ1 + 2λ2 − 2λ3 − λ5 − λ6 + λ8 ≤ 1 (1 2)(3 8)(5 7 6) 12λ1 − 2λ2 − λ3 − λ4 + λ6 − 3λ7 + λ8 ≤ 0 (2 6 4 5 3 8 7) 1−λ1 + λ3 + 2λ4 − 3λ5 − 2λ6 − λ7 + λ8 ≤ 0 (1 4 2 3 8 5)(6 7) (1 2 3 . . . 14 15) 12λ1 + λ2 − 3λ3 − 2λ4 − λ5 − λ6 + λ8 ≤ 0 (3 8)(4 7) 1λ1 + 2λ2 − 3λ3 − λ4 − 2λ5 − λ6 + λ8 ≤ 0 (1 2)(3 8)(4 7 5) 1

Adding this vertex gives a polytope P where all facets are covered by Theorem 2. ThusP is the genuine moment polytope for ∧3H8 given by 31 independent inequalities listedin Table 4.

3 electrons 8 spin orbitals14 constraints

The Pauli Principle Revisited 319

Table 3. N -representability inequalities for system ∧4H8

Inequalities v ∈ S8 w ∈ S70 cvw(a)

λ1 ≤ 1 (1) (1) 1λ5 − λ6 − λ7 − λ8 ≤ 0 (1 5 4 3 2) 1λ1 − λ2 − λ7 − λ8 ≤ 0 (2 3 4 5 6) 1λ1 − λ3 − λ6 − λ8 ≤ 0 (3 4 5 7 6) 1λ1 − λ4 − λ6 − λ7 ≤ 0 (4 5 8 7 6) (1 2 3 4 5) 1λ1 − λ4 − λ5 − λ8 ≤ 0 (4 6)(5 7) 1λ3 − λ4 − λ7 − λ8 ≤ 0 (1 3 2)(4 5 6) 1λ2 − λ4 − λ6 − λ8 ≤ 0 (1 2)(4 5 7 6) 1λ2 + λ3 + λ5 − λ8 ≤ 2 (1 2 3 5 4) 1λ1 + λ3 + λ6 − λ8 ≤ 2 (2 3 6 5 4) 1λ1 + λ2 + λ7 − λ8 ≤ 2 (3 7 6 5 4) 1λ1 + λ2 + λ3 − λ4 ≤ 2 (4 5 6 7 8) (1 2 3 4 5) 1λ1 + λ4 + λ5 − λ8 ≤ 2 (2 4)(3 5) 1λ1 + λ2 + λ5 − λ6 ≤ 2 (3 5 4)(6 7 8) 1λ1 + λ3 + λ5 − λ7 ≤ 2 (2 3 5 4)(7 8) 1

Table 4. N -representability inequalities for system ∧3H8

Inequalities v ∈ S8 w ∈ S56 cvw(a)

λ2 + λ3 + λ4 + λ5 ≤ 2 (1 2 3 4 5) 1λ1 + λ2 + λ4 + λ7 ≤ 2 (3 4 7 6 5) (1 2 3 4 5) 1λ1 + λ3 + λ4 + λ6 ≤ 2 (2 3 4 6 5) 1λ1 + λ2 + λ5 + λ6 ≤ 2 (3 5)(4 6) 1λ1 + λ2 − λ3 ≤ 1 (3 4 5 6 7 8) 1λ2 + λ5 − λ7 ≤ 1 (1 2 5 4 3)(7 8) 1λ1 + λ6 − λ7 ≤ 1 (2 6 5 4 3)(7 8) (1 2 3 4 5 6) 1λ2 + λ4 − λ6 ≤ 1 (1 2 4 3)(6 7 8) 1λ1 + λ4 − λ5 ≤ 1 (2 4 3)(5 6 7 8) 1λ3 + λ4 − λ7 ≤ 1 (1 3)(2 4)(7 8) 1λ1 + λ8 ≤ 1 (2 8 7 6 5 4 3) (1 2 3 4 5 6 7) 1λ2 − λ3 − λ6 − λ7 ≤ 0 (1 2)(3 4 5 8 7 6) 1λ4 − λ5 − λ6 − λ7 ≤ 0 (1 4 3 2)(5 8 7 6) (1 2 3 4 5 6 7) 1λ1 − λ3 − λ5 − λ7 ≤ 0 (3 4 6)(5 8 7) 1λ2 + λ3 + 2λ4 − λ5 − λ7 + λ8 ≤ 2 (1 4 8 7 5) 1λ1 + λ3 + 2λ4 − λ5 − λ6 + λ8 ≤ 2 (1 4 8 6 7 5 2) (1 2 3 . . . 10 11) 1λ1 + 2λ2 − λ3 + λ4 − λ5 + λ8 ≤ 2 (1 2)(3 4 8 5 6 7) 1λ1 + 2λ2 − λ3 + λ5 − λ6 + λ8 ≤ 2 (1 2)(3 5 4 8 6 7) 1λ1 + λ2 − 2λ3 − λ4 − λ5 ≤ 0 (3 6 4 7 5 8) (1 2 3 . . . 11 12) 1λ1 − λ2 − λ3 + λ6 − 2λ7 ≤ 0 (2 6)(3 4 5 8 7) 1λ1 − λ3 − λ4 − λ5 + λ8 ≤ 0 (2 8 5 7 4 6 3) (1 2 3 . . . 12 13) 1λ1 − λ2 − λ3 − λ7 + λ8 ≤ 0 (2 8 7 3 4 5 6) 12λ1 − λ2 + λ4 − 2λ5 − λ6 + λ8 ≤ 1 (2 4 3 8 5 7 6) 1λ3 + 2λ4 − 2λ5 − λ6 − λ7 + λ8 ≤ 1 (1 4)(2 3 8 5) 12λ1 − λ2 − λ4 + λ6 − 2λ7 + λ8 ≤ 1 (2 6)(3 8 7 4) (1 2 3 . . . 12 13) 12λ1 + λ2 − 2λ3 − λ4 − λ6 + λ8 ≤ 1 (3 8)(4 5 7 6) 1λ1 + 2λ2 − 2λ3 − λ5 − λ6 + λ8 ≤ 1 (1 2)(3 8)(5 7 6) 12λ1 − 2λ2 − λ3 − λ4 + λ6 − 3λ7 + λ8 ≤ 0 (2 6 4 5 3 8 7) 1−λ1 + λ3 + 2λ4 − 3λ5 − 2λ6 − λ7 + λ8 ≤ 0 (1 4 2 3 8 5)(6 7) (1 2 3 . . . 14 15) 12λ1 + λ2 − 3λ3 − 2λ4 − λ5 − λ6 + λ8 ≤ 0 (3 8)(4 7) 1λ1 + 2λ2 − 3λ3 − λ4 − 2λ5 − λ6 + λ8 ≤ 0 (1 2)(3 8)(4 7 5) 1

Adding this vertex gives a polytope P where all facets are covered by Theorem 2. ThusP is the genuine moment polytope for ∧3H8 given by 31 independent inequalities listedin Table 4.

4 electrons 8 spin orbitals31 constraints

4 electrons 10 spin orbitals124 constraints

5 electrons 10 spin orbitals160 constraints

- number and complexity of constraints increases dramatically with number of electrons and size of basis- not at all obvious which constraints are important or what they even mean, physically - Altunbulak & Klyachko tabulated all constraints for systems with up to 10 orbitals

Page 76: Quantum chemistry without wave functions › ... › reu › REU_deprince_6_18_19.pdfQuantum chemistry without wave functions (and I don't mean density functional theory) Eugene DePrince

(a)

Be-

BC+N2+O3+F4+Ne5+

0 1 2 3 4 5 6 7

(b)

1 20 40 60 80 100 120 140 160constraint number

Be-

BC+N2+O3+F4+Ne5+

pure-state N-representability conditions- 5 electrons in 10 spin orbitals [ v2RDM-CASSCF (5e,5o) / cc-pVQZ ] … 160 constraints

- enforcing PQG (ensemble state) constraints

GPC errors (electrons)

AED, J. Chem. Phys. 145, 164109 (2016).

Page 77: Quantum chemistry without wave functions › ... › reu › REU_deprince_6_18_19.pdfQuantum chemistry without wave functions (and I don't mean density functional theory) Eugene DePrince

(a)

Be-

BC+N2+O3+F4+Ne5+

0 1 2 3 4 5 6 7

(b)

1 20 40 60 80 100 120 140 160constraint number

Be-

BC+N2+O3+F4+Ne5+

pure-state N-representability conditions- 5 electrons in 10 spin orbitals [ v2RDM-CASSCF (5e,5o) / cc-pVQZ ] … 160 constraints

- enforcing PQG (ensemble state) constraints

- many constraints severely violated

GPC errors (electrons)

AED, J. Chem. Phys. 145, 164109 (2016).

Page 78: Quantum chemistry without wave functions › ... › reu › REU_deprince_6_18_19.pdfQuantum chemistry without wave functions (and I don't mean density functional theory) Eugene DePrince

(a)

Be-

BC+N2+O3+F4+Ne5+

0 1 2 3 4 5 6 7

(b)

1 20 40 60 80 100 120 140 160constraint number

Be-

BC+N2+O3+F4+Ne5+

pure-state N-representability conditions

- enforcing PQG (ensemble state) constraints

- many constraints severely violated

- clearly the ground-state 2-RDM does not represent a pure state

- 5 electrons in 10 spin orbitals [ v2RDM-CASSCF (5e,5o) / cc-pVQZ ] … 160 constraints

GPC errors (electrons)

AED, J. Chem. Phys. 145, 164109 (2016).

Page 79: Quantum chemistry without wave functions › ... › reu › REU_deprince_6_18_19.pdfQuantum chemistry without wave functions (and I don't mean density functional theory) Eugene DePrince

(a)

Be-

BC+N2+O3+F4+Ne5+

0 1 2 3 4 5 6 7

(b)

1 20 40 60 80 100 120 140 160constraint number

Be-

BC+N2+O3+F4+Ne5+

pure-state N-representability conditions

- enforcing PQG (ensemble state) constraints

- many constraints severely violated

- clearly the ground-state 2-RDM does not represent a pure state

Hartree-Fock guess for 1-, 2-RDM

- 5 electrons in 10 spin orbitals [ v2RDM-CASSCF (5e,5o) / cc-pVQZ ] … 160 constraints

GPC errors (electrons)

AED, J. Chem. Phys. 145, 164109 (2016).

Page 80: Quantum chemistry without wave functions › ... › reu › REU_deprince_6_18_19.pdfQuantum chemistry without wave functions (and I don't mean density functional theory) Eugene DePrince

(a)

Be-

BC+N2+O3+F4+Ne5+

0 1 2 3 4 5 6 7

(b)

1 20 40 60 80 100 120 140 160constraint number

Be-

BC+N2+O3+F4+Ne5+

- enforcing PQG (ensemble state) constraints

- many constraints severely violated

- seeding computation with a different guess yields totally different densities … with exactly the same energy

Hartree-Fock guess for 1-, 2-RDM

random guess for 1-, 2-RDM

pure-state N-representability conditions

- clearly the ground-state 2-RDM does not represent a pure state

- 5 electrons in 10 spin orbitals [ v2RDM-CASSCF (5e,5o) / cc-pVQZ ] … 160 constraints

GPC errors (electrons)

AED, J. Chem. Phys. 145, 164109 (2016).

Page 81: Quantum chemistry without wave functions › ... › reu › REU_deprince_6_18_19.pdfQuantum chemistry without wave functions (and I don't mean density functional theory) Eugene DePrince

(a)

Be-

BC+N2+O3+F4+Ne5+

0 1 2 3 4 5 6 7

(b)

1 20 40 60 80 100 120 140 160constraint number

Be-

BC+N2+O3+F4+Ne5+

- enforcing PQG (ensemble state) constraints

- many constraints severely violated

- seeding computation with a different guess yields totally different densities … with exactly the same energy

Hartree-Fock guess for 1-, 2-RDM

random guess for 1-, 2-RDM

pure-state N-representability conditions

- clearly the ground-state 2-RDM does not represent a pure state

- 5 electrons in 10 spin orbitals [ v2RDM-CASSCF (5e,5o) / cc-pVQZ ] … 160 constraints

GPC errors (electrons)

AED, J. Chem. Phys. 145, 164109 (2016).

1D(x1|x0

1) = N

Zdx2dx3...dxN

X

k

wk k(x1, x2, x3, ..., xN ) ⇤k(x

01, x2, x3, ..., xN ).

Page 82: Quantum chemistry without wave functions › ... › reu › REU_deprince_6_18_19.pdfQuantum chemistry without wave functions (and I don't mean density functional theory) Eugene DePrince

pure-state N-representability conditions

- 2P to 4P excitations from state-averaged (SA) CASSCF averaging 6 states

excitation energies (eV)

Be-

BC+

N2+

O3+

F4+

Ne5+

1.352.994.696.418.139.85

11.65

SA-CASSCF

maximum error

- 5 electrons in 10 spin orbitals [ v2RDM-CASSCF (5e,5o) / cc-pVQZ ] … 160 constraints

AED, J. Chem. Phys. 145, 164109 (2016).

Page 83: Quantum chemistry without wave functions › ... › reu › REU_deprince_6_18_19.pdfQuantum chemistry without wave functions (and I don't mean density functional theory) Eugene DePrince

pure-state N-representability conditions

- 2P to 4P excitations from state-averaged (SA) CASSCF averaging 6 states

excitation energies (eV)

Be-

BC+

N2+

O3+

F4+

Ne5+

1.413.114.896.748.56

10.4512.39

0.82

1.352.994.696.418.139.85

11.65

SA-CASSCF

ERPAensemble

maximum error

- 5 electrons in 10 spin orbitals [ v2RDM-CASSCF (5e,5o) / cc-pVQZ ] … 160 constraints

Hartree-Fock guess

AED, J. Chem. Phys. 145, 164109 (2016).

Page 84: Quantum chemistry without wave functions › ... › reu › REU_deprince_6_18_19.pdfQuantum chemistry without wave functions (and I don't mean density functional theory) Eugene DePrince

pure-state N-representability conditions

- 2P to 4P excitations from state-averaged (SA) CASSCF averaging 6 states

excitation energies (eV)

Be-

BC+

N2+

O3+

F4+

Ne5+

1.413.114.896.748.56

10.4512.39

0.82

1.623.415.237.058.87

10.7112.54

0.98

1.352.994.696.418.139.85

11.65

SA-CASSCF

ERPAensemble

maximum error

- 5 electrons in 10 spin orbitals [ v2RDM-CASSCF (5e,5o) / cc-pVQZ ] … 160 constraints

Hartree-Fock guessrandom guess

AED, J. Chem. Phys. 145, 164109 (2016).

Page 85: Quantum chemistry without wave functions › ... › reu › REU_deprince_6_18_19.pdfQuantum chemistry without wave functions (and I don't mean density functional theory) Eugene DePrince

pure-state N-representability conditions

- 2P to 4P excitations from state-averaged (SA) CASSCF averaging 6 states

excitation energies (eV)

Be-

BC+

N2+

O3+

F4+

Ne5+

1.413.114.896.748.56

10.4512.39

0.82

1.623.415.237.058.87

10.7112.54

0.98

1.352.994.696.418.139.85

11.65

SA-CASSCF

ERPAensemble

maximum error

- 5 electrons in 10 spin orbitals [ v2RDM-CASSCF (5e,5o) / cc-pVQZ ] … 160 constraints

Hartree-Fock guessrandom guess

all hope is lost!

AED, J. Chem. Phys. 145, 164109 (2016).

Page 86: Quantum chemistry without wave functions › ... › reu › REU_deprince_6_18_19.pdfQuantum chemistry without wave functions (and I don't mean density functional theory) Eugene DePrince

pure-state N-representability conditions- 5 electrons in 10 spin orbitals [ v2RDM-CASSCF (5e,5o) / cc-pVQZ ] … 160 constraints

[-3,2,2,2,2,2,2,-3,-3,-3]<=5,

[3,3,3,-2,-2,-2,-2,-2,-2,3]<=5,

[3,3,5,-3,-1,-3,-1,1,-5,1]<=7,[3,3,5,1,-5,-3,-1,-3,-1,1]<=7,[-1,1,3,5,-1,1,3,-5,-3,-3]<=7,[3,3,5,-3,-1,1,-5,-3,-1,1]<=7,[-1,5,-1,1,3,1,3,-5,-3,-3]<=7,[-1,5,-1,1,1,3,3,-3,-5,-3]<=7,[-1,1,3,1,3,5,-1,-5,-3,-3]<=7,[3,5,3,1,-5,-3,-3,-1,-1,1]<=7,[-1,1,1,3,3,5,-1,-3,-5,-3]<=7,[3,5,3,-3,-3,-1,-1,1,-5,1]<=7,

[1,3,1,5,-1,5,-1,-5,-5,-3]<=9,[1,5,-1,5,-1,3,1,-5,-5,-3]<=9,[3,5,-1,5,-3,1,1,-5,-5,-1]<=9,[3,5,1,5,-5,1,-1,-5,-3,-1]<=9,[1,5,-1,3,1,5,-1,-5,-5,-3]<=9,[3,5,5,1,-5,-1,-3,1,-5,-1]<=9,[3,5,5,1,-5,1,-5,-1,-3,-1]<=9,[3,5,1,5,-5,-1,1,-3,-5,-1]<=9,[1,3,5,-1,1,5,-5,-1,-3,-5]<=9,[1,5,3,-1,1,5,-5,-1,-5,-3]<=9,[1,3,5,1,-1,5,-5,-1,-5,-3]<=9,[3,5,-1,1,1,5,-3,-5,-5,-1]<=9,[3,5,1,1,-1,5,-5,-5,-3,-1]<=9,[3,5,5,-1,-3,1,-5,1,-5,-1]<=9,[1,5,5,-1,-1,3,-5,1,-5,-3]<=9,[5,3,1,5,-5,-1,1,-5,-3,-1]<=9,[1,5,5,3,-5,-1,-1,1,-5,-3]<=9,[1,3,5,5,-5,1,-1,-1,-5,-3]<=9,[3,5,1,-1,1,5,-5,-3,-5,-1]<=9,[1,5,3,5,-5,-1,1,-1,-5,-3]<=9,[5,3,5,-3,-1,1,-5,1,-5,-1]<=9,[1,5,-1,5,-1,1,3,-5,-3,-5]<=9,[5,3,-1,1,1,5,-5,-3,-5,-1]<=9,[1,5,3,5,-5,-1,-1,1,-3,-5]<=9,[1,3,5,5,-5,-1,1,-1,-3,-5]<=9,[5,3,1,-1,1,5,-5,-5,-3,-1]<=9,[5,1,3,5,-5,1,-3,-1,-5,-1]<=9,[1,5,1,3,-1,5,-5,-3,-1,-5]<=9,[5,1,3,5,-5,1,-1,-5,-3,-1]<=9,[1,3,5,1,-1,5,-5,-3,-1,-5]<=9,[1,5,3,5,-5,1,-3,-1,-1,-5]<=9,[5,1,1,3,-1,5,-5,-3,-5,-1]<=9,[5,1,3,1,-1,5,-5,-5,-3,-1]<=9,[1,3,5,5,-5,1,-1,-3,-1,-5]<=9,

[5,3,5,1,-5,-3,-1,1,-5,-1]<=9,[1,5,-1,1,3,5,-1,-5,-3,-5]<=9,[1,1,3,5,-1,5,-1,-5,-3,-5]<=9,[5,3,5,1,-5,1,-5,-3,-1,-1]<=9,[1,1,3,5,-1,5,-3,-1,-5,-5]<=9,[5,5,1,3,-5,1,-5,-3,-1,-1]<=9,

[5,7,9,1,-9,-7,-5,-3,-1,3]<=13,[5,7,9,-7,-5,-3,-1,1,-9,3]<=13,

[-3,9,-1,1,3,5,7,-9,-7,-5]<=13,[-3,1,3,5,7,9,-1,-9,-7,-5]<=13,

[4,9,-1,9,-6,-1,4,-11,-6,-1]<=15,[-1,4,9,-1,4,9,-6,-1,-11,-6]<=15,[9,9,4,-6,-6,-1,-1,4,-11,-1]<=15,[-1,4,9,9,-6,-1,-1,4,-6,-11]<=15,[9,-1,4,4,-1,9,-11,-6,-6,-1]<=15,[-1,4,9,9,-6,-1,4,-1,-11,-6]<=15,[-1,9,4,9,-6,-1,-1,4,-11,-6]<=15,[9,4,-1,-1,4,9,-11,-6,-6,-1]<=15,[9,9,4,4,-11,-6,-6,-1,-1,-1]<=15,[-1,4,4,9,-1,9,-6,-1,-11,-6]<=15,[4,9,-1,4,-1,9,-11,-6,-6,-1]<=15,[4,9,-1,-1,4,9,-6,-11,-6,-1]<=15,[-1,9,-1,4,4,9,-1,-11,-6,-6]<=15,[-1,4,4,9,-1,9,-1,-11,-6,-6]<=15,[-1,9,-1,9,-1,4,4,-11,-6,-6]<=15,

[1,11,-4,1,1,6,6,-4,-9,-9]<=15,[1,6,11,-4,1,6,-9,1,-9,-4]<=15,[6,11,1,6,-9,-4,1,-9,-4,1]<=15,[11,6,-4,1,1,6,-9,-9,-4,1]<=15,[1,6,6,11,-9,1,-4,-4,1,-9]<=15,[6,11,1,-4,1,6,-9,-9,-4,1]<=15,[6,11,-4,1,1,6,-9,-4,-9,1]<=15,[1,6,6,11,-9,-4,1,1,-4,-9]<=15,[6,11,1,6,-9,1,-9,-4,-4,1]<=15,[1,6,6,11,-9,1,-4,1,-9,-4]<=15,[1,6,11,6,-9,-4,1,1,-9,-4]<=15,[6,6,11,-4,-4,1,-9,1,-9,1]<=15,[1,1,1,6,6,11,-4,-4,-9,-9]<=15,[6,6,11,1,-9,1,-9,-4,-4,1]<=15,[6,6,11,1,-9,-4,-4,1,-9,1]<=15,

[-3,7,7,7,-3,7,-3,-3,-3,-13]<=15,[7,-3,7,7,-3,7,-3,-3,-13,-3]<=15,[7,7,-3,-3,7,7,-3,-3,-13,-3]<=15,[7,7,7,-3,-3,7,-13,-3,-3,-3]<=15,

[7,7,-3,7,-3,-3,7,-3,-13,-3]<=15,[7,7,-3,7,-3,7,-3,-13,-3,-3]<=15,[7,7,7,7,-13,-3,-3,-3,-3,-3]<=15,[7,7,7,-3,-3,-3,-3,7,-13,-3]<=15,

[3,13,3,3,-7,3,-7,-7,3,-7]<=15,[13,3,3,3,-7,3,-7,-7,-7,3]<=15,[3,13,3,3,-7,-7,3,3,-7,-7]<=15,[3,13,3,-7,3,3,-7,3,-7,-7]<=15,[3,3,3,3,3,13,-7,-7,-7,-7]<=15,[3,3,13,3,-7,3,-7,3,-7,-7]<=15,[3,13,-7,3,3,3,3,-7,-7,-7]<=15,[3,3,3,13,-7,3,3,-7,-7,-7]<=15,

[-2,8,3,8,3,13,-2,-12,-12,-7]<=20,[-2,13,-2,8,3,8,3,-12,-12,-7]<=20,[-2,8,3,13,-2,8,3,-12,-12,-7]<=20,[-2,13,-2,3,8,3,8,-7,-12,-12]<=20,[-2,3,8,8,3,13,-7,-2,-12,-12]<=20,[-2,8,3,3,8,13,-2,-12,-7,-12]<=20,[-2,8,3,13,-2,3,8,-12,-7,-12]<=20,[-2,3,8,3,8,13,-2,-7,-12,-12]<=20,[-2,3,8,13,-2,3,8,-7,-12,-12]<=20,[-2,3,8,13,-2,8,3,-12,-7,-12]<=20,[-2,13,-2,8,3,3,8,-12,-7,-12]<=20,[-2,13,-2,3,8,8,3,-12,-7,-12]<=20,[-2,8,8,13,-7,-2,3,3,-12,-12]<=20,[-2,3,8,8,3,13,-2,-12,-7,-12]<=20,[8,8,-2,3,3,13,-12,-12,-7,-2]<=20,

[12,7,12,-8,-3,-3,-8,2,-13,2]<=20,[12,7,12,-3,-8,-8,-3,2,-13,2]<=20,[12,12,7,-8,-3,-8,-3,2,-13,2]<=20,[12,12,2,7,-13,-3,-8,-8,-3,2]<=20,[12,7,12,2,-13,-8,-3,-3,-8,2]<=20,[12,7,12,-8,-3,2,-13,-3,-8,2]<=20,[12,12,7,2,-13,-8,-3,-8,-3,2]<=20,[12,12,7,-8,-3,2,-13,-8,-3,2]<=20,[12,7,12,-3,-8,2,-13,-8,-3,2]<=20,[12,12,-3,-3,2,7,-13,-8,-8,2]<=20,[12,7,12,2,-13,-3,-8,-8,-3,2]<=20,[7,12,12,-3,-8,2,-13,-3,-8,2]<=20,[7,12,12,2,-13,-3,-8,-3,-8,2]<=20,[7,12,12,-3,-8,-3,-8,2,-13,2]<=20,[2,7,12,12,-13,-3,-3,2,-8,-8]<=20,

[3,8,13,18,-17,-7,-2,3,-12,-7]<=25,[13,18,-7,-2,3,8,-17,-12,-7,3]<=25,[13,18,8,-12,-7,-7,-2,3,-17,3]<=25,

[13,18,8,3,-17,-12,-7,-7,-2,3]<=25,[13,18,3,8,-17,-7,-12,-7,-2,3]<=25,[7,12,-3,2,7,17,-18,-13,-8,-3]<=25,[-3,7,12,17,-8,-3,2,7,-18,-13]<=25,[-3,2,7,12,7,17,-8,-3,-18,-13]<=25,[-3,17,-3,2,7,7,12,-8,-18,-13]<=25,[-3,2,7,7,12,17,-3,-8,-18,-13]<=25,

[17,17,7,-3,-13,-13,-13,-3,-3,7]<=25,[17,17,7,-13,-13,-3,-3,-3,-13,7]<=25,

[-7,13,3,3,3,13,13,-7,-17,-17]<=25,[-7,3,3,13,13,13,3,-7,-17,-17]<=25,

[-3,27,-8,2,7,12,17,-23,-18,-13]<=35,[-3,2,7,12,17,27,-8,-23,-18,-13]<=35,

[13,18,23,-17,-12,-7,-2,8,-27,3]<=35,[13,18,23,8,-27,-17,-12,-7,-2,3]<=35,

[-7,3,13,13,23,33,-7,-27,-27,-17]<=45,[-7,33,-7,3,13,13,23,-27,-27,-17]<=45,

[17,27,27,7,-33,-23,-13,-13,-3,7]<=45,[17,27,27,-23,-13,-13,-3,7,-33,7]<=45

];

all hope is NOT lost!

- Altunbulak & Klyachko tabulated these constraints M. Altunbulak and A. Klyachko, Commun. Math. Phys. 282, 287 (2008).

- can recast generalized Pauli constraints as linear equality constraints within v2RDM SDP optimization

- resulting optimization requires *far* more iterations to converge … BUT … the 1-RDM is then pure-state N-representable

PQG has 7389 constraints

Page 87: Quantum chemistry without wave functions › ... › reu › REU_deprince_6_18_19.pdfQuantum chemistry without wave functions (and I don't mean density functional theory) Eugene DePrince

pure-state N-representability conditions

- 2P to 4P excitations from state-averaged (SA) CASSCF averaging 6 states

excitation energies (eV)

Be-

BC+

N2+

O3+

F4+

Ne5+

1.413.114.896.748.56

10.4512.39

0.82

1.623.415.237.058.87

10.7112.54

0.98

1.383.044.746.458.189.90

11.62

0.06

1.352.994.696.418.139.85

11.65

SA-CASSCF

ERPA

ensemble pure

maximum error

- 5 electrons in 10 spin orbitals [ v2RDM-CASSCF (5e,5o) / cc-pVQZ ] … 160 constraints

Hartree-Fock guessrandom guess

AED, J. Chem. Phys. 145, 164109 (2016).

Page 88: Quantum chemistry without wave functions › ... › reu › REU_deprince_6_18_19.pdfQuantum chemistry without wave functions (and I don't mean density functional theory) Eugene DePrince

pure-state N-representability conditions

- 3P to 5S excitations from state-averaged (SA) CASSCF averaging 4 states

excitation energies (eV)

Be2-

B-

CN+

O2+

F3+

Ne4+

0.531.733.154.776.518.33

10.24

0.93

0.491.632.964.466.057.679.30

SA-CASSCF

ERPAensemble

maximum error

- 6 electrons in 10 spin orbitals [ v2RDM-CASSCF (6e,5o) / cc-pVQZ ] … 124 constraints

Hartree-Fock guess

AED, J. Chem. Phys. 145, 164109 (2016).

Page 89: Quantum chemistry without wave functions › ... › reu › REU_deprince_6_18_19.pdfQuantum chemistry without wave functions (and I don't mean density functional theory) Eugene DePrince

pure-state N-representability conditions

- 3P to 5S excitations from state-averaged (SA) CASSCF averaging 4 states

excitation energies (eV)

Be2-

B-

CN+

O2+

F3+

Ne4+

0.531.733.154.776.518.33

10.24

0.93

0.812.223.805.497.249.04

10.86

1.56

0.491.632.964.466.057.679.30

SA-CASSCF

ERPAensemble

maximum error

- 6 electrons in 10 spin orbitals [ v2RDM-CASSCF (6e,5o) / cc-pVQZ ] … 124 constraints

Hartree-Fock guessrandom guess

AED, J. Chem. Phys. 145, 164109 (2016).

Page 90: Quantum chemistry without wave functions › ... › reu › REU_deprince_6_18_19.pdfQuantum chemistry without wave functions (and I don't mean density functional theory) Eugene DePrince

pure-state N-representability conditions

- 3P to 5S excitations from state-averaged (SA) CASSCF averaging 4 states

excitation energies (eV)

Be2-

B-

CN+

O2+

F3+

Ne4+

0.531.733.154.776.518.33

10.24

0.93

0.812.223.805.497.249.04

10.86

1.56

0.491.632.964.466.057.679.30

SA-CASSCF

maximum error

- 6 electrons in 10 spin orbitals [ v2RDM-CASSCF (6e,5o) / cc-pVQZ ] … 124 constraints

Hartree-Fock guessrandom guess

ERPA

pure

0.491.632.964.466.057.679.30

0.00

ensemble

AED, J. Chem. Phys. 145, 164109 (2016).

Page 91: Quantum chemistry without wave functions › ... › reu › REU_deprince_6_18_19.pdfQuantum chemistry without wave functions (and I don't mean density functional theory) Eugene DePrince

pure-state N-representability conditions

- 3P to 5S excitations from state-averaged (SA) CASSCF averaging 4 states

excitation energies (eV)

Be2-

B-

CN+

O2+

F3+

Ne4+

0.531.733.154.776.518.33

10.24

0.93

0.812.223.805.497.249.04

10.86

1.56

0.491.632.964.466.057.679.30

SA-CASSCF

maximum error

- 6 electrons in 10 spin orbitals [ v2RDM-CASSCF (6e,5o) / cc-pVQZ ] … 124 constraints

Hartree-Fock guessrandom guess

ERPA

pure

0.491.632.964.466.057.679.30

0.00

ensemble

AED, J. Chem. Phys. 145, 164109 (2016).

Page 92: Quantum chemistry without wave functions › ... › reu › REU_deprince_6_18_19.pdfQuantum chemistry without wave functions (and I don't mean density functional theory) Eugene DePrince

Current/future directions

Summarysophisticated electronic structure methods are necessary to capture strong correlation effects, but conventional approaches become impractical for large systems

v2RDM-driven CASSCF can treat systems with active spaces as large as (50e,50o), and analytic energy gradients are readily available.

however, treating excited states can be challenging

-

-

-

-

-

standard ERPA often is inadequate; inclusion of higher excitations into excited-state wave functions is necessary

including spin-orbit coupling in two-component v2RDM-CASSCF for relativistic effects

- strategies for dynamical correlation effects (e.g. ERPA, some DFT-inspired approaches)

Page 93: Quantum chemistry without wave functions › ... › reu › REU_deprince_6_18_19.pdfQuantum chemistry without wave functions (and I don't mean density functional theory) Eugene DePrince

Acknowledgements

Graduate StudentsElvis MaradzikeBrandon CooperSina MostafanejadNam Vu

Undergraduate StudentsDaniel Gibney

PostdocsRun “Rain” Li

Former Group MembersJacob Fosso-TandeWayne MullinaxDaniel NascimentoJess HaneyLauren Koulias

Collaborators:Jay Foley (William Paterson)Greg Gidofalvi (Gonzaga)Evgeny Epifanovsky (Q-Chem, Inc.)

NSF (CHE-1554354, ACI-1663636)ARO STTR Phase I/II with Q-Chem (69478CHST2)DOE EFRC (DE-SC0016568)

$$$

@DePrinceFSU

Page 94: Quantum chemistry without wave functions › ... › reu › REU_deprince_6_18_19.pdfQuantum chemistry without wave functions (and I don't mean density functional theory) Eugene DePrince

Questions?