42
University of Southern Denmark Combining strengths of DFT and wave functions: The short-range DFT-DMRG method Hedegård, Erik D. Publication date: 2014 Document version: Accepted manuscript Citation for pulished version (APA): Hedegård, E. D. (2014). Combining strengths of DFT and wave functions: The short-range DFT-DMRG method. Go to publication entry in University of Southern Denmark's Research Portal Terms of use This work is brought to you by the University of Southern Denmark. Unless otherwise specified it has been shared according to the terms for self-archiving. If no other license is stated, these terms apply: • You may download this work for personal use only. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying this open access version If you believe that this document breaches copyright please contact us providing details and we will investigate your claim. Please direct all enquiries to [email protected] Download date: 25. Apr. 2022

Combining strengths of DFT and wave functions: The short

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Combining strengths of DFT and wave functions: The short

University of Southern Denmark

Combining strengths of DFT and wave functions: The short-range DFT-DMRG method

Hedegård, Erik D.

Publication date:2014

Document version:Accepted manuscript

Citation for pulished version (APA):Hedegård, E. D. (2014). Combining strengths of DFT and wave functions: The short-range DFT-DMRG method.

Go to publication entry in University of Southern Denmark's Research Portal

Terms of useThis work is brought to you by the University of Southern Denmark.Unless otherwise specified it has been shared according to the terms for self-archiving.If no other license is stated, these terms apply:

• You may download this work for personal use only. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying this open access versionIf you believe that this document breaches copyright please contact us providing details and we will investigate your claim.Please direct all enquiries to [email protected]

Download date: 25. Apr. 2022

Page 2: Combining strengths of DFT and wave functions: The short

Combining strengths of DFT and wave functions:The short-range DFT-DMRG method

Erik Donovan Hedegard

Page 3: Combining strengths of DFT and wave functions: The short

The purpose of quantum chemistry?

We want quantum chemistry to be predictive

We want to provide answers, also to things that are not known(!)

1 Example: Biological systems2 Example: Catalysis

“Prediction is very difficult, especially if it’s about the future.”-Niels Bohr

Erik Donovan Hedegard August 2014 Franken August 18, 2014 2 / 18

Page 4: Combining strengths of DFT and wave functions: The short

The purpose of quantum chemistry?

We want quantum chemistry to be predictive

We want to provide answers, also to things that are not known(!)

1 Example: Biological systems2 Example: Catalysis

“Prediction is very difficult, especially if it’s about the future.”-Niels Bohr

Erik Donovan Hedegard August 2014 Franken August 18, 2014 2 / 18

Page 5: Combining strengths of DFT and wave functions: The short

The purpose of quantum chemistry?

We want quantum chemistry to be predictive

We want to provide answers, also to things that are not known(!)

1 Example: Biological systems

2 Example: Catalysis

“Prediction is very difficult, especially if it’s about the future.”-Niels Bohr

Erik Donovan Hedegard August 2014 Franken August 18, 2014 2 / 18

Page 6: Combining strengths of DFT and wave functions: The short

The purpose of quantum chemistry?

We want quantum chemistry to be predictive

We want to provide answers, also to things that are not known(!)

1 Example: Biological systems2 Example: Catalysis

“Prediction is very difficult, especially if it’s about the future.”-Niels Bohr

Erik Donovan Hedegard August 2014 Franken August 18, 2014 2 / 18

Page 7: Combining strengths of DFT and wave functions: The short

The purpose of quantum chemistry?

We want quantum chemistry to be predictive

We want to provide answers, also to things that are not known(!)

1 Example: Biological systems2 Example: Catalysis

“Prediction is very difficult, especially if it’s about the future.”-Niels Bohr

Erik Donovan Hedegard August 2014 Franken August 18, 2014 2 / 18

Page 8: Combining strengths of DFT and wave functions: The short

Electron correlation in long-range andshort-range domains

WFT does a good job in the long-range domain

DFT is really accurate in the short-range domain

Right-hand figure: Emmanuel Fromager “Habilitation talk” (Universite de Strasbourg)

Erik Donovan Hedegard August 2014 Franken August 18, 2014 3 / 18

Page 9: Combining strengths of DFT and wave functions: The short

Electron correlation in long-range andshort-range domains

WFT does a good job in the long-range domain

DFT is really accurate in the short-range domain

Right-hand figure: Emmanuel Fromager “Habilitation talk” (Universite de Strasbourg)

Erik Donovan Hedegard August 2014 Franken August 18, 2014 3 / 18

Page 10: Combining strengths of DFT and wave functions: The short

Electron correlation in long-range andshort-range domains

WFT does a good job in the long-range domain

DFT is really accurate in the short-range domain

Right-hand figure: Emmanuel Fromager “Habilitation talk” (Universite de Strasbourg)

Erik Donovan Hedegard August 2014 Franken August 18, 2014 3 / 18

Page 11: Combining strengths of DFT and wave functions: The short

Can we improve WFT in the short-range domain?

Of course, this is possible but...

..large CI or CC expansions are really expensive computationally...

Erik Donovan Hedegard August 2014 Franken August 18, 2014 4 / 18

Page 12: Combining strengths of DFT and wave functions: The short

Can we improve WFT in the short-range domain?

Of course, this is possible but...

..large CI or CC expansions are really expensive computationally...

Erik Donovan Hedegard August 2014 Franken August 18, 2014 4 / 18

Page 13: Combining strengths of DFT and wave functions: The short

Can we improve WFT in the short-range domain?

Of course, this is possible but...

..large CI or CC expansions are really expensive computationally...

Erik Donovan Hedegard August 2014 Franken August 18, 2014 4 / 18

Page 14: Combining strengths of DFT and wave functions: The short

Let WFT and DFT do what they do best!A. Savin, H. Flad Int. J. Quant. Chem. (1995), 56, 327

Range-separated electron repulsion operator

gee(1, 2) = g sr,µee (1, 2) + g lr,µ

ee (1, 2)

Erik Donovan Hedegard August 2014 Franken August 18, 2014 5 / 18

Page 15: Combining strengths of DFT and wave functions: The short

Let WFT and DFT do what they do best!A. Savin, H. Flad Int. J. Quant. Chem. (1995), 56, 327

Range-separated electron repulsion operator

gee(1, 2) = g sr,µee (1, 2) + g lr,µ

ee (1, 2)

Erik Donovan Hedegard August 2014 Franken August 18, 2014 5 / 18

Page 16: Combining strengths of DFT and wave functions: The short

Let WFT and DFT do what they do best!A. Savin, H. Flad Int. J. Quant. Chem. (1995), 56, 327

Range-separated electron repulsion operator

gee(1, 2) = g sr,µee (1, 2) + g lr,µ

ee (1, 2)

Erik Donovan Hedegard August 2014 Franken August 18, 2014 5 / 18

Page 17: Combining strengths of DFT and wave functions: The short

Let WFT and DFT do what they do best!A. Savin, H. Flad Int. J. Quant. Chem. (1995), 56, 327

Range-separated electron repulsion operator

gee(1, 2) = g sr,µee (1, 2) + g lr,µ

ee (1, 2)

Erik Donovan Hedegard August 2014 Franken August 18, 2014 5 / 18

Page 18: Combining strengths of DFT and wave functions: The short

Range-separation in practice: Recent results

Electronic excitations (valence) for a benchmark set of molecules

M. Hubert, E. D. Hedegard, H. J. Aa. Jensen (To be submitted)

M. Schreiber et al. J. Chem. Phys. (2008), 128, 134110

Erik Donovan Hedegard August 2014 Franken August 18, 2014 6 / 18

Page 19: Combining strengths of DFT and wave functions: The short

Range-separation in practice: Recent results

Electronic excitations (valence) for a benchmark set of molecules

M. Hubert, E. D. Hedegard, H. J. Aa. Jensen (To be submitted)

M. Schreiber et al. J. Chem. Phys. (2008), 128, 134110

Erik Donovan Hedegard August 2014 Franken August 18, 2014 6 / 18

Page 20: Combining strengths of DFT and wave functions: The short

MC-srDFT performance I

All results in eV

MC-srPBE (def-TZVP)results obtained from linearresponse (LR) formalsim

CASSCF more than 1 eVoff(!)

MC-srPBE comparable toCC2 in accuracy

WFT methods from: M. Schreiber et al. J. Chem. Phys. (2008), 128, 134110

MC-srDFT results: M. Hubert, E. D. Hedegard, H. J. Aa. Jensen (To be submitted)

LR MC-srDFT: E. Fromager, S. Knecht, H. J. Aa. Jensen J. Chem. Phys. (2013), 138, 084101

Erik Donovan Hedegard August 2014 Franken August 18, 2014 7 / 18

Page 21: Combining strengths of DFT and wave functions: The short

MC-srDFT performance II

Table: Excitation energies (eV) calc. with def-TZVP

Method CASSCF CC2 CCSD CC3 B3LYP MC-srPBE

Mean -0.69 -0.26 -0.48 -0.16 0.10 0.10

MAD 1.03 0.32 0.50 0.29 0.37 0.32

Reference: SA-CASPT2 (def-TZVP basis set) from M. Schreiber et al. J. Chem. Phys. (2008), 128, 134110

B3LYP: M. R. Silva-Junior et al. J. Chem. Phys. (2008), 129, 104103

MC-srPBE: M. Hubert, E. D. Hedegard, H. J. Aa. Jensen (To be submitted)

DFT is a good alternative but the benchmark was done under idealconditions

⇒ No Charge Transfer (CT) excitations

⇒ No double excitations (cannot be described by standard DFT)

Erik Donovan Hedegard August 2014 Franken August 18, 2014 8 / 18

Page 22: Combining strengths of DFT and wave functions: The short

MC-srDFT performance II

Table: Excitation energies (eV) calc. with def-TZVP

Method CASSCF CC2 CCSD CC3 B3LYP MC-srPBE

Mean -0.69 -0.26 -0.48 -0.16 0.10 0.10

MAD 1.03 0.32 0.50 0.29 0.37 0.32

Reference: SA-CASPT2 (def-TZVP basis set) from M. Schreiber et al. J. Chem. Phys. (2008), 128, 134110

B3LYP: M. R. Silva-Junior et al. J. Chem. Phys. (2008), 129, 104103

MC-srPBE: M. Hubert, E. D. Hedegard, H. J. Aa. Jensen (To be submitted)

DFT is a good alternative but the benchmark was done under idealconditions

⇒ No Charge Transfer (CT) excitations

⇒ No double excitations (cannot be described by standard DFT)

Erik Donovan Hedegard August 2014 Franken August 18, 2014 8 / 18

Page 23: Combining strengths of DFT and wave functions: The short

MC-srDFT performance II

Table: Excitation energies (eV) calc. with def-TZVP

Method CASSCF CC2 CCSD CC3 B3LYP MC-srPBE

Mean -0.69 -0.26 -0.48 -0.16 0.10 0.10

MAD 1.03 0.32 0.50 0.29 0.37 0.32

Reference: SA-CASPT2 (def-TZVP basis set) from M. Schreiber et al. J. Chem. Phys. (2008), 128, 134110

B3LYP: M. R. Silva-Junior et al. J. Chem. Phys. (2008), 129, 104103

MC-srPBE: M. Hubert, E. D. Hedegard, H. J. Aa. Jensen (To be submitted)

DFT is a good alternative but the benchmark was done under idealconditions

⇒ No Charge Transfer (CT) excitations

⇒ No double excitations (cannot be described by standard DFT)

Erik Donovan Hedegard August 2014 Franken August 18, 2014 8 / 18

Page 24: Combining strengths of DFT and wave functions: The short

MC-srDFT performance II

Table: Excitation energies (eV) calc. with def-TZVP

Method CASSCF CC2 CCSD CC3 B3LYP MC-srPBE

Mean -0.69 -0.26 -0.48 -0.16 0.10 0.10

MAD 1.03 0.32 0.50 0.29 0.37 0.32

Reference: SA-CASPT2 (def-TZVP basis set) from M. Schreiber et al. J. Chem. Phys. (2008), 128, 134110

B3LYP: M. R. Silva-Junior et al. J. Chem. Phys. (2008), 129, 104103

MC-srPBE: M. Hubert, E. D. Hedegard, H. J. Aa. Jensen (To be submitted)

DFT is a good alternative but the benchmark was done under idealconditions

⇒ No Charge Transfer (CT) excitations

⇒ No double excitations (cannot be described by standard DFT)Erik Donovan Hedegard August 2014 Franken August 18, 2014 8 / 18

Page 25: Combining strengths of DFT and wave functions: The short

Lets have a look at the double excitations...

For CT see: E. D. Hedegard, S. Knecht, E. Fromager, H. J. Aa. Jensen J. Chem. Phys. (2013), 139, 184308

The retinal chromophore

Two low-lying excitations:

1 The 1Bu state (bright)

2 The 1Ag (dark)

1Ag has origin in a doubleexcitation

Channel-Rhodopsin

Erik Donovan Hedegard August 2014 Franken August 18, 2014 9 / 18

Page 26: Combining strengths of DFT and wave functions: The short

Lets have a look at the double excitations...

For CT see: E. D. Hedegard, S. Knecht, E. Fromager, H. J. Aa. Jensen J. Chem. Phys. (2013), 139, 184308

The retinal chromophore

Two low-lying excitations:

1 The 1Bu state (bright)

2 The 1Ag (dark)

1Ag has origin in a doubleexcitation

Channel-Rhodopsin

Erik Donovan Hedegard August 2014 Franken August 18, 2014 9 / 18

Page 27: Combining strengths of DFT and wave functions: The short

Lets have a look at the double excitations...

For CT see: E. D. Hedegard, S. Knecht, E. Fromager, H. J. Aa. Jensen J. Chem. Phys. (2013), 139, 184308

The retinal chromophore

Two low-lying excitations:

1 The 1Bu state (bright)

2 The 1Ag (dark)

1Ag has origin in a doubleexcitation

Channel-Rhodopsin

Erik Donovan Hedegard August 2014 Franken August 18, 2014 9 / 18

Page 28: Combining strengths of DFT and wave functions: The short

Lets have a look at the double excitations...

For CT see: E. D. Hedegard, S. Knecht, E. Fromager, H. J. Aa. Jensen J. Chem. Phys. (2013), 139, 184308

The retinal chromophore

Two low-lying excitations:

1 The 1Bu state (bright)

2 The 1Ag (dark)

1Ag has origin in a doubleexcitation

Channel-Rhodopsin

Erik Donovan Hedegard August 2014 Franken August 18, 2014 9 / 18

Page 29: Combining strengths of DFT and wave functions: The short

Results for the retinal chromophore in gas phase

Table: Retinal excitated states in eV (6-31G* basis set).

States CAS(6,6)-srPBE (f ) DDCI2/CAS(12,12) Exp.

S0 → S1 (1Bu) 2.29 (1.597) 2.27 2.00

S0 → S2 (1Ag ) 3.63 (0.522) 3.07 3.22

∆(S2 − S1) 1.34 0.80 1.22

Exp. results: L. H. Andersen et al. J. Am. Chem. Soc. (127), 2005, 12347

I. B. Nielsen, L. Lammich, L. H. Andersen Phys. Rev. Lett. (96), 2006, 018304

DDCI: A. Altun, S. Yokoyama, K. Morokuma J. Phys. Chem. B (112), 2008, 16883

CAS(6,6)-srPBE: E. D. Hedegard et al. J. Chem. Phys. (2013), 139, 184308

E. D. Hedegard, H. J. Aa. Jensen, J. Kongsted Int. J. Quant. Chem. (2014), 114, 1102

Erik Donovan Hedegard August 2014 Franken August 18, 2014 10 / 18

Page 30: Combining strengths of DFT and wave functions: The short

We should not forget the protein

Polarizable Embeddig (eV, 6-31G* basis set).

Environment S0 → S1 S0 → S2

(1Bu) (1Ag )

Gas-phase 2.29 (1.597) 3.63 (0.522)

protein (no pol.) 3.15 (1.983) 3.99 (0.248)

protein (pol.) 2.98 (2.059) 4.01 (0.252)

Exp. 2.70 -

Exp. results: Ritter et al. J. Biol. Chem. (283), 2008, 35033

E. D. Hedegard et al. J. Chem. Phys. (2013), 139, 044101

E. D. Hedegard et al. Int. J. Quant. Chem. (2014), 114, 1102

E. D. Hedegard et al. (To be submited)

Channel-Rhodopsin

Erik Donovan Hedegard August 2014 Franken August 18, 2014 11 / 18

Page 31: Combining strengths of DFT and wave functions: The short

We should not forget the protein

Polarizable Embeddig (eV, 6-31G* basis set).

Environment S0 → S1 S0 → S2

(1Bu) (1Ag )

Gas-phase 2.29 (1.597) 3.63 (0.522)

protein (no pol.) 3.15 (1.983) 3.99 (0.248)

protein (pol.) 2.98 (2.059) 4.01 (0.252)

Exp. 2.70 -

Exp. results: Ritter et al. J. Biol. Chem. (283), 2008, 35033

E. D. Hedegard et al. J. Chem. Phys. (2013), 139, 044101

E. D. Hedegard et al. Int. J. Quant. Chem. (2014), 114, 1102

E. D. Hedegard et al. (To be submited)Channel-Rhodopsin

Erik Donovan Hedegard August 2014 Franken August 18, 2014 11 / 18

Page 32: Combining strengths of DFT and wave functions: The short

DMRG vs. CAS-CI

CAS based WFT methods have many good features, but are currentlylimited to active spaces around 16-18 orbitals.

For DMRG active spaces over 100 orbitals are within reach...

DMRG CAS-CI

|Ψ〉 =∑

n1...nL

ψn1ψn2 · · ·ψnL |n1n2 · · · nL〉 |Ψ〉 = |0〉+∑

i

|i〉

No reference HF reference

Variational Variational

Approximate FCI (m) FCI

Polynomial scaling Exponential scaling

Erik Donovan Hedegard August 2014 Franken August 18, 2014 12 / 18

Page 33: Combining strengths of DFT and wave functions: The short

CAS-CI nomenclature

The CAS-CI energy

ECAS-CI = Einact + Eact

The inactive and active parts

Einact =∑ij

f Cij DC

ij + Ecore inactive:i , j , k, l ...

Eact =∑uv

f Cuv DV

uv +1

2

∑uvxy

guvxy Puvxy active:u, v , x , y ...

Erik Donovan Hedegard August 2014 Franken August 18, 2014 13 / 18

Page 34: Combining strengths of DFT and wave functions: The short

CAS-srDFT

g(i , j)→ g lr (i , j) + g sr (i , j) requires a “reference density”

Einact =∑ij

f C ,lrij DC

ij + E sraux. + Ecore

Eact =∑uv

(f C ,lruv + jC ,sruv + jV ,refuv + v ref ,sr

xc,uv

)DV

uv +1

2

∑uvxy

g lruvxy Puvxy

E sraux. =

∑ij

(j srii DC

ij − jV ,refij DV ,refij − v ref ,sr

xc,ij DV ,refij + v sr

xc,ijDrefij

)J. K. Pedersen, Phd Thesis, University of Southern Denmark (2004)

Erik Donovan Hedegard August 2014 Franken August 18, 2014 14 / 18

Page 35: Combining strengths of DFT and wave functions: The short

CAS-srDFT

g(i , j)→ g lr (i , j) + g sr (i , j) requires a “reference density”

Einact =∑ij

f C ,lrij DC

ij + E sraux. + Ecore

Eact =∑uv

(f C ,lruv + jC ,sruv + jV ,refuv + v ref ,sr

xc,uv

)DV

uv +1

2

∑uvxy

g lruvxy Puvxy

E sraux. =

∑ij

(j srii DC

ij − jV ,refij DV ,refij − v ref ,sr

xc,ij DV ,refij + v sr

xc,ijDrefij

)J. K. Pedersen, Phd Thesis, University of Southern Denmark (2004)

Erik Donovan Hedegard August 2014 Franken August 18, 2014 14 / 18

Page 36: Combining strengths of DFT and wave functions: The short

DMRG-srDFT code structure (in DALTON)

1 Start-up run (if iter == 1) then1.a Run DMRG, Get RDMs1.b Calc start energy

2 Normal run (if iter > 1) then2.a get DV ,ref , fC ,lr and Eaux.

2.b Correct Ecore

E srcore = E sr

aux. + Ecore

3 Run DMRG/Get RDMs w.modified integrals

4 Calc. energy4.a if (conveged); all done4.b if (.not. converged); go to 2

Steps Routine

1: dmrg srdft ctl1.a: dmrg getrdm2: dmrg srdft ctl2.a: call srdft getints

- call GETDVREF (DV ,ref )

- call SRFMAT (fC ,lr , E sraux)

2.b: call srdft getints3: dmrg getrdm4: dmrg srdft ctl

Blue: This workRed: Jesper K. Pedersen (PhD)

Erik Donovan Hedegard August 2014 Franken August 18, 2014 15 / 18

Page 37: Combining strengths of DFT and wave functions: The short

DMRG-srDFT code structure (in DALTON)

1 Start-up run (if iter == 1) then1.a Run DMRG, Get RDMs1.b Calc start energy

2 Normal run (if iter > 1) then2.a get DV ,ref , fC ,lr and Eaux.

2.b Correct Ecore

E srcore = E sr

aux. + Ecore

3 Run DMRG/Get RDMs w.modified integrals

4 Calc. energy4.a if (conveged); all done4.b if (.not. converged); go to 2

Steps Routine

1: dmrg srdft ctl1.a: dmrg getrdm2: dmrg srdft ctl2.a: call srdft getints

- call GETDVREF (DV ,ref )

- call SRFMAT (fC ,lr , E sraux)

2.b: call srdft getints3: dmrg getrdm4: dmrg srdft ctl

Blue: This workRed: Jesper K. Pedersen (PhD)

Erik Donovan Hedegard August 2014 Franken August 18, 2014 15 / 18

Page 38: Combining strengths of DFT and wave functions: The short

Preliminary results I: DMRG with DALTON

FCI DMRG calculations for H2O (Eh, cc-pVDZ).

Method Eq. dist. 3.0 x Eq. dist.

DMRG (m = 512) -76.241748 -75.911922

DMRG (m = 1024) -76.241845 -

DMRG (m = 2048) -76.241859 -75.911942

FCI -76.241860 -75.911946

J. Olsen et al. J. Chem. Phys. (1996), 104, 8007

Erik Donovan Hedegard August 2014 Franken August 18, 2014 16 / 18

Page 39: Combining strengths of DFT and wave functions: The short

Preliminary results II: DMRG-srDFT

H2O (Eh, cc-pVDZ).

Method Energy

DMRG(8,8)-srLDA -75.906996

CAS-CI(8,8)-srLDA -75.906996

DMRG(8,8)-srPBE -76.331452

CAS-CI(8,8)-srPBE -76.331452

FCI -76.241860

J. Olsen et al. J. Chem. Phys. (1996), 104, 8007

Erik Donovan Hedegard August 2014 Franken August 18, 2014 17 / 18

Page 40: Combining strengths of DFT and wave functions: The short

Outlook and acknowledgements

The next steps

Excited states DMRG-srDFT

Couple DMRG to Polarizable Embedding (PE)

Acknowledgements

Thanks to Markus and the Reiher group

Special thanks go to Stefan Knecht and Sebastian Keller

Thanks to the Villum foundation for financial support

Thank you for your attention!

Erik Donovan Hedegard August 2014 Franken August 18, 2014 18 / 18

Page 41: Combining strengths of DFT and wave functions: The short

Outlook and acknowledgements

The next steps

Excited states DMRG-srDFT

Couple DMRG to Polarizable Embedding (PE)

Acknowledgements

Thanks to Markus and the Reiher group

Special thanks go to Stefan Knecht and Sebastian Keller

Thanks to the Villum foundation for financial support

Thank you for your attention!

Erik Donovan Hedegard August 2014 Franken August 18, 2014 18 / 18

Page 42: Combining strengths of DFT and wave functions: The short

Outlook and acknowledgements

The next steps

Excited states DMRG-srDFT

Couple DMRG to Polarizable Embedding (PE)

Acknowledgements

Thanks to Markus and the Reiher group

Special thanks go to Stefan Knecht and Sebastian Keller

Thanks to the Villum foundation for financial support

Thank you for your attention!Erik Donovan Hedegard August 2014 Franken August 18, 2014 18 / 18