46
Pair-instability supernovae From Woosley et al. (2002, 2007) Woosley Lecture 19

Pair-instability supernovae From Woosley et al. (2002, 2007) Woosley Lecture 19

  • View
    220

  • Download
    0

Embed Size (px)

Citation preview

Pair-instability supernovae

From Woosley et al. (2002, 2007)

Woosley Lecture 19

Eje

cted

“m

etal

s”

Eje

cted

“m

etal

s”

Eje

cted

“m

etal

s”

Mass Loss in Very Massive Primordial Stars

• Negligible line-driven winds (mass loss ~ metallicity1/2) (Kudritzki 2002)

• No opacity-driven pulsations (no metals)• Continuum-driven winds likely small contribution• Epsilon mechanism inefficient in metal-free stars

below ~1000 M (Baraffe, Heger & Woosley 2000)from pulsational analysis we estimate upper limits:– 120 solar masses: < 0.2 %– 300 solar masses: < 3.0 %– 500 solar masses: < 5.0 %– 1000 solar masses: < 12.0 %during central hydrogen burning

• Red Super Giant pulsations could lead to significant mass loss during helium burning for stars above ~500 M

8 – 11 M¯: uncertain situation

?

• M < M1 ' 8 M¯: No C ignition

• M > M2 ' 12 M¯: Full nondegenerate burning

• In between: ????

• Degenerate off-centre ignition

• Possibly O-Ne-(Mg?) white dwarfs (after some additional mass loss)

• With sufficient O-Ne core mass: continued burning and core collapse

Pair-instability supernovae

• He burning

• collapse and energy release

• + ! e+ + e-: 1 < 4/3

• Dynamical collapse, bounce, explosive burning (for M < 260 M¯)

• Dynamical collapse directly to black hole (for M > 260 M¯)

Pop. III stars, no mass loss

Possibly observed: SN 2006gy

Smith et al. (2007; ApJ 666, 1116)

Can very massive stars retain their masseven today?

The Pistol Star• Galactic star• Extremely high mass loss rate• Initial mass: 150 (?)• Will die as much less massive object

Pair instability

Helium core mostly convective and radiation a large part of the total pressure.~ 4/3. Contracts and heats up after helium burning. Ignites carbon burning radiatively

Above 1 x 109 K, pair neutrinos accelerate evolution. Contraction continues. Pair concentration increases. Energy goes into rest mass of pairs rather than increasing pressure, < 4/3. Contraction accelerates.

Oxygen and (off-center) carbon burn explosively liberating a large amount of energy. At higher mass silicon burns to 56Ni

The star completely, or partially explodes

Barkat, Rakavy and Sack (1967)

(M> 40 solar masses)

Helium stars, MHe = 2.2 – 8

degeneracy parameter

Nomoto and Hasimoto (1986; Prog. Part. Nucl. Phys. 17, 267)

Pair-Instability Supernovae

Many studies in literature since more than 3 decades, e.g.,Rakavey, Shaviv, & Zinamon (1967)Bond, Anett, & Carr (1984)Glatzel, Fricke, & El Eid (1985)Woosley (1986)

Some recent calculations:Umeda & Nomoto 2001Heger & Woosley 2002

63 M / Me 40

130 > M / Me 95

133   M / Me   63

260 M / Me 130

M 133 Me

M > 260 Me

Pulsational PairSupernovae

Pair instabilitySupernovae

Black holes

Rotation reduces thesemass limits!

Mass loss alters them.¯

¯

¯

¯

¯

¯

Light curves of pair instability supernovae in their restframe

Compared with a typical SN Ia (red SN 2001el), a Type Iip(blue. SN 1999em) and the hypernova SN 2006gy (green)

Red-shifted light curve of a bright pair-instability SN

Pulsational PairInstability Supernovae

Pulsations

Woosley et al. (2007; Nature 450, 390)

238 million light years away

Smith et al. (2007; ApJ 666, 1116)

Smith et al. (2007; ApJ 666, 1116)

Onset of instability

Woosley et al. (2007; Nature 450, 390)

At end of first pulse

Woosley et al. (2007; Nature 450, 390)

After 2nd pulse

Woosley et al. (2007; Nature 450, 390)

At final point

Woosley et al. (2007; Nature 450, 390)

Velocity and enclosed mass after second mass ejection - 110 solar mass model (74.6 at explosion)

Shock heating

Woosley et al. (2007; Nature 450, 390)

Light curves of the two outbursts (110 solar mass model)

Woosley et al. (2007; Nature 450, 390)

20061999 2012

Absolute R-band magnitudesof the 110 solar mass modelcompared with obsevations of “hypernova” SN 2006gy.

Instabilities will smooththese 1 D calculations.The brighter curve assumedtwice the velocity for all ejecta. (7.2 x 1050 ergbecomes 2.9 x 1051 erg)

Woosley et al. (2007; Nature 450, 390)