166
Opis funkcija EMS Opis_EMS_Application.doc2 PREGLED ELEKTROENERGETSKIH APLIKACIJA „EMS“ SISTEMA Created by Dragan Vlaisavljevic - 1 -

Opis EMS Application

Embed Size (px)

Citation preview

Page 1: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

PREGLED ELEKTROENERGETSKIH APLIKACIJA „EMS“ SISTEMA

Created by Dragan Vlaisavljevic - 1 -

Page 2: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

SADRŽAJ

1. Uvod................................................................................................................. 3

1.1. Klasifikacija EMS funkcija................................................................... 61.2. Organizacija EMS funkcija.................................................................. 6

2. Mrežne funkcije............................................................................................... 6

2.1. Real-time funkcije................................................................................ 62.1.1. Određivanje topologije mreže................................................... 62.1.2. Statička estimacija stanja......................................................... 92.1.3. Prognoza opterećenja čvorova mreže.................................... 252.1.4. Faktori osetljivosti gubitaka..................................................... 31

2.2. On-line funkcije.................................................................................... 332.2.1. Statička analiza sigurnosti....................................................... 332.2.2. Proračun kratkih spojeva......................................................... 40

2.3. Off-line funkcije................................................................................... 452.3.1. Proračun naponskih stanja i tokova snaga............................. 452.3.2. Optimalni tokovi snaga............................................................ 512.3.3. Ekvivalentiranje mreže............................................................ 632.3.4. Proračun naponske stabilnosti................................................ 70

3. Generatorske funkcije................................................................................... 83

3.1. Real-time funkcije............................................................................. 833.1.1. Sekundarna regulacija P-f....................................................... 863.1.2. Nadzor rezervi........................................................................1003.1.3. Nadzor performansi sekundarne regulacije........................... 101

3.2. On-line funkcije...................................................................................1033.2.1. Ekonomski dispečing............................................................. 1033.2.2. Programi razmene sekundarne regulacije............................. 120

3.3. Off-line funkcije...................................................................................1223.3.1. Proračun troškova proizvodnje.............................................. 1223.3.2. Procena transakcija tipa A..................................................... 1243.3.3. Energetski obračuni............................................................... 127

4. Modifikacija postojećih EMS funkcija u deregulisanom okruženju.........167

Created by Dragan Vlaisavljevic - 2 -

Page 3: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

5. Nove EMS funkcije u deregulisanom okruženju........................................167

Created by Dragan Vlaisavljevic - 3 -

Page 4: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

1. UVOD

1.1. Klasifikacija EMS funkcija

Nakon implementacije SCADA sistema u dispečerskom centru za upravljanje proizvodno-prenosnim delom elektroenergetskog sistema (EES-a), sledeći korak je implementacija funkcija EMS-a (Energy Management System).

Upravljačke funkcije u dispečerskom centru proizvodno-prenosnog dela EES-a mogu se klasifikovati prema sledećim kriterijumima:

1) Funkcije upravljanja u zatvorenoj petlji Ove funkcije baziraju se na informacijama iz realnog vremena, pri čemu se nema direktan uticaj operatora (dispečera) na njihovo funkcionisanje. Rad ovih funkcija nadgleda operator, tako što proverava njihove performanse rada u zatvorenoj petlji. Tokom procesa nadzora operator može da modifikuje neke parametre upravljanja, menja mod upravljanja generatorskih jedinica i da preduzima druge slične akcije.

2) Funkcije upravljanja u otvorenoj petljiRezultati proračuna koji se obavljaju od strane ovih funkcija u on-lime režimu se prezentuju operatoru na analizu i daljne akcije od strane operatora. Na ovaj način ova otvorena petlja se zatvara preko operatora.

3) Funkcije u studijskom modu Operator ili inženjer-analitičar sprovodi detaljnu analizu prošlih, ili potencijalno interesantnih budućih događaja u EES-u. Primena ovih funkcija omogućava razumevanje poremećaja, podešavanje upravljačkih parametara, podešavanje kriterijuma sigurnosti za pogon EES-a, pravljenje i proveru planova remonata, testiranje šema uspostavljanja EES-a nakon poremećaja, itd.

Osnovne analitičke funkcije EMS-a po svojoj funkciji u odnosu na funkcionalne celine EES-a mogu se podeliti u tri grupe (uz naziv daje se i kratak opis šta rade):

1) Mrežne funkcije Provera topologije (funkcija koja detektuje moguće greške u topologiji

sistema, kao i njihove uzroke). Estimacija stanja (funkcija koja na bazi redundantnog skupa merenja iz

sistema najčešć primenom kriterijuma srednje-kvadratnih odstupanja određuje vektor stanja sistema koji ga jedinstveno opisuje).

Created by Dragan Vlaisavljevic - 4 -

Page 5: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

Detekcija i identifikacija loših merenja (funkcija koja samostalno, ili u okviru funkcije estimacije stanja, detektuje loša merenja, kao i načine njihove popravke i mogućnosti za uključenje u dalji proračun).

Kratkoročna prognoza opterećenja (funkcija vrši prognozu opterećenja u vremenskom horizontu od nekoliko minuta do jednog dana, u odgovarajućim vremenskim koracima, po pravilu na osnovu istorijskih podataka (auto regresioni deo), vremenskih parametara i drugih raspoloživih uticajnih veličina (tretiranih kao egzogene promenljive)).

Dispečerski tokovi snaga (funkcija koja na osnovu selektovanih merenja iz sistema (u skladu sa klasifikacijom čvorova) proračunava jedinstveni vektor stanja sistema, primenom nekog od numeričkih postupaka (Gauss, Newton-Raphson, brzi raspregnuti Stott-ov i drugi) rešavanja sistema nelinearnih jednačina).

Optimalni tokovi snaga (funkcija određuje optimalno rešenje problema tokova snaga u zavisnosti od upravljačkih promenljivih (najčešće odate aktivne snage generatora i/ili reaktivne snage reaktivnih resursa) po nekom od optimizacionih kriterijuma (najčešće minimizacija gubitaka, minimizacija padova napona, minimizacija preopterećenja i drugi).

Analiza poremećenih stanja u sistema (funkcija koja proračunava stanja (struje i napone) pri pojedinim kvarovima (jednopolni i dvopolni zemljospojevi, dvopolni i tropolni kratki spojevi, jednostruki i dvostruki prekidi provodnika) sa ili bez prelazne impedanse kvara).

Analiza sigurnosti u stacionarnom stanju (funkcija koja analizira unapred selektovanu listu (n−1) i (n−2) ispada i njihovog uticaja na preopterećenje elemenata prenosne mreže u stacionarnom stanju).

Dijagnostikovanje kvarova (funkcija koja vrši detekciju da je došlo do kvara, određuje njegov tip i lokaciju, kao i potrebne zaštitne mere u sistemu).

Koordinacija relejne zaštite (funkcija koja određuje podešavanje referentnih vrednosti u sistemu relejne zaštite u zavisnosti od karakteristika primenjenih releja).

Volt/Var koordinacija (funkcija određuje optimalnu upotrebu resursa za regulaciju napona (prvenstveno transformatora sa regulacijom pod opterećenjem) i reaktivnih snaga (sinhronih generatora i otočnih kompenzatora i kondenzatora) u cilju minimizacije nekog od optimizacionih kriterijuma (najčešće gubitaka) i uz istovremeno zadovoljenje skupa ograničenja (najčešće napona u čvorovima)).

2) Generatorske funkcije Izbor agregata u pogonu (funkcija na optimalan način vrši selekciju

elektrana i pojedinačnih agregata koje će biti angažovane u određenom vremenskom horizontu (najčešće za sledeći dan), uvažavajući njihove realne eksploatacione i druge karakteristike).

Nadgledanje i analiza rezervi (funkcija prati zahteve i stanje pojedinih tipova rezervi (operativne, tople, hladne, havarijske, remontne i drugih)

Created by Dragan Vlaisavljevic - 5 -

Page 6: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

u sistemu, uz signalizaciju poremećenih stanja; najčešće je direktno povezana sa funkcijom automatske regulacije učestanosti).

Automatska regulacija učestanosti (funkcija vrši optimalnu regulaciju odatih snaga proizvodnih jedinica u cilju održavanja učestanosti u sistemu).

Ekonomski dispečing (funkcija za određeno opterećenje u sistemu određuje optimalne snage termičkih agregata, u cilju minimizacije ukupnih troškova sistema).

Hidro-termo koordinacija (funkcija rešava problem optimalne koordinacije hidro i termičkih jedinica u cilju minimizacije ukupnih troškova u sistemu, a uz zadovoljenje specifičnih ograničenja koja se odnose na pojedine jedinice).

Tranzijentna analiza (funkcija vrši proračun dinamičkog ponašanja promenljivih stanja i ostalih promenljivih posle poremećaja, na bazi numeričkog rešavanja sistema diferencijalno-algebarskih jednačina).

Naponska stabilnost (funkcija za stacionarno stanje prema (n−1) kriterijumu sigurnosti određuje moguće povećanje transfera aktivne (PV analiza) i reaktivne snage (QV analiza) po određenim (često interkonektivnim) vodovima).

Dinamička stabilnost, ili stabilnost pri malim poremećajima (funkcija na osnovu analize linearizovanog sistema detektuje postojanje lokalnih ili međusistemskih oscilacija između pojedinih mašina u sistemu).

3) Tržišne funkcije Prognoza tržišnih cena energije i pomoćnih usluga (funkcija na osnovu

podataka iz prošlosti i drugih raspoloživih egzogenih i endogenih promenljivih vrši navedene prognoze).

Izračunavanje troškova transakcija (funkcija vrši proračun cena snage i energije ugovorenih transakcija).

Menadžment ugovora (funkcija obrađuje sklopljene ugovore između pojedinih učesnika na tržištu).

Obrada transakcija sa drugim EES-ima (funkcija obrađuje i planira ugovorene transakcije sa drugim EES-ima po količini energije, vremenu trajanja, tehničkim karakteristikama i sl.).

Proračun lokalnih marginalnih cena (funkcija određuje lokalne marginalne cene energije u pojedinim čvorovima EES-a).

Raspoloživi prenosni kapaciteti (funkcija proračunava raspoložive prenosne kapacitete po pojedinim prenosnim kapacitetima).

Kruženje energije (funkcija proračunava potencijalno kruženje energije između pojedinih učesnika na tržištu, kao i troškove koji se na taj način čine).

4) Funkcije za obuku Trening simulator (funkcija koja simulira rad EES-a u cilju obučavanja

operativnog osoblja za rad na pravom sistemu).

Created by Dragan Vlaisavljevic - 6 -

Page 7: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

Tabela 1: Klasifikacija nekih karakterističnih EMS aplikacija prema načinu njihove upotrebe

U ovom dokumentu sve EMS funkcije podeljene su u četiri osnovne grupe aplikacija, odnosno razvrstane po tome da li normalno rade u zatvorenoj petlji (real-time), otvorenoj petlji (on-line), ili u studijskom modu (off-line):

1. Mrežne funkcije1.1. Real time (ažuriranje modela mreže, statička estimacija stanja,

prognoza opterećenja čvorova mreže, proračun faktora gubitaka)1.2. On-line (statička analiza sigurnosti EES-a, proračun kratkih spojeva

u mreži)1.3. Off-line (dispečerski tokovi snaga, optimalni tokovi snaga, LP

optimalni tokovi snaga, ekvivalentiranje mreže, proračun naponske stabilnosti)

Created by Dragan Vlaisavljevic - 7 -

Aplikacija Zatvorena petlja

Otvorena petlja

Studijski mod

Komentar

AGC

DA DA DA

Otvorena petlja: za promenu rada moda agregata.Studijski mod: za podešavanje parametra regulacije

ED (ekonomski dispečing) DA DA DA

U normalnom režimu radi u zatvorenoj petlji sa AGC-om

SED (sigurnosni ekonomski dispečing)

Moguć DA DA

Tokom većine vremena rada SED radi u otvorenoj petlji. Kada se ima narušeno ograničenje u mreži operator može da prebaci Sed u zatvorenu petlju.

Optimalni tokovi snaga (OPF) NE DA DA

Analiza statičke sigurnosti (SA) NE DA DA

Angažovanje agregata (UC) NE DA DA

Planiranje proizvodnje HE NE DA DA

Hidro-termo koordinacija NE DA DA

Analiza transakcija NE DA DA Zajedno sa UC (ili ED) funcijom u cilju trgovine električnom energijom

Dispečer trening simulator NE NE DA

Page 8: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

2. Generatorske funkcije2.1. Real time (sekundarna regulacija aktivnih snaga i učestanosti,

nadzor rezervi u EES-u, nadzor performansi sekundarne regulacije).2.2. On-line (ekonomski dispečing, programi razmene za sekundarnu

regulaciju).2.3. Off-line (proračun troškova proizvodnje, procena transakcija tipa A,

energetski obračuni).

3. Dispečer ski trening simulator DTS u SCADA/EMS okruženju (studijski mod rada).

4. Planerske funkcije (sve su u off-line modu)Prognoza potrošnje, angažovanje agregata, planiranje proizvodnje hidroelektrana, hidro-termo koordinacija, procena transakcija tipa B (zajedno sa UC funcijom).

Veza između pojedinih grupa (u okviru nje i između najvažnijih funkcija) data je na Slici 1. OOppiiss ssiisstteemmaa

OOppeerraattoorr TTrreenniinngg SSiimmuullaattoorr

OObbrraaddaa ((pprree--pprroocceessiirraannjjee)) iinnffoorrmmaacciijjaa

AAžžuurriirraannjjee mmooddeellaa

AAGGCC

EEssttiimmaattoorr SSttaannjjaa RReeaall TTiimmee AAnnaalliizzaa SSiigguurrnnoossttii

PPooddeeššaavvaannjjee ppaarraammeettaarraa mmooddeellaa

PPoowweerr FFllooww IInniittiiaalliizzaattiioonn

TTookkoovvii ssnnaaggaa ((DDPPFF//OOPPFF))

RReeaall TTiimmee FFuunnkkcciijjee

AAnnaalliizzaa ssiigguurrnnoossttii AAnnaalliizzaa oosseettlljjiivvoossttii

IIzzbboorr aaggrreeggaattaa uu ppooggoonnuu ((UUnniitt CCoommmmiittmmeenntt))

PPrrooggnnoozzaa oopptteerreeććeennjjaa AAGGCC//EEDD//RRMM

PPllaanniirraannjjee rraazzmmeennee eenneerrggiijjee OObbrraaččuunn ttrroošškkoovvaa ssnnaaggee ii eenneerrggiijjee PPrrooiizzvvooddnnii ttrroošškkoovvii

MMRREEŽŽNNEE FFUUNNKKCCIIJJEE

PPRROOGGNNOOZZAA && OOPPTTIIMMAALLNNOO AANNGGAAŽŽOOVVAANNJJEE

TTRRŽŽIIŠŠNNEE FFUUNNKKCCIIJJEE

OOPPEERRAATTOORR TTRREENNIINNGG

SSIIMMUULLAATTOORR

TTooppoollooggiijjaa mmrreežžee

OOCCCC ii OOVVCC

OPF – Optimalni tokovi snagaAGC – Automatska regulacija učestanostiED – Optimalna raspodela opterećenja između termičkih agregata (Ekonomski dispečing)RM – Nadgledanje i analiza rezervi (Reserve Monitoring)OCC – Optimalno upravljanje kompenzacijom reaktivnih snaga (Optimal Capacitor Control)OVC – Optimalno upravljanje regulacijom napona (Optimal Voltage Control)DPF – Dispečerski tokovi snaga (Dispatcher Power Flow)OPF – Optimalni tokovi snaga (Optimal Power Flow)

Created by Dragan Vlaisavljevic - 8 -

Page 9: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

Slika 1: Način povezivanje energetskih funkcija EMS-a

U ovom dokumentu biće opisane mrežne i generatorske funkcije EMS-a.Nakon opisa mrežnih, odnosno generatorskih funkcija, biće dati opisi

pojedinih aplikacija koje se moraju modifikovati za rad u deregulisanom (tržišnom) okruženju rad EES-a.

Na kraju, biće dati opisi novih funkcija EMS-a, neophodnih za rad u deregulisanom okruženju.

Literatura[1] A. Debs, „Modern Power Systems Control and Operation“, DSI 1996. [2] F. F. Wu, K. Moslehi, and A. Bose, „Power System Control Centers: Past,

Present and Future“, Proceedings of the IEEE, Vol. 93, No. 11, pp. 1890-1908, November 2005.

Created by Dragan Vlaisavljevic - 9 -

Page 10: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

1.1. Organizacija EMS funkcija

Mesto EMS u ukupnoj organizaciji elektroprivrede prikazano je na Slici 1.

Direktni potrošači

PROIZVODNJA

PRENOS (sa MCU)

DISTRIBUCIJE (sa DCU – DMS)

POTROŠNJA (sa CUP-DSM)

Direkcija i centar upravljanja proizvodnjom

i prenosom (SCU – EMS)

Proizvodnja i prenos

Elektrane vezane na distributivnu mrežu

Tokovi energije Tokovi novca

Tokovi informacija

Finansijska direkcija

Legenda:SCU – Sistemski centar upravljanjaMCU – Mrežni centar upravljanjaDCU – Distributivni centar upravljanjaCUP – Centar upravljanja potrošnjomEMS (Energy Management System) – Sistem upravljanja električnom energijom na

nivou proizvodnje i prenosaDMS – (Distribution Management System) – Sistem upravljanja distribucijomDSM – (Demand Side Management) – Upravljanje potrošnjom u cilju racionalnog

korišćenja električne energije

Slika 1: Tipična struktura vertikalno-integrisanog elektroprivrednog preduzeća

Prvi korak u sprovođenju funkcija eksploatacije i upravljanja EES-ima je detekcija aktuelnog stanja sistema. Osnov za to su informacije koje se u centar

Created by Dragan Vlaisavljevic - 10 -

Page 11: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

upravljanja prenose direktno iz sistema. Za tu svrhu koriste se specijalizovani informacioni sistemi za prikupljanje, obradu i slanje informacija, kao i sprovođenje upravljačkih akcija (SCADA − Supervisory Control and Data Acquisition). Njihova funkcija jeste da prikupe sve neophodne informacije iz sistema, inicijalno ih obrade i prenesu u centre upravljanja, gde se podvrgavaju detaljnoj analizi, obradi i arhiviranju. Istovremeno, oni obezbeđuju i spregu između samog EES-a i operatora. Te informacije sadrže analogne signale merenja (tokova snaga, injektiranja snaga, modula napona i struja i, u novije vreme, faznih stavova modula napona), binarne signale (0, 1) položaja prekidača, kao i digitalne signale položaja otcepa menjača regulacionih transformatora. Pored toga, jedinice udaljenih terminala (RTU − Remote Terminal Unit) mogu zahvatati i signale alarma prekoračenja, ili delovanja releja i druge upozoravajuće signale. U novije vreme, RTU mogu biti zamenjeni inteligentnim elektronskim uređajima (IED − Intelligent Electronic Devices). Po pravilu, RTU i IED su povezani u lokalnu mrežu (LAN − Local Area Network), a ona dalje na centralni SCADA server, sa kojim komuniciraju energetske funkcije sistema upravljanja proizvodno-prenosnim sistemom (EMS − Energy Management System), što je prikazano na Slici 2, gde se zbog boljeg razumevanja daju tri različita (redundantna) aspekta povezivanja [1, 2].

Generatorske Funkcije

Mrežne Funkcije

Inter CC

Tržišne Funkcije

EMS

SCADA FE DB (Baza podataka)

Elektrana Transformatorske stanice i razvodna postrojenja

Učesnici na tržištu

… …

Internet

Created by Dragan Vlaisavljevic - 11 -

Page 12: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

Funkcije planiranja i analize EES-a

Merni uređaji

Analitičke funkcije sistema upravljanja proizvodno-

prenosnim sistemom (EMS)

Upravljački centar

Komunikaciona mreža

SCADA centralni računar

RTU RTU IED IED RTU

Lokalna mreža

Elektrane, Transformatorske

stanice

Slika 2: Integracija SCADA i EMS

Created by Dragan Vlaisavljevic - 12 -

SREDNJI SLOJEMS SERVER

INTEGRISANA BAZA PODATAKA

MANAGEMENT CLIENT

FEEDER40014002400340044005

TRANSFORM60016002600360046005

MAINTANANCE CLIENT

PLANNING CLIENT

EMSANALITIČKE FUNKCIJE

NETWORK BUILDER

SCADA SERVER

RTU RTU

Page 13: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

Kontrolni centri u savremenim uslovima prelaze sa centralizovane arhitekture ka distribuiranoj fleksibilnoj i otvorenoj arhitekturi, što omogućava brz razvoj telekominikacione i kompjuterske tehnike (struktuirani komunikacioni mrežni protokoli, objektno orijentisani protokoli, razvoj softvera za povezivanje SCADA i viših softverskih paketa i sl.). Osnovni delovi kontrolnog centra su [2]:

SCADA sistem, Sistem upravljanja proizvodno-prenosnim sistemom (EMS). Sistem upravljanja komercijalnim sistemom (Business Management

System – BMS). Distribuirani SCADA sistemi zasnovani na informacionim protokolima. Zajednički informacioni model (Common Information Model – CIM)

razmene podataka. Sistem za razmenu podataka između EMS i BMS (Slika 3).

Učesnici na tržištu električne energije

Poslovni Menadžment Sistem (Sistem Funkcinisanja Tržišta Energije)

Dugoročni ugovori

Dspečing za sledeći dan

Satni dispečing

Real-time dispečing

Plaćanje i ugovori

Upravljanje proizv.-prenosnim sistemom (Energy Management System)

SCADA

SCED

Estimacija Stanja

AGC

Analiza ispada

Menadžment potrošnje

SCUC

Ponude energije

Jedinične cene energije

Plaćanja potrošača

Planirana proizvodnja i sklopljeni ugovori

Operativna ograničenja

Elektrane Razvodna postrojenja

Potrošači

SCED (Ekonomski dispečing sa sigurnosnim ograničenjima – Security Constrained Economic Dispatch) SCUD (Unit Commitment sa sigurnosnim ograničenjima – Security Constrained Unit Commitment)

Slika 3: Integracija EMS i BMS

Created by Dragan Vlaisavljevic - 13 -

Page 14: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

Tržišne Funkcije Bilateralni ugovori

Dispečerski plan rada Dispečing resursa

(SCED, SCUC, LMP, itd.) Prognoza operećenja Menadžment ispada

Nadgled. izvršenja ugovora

SCADA/AGC Upravlj. proizvod./Rezerve

Prognoza Opterećenja RTU Kominikacija

Tržišna Infrastruktura Menadžment ugovorenih

ponuda/potražnji Publikovanje tržišnih

informacija

Mrežne Funkcije/EMS Real-time Funkcije

(Topologija, SE, CA, VS) Studijske Funkcije

(Topologija, PF, CA, VS ...)

Arhiviranje Podataka Operativni Real-Time Istorijski

Komercijalni Sistem Ugovori i postavne vrednosti

Naplata i krediti Sistem merenja

Ugovorene cene

Ponuda/Potražnja Ponuda/Potražnja

Ugovorene cene

Ugovorene cene

Ugovori i postavne vrednosti

Postavljanje AGC referentnih vrednosti

Model mreže Operativna ograničenja Telemetrija i merenja

Merenja

ERP Banka Učesnici na tržištu

Internet

Sist

em z

a K

ontr

olu

Trži

šta

SCA

DA

/EM

S

Slika 4: Osnovne funkcije i njihovo povezivanje u kontrolnom centru

[1] A. Abur and A. G. Exposito, Power System State Estimation: Theory and Implementation, Marcel Dekker, 2004.

[2] F. F. Wu, F. Moslehi, and A. Bose, Power System Control Centers: Past, Present and Future, Proceedings of the IEEE, Vol. 93, No. 11, pp. 1890-1908, November 2005.

Created by Dragan Vlaisavljevic - 14 -

Page 15: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

2. MREŽNE FUNKCIJE

2.1. Real-time funkcije

2.1 .1. Određivanje topologije mreže

Pregled podfunkcija

Funkcija određivanja konfiguracije prenosne mreže i određivanja modela EES-a realizuje se posredstvom sledećih podfunkcija:

Blok 1 – Učitavanje i kontrola ulaznih podataka Ova podfunkcija učitava podatke o energetskoj opremi, postrojenjima i

merenjima, a zatim testira njihovu kompletnost i ispravnost.

Blok 2 – Određivanje konfiguracija energetskih postrojenja Na osnovu podataka o statusima rasklopnih aparata (prekidača i

rastavljača), određuje se topologiju jednopolnih šema energetskih postrojenja.

Blok 3 – Određivanje topologije prenosne mreže Na osnovu podataka o topologiji energetskih postrojenja, i njihovoj

međusobnoj povezanosti vodovima, određuje se topologija cele mreže.

Blok 4 – Analiza topologije prenosne mreže Analizira se povezanost mreže, sa ciljem detekcije izolovanih i

uzemljenih delova mreže.

Blok 5 – Alokacija merenja i pre-estimaciona analiza Na osnovu topoloških i drugih karakteristika merenja, rezultati merenja

se pridružuju odgovarajućim veličinama modela mreže.

Blok 6 – Generisanje modela EES Na osnovu rezultata iz prethodnih podfunkcija generiše se model EES-

a u formi matrice admitansi čvorova, i pridružuje mu se odgovarajući model merenja.

Blok dijagram NT paketa

Blok 1 Blok 2 Blok 3 Blok 4 Blok 5 Blok 6

Opis podfunkcija

Created by Dragan Vlaisavljevic - 15 -

Page 16: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

Učitavanje i kontrola ulaznih podataka

U okviru ove podfunkcije učitavaju se podaci o elementima energetske mreže, merenjima, početni statusi rasklopnih aparata i rezultati merenja:

- Podaci o elementima energetske mreže obuhvataju podatke potrebne za generisanje ekvivalentnih šema elemenata i podatke o međusobnoj povezanosti elemenata. Po učitavanju vrši se provera kompletnosti učitanih podataka.

- Podaci o merenjima obuhvataju tip merenja, topološku karakteristiku merenja (elemente razvodnog postrojenja uz koje je instalirano merenje, kao što su sabirnice, priključak voda, itd.), podatke o tačnosti merenja (klasa) i druge podatke (raspon skale). Po učitavanju, vrši se provera kompletnosti i provera ispravnosti dela učitanih podataka. Provera ispravnosti podataka o povezanosti elemenata (povezanost sa nepostojećim elementom) izvršiće se pri prvom prolasku kroz modul za određivanje konfiguracije razvodnih postrojenja.

- Na kraju se učitava početno stanje, to jest status rasklopne opreme i rezultati merenja. Testira se da li je početno stanje dato u potpunosti. Jednostavnije ispitivanje ispravnosti rezultata merenja obavlja se u okviru SCADA sistema (testiranje da li je rezultat merenja u razumnim granicama), a nešto složeniji testovi se sprovode u okviru pre-estimacione analize.

Konfiguracija energetskih postrojenja

U okviru navedene podfunkcije određuje se konfiguracija postrojenja na osnovu statičkih podataka o povezanosti pojedinih komponenti i na osnovu statusa rasklopnih aparata (prekidača i rastavljača).

Konfiguracija se određuje metodom pretraživanja po dubini (depth-first search metodom), u zavisnosti od strukture podataka.

Ova podfunkcija određuje opremu koja je isključena u postrojenju, povezanost elemenata za pojedine sabirnice, uzemljene elemente i broj električnih čvorova u postrojenju. Identifikuju se postrojenja koja su podeljena u više električnih čvorova.

Određivanje topologije prenosne mreže

U okviru navedene podfunkcije na osnovu konfiguracije razvodnih postrojenja i povezanosti vodova određuje se topologija EES-a. Pretragom po stablu mreže električni čvorovi se spajaju vodovima u ostrva.

U određivanju konfiguracije kreće se od čvora za koji je vezan generator, što garantuje da će inicirano ostrvo biti pod naponom. Kada više nema vodova vezanih za ostrvo počinje se od sledećeg neobrađenog čvora koji će predstavljati

Created by Dragan Vlaisavljevic - 16 -

Page 17: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

početak narednog ostrva. Ukoliko se ne naiđe na nove generatorske čvorove, to znači da je ostatak mreže bez napajanja.

Analiza topologije prenosne mreže

U okviru navedene podfunkcije formiraju se liste čvorova koji pripadaju detektovanim ostrvima. Kompletiraju se liste opreme koja nije pod naponom, identifikuje oprema (vodovi, transformatori) koja je pod naponom, a otvorena na jednom kraju, kao i uzemljena oprema.

Alokacija merenja i pre-estimaciona analiza

U okviru navedene podfunkcije merenja iz sistema koja su odabrana da učestvuju u postupku estimacije alociraju i konvertuju se u veličine koje se pridružuju čvorovima i granama mreže. Pridruživanje se vrši na osnovu topološke karakteristike merenja, tj. elementa razvodnog postrojenja uz koji je instalirano merenje.

Postoje sledeći tipovi osnovnih i izvedenih merenja: aktivna i reaktivna injektiranja u čvorovima merenja napona u čvorovima tokovi aktivnih i reaktivnih snaga po granama mreže

Izračunavaju se (na osnovu klase i šuma merenja) težinski faktori za svako merenje. Težinski faktori određuju uticaj pojedinih merenja u kriterijumskoj funkciji pri estimaciji stanja.

Izvedena merenja napona čvora izračunavaju se kao ponderisana sredina merenja napona u postrojenju. Izvedena merenja injektiranja predstavljaju zbir merenih tokova snaga generatora i potrošača u tom čvoru. U slučaju da u čvoru nema injektiranja generišu se pseudo-merenja nultih snaga injektiranja. Za izvedena merenja računaju se i težinski faktori koje koristi program za statičku estimaciju stanja.

U ovoj fazi vrše se i preliminarni testovi tačnosti merenja (preveliko rasipanje izvedenih merenja) i postojanje nelogičnosti u topologiji (na primer, postojanje toka snage kroz otvoreni prekidač).

Generisanje modela EES-a

Na osnovu rezultata prethodnih podfunkcija generiše se model EES-a, koji je potreban za realizaciju funkcije estimacije stanja.

Na osnovu parametara energetskih elemenata, učitanih iz stacionarne baze podataka, generišu se simetrične (nesimetrične) π-ekvivalentne šeme elemenata. Ekvivalentnim šemama modeluju se sledeći elementi:

nadzemni vodovi

Created by Dragan Vlaisavljevic - 17 -

Page 18: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

dvonamotajni transformatori tronamotajni transformatori dvonamotajni regulacioni transformatori tronamotajni regulacioni transformatori autotransformatori phase shifter transformatori prigušnice i kondenzatorske baterije

Vodovi se modeluju zamenskim šemama sa koncentrisanim parametrima, uzimajući u obzir otpornost i reaktansu voda, kao i provodnost i kapacitivnost “ka zemlji”, što znači da u ekvivalentnoj simetričnoj π-šemi figurišu kompletna redna i otočne grane, kao na slici:

Vp, θp Vk, θk

p k Zv

0vY 0

vY

Pri modelovanju transformatora (dvo- i tro-namotajnog, kao i autotransformatora) biće uzeti u obzir omski otpor i reaktanse rasipanja namotaja transformatora (redne grane (šeme-ך i impedansa magnećenja (otočna grana). Ekvivalentna šema-ך se u slučaju dvonamotajnog transformatora konvertuje u ekvivalentnu nesimetričnu π-šemu, a u slučaju tronamotajnog transformatora se obrađuje u delu za redukciju modela mreže, kao što je prikazano na donjim slikama:

nps : 1 Zкs 1 : ap(ta) Vp, θp

p Vs, θs

s

Ym

bazps

psnps

A

mn = − konstantan odnos transformacije sa desne strane

generalizovane grane, koji je posledica normalizacije, odnosno različitih nominalnih napona krajeva transformatora i napona mreža na koje su priključeni.

Created by Dragan Vlaisavljevic - 18 -

Page 19: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

Zp

Zs

Zt

Vp, θ p

s

t

p

nps : 1 Vs, θ s

npt : 1

Vt, θ t

1 : ap(ta)

Ym

Generatori i potrošači modeluju se snagama injektiranja.

Paralelne i redne veze elemenata na kojima nema merenja se zamenjuju ekvivalentnim impedansama, a veze u obliku zvezde u čijem čvoru nema merenja se zamenjuju ekvivalentnim trouglovima. Time se vrši redukcija modela radi brže estimacije stanja.

Na kraju se generiše proširena matrica admitansi čvorova. Pod pojmom “proširena” misli se na to da se čuvaju vrednosti otočnih admitansi PI-ekvivalentnih šema grana mreže, umesto njihovog sabiranja po čvorovima, što je slučaj kod standardnih matrica admitansi čvorova.

Created by Dragan Vlaisavljevic - 19 -

Page 20: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

2.1.2. Statička estimacija stanja

Pregled podfunkacija sistema

Osnovne podfunkcija su:- analiza observabilnosti- osnovni algoritam estimacije- detekcija i identifikacija loših merenja- proračun sistematskih grešaka i standardnih devijacija- obrada izlaznih rezultata

Programski paket za estimaciju stanja preuzima sledeće podatke:a) o konfiguraciji mreže iz datoteka generisanih od strane programa za

određivanje topologije (NT)b) o vrednostima merenja iz datoteka dobijenih od SCADA sistema u

realnom vremenuc) o vrednostima pseudo-merenja generisanih od stane programa za

prognozu opterećenja čvoraova mreže

Iz izlaznih datoteka NT programa koriste se sledeći podaci:- matrica admitansi Y cele ekvivalentne mreže, dobijena agregacijom

stvarne mreže EES- otočne admitanse svih grana u mreži - spisak sabirnica pridruženih svakom čvoru ekvivalentne mreže- naponski nivoi u svim čvorovima- prenosni odnosi ULTC i uglovi phase shiftera- težinski faktori analognih merenja

Iz datoteke »SCADA snimak stanja« koriste se sledeći podaci:- tokovi aktivnih i reaktivnih snaga po granama mreže- aktivna i reaktivna injektiranja snaga po čvorovima mreže- prenosni odnosi ULTC i uglovi phase shiftera

Iz programa za prognozu opterećenja čvorova mreže:- vrednosti pseudo-merenja (injektiranja snage čvora) po čvorovima

mreže

Na osnovu prethodnog, definiše se jedinstveni vektor merenja (z), nezavisno da li je merenje pravo ili pseudo. Ovaj M-dimenzioni vektor čine:

1. ijP − tokovi aktivnih snaga po granama mreže ( Lij ,,2,1 ⋯ℓ == ; L je ukupan broj grana u mreži);

2. ijQ − tokovi reaktivnih snaga po granama mreže;

Created by Dragan Vlaisavljevic - 20 -

Page 21: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

3. ijI − tokovi struja po granama mreže;4. iP − injektiranja aktivnih snaga u čvorovima mreže ( Ni ,,2,1 ⋯= ; N je

ukupan broj čvorova u mreži);5. iQ − injektiranja reaktivnih snaga u čvorovima mreže;6. iI − injektiranja struja u čvorovima mreže;7. iV − moduli napona u čvorovima (direktno merenje promenljivih stanja);8. ija − nenominalni odnosi transformacije klasičnih regulacionih

transformatora (direktno merenje promenljivih stanja) ( tLij ,,2,1 ⋯ℓ == , gde je tL ukupan broj grana sa klasičnim regulacionim transformatorima;

9. ijϕ − uglovi faznih regulacionih transformatora (direktno merenje

promenljivih stanja) ( psLij ,,2,1 ⋯ℓ == , gde je psL ukupan broj grana sa faznim regulacionim transformatorima).

Na osnovu gornje liste, formira se jedinstveni M-dimenzioni vektor merenja (sa 9 subvektora):

[ ]TTTTTTTTTTℓℓℓℓℓ ϕaVIQPIQPz = ,

gde su pojedini članovi sub-vektori tipova merenja. Oznaka ℓ u jedn. (3.4) označava merenje vezano za granu.

Gornjim merenjima pridružuju se varijanse, odnosno težinski faktori sa kojima ona ulaze u dalji proračun.

n-dimenzioni vektor promenljivih stanja (x) je deo M-dimenzionog vektora merenja (z), mada može sadržati i druge promenljive koje se ne nalaze u vektoru merenja (na primer, uglovi fazora napona, ili naponi čvorova koji se ne mere). Vektor promenljivih stanja opisuje režim posmatranog EES-a, pri čemu je nM > . Elementi n-dimenzionog vektora promenljivih stanja (x) su:• iV − moduli fazora napona u čvorovima ( Ni ,,2,1 ⋯= );• iθ − uglovi fazora napona u čvorovima ( Ni ,,2,1 ⋯= ; SLi ≠ ; 0=SLθ ); • ija − nenominalni odnosi transformacije (modula napona) klasičnih

regulacionih transformatora ( tLij ,,2,1 ⋯ℓ == , gde je tL ukupan broj grana sa klasičnim regulacionim transformatorima);

• ijϕ − nenominalni odnosi transformacije (uglova fazora napona) faznih (Phase Shift) regulacionih transformatora ( psLij ,,2,1 ⋯ℓ == , gde je psL ukupan broj grana sa faznim regulacionim transformatorima).

To znači da n-dimenzioni vektor promenljivih stanja (x) čine sledeći sub-vektori:

Created by Dragan Vlaisavljevic - 21 -

Page 22: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

=

ℓϕ

θa

V

x , [ ]T1 Ni VVV ⋯⋯=V ; [ ]T1 Ni θθθ ⋯⋯=θ ; SLi ≠ ;

[ ]T1 tLaaa ⋯⋯ ℓℓ =a ; [ ]T1 psLϕϕϕ ⋯⋯ ℓℓ =ϕ ,

gde su dimenzije za V i θ subvektore N i N − 1, respektivno, dok su dimenzije sub-vektora ℓa i ℓϕ određene brojem određenog tipa regulacionih transformatora: tL i psL , respektivno).

Analiza observabilnosti

Osnove postupkaVećina algoritama za analizu opservabilnosti zasniva se na

aproksimativnom linearizovanom raspregnutom modelu, koji koristi poznatu osobinu da se, naročito kod mreža sa odnosom X/R >> 1, može izvršiti efikasno rasprezanje punog modela u njegov Pθ i QV deo. Međutim, treba naglasiti da raspregnutom estimacijom dobijena rešenja nisu aproksimativna, već potpuno tačna (ukoliko je proces konvergirao). Aproksimativan je samo način izračunavanja Jakobijana, što uglavnom, samo malo povećava broj iteracija za koji će estimator konvergirati, ali ne utiče na tačnost rešenja. Pri tome, jednostavnost u proračunu aproksimativnog Jakobijana, višestruko kompenzuje povećani broj iteracija za konvergenciju, tako da je ukupno vreme rada (CPU) manje kod raspregnutog pristupa.

Raspregnuti pristup Vektor merenja (z) povezan je sa vektorom promenljivih stanja (x) sistema

preko nelinearne jednačine:exhz += )( , (1)

gde je: z – M-dimenzioni vektor merenja;h(x) – M-dimenziona vektorska funkcija;x – n-dimenzioni vektor promenljivih stanja;e – M-dimenzioni slučajni vektor grešaka merenja, čije su osobine unapred

specificirane. Varijanse grešaka daju indikaciju o kvalitetu merenja (velika vrednost varijanse označava malu tačnost merenja).

Created by Dragan Vlaisavljevic - 22 -

Page 23: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

Za greške, vektor e, smatra se da su nezavisne slučajne promenljive sa Gauss-ovom raspodelom, čija je srednja vrednost jednaka nuli. Varijanse 2

iσ grešaka merenja daju indikaciju kvaliteta pojedinačnog merenja. Velike varijanse pokazuju da to merenje nije dovoljno tačno.

U rasprezanju modela pretpostavljeno je da nema klasičnih i faznih regulacionih transformatora u mreži (zanemareni subvektori u vektoru promenljivih stanja (x), koji se odnose na njihove nenominalne odnose transformacije ℓa i ℓϕ , respektivno, u izrazu (3.1)). Ako bi se oni uvažili, onda bi subvektor ℓϕ bio uključen P−θ deo, a subvektor ℓa u Q−V deo ukupnog problema.

Uz prethodnu pretpostavku, izraz (1) može se napisati u raspregnutom obliku kao [MV96]:

PPP exhz += )( ; (2a)

QQQ exhz += )( , (2b)gde su:

Pz , Qz – vektori merenja u P−θ potproblemu (injektiranja i tokovi aktivnih snaga, kao i eventualno (u novije vreme) uglovi fazora napona čvorova) i Q−V potproblemu (injektiranja i tokovi reaktivnih snaga, kao i moduli napona čvorova), respektivno; ovde treba napomenuti da merenja injektiranja i tokova struja po granama nisu svrstana ni u jedan od prethodnih potproblema pošto formalno spadaju u oba (za detalje njihovog tretmana, naročito u pogledu observabilnosti i jednoznačnosti rešenja estimacije);

)(xhP , )(xhQ – vektorska funkcija merenja u P−θ i Q−V potproblemima, respektivno;

Pe , Qe – slučajni vektori grešaka u merenjima u P−θ i Q−V potproblemima, respektivno.

Sa prethodno definisanom formom rasprezanja modela, Jacobian matrica ima sledeći oblik:

=

∂∂==

= )()()()()()()(

ˆ xHxHxHxH

xxhxHxH

xx QVQ

PVPPQ

θ

θ . (3)

Zanemarivanjem članova koji imaju mali uticaj na Jacobian matricu (P−V i Q−θ submatrice u (3)) dobija se uprošćena, raspregnuta matrica pojačanja (informaciona matrica):

)()(

)(xG

xGxG

QV

P0

0θ , (4)

gde su:

)()()( 1T)( xHWxHxG θθθθ PPPP−= ;

Created by Dragan Vlaisavljevic - 23 -

Page 24: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

)()()( 1T)( xHWxHxG QVQVQVQV−= .

Za mrežu se kaže da je Pθ observabilna, ako submatrica )(xG θP ima rang N, gde je N broj čvorova u mreži, a slično tome mreža je QV observabilna, ako matrica )(xGQV takođe ima rang N.

Odre đivanje numeričke opservabilnosti Numerički test opservabilnosti zasniva se na numeričkom određivanju

ranga )θPH (ili )QVH ) preko trijangularne matrice θG (ili VG ).

UUG T=θ ; (5)

gde je U gornja trougaona matrica.Međutim, u praksi članovi matrice koji bi teoretski trebalo da budu nula,

usled rada sa aritmetikom konačne preciznosti nisu tačno jednaki nuli. Zbog toga je neophodno da se izabere numerički prag za elemente matrice U za koje se može smatrati da su jednaki nuli. Izbor praga može biti složen, jer on zavisi od karakteristika elemenata u mreži, ali i od dužine računarske ″reči″.

Jedan od načina za izbegavanje teškoća sa numeričkim određivanjem ranga je rad sa celobrojnim promenljivama i time sa egzaktnom aritmetikom. Međutim, u radu sa realnim, velikim EES-ima ovaj metod nije pokazao dobre rezultate, jer je dovodio do parametarske neopservabilnosti, u slučajevima kada je mreža opservabilna.

Odre đivanje topološke opservabilnosti Algoritam za topološku opservabilnost traži maksimalno stablo punog ranga

za merenja u mreži. Ako je ona ″povezano stablo″, tada je mreža topološki opservabilna. Broj grana u maksimalnom stablu punog ranga jednak je broju merenja u mreži.

Utvrđeno je da se problem nalaženja maksimalne šume može posmatrati kao nalaženje maksimalnog preseka između dva matroida. Jedan matroid je stablo, a drugi je merenje dodeljeno granama. Problem preseka matroida je poznati problem iz domena kombinatorne optimizacije. Navedeni postupak može se adaptirati da koristi posebna svojstva matroida koji se javljaju u problemu utvrđivanja opservabilnosti.

Pseudo-merenja i opservabilna ostrva Čak i kada je mreža neopservabilna, obično je poželjno načiniti barem

delimičnu estimaciju stanja. Dva pristupa ovom problemu moguće je primeniti:- proširenje skupa merenja iz realnog vremena sa pseudo-merenjima- izračunavanje estimacije stanja za opservabilan deo mreže

Created by Dragan Vlaisavljevic - 24 -

Page 25: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

U prvom pristupu, na osnovu iskustva procenjene vrednosti se koriste kao dopuna merenjima iz realnog vremena. Ove iskustvene vrednosti nazivaju se pseudo-merenja. Tipičan primer za pseudo merenja su injektirane snage čvorova čije vrednosti se procenjuju na osnovu prognoze opterećenja čvorova. Kandidat lokacija za pseudo-merenja je onaj čvor u kome se injektirane snage ne mere.

Kada se za mrežu utvrdi da je neopservabilna, algoritam za restauraciju opservabilnosti bi trebalo da odredi listu kandidata za pseudo-merenja da bi se odredio minimalni skup za opservabilnost. Važno je da skup pseudo-merenja bude minimalan, jer veliki broj pseudo-merenja ima tendenciju da degradira tačnost estimacije u opservabilnom delu mreže.

Analiza opservabilnosti redukovanim Ja cobi-janom Potreban uslov za opservabilnost je:

Nrang =)( TH , (6)

gde je N broj nezavisnih promenljivih stanja, a H Jacobi-jan. Rang Jacobi-jana ne zavisi od kvaliteta merenja tako da se opservabilnost mreže neće izmeniti ako pretpostavimo da je skup merenja bez grešaka, što čini da jednačina (1) postaje:

)(xhz = , (7)linearizovanjem ove jednačine dobija se:

xHz ∆=∆ , (8)tako se opservabilnost odnosno rešivost ukupnog estimacionog problema svodi na rešivost jednačine (8). Međutim, da bi se ova jednačina mogla rešiti neophodno je da se redundantne jednačine eliminišu, tako da Jacobi-jan H postane kvadratna matrica reda N.

Ovaj postupak je donekle heuristički, ali ima dobru osobinu da kombinuje metode za numeričku i topološku opservabilnost. Primenjen je na nekoliko realnih EES-a, sa vremenom izvršavanja uporedivim sa vremenom potrebnim da se izvrši kompletna estimacija. Ovo vreme je znatno manje nego kod programa za topološku analizu opservabilnosti, tako da se njegova primena može preporučiti, naročito za off-line režim rada estimatora [1].

Optimalno lociranje merenja

Projektovanje mernog sistema za svrhu estimacije stanja je kompleksan problem. Razlog za to je ne samo zbog njegove veličine, već često i zbog zahteva u tačnosti estimatora, njegove pouzdanosti u smislu kvarova telemetrije i kvarova u pretvaračima, adaptacije na promene u topologiji mreže i minimizaciju troškova sistema.

Rigorozna formulacija optimalnog lociranja merenja rezultirala bi u rešavanje problema celobrojnog (0-1) programiranja, jer je merenje prisutno ili ne kao kandidat za merno mesto. Takvi problemi su vrlo teški da se precizno reše

Created by Dragan Vlaisavljevic - 25 -

Page 26: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

za velike sisteme. Kao rezultat, svaki od pristupa predloženih do danas za optimalno lociranje merenja zasniva se na nerigoroznoj formulacioji problema i/ili na heurističkim tehnikama za njegovo rešenje.

Jedan od prvih heurističkih postupaka koji je korišćen za određivanje skupa merenja, nazvan je sekvencijalni eliminacioni metod. U njemu se definiše k-dimenzionalni vektor y sa ″interesantnim″ merenjima. Zbog slučajnih grešaka u merenjima, vektor y nije precizno poznat. Zbog toga se izabira šema mernog sistema u cilju optimizacije tačnosti y formulacijom sledećeg optimizacionog problema :

∑=

=k

j iYiJ

12

2min

βσ , uz ograničenje 22

iYi βσ ≤ , (9)

gde je 2Yiσ varijansa slučajne promenljive iy , a 2

iβ je specificirana gornja

granica od 2Yiσ .

Kasnije formulacije ovog problema uvele su troškove u optimizacioni kriterijum, na osnovu jednačine :

Tm

iii czc

mer≤∑

= 1)( i maxmin rrr ii ≤≤ , (10)

gde je ir jedan - sigma tačnost i-tog merenja.

Tačnost merenja se odnosi prema troškovima merenja na osnovu:

2)(1)(ii

iird

zc = , (11)

gde je id zadati parametar troškova [2].

Kada se reši ovaj nelinearni problem, dobija se optimalan vektor parametara tačnosti [ ]T2*

2*

1* ,,, mrrrr ⋯= . Merni sistem definisan je izborom onih

merenja koja odgovaraju najmanjem od svih *ir .

U analizi dobijenih rešenja ovakvim optimizacionim metodama, utvrđeno je da su rešenja osetljiva na promene u topologiji EES-a, a neosteljiva na nivoe opterećenja EES-a. Zbog toga je neophodno definisati i dodatna merenja u sistemu, kako bi se merni sistem načinio robusniji na promene u topologiji mreže.

Zaključak

Metode za utvrđivanje opservabilnosti prvenstveno su se razvijale u dva pravca: numeričke metode zasnovane na izračunavanju (sa pokretnim zarezom) i topološke metode. Numeričke metode imaju prednost, jer su jednostavne i koriste iste algoritme koji su potrebni za proračune u estimaciji stanja. Topološki

Created by Dragan Vlaisavljevic - 26 -

Page 27: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

orijentisani algoritmi, s druge strane, ne zahtevaju proračune sa pokretnim zarezom i ne mogu imati numeričke probleme zaokruživanja, koji su mogući kada se radi sa vrlo velikim skupom promenljivih u potencijalno loše uslovljenom sistemu. Ovi metodi, međutim, zahtevaju upotrebu postupka koji inače nisu potrebni za proračun estimacije stanja i po pravilu su teži za softversku realizaciju. Budućnost, verovatno, pripada kombinovanim, zasad heurističkim metodama, kakav je, na primer, metod redukovanog Jacobi-jana.

Metode za optimalno lociranje merenja, dosada razvijene, su heurističke tehnike, koje, u najboljem slučaju, daju samo približno optimalna rešenja. To je zbog velikih teškoća u rešavanju strogo formulisanih nelinearnih optimizacionih metoda, na šta se svodi matematička formulacija ovog problema. U ovoj oblasti preostaje još mnogo istraživačkog rada, do njene automatske primene.

Literatura

[1] I. W. Slutsker and J. M. Scudder, ″Network Observability Analysis Through Measurment Jacobian Matrix Reduction″, IEEE Trans. on Power Systems, Vol. 2, No. 2, pp 331-338, May 1987.

[2] S. Aam, L. Holten, and D. Gjerde, ″Design of the Measurment System for State Estimation in the Norwegien High-Voltage Transmission Network″, IEEE Trans. on Power Apparatus and Systems, Vol. 102, pp. 3769-3777, December 1983.

OSNOVNE KARAKTERISTIKE ESTIMATORA

Matematički model estimacije stanja zasniva se na matematičkim relacijama između merenja i promenljivih stanja:

exhz += )( , (1)gde je: z – M-dimenzioni vektor merenja;h(x) – M-dimenziona vektorska funkcija;x – n-dimenzioni vektor promenljivih stanja;e – M-dimenzioni slučajni vektor grešaka merenja, čije su osobine unapred

specificirane. Varijanse grešaka daju indikaciju o kvalitetu merenja (velika vrednost varijanse označava malu tačnost merenja).

Za greške, ei, smatra se da su nezavisne slučajne promenljive sa Gausovom raspodelom, čija je srednja vrednost jednaka nuli. Varijanse 2

iσ greški merenja daju indikaciju kvaliteta pojedinačnog merenja. Velike varijanse pokazuju da to merenje nije vrlo tačno.

Matrica kovarijansi merenja definiše se kao:

Created by Dragan Vlaisavljevic - 27 -

Page 28: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

2T iE σ== eeW . (2)

Rešenje statičke estimacije stanja (vektor promenljivih stanja (x)), uz primenu metode minimuma sume otežanih kvadrata odstupanja (WLS − Weighted Lest Squares), definisano je kao rešenje koje minimizira optimizacioni kriterijum:

][ ][ )()()( 1T xhzWxhzxx

−−= −Jinm . (3)

Rešenje WLS problema daje estimiranu vrednost x, koja zadovoljava sledeću jednačinu:

[ ])ˆ()()( 1T xhzWxHxx −−== −0

∂∂ J

, (4)

gde je:

xxxxhxH

ˆ

)()(=∂

∂= Jakobijan matrica funkcija merenja.

Estimacija x dobija se rešavanjem nelinearnog sistema jednačina (4), odnosno:

[ ])()()( 1T kkkk xhzWxHxxG −=∆ − , (5a)kkk xxx ∆+=+ 1 , (5b)

gde je:)())()( 1T( xHWxHxG −= , informaciona matrica (matrica pojačanja).

Jednačine (5) nazivaju se "normalne jednačine" WLS problema. Kada je skup merenja dovoljan i pravilno distribuiran tada je Jacobi-jan matrica merenja H(x) sa punim rangom, pa je G(x) nesingularna matrica. U tom slučaju je sistem observabilan.

S obzirom da je matrica H(x) retka, informaciona matrica G(x) takođe je retka (ali gušća od Jacobi-jana), pozitivno definitna. Za rešavanje sistema (5) koriste se metode sa trougaonom faktorizacijom retkih matrica u obliku:

UUG T= , (6)

gde je U gornja trougaona matrica.Vektor reziduala estimacije definiše se kao:

)ˆ(xhzr −= , (7)

a kovarijantna matrica residualnog vektora r je data sa:T1)cov( HHGWr −−= . (8)

Matrica osetljivosti estimiranih vrednosti data je sa:

1T1ˆ −−=∂∂ WHGzx

, (9)

Created by Dragan Vlaisavljevic - 28 -

Page 29: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

a matrica osetljivosti rezidualnih vrednosti sa:

11T1 −−− =−=∂∂= RWWHHGIzrS . (10)

NUMERIČKA STABILNOST ESTIMATORA

Pored telemetrisanih merenja postoje dva druga tipa "merenja" koja se mogu uključiti u vektor merenja z. Pseudo merenja su "proizvedeni" podaci koji se baziraju na arhivskim podacima ili proceni dispečera odnosno analitičara. Ona se uvode da bi se neobservabilni delovi sistema učinili observabilnim. Virtuelna merenja su ona vrsta informacija koja ne zahtevaju merenja, kao što su nulte injektirane snage na sabirnicama u razvodnim postrojenjima transformatornih stanica. Pseudo merenja se tretiraju kao manje tačna merenja, a virtuelna kao vrlo tačna, jer su njihove vrednosti poznate bez ikakve greške. Dodeljivanje vrlo velikih i vrlo malih težinskih faktora prouzrokovalo je u primeni na realne elektroenergetske sisteme probleme u konvergenciji usled slabe uslovljenosti sistema jednačina (ill - conditioning) [5].

Pored velikih razlika u težinskim faktorima postoje i drugi potencijalni izvori slabe uslovljenosti, kao što su prisustvo velikog broja injekcionih merenja u sistemu i povezanost vodova sa velikom impedansom na isti čvor na koji su povezani vodovi sa malom impedansom [6].

Metod ortogonalnih transformacija

Postoje dve osnovne ideje za rešavanje problema slabe uslovljenosti u estimaciji stanja. Prvi je da se izbegne formiranje informacione matrice

HRHG 1T −= , a druga je tretiranje virtuelnih merenja kao ograničenja tipa jednakosti.

Metod ortogonalnih transformacija [7] je robustna numerička tehnika koja upotrebom Givensovih rotacija rešava probleme slabe uslovljenosti na vrlo efikasan način, a neki problemi u angažovanju memorijskog prostora računara [8] i brzine rada su u poslednje vreme prevaziđeni [9].

Ako se linearizuje jednačina (3):

[ ] [ ]

∆−∆

∆−∆=∆−∆∆−∆=∆

−−−−− xWzWxHWzWxHzWxHzx 21

21

21

211)( TJ

(11)

i ako se definiše Q kao ortogonalna matrica IQQ =T , tako da je:

0UDHQW 2

12

1=

−(12)

Created by Dragan Vlaisavljevic - 29 -

Page 30: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

gde je:D - dijagonalna matricaU - gornja trougaona matrica.

S obzirom na ortogonalnost Q jednačina za performans indeks J može se napisati kao:

∆−

∆−=∆

−−−−xHQWzQWxHQWzQWx 2

12

1T2

12

1)(J . (13)

Ortogonalne transformacije mogu se takođe primeniti na vektor merenja:

221

121

21

zD

zDzQW∆

∆=∆−

r

, (14)

tako da minimizacija jednačine (13) dovodi do:1zxU ∆=∆ (15)

a vrednost performans indeksa je:

2T2)( zDzx ∆∆=∆ rJ . (16)

Za nelinearnu estimaciju stanja, H treba da se re-linearizuje u toku iterativnog rešavanja. Zbog visokih računarskih zahteva za ponavljanje ortogonalizacija svaki put kada se H relinearizuje, ona se vrši samo periodično posle nekoliko iteracija u kome se ortogonalni faktori od Q koriste bez modifikacije. Kada se H re-linearizuje, nove vrednosti za Q i U moraju se izračunati, ali njihova retka struktura ostaje nepromenjena.

Hibridni metod

Hibridni metod zasniva se na činjenici da se informaciona matrica G može predstaviti u sledećem obliku:

1T

1TT1 ))(( WWHQHQHHHWHG ==== −T , (17)

tako da se normalne jednačine mogu rešiti na osnovu jednačine:

zWHxWW ∆=∆ − 1T1

T1 , (18)

na osnovu koje je očigledno da je problem slabe uslovljenosti rešen za matricu G, ali preostaje u delu zWH ∆− 1T [6].

Normalne jednačine sa ograničenjima tipa jednakosti

Created by Dragan Vlaisavljevic - 30 -

Page 31: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

Virtuelna merenja se mogu izdvojiti od telemetrisanih merenja i tretirati kao ograničenja tipa jednakosti. Metod Lagrange-ovih multiplikatora može se koristiti za rešavanje ovakvog minimizacionog problema [10]:

[ ] [ ] )()()(21),( T1T xcxhzWxhzx λλ −−−= −L , (19)

gde su:λ - vektor Lagrange-ovih multiplikatora;

)(xc - ograničenja tipa jednakosti, 0=)(xc .

Estimacija x može se dobiti iterativnom procedurom na linearizovanom modelu:

cWxHx

xcxcxWxH

∆∆=

∆ −− zH 1TT1T )()(

)()()(λ0

, (20)

gde su:)(xc - deo Jakobijan matrice koji se odnosi na virtuelna merenja;

)(xcc −=∆ .

Matrica koeficijenata u jednačini (20) nije više pozitivno definitna, kao u prethodnim metodama, tako da se mora voditi računa pri trougaonoj faktorizaciji matrice o numeričkim problemima, što može da bude izvesno ograničenje u primeni ove metode.

Hahtel-ov metod

Hahtel-ov metod sa proširenom matricom obuhvata i reziduale kao nezavisne promenljive koje se rešavaju istovremeno sa x i λ [11]. Ovde će biti prikazan model za estimaciju stanja sa ograničenjima jednakosti.

Priraštaj reziduala može se definisati kao: xxHzr ∆−∆=∆ )( (21)

i ako se unese u sistem jednačina (20) dobija se sistem:

000

00zc

xW

xHxcxHWxc

∆∆

=∆

− 1

)()()()( λ

TT(22)

Ova jednačina (Hahtel-ova) matrična jednačina rešava se iterativno u svakom koraku. Prednost metode je da nije potrebno formirati informacionu matricu, tako da se glavni izvor slabe uslovljenosti izbegava, a ne pojavljuje se ni u vektoru merenja. Međutim, matrica koeficijenata i ovde nije pozitivno definitna, što može da dovede do numeričkih problema u procesu njene trijangularizacije.

Created by Dragan Vlaisavljevic - 31 -

Page 32: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

NOVE METODE IDENTIFIKACIJE LOŠIH PODATAKA

Većina metoda za obradu loših podataka u estimaciji stanja EES-a mogu pouzdano da identifikuju pojedinačne ili višestruke loše podatke koji nemaju međusobnu interakciju. Samo neki od njih, međutim, omogućavaju pouzdanu identifikaciju kada je prisutno više loših podataka sa međusobnom interakcijom [12, 13, 14]. Najistaknutije mesto među njima imaju "Kombinatorno optimizacioni identifikacioni metod" (KOI) [12] i metod "Identifikacije testiranjem hipoteze" (ITH) predložen u [14], a detaljnije razvijen u [15].

KOI metod pripada opštoj klasi eliminacionih postupaka koja obrađuje loše podatke na osnovu uzastopnih ciklusa: eliminacije − ponovne estimacije − detekcije, koji se izvršavaju sve dok test detekcije ne bude zadovoljen. KOI formuliše identifikaciju loših podataka kao kombinatorno optimizacioni problem, koji se rešava pomoću metoda "grananja i ograničavanja". KOI metod je poboljšanje ranije razvijene tehnike "najvećeg normalizovanog reziduala" (NNR), koji je upotebljen u KOI da bi se dobilo "moguće" (feasible) rešenje. Kao i kod NNR metode, prednost KOI postupka je sposobnost da pouzdano odstrani loša merenja iz skupa podataka, držeći broj sumnjivih merenja na minimumu. Međutim, obimno izračunavanje, da bi se dobio vektor normalizovanih reziduala u svakom čvoru odlučivanja, predstavlja ograničenje za primenu postupka u on-line režimima.

ITH metod formira listu sumnjivih merenja, koju tretira kao početni izbor, a koji uključuje podatke sa vrednostima normalizovanih reziduala iznad definisanog praga. Početni izbor mora obuhvatiti sve loše podatke (ograničenje u vezi pouzdanosti metode), a odstranjivanje izabranih merenja ne sme izazvati neobservabilnost mreže (ograničenje observabilnosti).

Za izabrana merenja procenjene vrednosti grešaka se dobiju i koriste za odvajanje sumnjivih merenja u skupove validnih i loših podataka. Skup loših podataka ulazi ponovo u selekcioni postupak koji se primenjuje iterativno sa opadajućom listom selektiranih merenja konvergirajući ka skupu definitivno loših podataka. Izbor može da bude i "osvežavan" dodatnim merenjima upotrebom korekcione formule za izračunavanje performans indeksa. Dobra strana ITH metode su njeni relativno mali zahtevi u pogledu računarskih resursa. Međutim, pouzdanost metode je u nekim slučajevima problematična.

Najveći problem sa ITH metodom je u slučaju višestrukih loših podataka koji su u interakciji. Naime, suštinski zahtev ITH metode je da apsolutno svi loši podaci budu u početnom skupu selektiranih podataka. To, međutim, uopšte nije sigurno. U nekim slučajevima sa višestrukim lošim podacima koji su u interakciji, normalizovani reziduali pogrešnih merenja su mali, prouzrokujući da takva merenja nisu "zabeležena" i prema tome nisu selektirana. Na taj način loše merenje je klasifikovano kao dobro i nevalidna komponenta se unosi u estimaciju greške svih selektiranih merenja, čime je rezultat identifikacije kompromitovan.

Kompenzacioni metod [16], pokušava da iskoristi najbolje karakteristike KOI i ITH metoda i izbegne njihove slabosti. On kombinuje pouzdanost selekcije loših

Created by Dragan Vlaisavljevic - 32 -

Page 33: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

podataka pomoću sekvencijalnog izbacivanja merenja sa najvećim apsolutnim normalizovanim rezidualima na računarski efikasan način sa sposobnošću ITH metode da obezbedi i statistički analizira estimaciju grešaka merenja. Mora se naglasiti, međutim, da čak i sa prikazanim metodom postoji rizik da lažni podaci nisu selektirani u slučajevima neadekvatne lokalne redundancije.

Da bi se analizirao efekat izbacivanja jednog ili više merenja na rešenje estimatora stanja, merenja ne moraju da budu fizički eliminisana iz skupa mernih podataka. Umesto toga, njihove vrednosti mogu se menjati na takav način da rezultujuće rešenje estimatora bude isto kao da je merenje stvarno eliminisano [16, 17].

Proces detekcije

Proces identifikacije loših podataka startuje se njihovom detekcijom i skupu merenja. Smatra se da oni postoje ako je ispunjen barem jedan od dva uslova:

∑=

<<m

iw irJ

1

2)()( αx ; (23)

iNir β< , (24)

gde su:

iiiNiiW rrrri

ρσ /;/ == − otežani i normalizovani reziduali;

m − broj merenja; βα , − pragovi detekcije definisani na osnovu statističkih karakteristika

estimacije; iiρ − dijagonalni član kovarijantne matrice reziduala, jednačina (8);

U primeni estimatora uočeno je da jedino primena oba uslova garantuje uspešnu detekciju grešaka.

Proces identifikacije po metodu kompenzacije

Metod izvršava identifikaciju loših podataka u dve faze [16]. U prvoj fazi merenja sa najvećim apsolutnim rezidualima uzastopno se eliminišu i skupljaju u skup sumnjivih podataka koji se kompenzuju. U drugoj fazi vrši se konačna klasifikacija sumnjivih merenja i ona za koja se utvrdi da su ispravna vraćaju se u skup tačnih merenja. Konačno rešenje estimacije zatim se dobija bez faktorizacije informacione matrice.

Kompenzovane vrednosti za loša merenja dobijaju se na osnovu:

)( elk

lk zzSzz −−= , (25)

gde su:

Created by Dragan Vlaisavljevic - 33 -

Page 34: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

lz − vrednost lošeg merenja;ez − estimacija merenja;

Sk − matrica osetljivosti rezidualnih vrednosti (10) za merenja obuhvaćena kompenzacijom.

NOVI MODELI ZA ESTIMACIJU STANJA

Poslednjih godina pojavljuju se nove tendencije u rešavanju problema uočenih u primeni estimatora. Oni su još uvek predmet intenzivnih istraživanja i ovde se navode samo kao naznaka za buduća istraživanja. Istraživanja su skoncentrisana, uglavnom, oko dva problema :

- identifikacija i eliminacija višestrukih loših ″uticajnih ″ (leverage) merenja;- modelovanje grana sa nultim impedansama.

Definicija ″uticajnih″ merenja

Uticajna (leverage) tačke u procesu regresije su one tačke koje su daleko od najvećeg broja podataka u prostoru stanja [18].

Na osnovu relacije:

KzzHHWHHz == −− T11T )( , (27)

moguće je formirati matricu K, koja uspostavlja direktnu vezu između estimiranih vrednosti za merenja z i samih merenja (z). Vrednosti za iiK kreću se između 0 i 1. Vrednost iiK predstavlja uticaj merenja z na estimirane vrednosti z . Merni reziduali mogu se prikazati kao funkcija elementa matrice K:

zKIKzzzzr )( −=−=−= . (28)

Dakle, reziduala merenja koji odgovara uticajnim tačkama biće vrlo mali (mada može biti sa velikom greškom), slično kao kritična merenja čiji su reziduali identički jednaki nuli. Međutim, eliminacija kritičnih merenja pretvara sistem u neopservabilan, dok se uticajne tačke mogu eliminisati, a da sistem ostane opservabilan (ukoliko ta uticajna merenja nisu istovremeno i kritična) [19].

U slučaju pojedinačnih loših uticajnih merenja, normalizovani rezidual je određen sa:

ii

iNi

Krr−

=1 , (29)

tako da se oni mogu otkriti jer je iiK−1 blisko nuli, pa je normalizovani rezidual dovoljno veliki da ukaže na loše merenje. Međutim, kada postoji višestruka uticajna loša merenja ona mogu da se međusobno maskiraju dajući manje vrednosti za iiK , tako da u tim slučajevima test normalizovanih reziduala ne

Created by Dragan Vlaisavljevic - 34 -

Page 35: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

može da identifikuje lože podatke. Kao generalno pravilo smatra se da se ovi problemi javljaju kod modelovanja vodova sa malim impedansama, ili u čvorovima sa injektiranim snagama na koje je vezano više vodova.

Postupci za eliminisanje višestrukih loših uticajnih merenja

Jedan od postupaka za eliminisanje višestrukih loših uticajnih merenja je pomoću estimatora sa najmanjom medianom kvadratnih rezidula (LMS) [18]. Ovaj postupak izdvaja merenja za koja je mreža opservabilna. Dakle, LMS metod je robustan i mogao bi se primeniti pre izvršavanja estimacije, ali su njegovi računarski zahtevi ogromni i prevazilaze nivo upotrebljivosti za sisteme koji danas rade u realnom vremenu, jer on zahteva značajan broj proračuna tokova snaga, koji u realnim EES može iznositi i nekoliko stotina.

Postupak sa WLAV estimatorom (Weighted Least Absolute Value) ima prednost, jer on pouzdano odbacuje loša merenja, osim ako ona nisu iz kategorije uticajnih merenja. Međutim, moguće je linearnim transformacijama izmeniti jednačine merenja, na takav način da one više ne sadrže uticajna merenja [19], tako da budu tretirana na isti način kao i ostala. S obzirom da se minimizira apsolutna vrednost rezidula metodom linearnog programiranja, najveći merni reziduali se automatski odbacuju, tako da se pogrešna merenja spontano eliminišu. Međutim, najveći problem u primeni ovog metoda je značajno vreme trajanja postupka i veliki memorijski prostor računara.

Modelovanje grana sa nultom impedansom

Grane sa nultom impedansom mogu se naći u modelima za transformatorske stanice i postrojenja (prekidači spojnih polja). Ako se predstave sa malom impedansom, informaciona matrica može postati singularna, a ako se čvorovi jednostavno spoje, merenje u toj grani je izgubljeno. Dakle, impedansa treba da je dovoljno mala da ne utiče na tačnost proračuna, a da je istovremeno dovoljno velika da omogućava dobru uslovljenost informacione matrice.

Zbog toga je u [20] predložen novi način modelovanja ovakvih grana. Prva izmena je u tome da su izmerena aktivna i rektivna snaga prikazane direktno kao promenljive, bez uvođenja uobičjnih promenljivih (θ ,V), čime se izbegava uvođenje impedanse u model. Isto važi i za snage injektirane u čvorovima koje grana povezuje.

Druga izmena je u tome što se razlika uglova i pad napona duž grane sa nultom impedansom tretiraju kao virtualna merenja, sa relativno velikim težinskikm faktorima, ili kao ograničenja tipa jednakosti, na sličan način kao nulte injektirane snage u modelu za sabirnice transformatorskih stanica.

Ovaj model obećava da reši čitav niz problema u modelovanju transformatorskih stanica i identifikaciji topoloških grešaka.

Created by Dragan Vlaisavljevic - 35 -

Page 36: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

LITERATURA

[1] F. C. Schweppe, et al., "Power System Static State Estimation: Part I-III" IEEE Trans. on Power Apparatus and Systems, Vol. PAS-89, pp. 120-135.

[2] F. F. Wu, "Real-time Network Security Monitoring, Asessment and Optimization" Int. Journal Elec. Power and Energy Systems, Vol. 10, pp. 83-100, April 1988.

[3] M. Ćalović, "Statička estimacija stanja", MIPRO, Rijeka, str. 3-235, 1990.[4] F. F. Wu, "Power System State Estimation: A Survey", Int. Journal Elec.

Power and Energy Systems, Vol. 12, No. 2, pp. 80-87, April 1990.[5] J. W. Gu, K. A. Clements, G. R. Krumpholz, and P. W. Davis, "The Solution of

Ill-conditioned Power System State Estimation Problems Via the Method of Peters and Wilkinson" PICA Cont. Proc., pp. 239-246, 1983.

[6] A. Monticelli, C. A. Murari, and F. F. Wu, "A Hybrid State Estimator: Solving Normal Equations by Orthogonal Transformations", IEEE Trans. on Power Apparatus and Systems, Vol PAS-105, pp. 3460-3468, December 1985.

[7] A. Simoes-Costa, and V. H. Quintana, "A Robust Numerical Technique for Power System State Estimation", IEEE Trans. on Power Apparatus and Systems, Vol. 100, pp. 3791-3800, August 1981.

[8] L. Holten, A. Gjelsvik, S. Aam, F. F. Wu, and E. L. Wen-Hsiung, "Comparison of Different Methods for State Estimation", IEEE Trans. on Power Systems, Vol. 3, No. 4, pp. 1798-1806, November 1988.

[9] N. Vempati, I. W. Slutsker, and W. F. Tinney, "Enhancements to Givens Rotations for Power System State Estimation", IEEE Trans. on Power Systems, Vol. 6, No.2, pp. 842-849, May 1991.

[10]F. C. Aschmoneit, N. M. Peterson, and E. C. Adrian, "State Estimation with Equality Constraints", Tenth PICA Conf. Proc., Toronto, pp. 427-430, May 1977.

[11]A. Gjelsvik, S. Aam, and L. Holten, "Hochtel's Augmented Matrix Method - A Rapid Method Improving Numerical Stability in Power System Static State Estimation", IEEE Trans. on Power Systems, Vol-104, pp. 2987-2993, November 1985.

[12]A. Monticelli, F. F. Wu, and M. Yen, "Multiple Bad Date Identification for State Estimation by Combinatorial Optimization",Proc. of the PICA Conf., pp 452-460, May 1985.

[13]N. D. Xiang, S. Wang, and E. Yu, "A New Aapproach for Detection and Identification of Multiple Bad Data in Power System State Estimation", IEEE Trans. on Power Systems, Vol.103, No. 11, pp. 3239-3254, November 1984.

[14]L. Mili, Th. Van Cutsem, and M. Ribbens-Pavella, "Bad Date Methods in Power System State Estimation - A Comparative Study", IEEE Trans. on Power Systems, Vol. 104, No. 11, pp. 3037-3049, November 1985.

[15]L. Mili and Th. Van Cutsem, "Implementation of the Hypothesis Testing Identification in Power System State Estimation", IEEE Trans. on Power Systems, Vol. 3, No. 3, pp. 887-893, August 1988.

Created by Dragan Vlaisavljevic - 36 -

Page 37: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

[16]I. W: Slutsker, "Bad Data Identification in Power System State Estimation Based on Measurement Compensation and Linear Residual Calculation", IEEE Trans. on Power Systems, Vol. 4, No. 1, pp. 53-60, Februar 1989.

[17]A. Garcia and A. Monticelli, "Fast Decoupled State Estimation and Bad Data Processing", IEEE Trans. on Power Apparatus and Systems, Vol. 98, No. 5, pp. 1645-1652, September/October 1979.

[18]L. Mili, V. Phaniraj, and P. J. Rousseeuw, ″Least Median of Squares Estimation in Power Systems″, IEEE Trans. on Power Systems, Vol. 6, No. 2, May 1991.

[19]M. Celik, A. Ali Abur, ″A Robust WLAV State Estimator Using Transformations″, IEEE Trans. on Power System, Vol. 7, No. 1, February 1992.

[20]A. Monticelli and A. Garcia, ″Modeling Zero Impedance Branches in Power Systems State Estimation″, IEEE Trans. on Power System, Vol. 6, No. 4, pp 1561-1570, November 1991.

[21]A. Monticelli, ″State Estimation in Electric Power Systems: A Generalized Approach″, Kluwer Academic Publishers, 1999.

[22]A. Abur and A. G. Exposito, ″Power System State Estimation: Theory and Implementation″, Marcel Dekker, 2004.

Created by Dragan Vlaisavljevic - 37 -

Page 38: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

2.1.3. Prognoza opterećenja čvorova mreže

Funkcija prognoze opterećenja čvorova mreže (BLF − Bus Load Forecast) koristi se da se odredi opterećenja čvorova u mreži u budućnosti. Ova funkcija treba da odredi gde, kada i koliko se snage uzimaju iz mreže u pojednim čvorovima, odnosno ova funkcija vrši distribuciju sistemskog MW opterećenja na pojedinačne čvorove mreže.

Ako se opterećenje čvora (u MW) prikaže kao:

⋅+= baPL (sistemsko opterećenje), (1)

gde je b parametar, odnosno distribucioni faktor koji se ažurira jednim adaptivnim algoritmom, koji koristi jedno stanje u mreži koje se dobije nakon jednog rešenja statičke estimacije stanja.

Funkcija BLF obično se sastoji od dva modula:- Modul za ažuriranje modela opterećenja čvorova , koji ažurira

parametre koji se prognoziraju (parametar b)- Modul za prognoziranje vrednosti opterećenja čvorova , za unapred

specificrane vremenske elemente.

Uobičajno je da se koriste hijerarhijski modeli raspodele opterećenja na čvorove. Na primer:1. Sistemsko opterećenje. 2. Opterećenje geografske oblasti. 3. Podela po tipu opterećenja (industrija, domaćinstva, komercijalni potrošači). 4. Opterećenja čvora – sabirnice.

Opis funkcionalnosti BLF

Modul za ažuriranje modela opterećenja čvorova

Ovaj modul koristi rezultate rešenja statičke estimacije stanja, da bi se izvršilo ažuriranje parametara koji se prognoziraju i to za pojedine oblasti za koje je sistem observabilan, na osnovu proračuna estimacije stanja, ali uzimajući samo u obzir “real-time” merenja.

Uobičajeno se u praksi koristi hijerarhijski model raspodele opterećenja, tako što se sistem deli na pojedine oblasti opterećenja. Na ovaj način se omogućava geografska i sektorska podela opterećenja, kao što je prikazano na Slici 1.

Created by Dragan Vlaisavljevic - 38 -

Page 39: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

Najviši nivo opterećenja područja

(Područje za prognozu)

Potroš. podr. Bo

(Const. čvorovi)

Potroš. podr. B1

(vremenski promenlj. čvorovi)

Potroš. podr.

DOMAĆIN-STVA

Potroš. podr.

COMERCI-JALNI

Potroš. podr. I1 INDUS 1 shift

Potroš. podr. I2 INDUS 2 shifts

Potroš. podr. I3 INDUS 3 shifts

Slika 1: Primer stabla opterećenja (geografska i sektorska podela opterećenja)

Parametri oblasti opterećenja određuju MW raspodelu opterećenja za ceo modelovan sistem, tako da je omogućeno programu da prognozira raspodelu opterećenja po čvorovima za ceo sistem.

Prognozirani parametri za oblasti prate opterećenja oblasti, u skladu sa svojom srazmerom u odnosu na sistemsko opterećenje, a drugi faktori raspodele opterećenja prate kretanje raspodele pojedinih opterećenja.

U modelu opterećenja čvorova mogu se prepoznati sledeće vrsta opterećenja:

- konforming opterećenja (opterećenje koje prati promenu ukupnog opterećenja oblasti);

- ne-konforming opterećenja (opterećenja koja imaju svoju putanju promene opterećenja).

Created by Dragan Vlaisavljevic - 39 -

Page 40: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

Zadavanje MW opterećenja za najviši nivo opterećenja potrošačkog područja

Deo opterećenja za pokrivanje gubitaka u području

Distribuirati preostale potrošače na neposredne izdanke u hijerarhiji potrošačkog modela

Za svaki izdanak: Izračunati sumu baznih opterećenja njegovih (sopstvenih) izdanaka,

Naći opterećenja koja se distribuiraju na izdanke eliminacijom baznog opterećenja

Još izdanaka?

Izračunati MVAr opterećenje iz odnosa snaga koji se koristi za nebazni deo svakog MW opterećenja

Slika 2: Mehanizam raspodele opterećenja

Parametri koji se prognoziraju takođe prate parametre reaktivnog opterećenja (faktori snage) kao što je prikazano na Slici 3.

Created by Dragan Vlaisavljevic - 40 -

Page 41: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

PL [MW]

Reaktivno opterećenje

Dve komponente: Baza i Faktor snage Baza: korisnički definisana (može biti

vremenski zavisna) Faktor snage: primenjuje se na nebazne

odnose (takođe može biti vremenski zavisna)

Pbazno

Qbazno

QL [MVAr]

ϕ

Slika 3: Odnos aktivnog i reaktivnog opterećenja

Različiti nizovi prognoziranih parametara (distribucioni faktori i faktori reaktivnog opterećenja) memorišu se, i to za određene periode dana i nedelje.

Modul za prognoziranje vrednosti opterećenja čvorova

Ovaj modul koristi parametre opterećenja čvorova, koji su ažurirani od strane modula za ažuriranje opterećenja čvorova, da bi se izvršila raspodela prognoziranog opterećenja oblasti na različite čvorove u mreži i da bi se izračunalo reaktivno opterećenje čvorova.

Raspodela određena na osnovu parametara tada se skalira u odnosu na poznato, tj. prognozirano opterećenje oblasti.

Modelovanje osetljivosti promene snage opterećenja čvora obavlja se korišćenjem eksponencijalne funkcije:

pn

LL FF

VVPP

=

000 , (1)

gde su:

0LP – MW opterećenje čvora pri nominalnom naponu i učestanosti;LP – MW opterećenje čvora pri tekućoj vrednosti napona i učestanosti;

n – koeficijent osetljivosti napona;p – koeficijent osetljivosti učestanosti.

Created by Dragan Vlaisavljevic - 41 -

Page 42: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

Kada se ima slučaj da je više različitih tipova opterećenja priključeno na pojedini čvor, gornje osetljivosti primenjuju se nezavisno za svako pojedino opterećenje. Zatim se pojedina opterećenja sumiraju da bi se dobilo ukupno opterećenje čvora.

Opšte karakteristike

BLF funkcija omogućava sledeće prognoze:

- Real timePrognoza opterećenja čvorova za tekuće vreme i to za neobservabilni deo mreže kod proračuna statičke estimacije stanja.

- Studijski modPrognoza opterećenja čvorova kod proračuna napona i tokova snaga za unapred određeni sat u toku i određeni dan u nedelji, koji su određeni od strane inženjera analitičara.

Ulazni podaci za ovu aplikaciju su:

a) Opterećenja čvorova, koja su dobijena u rešenju statičke estimacije stanja, a koriste se u cilju ažuriranje distribucionih parametara za raspodelu sistemskog opterećenja na opterećenju čvorova.

b) Prognozirano opterećenje oblasti, koje se dobija kao rezultat proračuna aplikacije za prognozu opterećenja oblasti.

Literatura

[1] AREVA – tehnička specifikacija EMS aplikacija. [2] E. Handschin and C. Dornemann, ″Bus Load Modelling and Forecasting″,

IEEE Trans. on Power Systems, Vol. 3, No. 2, pp. 627-633, May 1988.[3] I. Moghram and S. Rahman, ″Analysis and Evaluation of Five Short Term

Load Forecasting Techniques″, IEEE Trans. on Power Systems, Vol. 5, No. 4, pp. 1484-1491, November 1989.

[4] M. Espinoza, S. Joye, R. Belmans, and B. De Moor, ″Short-term Load Forecasting, Profile Identification, and Customer Segmentation: A Methodology based on Periodic Time Series″, IEEE Trans. on Power Systems, Vol. 20, No. 3, pp. 1622-1630, August 2005.

[5] S. Vemuri, W. Huang, and D. Nelson, ″On-line Algorithms for Forecasting Hourly Loads of an Electric Utility″, IEEE Trans. on Power Apparatus and Systems, Vol. PAS-100, pp. 3775-3784, August 1981.

[6] T. M. Peng, N. F. Hubele, and G. G. Karady, ″An Adaptive Neural Network Approach to One-Week Ahead Load Forecasting″, IEEE Trans. on Power Systems, Vol. 18, No. 3, pp. 1195-2003, August 1993.

Created by Dragan Vlaisavljevic - 42 -

Page 43: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

2.1.4. Faktori osetljivosti gubitaka

Uloga ove funkcije jeste da se na osnovu proračunatih faktora osetljivosti, izračunaju penalizacioni faktori koji se koriste u funkciji proračuna ekonomskog dispečinga (ED) u realnom vremenu, odnosno za funkciju angažovanja agregata (UC).

Ova funkcija izvršava se automatski, kao deo sekvence niza aplikacija u realnom vremenu. Program za proračun faktora osetljivosti gubitaka u mreži (LSC − Loss Sensitivity Calculation) izračunava za tekuće stanje mreže osetljivosti gubitaka u sistemu na promene snage na generatorskim čvorovima, kao i na promene snage na iterkonektivnim dalekovodima. Odnosno, sam proračun polazi od rešenja stanja mreže, koje se dobija nakon uspešno rešene statičke estimacije stanja mreže.

Ekonomski dispečing koristi penalizacione faktore odmah nakon proračuna LSC, dok funkcija UC koristi nizove podataka koji se sastoje od faktora osetljivosti. Ovi nizovi podataka o osetljivosti u sistemu čine linearni segmentni model gubitaka, gde svaki niz opisuje podatke za, na primer, pet nivoa opterećenja sistema i za pet nivoa razmene snage sa susednim EES-ima.

Osnovne osobine ove funkcije su: - Koristi se Jacobi-jan dobijen kod proračuna raspodele snage, gde je za

referentni čvor uzet neki od čvorova potrošnje.- Da proračunava penalizacione faktore.- Da izračunava uprosečene vrednosti faktora osetljivosti gubitaka, i to

za različite nivoe opterećenja sistema, u cilju korišćenja od strane funkcije UC.

- Da generiše liste penalizacionih faktora koji su izvan tolerantnih vrednosti.

Funkcionalni opis

Globalni prikaz funkcije LSC dat je na Slici 1:

Created by Dragan Vlaisavljevic - 43 -

Page 44: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

Slika 1: Globalni prikaz funkcije proračuna faktora osetljivosti gubitaka

Algoritam LSC

Faktori osetljivosti gubitaka u mreži na promene snage na generatorima izračunavaju se kao:

G

LossP

PLSU∂

∂= . (1)

Faktori osetljivosti gubitaka u mreži na promene snage na interkonektivnim dalekovodima izračunavaju se kao:

IPLSI Loss

∂∂= . (2)

Penalizacioni faktori za ekonomski dispečing onda se mogu izračunati kao:

LSUFPG −

=1

1 i

LSIFPI −

=1

1. (3)

Ukupna jednačina bilansa aktivnih snaga u sistemu može se napisati kao:

∑≠

=+SLi

LossSLi PPP , (4)

gde SL označava referentno-balansni čvor, a LossP ukupni gubici u sistemu. Ako se vektor stanja sistema definiše kao (uglovi i moduli fazora napona)

[ ]T11 NNii VVV θθθ ⋯⋯=x , onda je iz jednačine (4):

∑∑∑

≠≠∂

∂⋅∂

∂+∂∂⋅

∂=

∂∂+

∂=

∂∂

SLi

i

i

Lossi

i

SLii

SLSLii

Loss QQ

PPP

PP

PP

xxxxx, (5)

Created by Dragan Vlaisavljevic - 44 -

Real time model mreže

Izračunavanje faktora osetljivosti

Rešenje SE

LSC rezultati

Model gubitaka mreže

ED

UC

Page 45: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

odnosno:

∑ ∑≠ ≠ ∂

∂⋅∂

∂+∂∂

∂∂+−=

∂∂

SLi SLi

i

i

Lossi

i

LossSL QQ

PPP

PPxxx

)( 1 , (6)

ili:

∂∂−

∂∂−

=

∂∂

∂∂

i

Lossi

Loss

ii

SL

ii

SL

QP

PP

VV

P

P 1J

θθ

, SLni ≠= ,,2,1 ⋯ , (7)

gde su:

∂∂

∂∂=

xQ

xPJ ;

∂∂∂∂

=∂∂

i

i

VP

P

xP θ

;

∂∂∂∂

=∂∂

i

i

VQ

Q

xQ θ

.

Opšte jednačine aktivnih i reaktivnih injektiranja u čvoru su:

∑=

−−=n

jijjiijjii YVVP

1)cos(),( δθθθV ; (8a)

∑=

−−=n

jijjiijjii YVVQ

1)sin(),( δθθθV , (8b)

gde su injektiranja u čvorovima:

LiGii PPP −=),( θV ; (9a)

LiGii QQQ −=),( θV . (9b)

Linearizacijom oko radne tačke dobija se:

Gij j

jj

ij

j

i PPVVP∑ ∑ ∆=∆

∂∂+∆

∂∂ θ

θ ; (10a)

∑ ∑ ∆=∆∂∂+∆

∂∂

j jGij

j

ij

j

i QQVVQ θ

θ , (10b)

Created by Dragan Vlaisavljevic - 45 -

Page 46: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

koja je u jedinstvenoj formi: uxJ ∆=∆ , (11)

gde je x vektor stanja (uglovi i moduli fazora napona), a u je vektor upravljačkih promenljivih (aktivne snage generatora, nenominalni odnosi regulacionih transformatora i reaktivna snaga regulacionih resursa).

Međutim, ako postoje druge zavisne funkcije (h), kao što su na primer tokovi snaga po granama:

)sincos(),( 2ijijijijjiijiij BGVVGVPh θθ ++−==θV , (12)

onda je njena linearizovana forma:

∆∆

∂∂

∂∂

∂∂

∂∂

+

∆∆

∂∂

∂∂

∂∂

∂∂

=∆⋮⋯⋮⋮

⋮⋯⋮⋮

2

1

2

2

1

22

1

1

1

1

1

1

2

1

21

1

1

1

uu

uh

uh

uh

uh

Vh

Vh

hVh

h θθ

θ

, (13)

odnosno u kompaktnoj formi:

uJxJ ∆+∆=∆ huhxh , (14)

gde se x∆ može zameniti iz (11):

uJuJJ ∆+∆=∆ −huhxh 1 . (15)

Prethodna jednačina daje osetljivost zavisne funkcije (h) na upravljačke promenljive (vektor u).

U praktičnim situacijama obično je 0=huJ , kada je:

1−=∆∆ JJu hxh

. (16)

Faktori osetljivosti gubitaka u odnosu na promenu snaga generatora (ili interkonektivnih dalekovoda) mogu se izračunati na sledeći način:

1TT

)]([ −∂

∂=∂

∂ xJuufPLoss , (17)

gde su:u – vektor snaga generatora (ili snaga interkonektivnih dalekovoda); x – vektor modula napona i uglova fazora napona; f – jednačine tokova snaga u mreži; J – puna Jacobi-jeva matrica (uzima stanje Jacobi-jeve matrice nakon

zadnjeg rešenja statičke estimacije stanja mreže).

Created by Dragan Vlaisavljevic - 46 -

Page 47: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

Alternativni način za proračun osetljivosti gubitaka na promene snaga generatora mogu se dobiti iz George-ove formule.

Literatura

[1] SIEMENS – tehnička specifikacija EMS aplikacija. [2] Y-H. Song and X-F. Wang, „Operation of Market-Oriented Power Systems“,

Springer, 2003.[3] A. J. Wood and B. F. Wollenberg, „Power Generation, Operation and

Control“, Wiley, 1996.[4] H. Saadat, „Power System Analysis“, McGraw Hill, 1999.[5] J. J. Grainger and W. D. Stevenson Jr, „Power System Analysis“, McGraw

Hill, 1994, pp. 548-560.[6] A. R. Bergen and V. Vittal, „Power System Analysis“, 2nd Edition, Englewood

Cliffs, NJ: Prentice-Hall, 2000, pp. 416-429.[7] S. J. Lee, ″Calculation of Optimal Generation for System Loss Minimization

using Loss Sensitivities Derived by Angle Reference Transposition″, IEEE Trans. on Power Systems, Vol. 18, No. 3, pp. 1216-1217, August 2003.

[8] S-D. Yang and S-J. Lee, ″A Remark on a Mathematical Formulation for System Loss Minimization Using Equal Incremental Loss Sensitivities″, IEEE Trans. on Power Systems, Vol. 22, No. 1, pp. 496-497, February 2007.

[9] S-J. Lee and S-D. Yang, ″Derivation of P-Q Loss Sensitivities by Angle Reference Transposition and an Application to Optimal P-Q Generation for Minimum Cost″, IEEE Trans. on Power Systems, Vol. 21, No. 1, pp. 428-430, February 2006.

Created by Dragan Vlaisavljevic - 47 -

Page 48: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

2.2. On-line funkcije

2.2.1. Statička analiza sigurnosti

Izraz sigurnost EES-a [1], kako je definisan od strane NERC (1997), predstavlja sposobnost EES-a da se „održi“ nakon iznenadnog poremećaja tipa kratkog spoja, ili gubitka nekog od elementa EES (vod, transformator, generator).

Postoje tri osnovna aspekta problema sigurnosti elektroenergetskih sistema. To su tranzijentna, dinamička i statička sigurnost.

Tranzijentna sigurnost bavi se istraživanjem poremećaja koji mogu izazvati tranzijentnu nestabilnost (na primer, gubitak sinhronizma između generatora u paralelnom radu). Znači, ona je vezana za brzu kratkotrajnu dinamiku posle strukturnih poremećaja, nasuprot tzv. dinamičkoj sigurnosti pridruženoj periodu dugotrajne dinamike, čije je trajanje i do 20 minuta posle inicijalnog poremećaja, koji ju je izazvao. Naravno da se kod istraživanja dugotrajne dinamike mora pratiti i kratkotrajna dinamika, pa se problem tranzijentne sigurnosti može razmatrati i u sklopu istraživanja dinamičke sigurnosti.

Statička sigurnost bavi se proučavanjem efekata specifikovanih poremećaja posle iščezavanja prelaznih pojava. Drugim rečima, za analizu sigurnosti karakteristična su stacionarna stanja u koja sistem dolazi posle pretpostavljenih poremećaja.

Za statičku analizu uzima se u razmatranje samo „fiksna slika“ EES-a. Pri tome, pretpostavlja se da je sistem uspešno prošao kroz tranzijentni period, odnosno dinamički je stabilan. Promenljive sistema koje se nadziru kod analize statičke sigurnosti su tokovi snaga po granama mreže i moduli napona po čvorovima mreže.

Normalno, analiza sigurnosti se obavlja različito kada se radi za potrebe planiranja, ili za nadzor i operativne svrhe upravljanja EES-a. Ova razlika pre svega proističe od tipa akcije koju treba inicirati u slučaju očekivanog velikog poremećaja u EES. U oba slučaja, sve promenljive sistema treba da budu unutar granica koje karakterišu normalno radno stanje EES-a [5].

Vremenski okviri za upravljačke akcije povezane sa sigurnošću

Postoje tri vremenska okvira za upravljačke akcije koje se odnose na sigurnost:

1) Upravljanje u realnom vremenu.Donosilac odluka je operator – dispečer.

2) Operativno planiranje.Operativna pravila razvijaju se tako da se kriterijumi sigurnosti zadovoljavaju, a da se pri tome specificiraju minimalni zahtevi za operativno

Created by Dragan Vlaisavljevic - 48 -

Page 49: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

upravljanje, tako da se obezbede prihvatljive performanse rada EES-a pri pojavi kritičnih poremećaja (koji mogu dovesti do narušavanja sigirnosnih granica pogona EES-a).

3) Dugoročno planiranje.Kod izrade ovih studija planer treba da odredi najbolji način kako da se dogradi EES, uvažavajućiu sigurnosne kriterijume.

Skup kritičnih poremećaja

Rezultati analize si-gurnosti (lista

kritičnih poremećaja)

Izbor i selekcija poreme-

ćaja

Detaljna analiza

Redukovani skup potencijalno

opasnih ispada Aktuelno

stanje sistema

OPERATOR

Akcije preventivnog upravljanja

… S k

Slika 1: Procedura analize poremećaja

Upravljačke akcije koje prate analize sigurnosti mogu se podeliti na: preventivne i korektivne.

Za korektivne akcije, kada se potencijalni poremećaj oceni kao opasan, operator treba da je u mogućnosti da održi EES u normalnom stanju, primenom korektivne akcije. Osim toga, operator treba da ima „spremne“ preventivne akcije, koje treba da koriguju efekte mogućih opasnih poremećaja u EES-u.

Program za analizu statičke sigurnosti treba da je sposoban da obradi sve moguće poremećaje, tipa (N−1) i specifične (N−2) tipa.

Vremenski okvir za ovu obradu uobičajeno je od 10 do 15 minuta. Naravno da se u ovim analizama stanje sistema uzima kao kvazi-stacionarno, tj. smatra se da se promene u proizvodnji i potrošnji mogu zanemariti.

Created by Dragan Vlaisavljevic - 49 -

Page 50: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

Operativne sigurnosne

granice narušene

Da li može ponovo preživeti stanje prvog

poremećaja Stanje pre ispada

može sigurno preživeti stanje prvog poremećaja

T = 0

Stanje posle ispada ne može preživeti stanje

sledećeg poremećaja

Mora biti manje od 30 min

Vreme Slika 2: NERC zahtev za sigurnošću

Deterministički prema probabilističkom pristupu analize sigurnosti

Po determinističkom pristupu, treba obuhvatiti sve kritične poremećaje kod analize sigurnosti, a što je često slučaj da treba obuhvatiti sve potencijalne poremećaje kao kritične. Na ovaj način se ima da se primenjuju konzervativna, tj. neekonomična rešenja kod operativnog planiranja i kod operativnih studija, koji dovode do rešenja koja su ponekad nepotrebna, ili se ne mogu opravdati troškovi pogona EES-a.

Jedan od načina da se ova slabost prevaziđe jeste da se primeni i probabilistički koncept pojave poremećaja. Ovaj koncept uz primenu statističkog prilaza tretmana poremećaj može dovesti da se definišu scenarija poremećaja, koji bi bili realističniji za EES-e sa tehničkog stanovišta, kao i sa ekonomskog stanovišta pogona EES-a.

Funkcija analize statističke sigurnosti kao deo EMS-a [2] može da se izvršava na dva načina:

- u realnom vremenu- u studijskom modu

U modu realnog vremena, statički model EES-a koji se koristi dobija se kao izlaz aplikacije statičke estimacije stanja. Ovaj model predstavlja operativno stanje EES-a koje se dobija kao „trenutna slika“ u vremenu. Ukoliko se tokom nadzora, tj. analize sigurnosti, detektuje narušavanje ograničenja u realnom vremenu, neophodno je da se nakon toga sprovede proračun upravljačkih akcija koje treba da se preduzmu.

Aplikacije analize sigurnosti u realnom vremenu treba da budu robusne i vrlo brze tokom izvršavanja.

U studijskom modu, statički model EES-a obično predstavlja prognozirano operativno stanje EES-a, koje se može generisati automatski na osnovu

Created by Dragan Vlaisavljevic - 50 -

Page 51: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

sačuvanih stanja EES-a u RDBMS. Osnovni cilj analize sigurnosti u studijskom modu jeste da obavi zadatak planiranja rada EES-a sa stanovišta sigurnosti.

Analiza sigurnosti obuhvata sledeće dve podfunkcije:- detekcija narušavanja granica sigurnosti. - selekcija i analiza poremećaja.

Detekcija narušavanja granica sigurnosti obavlja se jednostavnim nadzorom nad veličinama tokova snaga, napona i njihovim poređenjem sa unapred zadatim vrednostima ovih veličina, tj. njihovim granicama.

Selekcija i analiza poremećaja – Selekcija poremećaja, tj. ispada treba da identifikuje i rangira svaki poremećaj u odnosu na svoju „težinu“, odnosno uticaj na rad EES-a.

Analiza poremećaja izvršava se nad listom svih selektovanih kritičnih poremećaja (jednostruki ili višestruki ispadi elemenata EES-a).

Metodologija

Tradicionalni koncept analize poremećaja, tj. analize sigurnosti jeste da se svaki poremećaj simulira nad „baznim stanjem“ EES-a. Na taj način se izračunava novo stanje EES-a nakon poremećaja, koje se zatim proverava sa stanovišta da li ima narušavanja ograničenja. Ova simulacija podrazumeva da se svaki put radi proračun raspodele tokova snaga i napona u EES-u.

U praksi, za analizu sigurnosti imaju se sledeće tri teškoće: Formiranje odgovarajućeg modela EE-aS koji verno reprezentuje aktuelno

stanje. Ovo pre svega zavisi od toga kako se želi stanje EES-a posle poremećaja predstaviti, i koliko se želi tačnost rezultata proračuna.

Određivanje poremećaja koji treba da se uzmu u rešavanje kod analize sigurnosti.

Proračun tokova snaga i napona EES-a za česte vremenske intervale vremena zahteva značajne računarske resurse.

Opšti pristup kod analize poremećaja u realnom vremenu definiše sledeća tri odvojena procesa:

a) Definicija poremećaja (svi, ili neki jednostruki poremećaji, zatim dvostruki poremećaji kod kojih prvi, tj. inicijalni poremećaj dovodi do sledećeg(ih) poremećaja.

b) Selekcija poremećaja . U ovom procesu moguće su najveće uštede u računarskom vremenu. Ovde se primenjuju metodi odvajanja poremećaja i to onih koji neće dovesti do narušavanja ograničenja sigurnosti. Ovde se za proračun koristi linearni model EES-a, koji može da proračuna rezultat relativno brzo, ali sa ograničenom tačnošću. Na bazi ovih rezultata, poremećaji se rangiraju po redosledu ozbiljnosti u opadajućem nizu, počevši od najtežeg poremećaja po posledicama na rad EES-a.

Created by Dragan Vlaisavljevic - 51 -

Page 52: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

c) Ocena poremećaja . Procena efekata poremećaja vrši se AC proračunom napona i tokova snaga za poremećaje koji su rangirani tokom selekkcije poremećaja. Ovaj proces zaustavlja se kada se ima slučaj u kome se nema narušavanja ograničenja u EES-u. Takođe se ovaj proces može zaustaviti dok se ne postigne maksimalan broj slučajeva nad kojima se vrši analiza sigurnosti, ili dok se ne iskoristi računarsko vreme odvojeno za ovaj proračun.

U nekim primenama analize poremećaja, selekcija i ocena efekata poremećaja se objedinjuju u jedan proces. Ovaj objedinjeni proces proračuna, tj.simulacije izvršava sekada se ima:a) dovoljno tačan model EES-a, odnosno rešenje stanja EES-a.ilib) kada se brza selekcija ne može obaviti pouzdano, pa se tačniji model mreže, odnosno načina rešavanja mora primeniti.

Modelovanje za analizu poremećaja

Tačnost modelovanja za analize poremećaja je ista kao i kod klasičnog proračuna napona i tokova snaga, tako da se koristi iterativno rešavanje nelinearnih jednačina i korišćenje različitih upravljačkih uređaja.

Međutim, kod selekcije poremećaja ponekad kod proračuna procene poremećaja, koriste se aproksimativne formulacije i rešenja, a u cilju ubrzanja proračuna.

Od najvećeg interesa kod analize sigurnosti ima se praćenje vrednosti tokova snaga po granama mreže i vrednosti napona čvorova mreže u odnosu na ogranićenja koja su postavljenja za ove veličine.

Oba tipa ograničenja (i za tokove snaga i za napone) mogu se smatrati kao „meka“ ograničenja, što omogućava korišćenje modela sa ograničenom tačnošću.

Osnovni model koji se koristi je Newton-Raphson-ov matrični model jednačina tokova snaga, koje predstavljaju linearizaciju oko date radne tačke:

∆∆

−=

∆∆

QP

ULJNH Θ

. (1)

Polazi se od opšteg izraza za aktivna injektiranja u nezavisnim čvorovima EES-a sa N čvorova:

∑Ω∈

++=−=ij

ijijijijjiiiiLiGii BGVVVGPPP )sincos(2 θθ ; Ni ,,2,1 ⋯= . (2)

Ako se u izrazima za proračun admitansi ijB matrice admitansi nezavisnih čvorova zanemare sve otočne admitanse i uvedu pretpostavke:

0≈ijG ; ..0,1 jrVV ji ≈≈ ;

Created by Dragan Vlaisavljevic - 52 -

Page 53: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

1=ija (odnosi transformacije svih regulacionih transformatora jednaki su količniku odgovarajućih baznih napona);0,1cos ≈ijθ ; ijij θθ ≈sin ,

jednačina (2) postaje:

∑∑Ω∈Ω∈

−==ii j

jijiiij

ijiji BBBP θθθ ; Ni ,,2,1 ⋯= . (3)

jer je:

∑∑Ω∈Ω∈

=−=ii j

gij

jijii BBB ; g

ijij BB −= ,

gde je gij

gij X

B 1= susceptansa (a gijX reaktansa) grane i−j u [r.j.].

U matričnoj formi jednačina (5.26) postaje:ΘB ′−=P , (4)

gde su:

ijB=′B − (N×N)-dimenziona matrica susceptansi nezavisnih čvorova mreže (otočne susceptanse u čvorovima se zanemaruju);

[ ]T21 NPPP ⋯=P − N-dimenzioni vektor aktivnih injektiranja u nezavisnim čvorovima mreže;

[ ]T21 Nθθθ ⋯=Θ − N-dimenzioni vektor uglova fazora napona u nezavisnim čvorovima.

Matrica B ′ u jednačini injektiranja (4) je singularna matrica. Međutim, jednačina (4) ima rešenje ako se unapred izabere fazni ugao jednog čvora (referentno-balansnog (SL), recimo, za i = 1; 01 =θ ). U tom slučaju jedn. (4) svodi se na (N−1)-dimenzionu linearnu matričnu jednačinu:

rrr ΘB ′−=P , (5a)

ili u formi priraštaja:

rrr Θ∆′−=∆ BP . (5a)

Aktivna snaga injektiranja referentnog čvora 1:

∑=

−=N

iiPP

21 . (6)

Created by Dragan Vlaisavljevic - 53 -

Page 54: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

Linearni ("DC") model za proračun tokova snaga (5.28) daje jednostavan izraz za fazne uglove napona u PQ i PV-čvorovima (PVG i PVT čvorovi), tj. u svim čvorovima izuzev referentnog čvora i = 1, proračunom vektora:

[ ] rrr P∆′−=∆ − 1BΘ , [ ]T320 Nθθθ ⋯=Θ , (7)

pa se tokovi snaga po granama mreže dalje sračunavaju preko izraza:

gij

jiji

gijjiij

gij X

BBP)(

)()(θθ

θθθθ−

=−−=−= . (8)

Ograničenja tokova snaga po granama mogu se dobiti primenom distribucionih faktora kao:

max,gr PPSF ≤⋅ , (9)

gde su:

[ ] 1−′−= rr BDSF − )])1[( bbus NN ×− -dimenziona matrica osetljivosti ( busN je broj čvorova, a bN broj grana u sistemu);

Ω∈−

=+=

∂∂=′

∑Ω∈

igij

ki

gik

j

iij

jB

ijBBPB i

,

,0

θ ;

=

=−=

∂=

jkB

ikBPD

gij

gij

k

gij

ij,

,

θ ;

jθ ( kθ ) − ugao fazora napona u j-tom (k-tom) čvoru; gijP − tok aktivne snage u grani između i-tog i j-tog čvora; gijB − susceptansa grane između i-tog i j-tog čvora;

iΩ − skup čvorova povezanih sa i-tim čvorom; 0iB − ukupna otočna susceptansa priključena u i-tom čvoru.

Prethodno izloženi linearni model omogućava da se u slučaju perturbacije modela (usled ispada ili perturbacije parametara modela) novi model može izračunati bez nove inverzije matrice rB ′ u izrazu (7).

Karakteristični slučajevi koji se javljaju su: Normalno stanje (bez poremećaja)

U ovom slučaju tokovi snaga po granama određuju se na osnovu jednačine (9).

Created by Dragan Vlaisavljevic - 54 -

Page 55: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

Ispad graneIspad grane između i-tog i j-tog čvora (k-ti ispad) menja njenu susceptansu,

što dovodi do promene u matricama rB ′ i rD , koje se mogu izračunati kao:

)(,)(, kgij

gij

kgij BBB ∆+= ; g

ijkg

ij BB −=∆ )(, ; (10a)

−+=

0000

0gij

gijr

kr BBDD )( ; SLji ≠, ; (10b)

T)(ijij

gijr

kr B eeBB −′=′ , (10c)

gde je [ ]T0110 ⋯⋯⋯ −=ije )1( −busN -dimenzioni vektor (1 je na i-toj, a −1 na

j-toj poziciji, SLji ≠, ). Da bi se izbegla ponovna inverzija matrice )(k

rB′ u izrazu (7), a koja se koristi za proveru ograničenja tokova snaga po granama (9), primenjuje se matrična inverziona formula (Sherman-Morrison-ova lema):

ijrijgij

rijijrgij

rk

rB

B

eBe

BeeBBB 1T

1T111)(

][][][

][][1 −

−−−−

′−

′′−′=′ . (11)

Promena injektiranja (generatora ili potrošača) Ovaj ispad menja jednačinu bilansa snaga usled promene injektiranja u i-

tom čvoru: (k)

isRek

iik

i PPPP ,)()( +∆+= , (11)

gde su: uGi

ki PP ∆−=∆ )( , ili u

Lik

i PP ∆=∆ )( − ispad jedinične generatorske ili potrošačke snage u i-tom čvoru;

(k)LisRe

(k)GisRe

(k)isRe PPP ,,, += − ukupna rezerva u i-tom čvoru (u generatorskim

jedinicama i promenljivim potrošačima).

Simultani ispad grane i promena injektiranja (generatora ili potrošača)

Ovaj ispad opisuje je promenom injektiranja u i-tom čvoru ( )(kiP u (11)), kao

i promena u matricama 1)( ][ −′ krB i )(k

rD .

Primenjujući princip superpozicije, aktivna snaga u ℓ-toj grani posle ispada k-te grane i injektiranja u i-tom čvoru je:

Created by Dragan Vlaisavljevic - 55 -

Page 56: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

)(,,,

)0(,

)(,, )( k

iikIkBiIiiBkg

IB PSFSFSFPSFP ∆++= ℓℓℓℓ ,

bNk ,,2,1, ⋯ℓ = , busNi ,,2,1 ⋯= , (12)

gde se indeksi I i B odnose na ispade injektiranja i grane, respektivno.

Korišćenje ovog P-θ modela opravdano je kada se ima:- mala promena napona i reaktivnih snaga u mreži nakon poremećaja.- Odnos R/X je vrlo mali.

Kod analize poremećaja tipa ispada generatora koriste se različiti faktori raspodele aktivne snage ispalog generatora, na preostale generatore. Na sličan se tretira i ispad potrošnje i razdvajanja sistema u ostrva u kojima treba da se izvrši uravnoteženje proizvodnje i potrošnje u ostrvu.

U nekim EES-ima, u kojima se prenos aktivne snage ograničen padom napona, mora da se vrši nadzor nad vrednostima napona čvorova kod analize poremećaja. Kod tretmana ovog modela sa reaktivnim snagama ima se veća nelinearnost i naponi više zavise od tokova aktivnih snaga.

Za Q-V model može se koristiti sledeći model:VVB /Q∆=∆′′ . (9)

Kako je ovaj Q-V model malo prihvatljiv za samostalno korišćenje u slučaju većih poremećaja, neophodno je da se ΔQ i često matrica B” ažurira sa vrednostima uglova čvorova napona koji su dobijeni kao rešenje aktivnog modela, datog jednačinom (7).

Selekcija poremećaja

Postoje dva osnovna pristupa za selekciju poremećaja:

- Direktan metod – koji omogućava selekciju i direktno rangiranje slučajeva stanja EES-a sa poremećajima. Selekcija obuhvata primenu simulacija brzih aproksimativnih modela tokova snaga za svaki slučaj sa poremećajem. Nadzorom nad određenim vrednostima veličina (tokovi, naponi), ocena težine poremećaja može da se kvantifikuje direktno u cilju rangiranja. Tako da se ima jedan broj koji daje ocenu težine poremećaja.

- Indirekatan metod – proračunava vrednosti indeksa poremećaja u cilju rangiranja, ali bez izračunavanja vrednosti veličina (napona, tokova) nakon poremećaja.

Created by Dragan Vlaisavljevic - 56 -

Page 57: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

Selekcija poremećaja po aktivnoj snazi

Ovde se koriste metode selekcije u cilju pronalaženja preopterećenja po granama mreže u slučaju poremećaja u EES-u.

Korišćenjem leme o inverziji matrica kod analize poremećaja dobija se rešenje na brz način uvažavajući efekte promene topologije mreže kod ispada grane mreže.

Vektor ΔP u jednačini (7) je redak za ispade grana mreže, tako da ova lema kada se primeni u rešavanju analize ovog poremećaja daje brzo i tačno rešenje.Pored toga, korišćenjem tehnike retkih vektora i matrica analiza poremećaja se značajno unapređuje sa stanovišta brzine proračuna.

Sledeće metode mogu se koristiti za ovu selekciju poremećaja:

1) Eksplicitna inverzija matrice rB ′ (data jednačinom (7)). 2) Primena distribucionih faktora (opisana napred). 3) Korišćenje vektora kompenzacije, umesto primene leme o inverziji kod

analize svakog poremećaja. 4) Određivanje regiona mreže od interesa za analizu sigurnosti kod poremećaja

u EES-u i primena vektora kompenzacije. 5) Za slučajeve višestrukih ispada korišćenje specijalnih tehnika ažuriranja

faktora matrica (opisana napred). 6) Eliminisanje delova mreže primenom ekvivalentiranja što dovodi do

smanjenja veličine mreže od interesa koju treba da se analizira u proračunima.

7) Primena koncentrične relaksacije. 8) U slučaju da EES ima takvu nelinearnost da je inkrementalni DC model

neadekvatan, za selekciju poremećaja po aktivnim snagama mora se primeniti kompletan AC model.

Selekcija poremećaja po reaktivnoj snazi

Kako ni jedan Q–V linearizovan model ne može samostalno da se primeni tako ne postoji ni jedan direktan metod, kao što se ima kod slučaja metoda za aktivne snage.

Sledeće metode mogu se koristiti za ovu selekciju poremećaja:1) Metod u kome se prvo izračunaju promene uglova čvorova mreže u slučaju

nakon poremećaja i ove vrednsoti se zatim koriste za izračunavanje V/Q∆ u jednačini (9). Zatim se jednačina (9) reši. Ovo predstavlja jednu iteraciju brzog dekuplovanog modela proračuna napona i tokova snaga.

2) Primena tehnike za redukovanje mreže, ali sa zadržavanjem odziva po reaktivnoj snazi, na primer primena proširenog Ward i Ward PV ekvivalenta.

3) Određivanje dela mreže od interesa za rešavanje.4) Primena koncentrične relaksacije.

Created by Dragan Vlaisavljevic - 57 -

Page 58: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

Direktno rangiranje poremećaja

Direktno rangiranje poremećaja obavlja se primenom indeksa tipa:

∑ m

i

ij X

xw 2)( (10)

gde su:

ix – tok snage ili napon, od interesaiX – gornja granica veličine od interesa;

m – pozitivna celobrojna konstanta (obično je 2 ili 3); jw – težinski faktor.

Indirektno rangiranje poremećaja

Primenjene metode za indirektnu selekciju poremećaja ne izračunavaju eksplicitno pojedine veličine koje se nadziru kod selekcije poremećaja.

Ove metode proračunavaju numeričke vrednosti za indekse težine poremećaja za svaki poremećaj, a u cilju rangiranja ovih indeksa.

Najbolja osobina ovakvog načina selekcije poremećaja je brzina proračuna.Ovaj pristup pokazao se vrlo efikasan i tačan za P-θ model, dok za Q-V

model ovaj pristup je nezadovoljavajući.

Literatura:

[1] L. L. Grigsby, „Power Stability and Control“, Chapter III: „Power System Operation and Control, Security Analysis Part“, CRC Press, 2007.

[2] B. Stott, O. Alsac, and A. Monticelli, „Security Analysis and Optimization“, Proceeding of the IEEE, Vol. 75, No. 12, pp. 1623-1644, December 1987.

[3] A. J. Wood and B. F. Wollenberg, „Power Generation, Operation and Control“, Wiley, New-York, NY,USA, 1984.

[4] A. S. Debs, „Modern Power Systems Control and Operation“, DSI, Atlanta, GA, USA, 1996.

[5] L. H. Fink and K. Carlsen, "Operating under Stress and Strain", IEEE Spectrum, pp. 48-53, March 1978.

[6] F. F. Wu, "Real-Time Network Security Monitoring Assessment and Optimization", Int. Journal of Electrical Power & Energy Systems, Vol. 10, No. 2, pp. 83-100, April 1988.

Created by Dragan Vlaisavljevic - 58 -

Page 59: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

2.2.2. Proračun kratkih spojeva

Funkcija proračuna kratkih spojeva (PKS), kao deo EMS-a, ima ulogu da izračuna vrednosti struja kratkih spojeva u EES-u, i to za sledeće tipove kratkih spojeva:

- Trofazni kratak spoj (3PKS).- Jednofazni zemljospoj (1PZ). - Dvofazni kratak spoj (2PKS). - Dvofazni zemljospoj (2PZ).

Funkcija PKS treba da omogući:- Generisanje alarma operatoru koji treba da opišu šta će se dogoditi u

EES-u, odnosno koji efekti na rad EES-a će se imati u slučaju pojave kratkog spoja na određenoj lokaciji u EES-u.

- U studijskom modu analizu efekata planiranih isključenja u mreži.

Da bi se ovi proračuni realizovali, potrebno je:- Da se u modu realnog vremena bazno stanje inicijalizuje na osnovu

rešenja statičke estimacije stanja mreže, i to za stanje pre kratkog spoja.

- Da se u studijskom modu bazno inicijalizuje na osnovu rešenja proračuna napona i tokova snaga za planirani radni režim EES-a.

- Da algoritam za proračun kratkih spojeva omogući simulaciju promene topologije, zbog jednostrukog ispada grane mreže, pre pojave kratkog spoja.

- Da algoritam za PKS omogući modelovanje međusobno spregnutih dalekovoda.

Slika 1: Opšti prikaz funkcije proračun kratkih spojeva

Created by Dragan Vlaisavljevic - 59 -

ULAZNI PODACIModel mrežeSE PFLOW

Podaci o kratkom spoju

Formiranje„base case“

PKS rešavanje

Izlazni rezultati

Page 60: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

Metodologija

Svrha ove funkcije jeste da izvrši proračun struja kratkih spojeva za zadati kratki spoj (ili zemljospoj) u mreži, i da posle toga izvrši poređenje vrednosti struja kratkih spojeva sa nominalnim vrednostima struja kratkih spojeva prekidača u mreži, koji su locirani blizu čvora pogođenog kratkim spojem. Ako se pronađe bilo koja struja kratkog spoja koja svojom vrednošću prevazilazi ovaj nominalni nivo, onda ova struja kratkog spoja, tj. kratki spoj, postaje deo liste poremećaja koji dovode do narušavanja ograničenja u EES-u zbog pojave kratkog spoja.

U cilju rešavanja proračuna kratkih spojeva koriste se: simetrične komponente, tehnika retkih matrica za formiranje i faktorizaciju matrice čvorova, kao i brza zamena unapred i unazad u cilju rešavanja matrica impedansi čvorova.

Simetrične komponente su standardni alat koji se koristi za analizu kratkih spojeva (3PKS, 2PKS, 2PZ, 1PZ). Primena ovog metoda zahteva formiranje sledećih matrica admitansi čvorova: pozitivnog redosleda, negativnog redosleda i nultog redosleda. U slučaju analize 3PKS ima se slučaj simetričnog kratkog spoja, pa ovde nije potrebno određivanje vrednosti matrice admitansi nultog redosleda. U praktičnoj primeni PKS u većini slučajeva dovoljno je da se odrede vrednosti struja kratkih spojeva za slučajeve pojave 3PKS (ovo je obično, ali ne i po pravilu, najteži slučaj).

Izbor lokacija za kvarove, tj. kratke spojeve, vrši se tako da se mogu obuhvatiti svi čvorovi ili određene komponente mreže (sabirnice, generatori, dalekovodi, transformatori, ...). Za dalekovode i kablove lokacija kvara može da bude između čvorova koji su povezani ovim elementima mreže. Rastojanje do mesta kvara definiše se kao procenat od dužine dalekovoda.

U osnovi za model mreže treba koristiti model tipa kao za proračun tokova snaga, koji odgovara pozitivnom redosledu, za 3PKS subtranzijentna reaktansa generatora i injektiranja u mreži takođe se uzimaju u proračun.

Algoritam proračuna

Proračun struja kratkih spojeva radi se koristeći metod superpozicije, koji se sastoji od dva koraka:

1. Dobiti rešenje napona čvorova i raspodele tokova snaga bez kratkog spoja.

2. Ubaciti naponski izvor na mesto čvora pogođenog kvarom. Vrednost modula napona je ista, kao što je proračunata u Koraku 1, ali sa promenjenim znakom. Ostale vrednosti napona čvorova postave se na nulu.

Sumiranjem struja iz napred pomenuta dva koraka dolazi se do vrednosti struja kratkih spojeva.

Created by Dragan Vlaisavljevic - 60 -

Page 61: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

Uobičajno je da se koristi aproksimativan, pojednostavljeni metod kod primene u EMS-u. Primenom ovog metoda uglavnom se uzima u obzir činjenica da vrednosti struja kratkih spojeva manje zavise od opterećenja mreže, nego kada se ima promena topologije u mreži. Ovaj pojednostavljeni računarski metod (metod ekvivalentnog naponskog izvora) uglavnom je u skladu sa Nemačkim standardom VDE 0102 i međunarodnim standardom IEC 909 [1]. Rezultati koji se dobijaju kod ovog proračuna su na strani sigurnosti i imaju dovoljnu tačnost za praktičnu primenu.

Za proračun struja kratkih spojeva koriste se različiti računarski modovi koji mogu biti izabrani od strane operatora-analitičara:

1. Automatska promena lokacije kvara kroz sve čvorove mreže (mod primene brze Z matrice, Takaši mod). Ukupna struja/snaga kratkog spoja za pogođeni čvor kvarom i struje kratkih spojeva susednih čvorova potom se izračunavaju.

2. Kompletan proračun raspodele struja kratkih spojeva za pojedinu lokaciju kvara (primena tehnike brze zamene unazad).

Created by Dragan Vlaisavljevic - 61 -

Page 62: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

"0z

''0E (s)

Proračun uvažavajući opterećenje

mreže (s)

Proračun prema

standardu IEC 909

Lokacija kvara

iI (s) kI (s)

i k

"0z

''0E (s)

Opterećenje mreže pre

kvara (p) 0

iU (p) kU (p)

i k

Y

"0z

Invezno injektiranje

(b)

Obično je: C=1.1

iU (b) iU (b)

i k

Invezno injektiranje

(b)

iI (b) ( ) ( )pb kk UU =

( ) ( )3

cb nk

UU −=

Y

= ≈

+ +

Legenda: ''0E - Subtranzijentni napon ''0z - Subtranzijentna impedansa

kU - Napon na mestu kvara

kI - Struja na mestu kvara

U - Napon u čvoru

Slika 1: Metod proračuna struja kratkih spojeva

Created by Dragan Vlaisavljevic - 62 -

Page 63: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

Sigurnosna funkcija „provera isključenja u mreži“

Funkcija provera isključenja u mreži (PIM) je automatizovana funkcija EMS-a, koja vrši procenu efekata planskih isključenja u mreži, uzimajući u obzir ograničenja.

Iniciranje ove funkcije startuje sledeće funkcije:1. Proračun napona i tokova snaga za stanje sa planiranim isključenjem.2. Proračun analize statičke sigurnosti za stanje sa planskim isključenjem. 3. Proračun struje kratkih spojeva i to za tropolni kratak spoj.

Na Slici 2 prikazan je tok izvršavanja PIM funkcije.

Uneti operativni switch koristeći mrežni diagram

Zahteva se SCS

Izvršenje

SCS OSC3+DPF

SCS OSC3+DPF+CA

Ograničenja?

Prekid switch.op.

tio

Prekid

Kopirati podatke iz procesa unošenjem operativnog switch-a

Dispečerski tokovi snaga (DPF)

On-line prorač. kratkih spojeva OSC3

Analiza poremećaja (CA)

Da

Ne

Da Ne

Da Ne

Odluka

operatora

Prekidač Unutrašnja funkcija

SE … Estimator stanja

Legenda:

Slika 2: Način izvršavanja PIM funkcije

Literatura

[1] SIEMENS – tehnička specifikacija EMS aplikacija.[2] G. Knight and H. Sieling, “Comparison of ANSI and IEC 909 Short Circuit

Current Calculation Procedures”, IEEE Trans. on Industry Applications, Vol. 29, No. 3, pp. 625-630, May/June 1993.

Created by Dragan Vlaisavljevic - 63 -

Page 64: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

2.3. Off-line funkcije

2.3.1. Proračun naponskih stanja i tokova snaga

Formulacija problema proračuna naponskih stanja i tokova snaga (PFLOW) zahteva da se za data opterećenja u čvorovima mreže (sa pretpostavljenim nivoima proizvodnje i potrošnje) i sa određenim naponima u generatorskim čvorovima mreže izračuna naponski profil koji se ima po čvorovima mreže (moduli i uglovi napona), zatim aktivne i reaktivne snage po granama mreže (dalekovodi i transformatori), gubici snage po granama mreže i ostale promenljive mreže koje karakterišu stacionarno stanje [1].

Osnovna zajednička karakteristika proračuna naponskih stanja i tokova snaga (uobičajeni termin je proračun tokova snaga) i statičke estimacije stanja jeste da se oba zasnivaju na tzv. "čvor-grana" modelu, koji se dobija iz aktuelnog statusa rasklopne opreme u postrojenjima. U osnovnom modelu proračuna tokova snaga ponašanje sistema (poznate topološke strukture) opisuju ulazne promenljive, koje se unapred specificiraju, shodno izabranoj klasifikaciji čvorova (PQ, PVG, PVT i SL). Na osnovu njih, primenom nekog od determinističkih postupaka, proračunava se skup izlaznih promenljivih, koji čine moduli i uglovi fazora napona čvorova, kao i nenominalni odnosi transformacije klasičnih i faznih (phase-shift) regulacionih transformatora. U realnom pogonu može se desiti da se sve ulazne veličine ne mere direktno, ali se zato mogu proračunati (na primer, koristeći izraz bilansa kompleksnih snaga u čvoru i tokova snaga po incidentnim granama). U principu, kao ulaz u proračun tokova snaga može se koristiti bilo koji skup merenja iz sistema, koji će kao rešenje jednačina mreže, dati jedinstvene promenljive stanja sistema. Tipičan primer je zadavanje potrošačkih čvorova preko merenja aktivnih i reaktivnih opterećenja, ili preko merenja struja injektiranja i faktora snage.

Tabela 1: Praktična primena funkcije PFLOW

Aplikacija OpisPlaniranje prenosne mreže Koristi se da bi se proverila preopterećenja,

naponska problematika, i za identifikaciju lokacija za potrebna ojačanje mreže

Analiza sigurnosti Testiranje ispada grana i injektiranja u mrežiNaponsko-reaktivna analiza

Procena efekata delovanja za Q-V upravljanje

Određivanje kapaciteta prenosa

Izračunavanje graničnih snaga prenosa između oblasti u EES-u

Unapređenje sigurnosti Analiza efikasnosti korektivnih mera da bi se prevazišli negativni efekti poremećaja

Created by Dragan Vlaisavljevic - 64 -

Page 65: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

Sa matematičkog stanovišta osnovni problem proračuna tokova snaga je rešavanje velikog broja nelinearnih algebarskih jednačina.

Tabela 2: Matematičke tehnike koje su neophodne za primenu PFLOW aplikacije

Tehnika AplikacijaMatrična analiza Rešavanje linearizovanih jednačina iterativnim putemMetode numeričkog rešavanja

Postavljanje iterativne tehnike koja omogućava informacije o konvergenciji i drugim informacijama u vezi rešenja

Metode retkih matrica Omogućavaju efikasno rešavanje veoma velikih sistema

Metodologija

Ovde će biti opisana samo osnovna metodologija i primena aplikacije PFLOW, koja rešava specificirani problem.

Komponente modela

Analiza raspodele tokova snaga u prenosnom sistemu uglavnom se radi pod pretpostavkom da je trofazni sistem izbalansiran (simetričan). Tada se ima prezentacija ovog sistema, kao i njegovih komponenti (generatori, transformatori, dalekovodi, potrošnja, kapacitivni i induktivni otočni elementi), preko jednopolnih zamenskih šema koje se mogu naći u referentnoj literaturi [2].

Formulacija problema

U cilju da se postave osnovne jednačine, neophodno je da izvrši klasifikacija čvorova i promenljivih sistema.

Klasifikacija čvorova je (Tabela 3): 1. Potrošački ili PQ-čvorovi. Njihov ukupan broj je PQN . U ovim čvorovima

zadaju se aktivna i reaktivna injektiranja ( iP i iQ ). Nepoznate promenljive su moduli i fazni uglovi napona ( iV i iθ ). Ovi čvorovi opisuju se kompleksnim jednačinama:

spi

spi

spii jQPSS +== ; PQi α∈ .

2. Naponski kontrolisani ili PV-čvorovi. Njihov ukupan broj je PVN . U principu, u ovim čvorovima zadaju se aktivna injektiranja ( iP ) i moduli fazora napona ( iV), dok su nepoznate promenljive reaktivna injektiranja ( iQ ) i fazni uglovi napona ( iθ ). Zavisno od načina na koji se održavaju zadati naponi ( iV ), ovi čvorovi dalje se dele u dve podgrupe:

Created by Dragan Vlaisavljevic - 65 -

Page 66: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

2a. Generatorski ili PVG-čvorovi. Njihov ukupan broj je PVGN . U njima su specifikovana aktivna injektiranja ( iP ) i moduli fazora napona ( iV ), pri čemu se moduli fazora napona održavaju promenom injektiranja reaktivnih snaga (

iQ ). Ovi čvorovi opisuju se jednačinama:

spii PP = ; sp

ii VV = ; PVGi α∈ .

2b. Transformatorski ili PVT (PQV)-čvorovi. Njihov ukupan broj je PVTN ( PQVN ). U njima se zadati moduli fazora napona ( iV ) održavaju promenom odnosa transformacije regulacionog transformatora vezanog u nekoj grani incidentnoj i-tom čvoru. U ovim čvorovima zadaju se aktivna i reaktivna injektiranja ( iP i

iQ ) i moduli fazora napona ( iV ), dok su nepoznate promenljive fazni uglovi napona ( iθ ) i nenominalni odnos transformacije ( kia ) regulacionog trans-formatora u grani između k-tog i i-tog čvora, čijom se promenom održava moduo napona u i-tom čvoru ( iV ). Ovi čvorovi opisuju se jednačinama:

spi

spi

spii jQPSS +== ; sp

ii VV = ; PVTi α∈ ; PVPVTPVG NNN =+ .

3. Referentno-balansni (SL − "Slack") čvor. Koncept balansnog čvora je neophodan, jer su Joule-ovi gubici unapred nepoznati, pa se ne može egzaktno izvršiti uravnoteženje potrošnje (zajedno sa gubicima) i proizvodnje na generatorima u svim čvorovima. U tu svrhu obično se koristi neki od naponski kontrolisanih (generatorskih) čvorova, najčešće sa najvećom mogućnošću u pogledu proizvodnje aktivne snage. Po pravilu je balansni čvor ujedno i referentni čvor za merenje uglova fazora napona. U ovom čvoru unapred se zadaju moduo i fazni ugao napona, a aktivna i reaktivna injektiranja proračunavaju se naknadno, na kraju postupka rešavanja. Ovaj čvor opisuje se jednačinama:

spii VV = ; sp

ii θθ = ; SLi α∈ .

Očigledno je: NNN PVPQ =++ 1 .

Created by Dragan Vlaisavljevic - 66 -

Page 67: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

Tabela 3: Karakteristike raznih tipova čvorova pri rešavanju jednačina mreže

Tip čvora Unapred zadate promenljive

Nepoznate promenljive stanja

Ukupan brojnepoznatih

PQ; PQi α∈

PVT

PVG

iPVT

iPVGPV

α

α

;

;

SL; SLi α∈

iP , iQ

iP , iV

iP , iQ , iV

iV , iθ

iV , iθ

iQ , iθ

iθ , kia

iP , iQ

PQN2

PVGN2

PVTN2

2

Broj pojedinih promenljivih

PVTPVT

PVGPQ

NNNNN

+=+

+++

23)1(2

NNNN

PVT

PVGPQ

2)1(2

=++

++ 2N

Kada se izvrši klasifikacija čvorova i specifikuju zadate i nepoznate promenljive, shodno Tabeli 3, sprovode se provere stepena sa kojim injektirane snage ( iP i iQ ), proračunate preko iV , iθ i ijY , zadovoljavaju bilanse snaga po I Kirchhoffovom zakonu, primenjenom na PQ i PV-čvorove. Razlika u odnosu na specifikovane vrednosti injektiranja u tim čvorovima naziva se debalans snage (aktivne i reaktivne) u čvoru.

Za sve PQ i PV-čvorove je:

( )[ ]

++−=∆ ∑∈ ij

ijijijijjiiiispii BGVVGVPP

αθθ sincos2 ; PVPQi αα ,∈ , (1)

a za sve PQ-čvorove je:

( )[ ]

−+−−=∆ ∑∈ ij

ijijijijjiiiispii BGVVBVQQ

αθθ cossin2 ; PVTPQi αα ,∈ . (2)

gde je:

≠−

=+=+==

∑∈

,

;0

jizaY

jizaYYjBGYY

gij

ji

gij

ijijjiij iα (3)

Rešenje modela posle sprovedene klasifikacije čvorova i specifikacije unapred zadatih promenljivih (shodno Tabeli 3), zahteva da se iz 2N jednačina bilansa snaga odredi isto toliko nepoznatih. Taj skup nepoznatih sastoji se iz sledećih promenljivih:

PQN modula fazora napona u PQ-čvorovima;

Created by Dragan Vlaisavljevic - 67 -

Page 68: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

)1( −=++ NNNN PVTPVGPQ uglova fazora napona u svim nezavisnim čvorovima, osim referentno-balansnog (SL) čvora, u kome se fazni ugao unapred zadaje;

)1( +PVGN reaktivnih injektiranja u PVG i referentno-balansnom (SL) čvoru;

PVTN nenominalnih odnosa transformacije u PVT-čvorovima; 1 aktivno injektiranje u referentno-balansnom (SL) čvoru.

Ukupno: NNNN PVTPVGPQ 2)2(2 =+++ nepoznatih.

Pri rešavanju problema treba odrediti 2N koordinata stanja. Logičan izbor je da to bude N modula i N uglova fazora napona. Kako se unapred zadaje

1++ PVTPVG NN moduo i 1 fazni ugao napona, to se iz skupa od 2N jednačina bilansa snaga za simultano rešavanje izdvaja

)1(1)1(2 PQPVTPVG NNNNN +−=−++− jednačina, sa isto toliko nepoznatih: )1( −N fazni ugao i PQN modula napona. Taj skup sastoji se od

)1( −=++ NNNN PVTPVGPQ jednačina bilansa aktivnih snaga (za sve čvorove sem referentno-balansnog) i PQN jednačina bilansa reaktivnih snaga u PQ-čvorovima.

Ostatak promenljivih iz skupa od 2N nepoznatih promenljivih, koji se sastoji od )1( +PVGN reaktivnih injektiranja u PVG-čvorovima i referentno-balansnom (SL) čvoru i jednog aktivnog injektiranja u referentno-balansnom čvoru, nalazi se posle određivanja napona i faznih uglova u svim čvorovima EES-a, jednostavnom zamenom rešenja za sve elemente vektora stanja u odgovarajuće jednačine injektiranja: SLPVGi αα ,∈ za reaktivna, kao i SLi α∈ za aktivno injektiranje.

Za sistem od )1( PQNN +− nelinearnih algebarskih jednačina, koji se sastoji od )1( −N jednačina bilansa aktivnih i PVTPQ NN + jednačina bilansa reaktivnih snaga, ne postoji opšte rešenje, pri čemu se ne garantuju ni egzistencija ni jedinstvenost rešenja. U suštini, ovde se traži prihvatljivo ("feasible") rešenje, koje zadovoljava granične uslove. Ono se dobija primenom nekog iterativnog postupka.

Suština rešavanja postavljenog problema je u određivanju 2N-dimenzionog vektora stanja sistema, pri čemu se unapred zadaje (shodno izboru tipa čvorova) )2( ++ PVTPVG NN njegovih elemenata, tako da se ono traži za preostalih )1( PVTPQ NNN ++− elemenata. Kada se odredi svih 2N elemenata vektora stanja, naknadno se jednostavnom zamenom u odgovarajuće jednačine injektiranja izračunava preostalih )2( +PVGN nepoznatih, pa se pristupa krajnjem cilju, a to je proračun tokova snaga po granama i gubitaka u mreži. Kompleksna (prividna) snaga koja od i-tog teče ka j-tom čvoru (grana i−j), izračunava se iz izraza:

Created by Dragan Vlaisavljevic - 68 -

Page 69: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

22

02

02

*

***

gij

igij

gij

jj

jij

i

gij

igij

jiiijiijijij

BjV

jXR

eVeVeV

BjV

Z

VVVIVjQPS

jii +

−=+

−==+=

−− θθθ . (4)

Numeričko rešavanje problema tokova snaga

Najčešće se primenjuju sledeći metodi:

Gauss-Sai del-ov metod

Ovaj metod razlikuje se od osnovnog Gauss-ovog iterativnog metoda u tome što koristi jednu tehniku ubrzanja, koja se sastoji u postupku da se novoproračunata vrednost fazora napona i-tog čvora u )1( +k -oj iteraciji )1( +k

iV

odmah zamenjuje u rešavanju jednačine za fazor napona ( )i + 1 -og čvora )1(1+

+k

iV. To znači da se kod ovog metoda primenjuje sledeća iterativna šema (važi za sve čvorove, sem referentno-balansnog (SL-čvora)):

( ))(1

)(313

)(212

)(1

11

)1(1

1 kNN

kkkk VYVYVYIY

V −−−−=+ ⋯ ;

( ))(2

)(323

)1(121

)(2

22

)1(2

1 kNN

kkkk VYVYVYIY

V −−−−= ++ ⋯ ;

( ))()(32

)1(11

)()1( 1 kNiN

ki

ki

ki

ii

ki VYVYVYI

YV −−−−= ++ ⋯ ;

( ))1(11,

)1(22

)1(11

)()1( 1 +−−

+++ −−−−= kNNN

kN

kN

kN

NN

kN VYVYVYI

YV ⋯ , (5)

pri čemu se u svakoj iteraciji ⋯,2,1=k proračunavaju struje u PQ, PVG i PVT-čvorovima, koje figuriraju u izrazu (5), kao:

( ) )(*)(

ki

spi

spik

iV

jQPI

−= ; PQi α∈ ;

)(

)()(

/ ki

spi

ki

spik

i V

jQPI

θ−

−= ; PVi α∈ , (6)

gde je:

Created by Dragan Vlaisavljevic - 69 -

Page 70: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

( ) ( )∑∈

−+−=ij

kijij

kijij

kj

spiii

spi

ki BGVVBVQ

αθθ )()()(2)( cossin .

Newton-Raphson-ov metod

Iterativna procedura kod ovog metoda može se podeliti u dva dela: prvi deo je linearizacija nelinearne n-dimenzione jednačine ( ) 0=XF u okolini rešenja

)(kXX = :

( ) ( ) 0=∆+= + )1()()( kkk XJXFXF ; k = 0 1 2, , ,⋯ , (7)

( )

∈Ψ

∈Φ=

PVTPQi

PVTPVGPQi

ii

ααααα

,;),,;⋮

XF ; (8)

( )[ ]∑∈

+−−=Φij

ijijijijjiiiispii BGVVGVP

αθθ sincos2

;

( )[ ]∑∈

−−+=Ψij

ijijijijjiiiispii BGVVBVQ

αθθ cossin2

; (9)

∈∆

∈∆=

PVTPQi

PVTPVGPQi

iVi

αααααθ

,;),,;

X , (10)

∂∂∂∂∂∂∂∂

=VQQVPP

VJ////

),(θθ

θ ; (11)

odakle je:

[ ] ( ))(1)()1( kkk XFJX −+ −=∆ , (12)

a drugi deo, korekcija rešenja )(kX , koja u )1( +k -oj iteraciji daje:

)1()()1( ++ ∆+= kkk XXX ; ⋯,2,1,0=k . (13)

Test konvergencije je: ε≤−+ )()1( k

ik

i XX . (14)

gde je ε zadata vrednost praga konvergencije rešenja. U ovom materijalu ne daju se izrazi za Jacobian matricu, a mogu se naći u

citiranom referencama i drugim radnim materijalima.

Created by Dragan Vlaisavljevic - 70 -

Page 71: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

Raspregnuta formulacija problema raspodele snaga

Kod rešavanja problema raspodele snaga neophodno je formiranje Jakobijan matrice (11), koja predstavlja osetljivosti injektiranja snaga čvorova na promenljive modula i uglova napona čvorova mreže.

Iskustveno je uočeno da u svim EES-ima od praktičnog značaja, u stacionarnom režimu postoji jaka međusobna zavisnost između aktivnih snaga i uglova fazora napona, s jedne strane, kao i između reaktivnih snaga i modula fazora napona u čvorovima, s druge strane. Međusobne veze između ovih tzv. "P−θ" i "Q−V" potproblema globalnog problema proračuna tokova snaga i naponskih stanja su relativno slabe, što se u Jacobi-jevoj matrici (11) manifestuje u malim numeričkim vrednostima elemenata sub-matrica VP ∂∂ / i θ∂∂ /Q , u poređenju sa vrednostima elemenata submatrica θ∂∂ /P i VQ ∂∂ / . To sugeriše da se kao prirodan put u razvoju praktičnih metoda za rešavanje jednačina bilansa aktivnih i reaktivnih snaga ide na međusobno razdvajanje ova dva potproblema i njihov zaseban tretman. Time se smanjuje matematička složenost globalnog postupka proračuna i postižu značajne uštede u vremenu računanja i računarskoj memoriji, a zadržava osobina kvadratne konvergencije osnovnog Newton-Raphson-ovog metoda.

Tako da se Jacobian može predstaviti za dekuplovanu formulaciju problema na sledeći način:

∂∂

∂∂=

VQP

VJ/

/),(

00θ

θ . (15)

U tipičnim postavkama za rešavanje problema raspodele tokova snaga i napona imaju se sledeće činjenice:

- otpornosti dalekovoda i transformatora su znaačajno manje od odgovarajućih reaktansi, pa se mogu zanemariti.

- razlika uglova je vrlo mala duž vodova, odnosno transformatora, tako da se kosinusi razlike uglova mogu izjednačiti sa 1 ( 00,1cos ≈ijθ ), a da

se sinusi razlike uglova mogu zanemariti ( ijijij BG < <θsin i 2iiii VBQ < < ).

Posle gornjih uprošćenja, konačne jednačine brzog raspregnutog (Stott-Alsac-ovog) modela za proračun tokova snaga i naponskih stanja postaju:

θ∆′

∆ −= B

VP

; za sve čvorove, osim SL-čvora; (16)

VBVQ

∆′′

∆ −= ; za sve PQ-čvorove, (17)

gde je:

Created by Dragan Vlaisavljevic - 71 -

Page 72: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

∆ =

i

iVP

VP

− )1( −N -dimenzioni vektor ( Ni ,,2,1 ⋯= ; SLi α∉ );

∆ =

i

iVQ

VQ

− PQN -dimenzioni vektor ( PQi α∈ ).

SLgij

j

gij

ij iNijiB

jiBB i αα ∉=

≠−

==′

∑∈ ;,,2,1

;;

;;⋯ .

PQgij

ji

gij

ij ijiB

jiBBB i αα ∈

≠−

=+=′′

∑∈

;;

;;0

,

gde je 0iB susceptansa svih otočnih elemenata priključenih u čvoru PQi α∈ .

Created by Dragan Vlaisavljevic - 72 -

Page 73: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

ULAZNI PODACI

Proračun

VV

Da li rešenje za aktivne snage konvergira?

Rešiti jednačinu: θ∆′−=

∆ B

VP

I aktuelizovati θ

Proračun

VQ

Da li rešenje za reaktivne snage konvergira?

Rešiti jednačinu: VBVQ ∆′′−=

I aktuelizovati V

Da li rešenje za aktivne snage konvergira?

Da li rešenje za reaktivne snage konvergira?

IZLAZNI REZULTATI

Da

Ne

Da

Ne

Da

Ne

Slika 1: Algoritam raspregnutog proračuna tokova snaga

DC formulacija problema raspodele snage

Ovo je linearizovana verzija problema raspodele snaga koja se bazira na sledećim predpostavkama:

1. Sve konduktanse se mogu zanemariti.2. Sve razlike uglova napona su male, tako da je ijij θθ ≈sin i

..00,1cos jrij ≈θ . 3. Da svi moduli napona ostaju konstantni sa svojim nominalnim vrednostima

za sve čvorove u mreži ( ..00,1 jrVi ≈ ).

uz ranije uvedene aproksimacije 0≈ijG i ..00,1 jrV j ≈ u jednačine bilansa aktivnih snaga, dobija se )1( −N -dimenzioni sistem jednačina:

( )∑∑∈∈

−==ii j

jiijj

ijiji BBPαα

θθθ ∑∈

−−=ij

jijiii BBα

θθ ; Ni ,,2,1 ⋯= ; SLi α∉ , (18)

Created by Dragan Vlaisavljevic - 73 -

Page 74: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

jer je: ∑∈

=ij

gijii BB

α, g

ijij BB −= .

Uvođenjem referentnog čvora za merenje uglova fazora napona (SL ili referentno-balansni čvor), matrična forma jednačine za aktivne snage postaje:

θBP ′−= , (19)

gde je ijB=′B − )1( −N -dimenziona redukovana konstantna kvadratna matrica susceptansi, a P i θ su )1( −N -dimenzioni vektori aktivnih injektiranja i uglova fazora napona u svim čvorovima (osim referentno-balansnog čvora), respektivno.

Pošto je mreža bez gubitaka, injektiranje u referentno-balansnom (SL) čvoru je:

∑≠=

−=N

ii

iSL

SL

PP

α1 . (20)

Rešenje jednačine injektiranja (19) je:

( ) PB 1−′−=θ , spSLSL θθ = (obično radsp

SL 0=θ ), (21)

dok se tokovi aktivnih snaga po granama jiNji ≠=−= ;,,2,1 ⋯l proračunavaju preko formule:

gij

jiji

gijijijij

XBBP

θθθθθ

−=−=−= )( ; Ni ,,2,1 ⋯= ; ij α∈ , (22)

ili u matričnoj formi:

( ) PABABBP B 1−′−==Φ= TgTggℓℓℓℓ θ , (23)

gde je:

ℓP − L-dimenzioni vektor tokova aktivnih snaga Pl (u [r.j.]) po granama EES-a L,,2,1 ⋯=l (L je ukupan broj grana u mreži);

gg Bdiag l=ℓB − )( LL × -dimenziona dijagonalna matrica susceptansi grana;

θTA=Φ − L-dimenzioni vektor faznih uglova lΦ (u [rad]) na krajevima grana (ako ℓ-ta grana povezuje i-ti i j-ti čvor, onda je

ji θθ −=Φ l ); ijA=A − )( LN × -dimenziona matrica incidencije čvorova i grana EES-a.

Interfejs sa drugim aplikacijama

Created by Dragan Vlaisavljevic - 74 -

Page 75: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

Tokovi snaga

Inicijalizacija ulaznih podataka

Ukupni vektor stanja mreže

Ocena prekoračenja elemenata

Procesiranje topologije

Rešiti tokove snaga

Aktivirati operatorske preporuke

Podaci o mreži - Model mreže - Real-time analiza mreže - Analiza ispada - Ocena sigurnosti - Optimalni tokovi snaga

- Prognoza opterećenja u čvorovima

Podaci o generatorima - Real-time generisanje

- RSC

Podaci o mreži - Ekvivalentni model - Real-time generisanje

Podaci o osetljivostima gubitaka

Izračunavanje osetljivosti gubitaka

Slika 2: Interfejs programa PFLOW sa okruženjem EMS-a

Grafička prezentacija rezultata

Prezentacija rezultata proračuna se može izvršiti na više načina [4]:

- Tabelarni prikaz podataka, u kome se vrši grupisanje podataka za svaki čvor, generator, dalekovod i transformator koji su povezani na elektroenergetsko postrojenje, kao što je prikazano na sledećim slikama:

Created by Dragan Vlaisavljevic - 75 -

Page 76: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

Created by Dragan Vlaisavljevic - 76 -

Page 77: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

Transformer tap position, step size, and limits

- Prikaz preko jednopolnih dijagrama

Created by Dragan Vlaisavljevic - 77 -

Page 78: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

Literatura

[1] A. Debs, „Modern Power Systems Control and Operation“, DSI, 1996. [2] A. Monticelli, „State Estimation in Electric Power Systems: A Generalized

Approach", Kluwer Academic Publishers, Norwell, MA, USA, 1999.[3] B. Stoot and O. Alsac, „Fast Decoupled Load Flow“, IEEE Trans. on Power

Apparatus and Systems, Vol. PAS – 93, May-June 1974.[4] * * * „Tehnička specifikacija EMS aplikacija“, AREVA.

Created by Dragan Vlaisavljevic - 78 -

Page 79: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

2.3.2. Optimalni tokovi snaga

Ova funkcija EMS-a [1] ima za zadatak da optimizuje upravljačke promenljive za EES koje su ograničene tokovima snage po mreži kao i sitemskim ograničenjima.

U odsustvu pogonskih ograničenja, koja se matematički prevode u ograničenja tipa nejednakosti, problem optimalnih tokova snaga definiše se na sledeći način:

Za dati skup ograničenja tipa jednakosti izražen preko vektorske funkcije f(x, u) = 0, (1)

gde su dimenzije vektorske funkcije ⋅f ( ) i vektora nepoznatih promenljivih stanja x iste, naći vektor upravljanja u, tako da se minimizuje izabrani kriterijum optimizacije

min C0(x, u). (2)

Proširena Lagrange-ova funkcija u ovom slučaju je:

),(),(),,( T0 uxuxux fC λλ +=ℑ , (3)

pa su potrebni uslovi optimalnosti:

0=

∂∂+

∂∂=

∂∂ ℑ λλ T

0 ),(),(),,(x

uxx

uxxux fC ; (4a)

0=

∂∂+

∂∂=

∂∂ ℑ λλ T

0 ),(),(),,(u

uxu

uxuux fC ; (4b)

0==∂

∂ ℑ ),(),,( uxux fλ

λ. (4c)

Za dobijanje numeričkog rešenja sistema nelinearnih jednačina (4) koristi se sledeća iterativna šema:

1. Izabrati početno pogađanje elemenata vektora upravljanja )0(u .2. Za izabranu vrednost )0(u rešiti jednačinu tokova snaga (4a) po )0(x i

dalje iterativno naći rešenja za )(ku i )(kx , gde je ⋯,2,1=k indeks iteracije.

3. Proračunati )(kλ iz jednačine (4a) u svakoj iteraciji:

)()( ,

01T

)( ),(),(kk

Cfk

uxxux

uux

∂∂

∂∂−=

λ ; ⋯,2,1=k , (5)

Created by Dragan Vlaisavljevic - 79 -

Page 80: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

a potom proračunati gradijent po u:

)()(T)(

0)( ),(),(),,( k

kkk fC λλ

∂∂+

∂∂=

∂∂ ℑ

uux

uux

uux ; ⋯,2,1=k . (6)

4. Proračunati )1( +ku prema iterativnoj formuli:

)()()( ,,

)()1( ),,(kkk

kk

λ

λ

uxuuxuu

∂∂ ℑ−=+ α ; ⋯,2,1=k , (7)

birajući parametar α tako da se vrednost kriterijumske funkcije ),(0 uxC (najčešće funkcija troškova RC ) umanjuje. Koraci 2−4. dalje se ponavljaju sve dok se ne zadovolji kriterijum konvergencije:

ε≤∂

∂ ℑ−∂

∂ ℑ − )1()( ),,(),,( kk

uux

uux λλ . (8)

gde je najčešće unapred izabrani prag konvergencije 0001,0001,0 −≤ε .

Generalna formulacija OPF problema

Upravljačke promenljive

1. Podproblem aktivnih snaga- MW injektiranje generatora- otcepi “phase shifter” transformatora- MW snaga razmene u interkonekciji- DC link MW transfer snage

2. Podproblem reaktivnih snaga- MVAr snaga injektiranja generatora ili napon generatora- otcepi regulacionih transformatora- kapacitivni i induktivni statički izvori

3. Aktivni i reaktivni podproblem- transformatori sa kompleksnim odnosom - pokretanje i zaustavljanje generatorskih jedinica- ograničenja u potrošakim čvorovima- uključivanje ili isključivanje grana mreže

Operativna ograničenja

1. Podproblem aktivnih snaga

Created by Dragan Vlaisavljevic - 80 -

Page 81: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

- MW tokovi snaga po granama mreže- MW obrtna rezerva- MW razmena oblasti- MW transfer po grupi grana mreže- razlika uglova modula napona čvorova po grani mreže

2. Podproblem reaktivnih snaga- Moduli napona čvorova- MVAr tokovi snaga po granama mreže- MVAr obrtna rezerva- MVAr razmena oblasti- MVAr transfer po grupi grana mreže

3. Aktivni i reaktivni podproblem- struje i MVA opterećenja po granam mreže- MVA transfer po grupi grana mreže

Ova napred navedena ograničenja obično se tretiraju kao “meka” ograničenja.

Druga ograničenja, kao što su gornje i donje granice koje se primenjuju na upravljačke promenljive, tretiraju se kao “tvrda” i ona odgovaraju fizičkim ograničenjima na aparatima sa kojima se vrši promena upravljačkih promenljivih.

Pored ovih, mogu da se i uvedu ograničenja koja tretiraju maksimalno dopušteno vreme za promenu neke upravljačke promenljive. Ovo se može implementirati tako što se modeluju ograničenja na upravljačke promenljive u obliku veličine promene promenljive po jedinici vremena.

Kriterijumska funkcija

Klasična OPF formulacija, ima jednu kriterijumsku funkciju. U praksi se često ima zahtev da se simultano reše, tj.optimiziraju više kriterijumskih funkcija.

Najčešće se koriste sledeće četiri kriterijumske funkcije:

1. Minimalni troškovi pogona

Kriterijumska funkcija sastoji se od sume troškova proizvodnje generatorskih jedinica, plus troškovi transakcije snage razmene. Sve sistemske upravljačke promenljive koriste se u cilju minimizacije kriterijumske funkcije.

Ako se koristi samo kao upravljačke promenljiva aktivna snaga generatora, onda se ovaj proračun naziva “sigurnosno ograničen ekonomski dispečing” (SED).

Ako se koriste upravljačke promenljive koje nemaju efekat direktnih troškova, kao što su upravljanje naponima generatora i otcepima transformatora,

Created by Dragan Vlaisavljevic - 81 -

Page 82: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

tada se vrši optimizacija smanjenja gubitaka snage u prenosnoj mreži kao deo opšte strategije smanjenja troškova eksploatacije EES-a.

Minimizacija troškova sa obe ove upravljačke promenljive predstavlja klasični OPF problem, koji se često naziva “troškovi + gubici” i koji se može rešiti primenom SED, koji biva praćen rešenjem problema minimizacije gubitaka u mreži.

Najkritičniji faktor u minimizaciji troškova je modelovanje krive troškova proizvodnje generatora u funkcije izlazne aktivne snage generatora. Troškovi termoelektrana izvode se iz krive zagrevanja termobloka, koja treba da je konveksna i neprekidna. Jedna od mogućnosti jeste da se kriva troškova aproksimira sa polinomom. Fleksibilnija aproksimacija je da se koristi model sa intervalima sa kvadratnim segmentima, ali tako da se zadrži konveksnost. Odnosno još fleksibilniji pristup bi bio korišćenje lineranih segmenata, uz zadržavanje konveksnosti krive. Uobičajeno je da se u praktičnoj primeni ima mogućnost modelovanja zabranjenih zona rada u delovima krive. Kriva troškova transakcija snage razmene obično se modeluje u lineranim segmentima, koji odgovaraju blokovima snage razmene. Na sličan način se mogu modelovati i rasterećenje potrošnje i emisija termolektrana, kao ekološko ograničenje koje treba da se uvaži kod rešavanja ovog problema.

2. Minimun gubitaka aktivne snage u prenosnom sistemu

Upravljačke promenljive koje mogu da učestvuju u kriterijumskoj funkciji su sve upravljačke promenljive, izuzev MW proizvodnja generatora i MW snage transkacija.

U isto vreme, i upravljačke promenljive, kao što su položaji otcepa phase shifter transformatora, kao i tokovi po DC vodovima, takođe se ne koriste, jer su one mnogo korisnije za upravljanje aktivnim snaga. Minimizacija gubitaka je povezana sa Q–V upravljanjem. Minimizacija ove kriterijumske funkcije dovodi do redukovanja kruženja rektivnih snaga po mreži, tako da se dobije bolji naponski profil duž napona čvorova mreže.

Minimizacija gubitaka može da se obavi u delu svoje mreže, ili da se ova minimizacija obavlja na nivou cele interkonekcije. U prvom slučaju postiže se da se imaju manji gubici u internoj mreži i njihovo povećanje u susednim oblastima u interkonekciji, u drugom slučaju mogu se dobiti povećanje gubitaka u svojoj, tj. internoj mreži kao delu interkonekcije.

Kao alternativna kriterijumska funkcija može da se uzme minimizacija gubitaka usled reaktivnih snaga. Ova kriterijumska funkcija daje skoro optimalno rešenje po minimizaciji gubitaka aktivnih snaga uz održavanje ravnog naponskog profila u mreži i maksimizira VAR rezervu na generatorima.

3. Minimalno odstupanje od radne tačke

Created by Dragan Vlaisavljevic - 82 -

Page 83: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

Ovo je često upotrebljavana kriterijumska funkcija koja se definiše kao suma otežanih kvadrata odstupanja upravljačkih promenljivih od date ciljne vrednosti. Ciljna vrednost odgovara početnoj ili nekoj drugoj vrednosti za upravljačke promenljive. Ovakva kriterijumska funkcija može da se iskoristi u slučaju korektivnih akcija.

Ova kriterijumska funkcija se često sastoji od od više različitih upravljačkih promenljivih, tako da se težinski faktori uz svaku promenljivu moraju brižljivo odabrati.

Na primer, ako se uzme kriterijumska funkcija koja se sastoji od promenljive odstupanje MW proizvodnje generatora i upravljačke promenljive odstupanje napona čvorova, tako da se imaju isti težinski faktori za promenljive. Onda se za slučaj preopterećenja grane mreže može imati rešenje koje nepotrebno pomera napone čvorova mreže koje nije efikasno da bi se rasteretilo ovo opterećenje grane. Na osnovu ovog se može zaključiti da nepostoji opšte analitičko pravilo za odabir težinskih faktora već često se to obavlja od strane analitičara. Pored toga ovaj primer nam pokazuje da je bolje raspregnuto rešavati gornjni problem, prvo rešiti podroblem sa aktivnim a posle podproblem sa reaktivnim snagama.

4. Minimiziranje broja upravljačkih promenljivih kod optimizacije

Neke praktične primene dovode da se zahteva da kriterijumska funkcija sadrži zahtev da se minimizira broj upravljačkih promenljivih koje treba prepodesiti na osnovu rezultata OPF funkcije. Ovo znači da se iz dispečerskog centra mogu ograničeni broj upravljačkih akcija može preduzeti automatski i simultano i ovaj zahtev mora biti uvažen kod modelovanja kriterijumske funkcije ovog tipa. Odnosno intencija je da se ima relativno mali, ali upravljiv broj komandi tj. upravljanja, gde mali broj komandi zavisi od karakteristika svakog EES-a i EMS-a implementiranog u centru upravljanja EES-a.

Potiskivanje neefikasnog upravljanja

Ovaj zahtev predstavlja zahtev koji treba da preventivno da ograniči odnosno spreči neefikasno upravljanje koje nastaje zbog promene upravljačkih promenljivih usled rešenja OPF-a. Ograničenja na ovu pojavu mogu da se definišu na heuristički način, ili kao posledica rešavanja dualnog linearnog programiranja primenjenog u rešavanju OPF problema.

Problem pojave nerešivosti OPF problema

U slučaju pojave nerešivosti, bolje je da se ima modifikacija problema koja će da dovede do najboljeg mogućeg rešenja, sa ili bez interaktivnog vođenja od strane analitičara. OPF algoritam treba da ima mogućnost detekcije pojave nerešivosti jasno i brzo. Na žalost, mnogi OPF metodi nisu u stanju da ovo urade.

Created by Dragan Vlaisavljevic - 83 -

Page 84: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

Kada OPF problem biva proglašen nerešivim, onda je moguće primeniti dve alternative:

a) Modifikacija kriterijumske funkcije i/ili ograničenja. b) Primeniti pristup “minimalnog narušavanja ograničenja”. Ovo znači

primeniti pristup koji proširuje kriterijumsku funkciju sa nizom funkcija koje odslikavaju minimiziranje pojedinih funkcija odstupanja narušenih ograničenja.

Osnovni optimizacioni algoritmi

Nelinearni statički optimizacioni problem OPF se generalno može tretirati na sledeće načine:

- Primenom generalizovanog nelinearnog programiranja (GNLP)- Separabilnog nelinearnog programiranja (SNLP)

GNLP metod

Ovaj metod bazira se na primeni sukcesivnog kvadratnog programiranja (QP). U svakom koraku OPF-a kriterijumska funkcija aproksimira se sa kvadratnom funkcijom, a ograničenja su linearna.

SNLP metod

Ovde se separabilni problem tretira tako što se kriterijumska funkcija predstavlja sumom konveksnih krivih troškova i ovde se ograničenja predstavljaju linearnim ograničenjima. Separabilno QP se može efikasno primeniti samo ako se ima striktno kvadratna funkcija troškova, ali ovo je ređi slučaj u praksi.

Često u praksi može se «ispeglati» nelinearna funkcija troškova, tako što se aproksimira linearnim segmentima. Na ovaj način omogućava se primena specijalnih verzija linearnog programiranja (LP), koje mogu da rešavaju bilo koju nekonkavnu krivu troškova, tako što se kriva predstavlja preko linearizovanih segmenata.

U slučaju kada se tretira kriterijumska funkcija koja je neseparabilana, a to je slučaj kada se ima minimizacija gubitaka snage u mreži, tada je ova aproksimacija sa linearizovanim segmentima vrlo loša i konvergencija je spora i oscilujuća.

Tehnike tretiranja ograničenja

a) Metod Lagrange-ovih multiplikatorab) Metod penalizacionih funkcijac) Simpleks baziran metod

Created by Dragan Vlaisavljevic - 84 -

Page 85: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

d) Tehnika redukovanja

Algoritmi za rešavanje OPF koji su najčešći u praktičnoj upotrebi

N ewton-ov metod

OPF koje se bazira na Newton-ovom metodu rešava klasičnu duplo diferencijalnu formulaciju problema. Ovaj metod ima sledeće jedinstvene karakteristike:

- Za osnovni OPF problem, zadržava se osobina energetskog sistema da se tretira tehnikom retkih matrica i vektora.

- Ne bazira se ni na jednom standardnom paketu opšte namene za ovu optimizaciju.

Prva osobina omogućava tretman EES-a velikih dimenzija na efikasan način. Druga osobina zahteva da se razvija specijalna tehnika odnosno šema rešavanja koja tretira ograničenja tipa nejednakosti, dok se ograničenja tipa jednakosti tretiraju Lagrange-ovim multiplikatorima.

Ovaj metod rešava postavljene jednačine OPF problema, sukcesivnim formiranjem i rešavanjem Hessian matrice ovih jednačina. Primenom tehnike rasprezanja problema, posao oko rešavanja svake iteracije se može redukovati sa faktorom koji iznosi četiri.

Proizvodni troškovi termičkih jedinica je najčešće korišćena funkcija cilja u optimalnim tokovima snaga, koja je generalno kvadratna:

∑=

=gn

kgkkT PFF

1)( . (17)

gde je funkcija troškova pojedinih generatora aproksimirana kvadratnom funkcijom:

2)( gkkgkkkgkk PcPbaPF ++= . (18)

gde su ak, bk i ck troškovi k-te jedinice. Važno je napomenuti da se referentno-balansni čvor neophodno uključiti u

OPF. Ograničenje tipa jednakosti su balansne jednačine aktivne i reaktivne

snage mreže (odnosno čvorova) tokom stacionarnog stanja, koje moraju biti ispunjene ako postoji rešenje (jednačine prikazane na Slici 1):

0),( =−+ gkLkk PPP θV ; (19a)

0),( =−+ gkLkk QQQ θV . (19b)

Created by Dragan Vlaisavljevic - 85 -

Page 86: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

~

PLk + jQLk Pgk + jQgk

Pk (V,θ ) + jQk(V,θ )

Vk /θ k

Slika 1: Bilans snaga u k-tom čvoru

Sve upravljačke i druge promenljive imaju svoje donje/gornje granice koje moraju zadovoljiti optimalna rešenja. Pri tome, najvažnije su promenljive generisanja aktivne i reaktivne snage i napona čvorova:

maxmingkgkgk PPP ≤≤ ; gnk ,,1⋯= ; (20a)

maxmingkgkgk QQQ ≤≤ ; gnk ,,1⋯= ; (20b)

maxminkkk VVV ≤≤ ; nk ,,1⋯= . (20c)

Prethodna ograničenja mogu se relaksirati u poremećenim stanjima, u cilju dobijanja suboptimalnog rešenja.

Prvi korak u rešavanju optimizacionih problema primenom Newton-ovog metoda jeste konvertovanje problema sa ograničenjima u optimizacioni problem bez ograničenja. To se postiže formiranjem proširene Lagrange-ove funkcije u kompaktnoj formi, koja u ovom slučaju glasi:

]),([)()( µλ xxx ghf T ψ++=ℑ , (21)

gde su λ i µ vektori Lagrange-ovih multiplikatora za ograničenja tipa jednakosti i nejdnakosti, respektivno, dok je ]),([ µxgψ penalizaciona funkcija za ograničenja tipa nejednakosti.

U konkretnom slučaju specificiranog problema optimalnih tokova snaga proširena Lagrange-ova funkcija je (uz zanemarenje ograničenja tipa nejednakosti):

∑∑==

−++−++=ℑgg n

kgkLkkQk

n

kgkLkkPkT QQQPPPF

11]),([])),([),( θθλ VVx λλ . (22)

Rešenje problema (22) može se efikasno dobiti iterativno, rešavanjem sledećeg sistema linearizovanih jednačina:

Created by Dragan Vlaisavljevic - 86 -

Page 87: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

[ ]

∇∇

=

∆∆

λλxx

W , (23a)

koji se može drugačije napisati kao:

[ ] gzW −=∆ , (23a)

gde su:

[ ]

=

0JJHW

T;

[ ]Tλ∆∆=∆ xz ;

[ ]Tλ∇∇= xg ;

[ ]TVQPx ∇∇∇=∇ gg ;

[ ]Tqp λλλ ∇∇=∇ ;

[ ]TVQPx ∆∆∆=∆ gg ;

[ ]Tqp λλλ ∆∆=∆ .

Matrica W sadrži druge parcijalne izvode Lagrange-ove funkcije ),( λxℑ po promenljivim stanja x i Lagrange-ovim multiplikatorima kλ . Kao što se vidi, pojedine submatrice čini Hessian (H) i Jacobian (J) submatrice. Takođe, vidi se da je matrica W simetrična i da ima jednu nultu submatricu, pošto izvodi

km λλ ∂∂ℑ∂ ),( λx ne postoje. Gradient vektor g je ),( λx∇ ℑ , pri čemu prvi parcijalni izvodi funkcije g

ujedno predstavljaju druge parcijalne izvode funkcije ),( λxℑ . Izvodni članovi koji odgovaraju ograničenju tipa nejdnakosti ]),([ µxgψ ne

uključuju se u početak iterativnog procesa, već tek kada budu narušena, pri čemu su njihovi Hessian i Jacobian članovi:

λλΤ

∂∂+

∂∂=

∂ℑ∂= 2

2

2

2

2

2 )()(),(x

xx

xxxH hf , (24a)

xx

xxJ

∂∂=

∂∂ℑ∂= )(),(2 h

λλ . (24b)

Ključna osobina Hessian i Jacobian submatrica je da imaju retku strukturu, kao i matrica admitansi nezavisnih čvorova.

Uslovi za globalni optimum ( optopt λ,x ), odnosno konvergenciju rešenja, utvrđuju se proverom pozitivne definitnosti matrice W. Međutim, to može numerički težak i zahtevan posao u velikim sistemima, pa se u praksi uglavnom ne primenjuje. Drugi testovi optimalnosti su provera da li je gradijentni vektor

Created by Dragan Vlaisavljevic - 87 -

Page 88: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

jednak nuli, ili da li Lagrange-ovi multiplikatori menjaju znak. Takođe primenjuju se sledeći testovi:

svi priraštaji snage su unutar dozvoljenih granica; sva ograničenja tipa nejednakosti su zadovoljena; gradijentni vektor jednak nuli; dalje smanjenje funkcije cilja je jedino moguće narušavanjem ograničenja.

U prethodnoj proceduru tokova snaga po granama primenjuju se na sledeći način. Ograničenje toka snage po vodu između čvorova k i m modifikuje prethodno definisanu linearizacionu jednačinu na sledeći način:

−=

∆∆

m

k

m

k

mmmk

kmkkgg

zz

WWWW

, (25)

gde se sada javljaju izvodi po naponima i uglovima fazora napona, koji se neće ovde prikazivati (za detalje videti ref. [4]).

Doprinos generatora modelovanim kvadratnom funkcijom troškova u linearizovanom modelu sistema jednačina je:

−+−=

∆∆

−0

20112 pkgkkk

pk

gkk PcbPc λλ . (26)

Ako ograničenja tipa nejednakosti nisu dostigla svoje granice, onda ona praktično ne utiču na optimizacioni problem. Tek se uzimaju u obzir kada su dostignute te granice. To znači da se njihov tretman u optimizacionom problemu može sprovesti primenom sledeće generičke forme:

[ ] [ ] [ ]

[ ] [ ] [ ]

≤−+−+−

≥−+−+−

=

ostali

ggczaggcgg

ggczaggcgg

g kkkkkkkk

kkkkkkkk

kkk

0

0)(,)(2

)(

0)(,)(2

)(

]),([ 2

2

xxx

xxx

x µµ

µµ

µψ , (27)

gde su kg i kg gornja i donja granica funkcionog ograničenja. Za neku (i+1)-u iteraciju, multiplikatori se podešavaju prema sledećem

kriterijumu:

[ ] [ ][ ] [ ]

≤−+−+

≥−+−+

=+

ostali

ggczaggc

ggczaggc

ki

kii

kkkii

k

ki

kii

kkkii

ki

k0

0)(,)(

0)()()()()()()(

)()()()()(

)1( xx

xx

µµ

µµ

µ , (28)

gde je )1()(0 +≤≤ ii cc .

Created by Dragan Vlaisavljevic - 88 -

Page 89: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

Blok dijagram primene Newton-ovog algoritma optimalnih tokova snaga videti Sliku 2, a za ostale detalje algoritma ref. [4].

START

Inicijalizacija promenljivih stanja

Ekonomski dispečing zasnovan na jednakim priraštajima troškova

proizvodnje

Newton-ova procedura: kreiranje i rešavanje linearizovanog

sistema jednačina

Ažuriranje multiplikatora i penalizacionih faktora pojačanja

Sve promenljive unutar granica?

Da

Maksimalan broj iteracija?

STOP

Ne

Da Ne

Sledeća iteracija

Slika 2: Newton-ov metod optimalnih tokova snaga

Specijalni dualni LP metod rešavanja [2]

Centralni deo optimizacionog algoritma baziranog na linearnom programiranju, sprovodi se pomoću metoda dualnog separabilnog linearnog programiranja. Jedine promenljive kod primene ove metode su upravljačke promenljive koje se održavaju unutar svojih granica pomoću tehnike vezivanja za gornju i donju granicu. LP algoritam se poziva svaki put kada je odabrano najviše narušeno ograničenje. Ograničenje se mora izraziti samo u funkciji promena upravljačkih promenljivih. Algoritam zatim eliminiše narušeno ograničenje promenom vrednosti upravljačkih promenljivih. Ako je moguće i ekonomično,

Created by Dragan Vlaisavljevic - 89 -

Page 90: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

ograničenje koje je pre bilo aktivno napušta granicu. Algoritam se poziva onoliko puta koliko je potrebno sa aspekta narušavanja ograničenja. Po pravilu je ovo svega nekoliko pozivanja pošto proces aktiviranja narušenih ograničenja teži da eliminiše ostala narušena ograničenja.

Upravljačke promenljive kod algoritma linearnog programiranja mogu se podeliti u dve kategorije: one koje su fiksirane na svojoj granici i koje se zovu nebazne (slobodne) i one koje nisu fiksirane i koje se zovu bazne. Treba primetiti da kada se kaže da je promenljiva fiksirana na svojoj granici to može biti ili jedno od diskretnih ili jedno od kontinualnih ograničenja. Prvi korak LP algoritma uvek se svodi na postavljanje upravljačkih promenljivih na njihovu minimalnu (optimalnu) vrednost. Ovo podrazumeva da su sve upravljačke promenljive na startu nebazne i da imaju vrednosti koje odgovaraju minimumu troškova.

LP algoritam uzima najviše narušeno ograničenje prevodi ga u simpleks tablicu uz podešavanje upravljačkih promenljivih i eventualno deaktiviranje ograničenja koje je već u tablici (tekući skup aktivnih ograničenja). Dakle, LP algoritam može se posmatrati u početku kroz činjenicu da su neke promenljive bazne, a neke nebazne. Nebazne promenljive su još uvek na svojim granicama dok se bazne promenljive koriste da se obezbedi da postojeća aktivna ograničenja ostanu na svojim granicama.Ovo se može iskazati kao:

=

N

B

N

BII

uu

I0NB

. (4)

Cela matrica u relaciji (4) se zove bazna matrica. Vrednosti upravljačkih promenljivih mogu se izračunati invertovanjem bazne matrice. Donji deo bazne matrice je trivijalan. Isto tako, nebazne promenljive su već poznate i očevidno je da je potrebno operisati i pamtiti samo gornje vrste bazne matrice, ili kad se razvije

BNB INuBu =+ (5)

što rešavanjem po Bu daje

)(1NBB NuIBu −= − (6)

Kod problema sa nekoliko aktivnih ograničenja (bilo jednakosti, ili nejednakosti) redukovana bazna matrica B ostaje malih dimenzija, i da se ona ponovo faktoriše potrebno je uložiti malo računarskog napora. U toku LP algoritma dimenzije matrice B se menjaju u zavisnosti od promena broja aktivnih ograničenja.

Pored toga ovaj metod ima sledeće dobre osobine:- da radi sa relativno malo upravljačkih promenljivih - da brzo i pouzdano vrši detekciju nerešivosti

Created by Dragan Vlaisavljevic - 90 -

Page 91: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

Interior point metod rešavanja [2]

Novi polinomialni algoritam za rešavanje linearnih problema sa ograničenjima je interior point metod, koji je za 50 puta brži od standardnog simplex algoritma. Za razliku od simpleksa koji ide po nizu tačaka spoljne površine koja određuje dozvoljenu oblast rešenja, interior point metoda ide kroz unutrašnjost dozvoljene oblasti direktno ka rešenju (Slika 3).

1X

2X

5X 4X

5X 1X

2X

5X

Slika 3: Način rada standardnog simplex i interior point metoda

Rešenje se dobija kroz projekcione transformacije unutar upisane sfere, koje formiraju niz tačaka koji konvergira polinomijalno. Projekciona transformacija preslikava politop (n-dimenziono telo koje ograničava skup linearnih ograničenja)

nP ℜ⊂ i striktno unutrašnju tačku Pa ∈ u drugi politop P' i tačku Pa ′∈′ . Vrednost poluprečnika najveće sfere koja se sadrži u P' sa istim centrom u a' je O(n).

Analizira se LP optimizacioni problem zadat kao:

xcTmin , (1a)

uz ograničenja:bAx = ; (1b)

0≥x . (1c)

Standardni simplex algoritam zahteva n2 iteracija. Polinomijalni algoritam zahteva O(n) koraka.

LP problem definisan u (1) može se prevesti u formu:

xcTmin , (2a)

uz ograničenja:0=Ax ; (2b)

1=xeT ; (2c)

0≥x , (2d)

Created by Dragan Vlaisavljevic - 91 -

Page 92: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

gde je [ ]T111 ⋯=e .

Osnovni interior point algoritam se sprovodi kroz sledeće korake:

Korak 1. Zadavanje inicijalne tačke rešenja 0x (ova tačka mora biti u dozvoljenoj oblasti; postoje postupci koji je generišu).

Korak 2. Izračunavanje sledeće iteracije )(1 kk h xx =+ . Opšta funkcija )(ahf = se određuje kroz sledeće korake:

Korak 3. Neka je dijagonalna matrica ),,,( 21 naaadiag ⋯=D . Korak 4. Izračunati:

Te

ADB = . (3)

Korak 5. Izračunati ortogonalnu projekciju:

[ ]DcBBBBc 1)(1 −−= TTp . (4)

Korak 6. Jedinični vektor u pravcu pc je:

p

pu c

cc = . (5)

Korak 7. Zadavanje koraka dužine ωr u pravcu uc :

uu rcaZ ω−= , gde je )1(1

−=

nnr . (6)

Korak 8. Primeniti inverznu transformaciju:

DzeDzT=φ

(7)

i vratiti funkciju φ na 1+kx .

Potencijalna funkcija se definiše kao:

= ∑

= i

Tn

i xf xc

1ln . (B.8)

Može se očekivati poboljšanje u potencijalnoj funkciji u svakom koraku. Ako se ne postiže poboljšanje može se zaključiti da funkcija mora biti pozitivna.

Takođe mora se sprovesti test optimalnosti. Poboljšanje osnovnog interior point algoritma je projekcioni Newton

logaritamski barijerni metod. Pokazuje se da je interior point u stvari specijalan slučaj prethodnog metoda. Metod barijernih funkcija tretira ograničenja

Created by Dragan Vlaisavljevic - 92 -

Page 93: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

nejdnakosti preko zadavanja barijerne funkcije, koja je kombinacija originalne funkcije cilja i ojačane sume funkcija sa pozitivnim singularitetima na granicama. Kada pojačanje barijerne funkcije prilazi singularitetu onda ono teži nuli, tako da minimum barijerne funkcije teži minimumu osnovne funkcije cilja.

U nastavku se daju osnovne karakteristike najmodernijeg rešenja interior point metoda, a to je primal-dual metod, koji se bazira na “affine scalling” metodu. Većina primal-dual barijernih metoda zahteva )Ln(O iteracija.

Primal-dual interior point za rešavanje linearnih problema se bazira na sledećim pretpostavkama:

• Newton-ov metod za rešavanje sistema nelinearnih jednačina. • Lagrange metod za optimizaciju sa ograničenjima tipa nejednakosti.• Fiacco i McCormick barijerni metod za optimizaciju sa ograničenjima tipa

nejednakosti.

Dualni problem osnovnog problema je

ybTmax ,(9a)

uz ograničenja:

czyA =+T ; (9b)

0≥z . (9c)Prvo se formira Lagrange-an sa barijerama:

)()ln(),( T

1

T bAxyxcyx −−−=Γ ∑=

n

jjp xµ , (10a)

)()ln(),,( TT

1

T czyAxybzyx −+−−=Γ ∑=

n

jjp zµ . (10b)

Uslovi prvog reda za (10) su:bAx = (dopušteno rešenje za primal); (11a)

czyA =+T (dopušteno rešenje za dual); (11b)

njzx jj ,,2,1, ⋯== µ . (11c)

Ako je 0=µ , tada (11c) odgovara ordinary complementary slackness. U barijernom metodu µ startuje od neke pozitivne vrednosti i teži nuli, kada

*)( xx →µ (ograničeni minimum). Koristeći Newton-ov metod rešenje jednačina (11) je:

dP=−=∆ )0(AxbxA ; (12a)

Created by Dragan Vlaisavljevic - 93 -

Page 94: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

Dd−=−−=−∆+∆ )0(T)0()0(T yAzcAxzbyA ; (12b)

XZeeyXyZ −=∆+∆ µ , (12c)

gde su:),,,( )0()0(

2)0(

1 naaxdiag ⋯=X ;

),,,( )0()0(2

)0(1 nzzzdiag ⋯=Z ;

[ ]T111 ⋯=e .

Iz jedn. (12) dobijaju se sledeće relacije:

)()( 111T1 DXAZeAZbXAAZy d−−−− −−=∆ µ ; (13a)

yADz ∆−−=∆ Td ; (13b)

][1 ZXXZeeZx ∆−−=∆ − µ . (13c)

Proračun promenljivih za sledeći korak vrši se kao:

xxx ∆+= pα)0()1( ; (14a)

yyy ∆+= pα)0()1( ; (14b)

zzz ∆+= dα)0()1( , (14c)

gde su pα i dα faktori ubrzanja za primalne i dualne promenljive, respektivno, koje imaju za cilj da sačuvaju 0>x i 0>z .

Da bi se popravila konvergencija, µ se menja iz iteracije u iteraciju, kao:

ntntkk <<

−=+ 0)()1( 1µµ . (15)

Ovakav izbor obezbeđuje konvergenciju za )( nO . Kriterijum konvergencije je:

ε≤+

ybybxc

T

TT

1. (16)

Praktična primena OPF funkcije [3]

Uloga OPF programa, kao dela EMS funkcija, jeste da proizvede rešenje za module i uglove napona čvorova u celoj mreži, a da se pri tome vrši optimizacija

Created by Dragan Vlaisavljevic - 94 -

Page 95: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

po nekom unapred zadatom kriterijumu. Ukratko, funkcionalne karakteristike mogu se izraziti, odnosno podeliti na sledeće modove rada:

1. Bez optimizacijeOdgovara rešenju običnog PFLOW programa.

2. MW optimizacija troškovaOvo je ekonomski dispečing sa aktivnim snagama kao MW upravljačkim promenljivim (aktivno injektiranje generatora, uglovi „phase shifter“ transformatora, aktivna snaga transakcija sa interkonekcijom, rasterećenje MW potrošnje) tako da se postigne stanje EES-a u kome se nema ni jedno narušeno ograničenje koje se ima na upravljačkim promenljivim (aktivno injektiranje generatora, uglovi „phase shifter“ transformatora, aktivna snaga transkcija sa interkonekcijom, rasterećenje opterećenja).

3. MW sigurnosna optimizacijaKorigovanje radnog stanja EES-a (sadašnjeg, ili budućeg), sa minimalnim iznosom promene MW upravljačkih promenljivih (dobijenih kroz MW optimizaciju troškova) u cilju da se postigne stanje EES-a u kome se nema ni jedno narušeno ograničenje u mreži (preopterećenja grana mreže).

4. MVAR sigurnosna optimizacijaKorigovanje radnog stanja EES-a (sadašnjeg, ili budućeg), sa minimalnim iznosom promene reaktivnih snaga injektiranja i napona (kao i promene položaja otcepa regulacionih transformatora u fazi) u cilju da se postigne stanje EES-a u kome se nema ni jedno narušeno ograničenje u mreži (preopterećenja grana mreže). Ova optimizacija se često sprovodi zajedno sa MW optimizacijom troškova ili MW sigurnosnom optimizacijom.

5. Optimizacija gubitaka prenosaU ovom modu se sprovodi korigovanje napona generatora, položaja otcepa svih tipova regulacionih transformatora kao i promene uključenosti kompnezacionih statičkih uređaja u cilju minimizacije gubitaka aktivne snage u prenosnoj mreži.

6. Kompletna optimizacijaOva optimizacija se sastoji od zajedničke MW optimizacije troškova i optimizacije gubitaka u prenosnoj mreži.

Na primer, OPF kao alat može da se koristi za sledeće slučajeve:

Primer 1:

Created by Dragan Vlaisavljevic - 95 -

Page 96: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

Operator – dispečer je primio alarm koji opisuje da se ima preopterećenje u mreži.

Operator startuje OPF da bi se odredila strategija kako da se aktiviraju upravljačke akcije (promenljive upravljanja po aktivnim i reaktivnim snaga) da bi se izvršilo otklanjanje opterećenja u mreži.

Primer 2:Operator je alarmiran da je moguće da se dogodi poremećaj ispada

elementa EES-a koji je potencijalno opasan (od strane funkcije za analizu statičke sigurnosti).

Operator startuje OPF sa stanjem mreže koja bi se imala da se dogodio ovaj ispad.

OPF informiše operatora koje upravljačke akcije da preduzme da bi preveo EES u novo radno stanje, koje bi bilo sigurno i kada se ovaj događaj – poremećaj dogodi.

Moguće je imati situaciju da se dobiju različita alterantivna rešenja problema, pre svega ako se menjaju prioriteti upravljačkih akcija i raspoloživost upravljačkih akcija. Isto tako, može da se vrši procena reakcije EES-a na različite upravljačke akcije, uzimajući u obzir brzinu promene upravljačkih akcija.

Kada se gore navedeno sumira, može se zaključiti da OPF može da posluži kao jedan dobar trening alat za operatora, u cilju podizanja njegovog operativnog znanja i veština u vođenju EES-a.

Literatura

[1] B. Stott, O. Alsac, and A. Monticelli, „Security Analysis and Optimization“, Proceeding of the IEEE, Vol. 75, No. 12, December 1987.

[2] Funkcionalna dizajn specifikacija programskog paketa LP OPF, DMS, januar 2006.

[3] SIEMENS – tehnička specifikacija EMS aplikacija. [4] E. Acha etc., „FACTS – Modelling and Simulation in Power Networks“, Wiley,

2004.

Created by Dragan Vlaisavljevic - 96 -

Page 97: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

2.3.3. Ekvivalentiranje mreže

U analizi stacionarnih stanja povezanih EES-a pojavljuje se problem velikih dimenzija i nedostatka podataka za predstavljanje dela sistema, koji nije od neposrednog interesa za pojedine analize. Ceo povezani EES može da se predstavi kao da se sastoji iz dva dela: Interni sistem, koji predstavlja deo povezanog EES-a od neposrednog

interesa za analizu, za koji postoje svi neophodni podaci koje se koriste pri modelovanju pojava.

Eksterni (ili spoljašnji) sistem, predstavlja susedne sisteme, povezane sa internim sistemom. Ovaj deo povezanog sistema nije od neposrednog interesa za analizu stacionarnog stanja internog sistema i za njega obično ne postoji adekvatni podaci za modelovanje pojava.

Da bi se prevazišao problem dimenzionalnosti i nedostatka pouzdanih podataka za modelovanje, u analizi stacionarnih stanja povezanih EES-a pribegava se što tačnijoj predstavi internog dela sistema, dok se eksterni deo zamenjuje sa ekvivalentom. Statički ekvivalent eksternog dela povezanog EES-a predstavlja uprošćeni model, koji preslikava njegov odziv pri proučavanju pojava u internom delu sistema. Drugim rečima, pod ekvivalentiranjem se podrazumeva zamena dela sistema koji nije od interesa „dovoljno dobrim“ ekvivalentnim sistemom znatno manjih dimenzija. Ovaj ekvivalent onda se priključuje uz model internog sistema, kao jedan nezavisan dodatak. O njegovom kvalitetu može se suditi samo na osnovu poređenja rešenja sa uključenim ekvivalentom, sa rešenjima dobijenim pri analizi originalnog sistema.

Modeli statičkih ekvivalenata su aproksimacije delova povezanih EES-a [1, 2, 3, 4]. Neki od ovih ekvivalenata reaguju na promenu topološke strukture, neki na poremećaje reaktivnih i aktivnih snaga u internom sistemu. Danas korišćeni ekvivalenti baziraju se na dva osnovna klasična modela: Ward-ov [5] i Dimo-ov REI ekvivalent [11, 12]. Svi kasniji predloženi ekvivalenti [6, 7, 8, 9, 10] predstavljaju njihove modifikacije i generalizacije, učinjene sa ciljem da se ti ekvivalenti poboljšaju i prilagode specifičnim primenama.

Principijelna razlika između dva osnovna tipa ekvivalenta sastoji se u tome da:

- Ward-ov ekvivalent zahteva poznavanje topologije i parametre ekvivalentiranog dela.

- Dimo-ov REI ekvivalent zateva poznavanje topologije, parametre ekvivalentnog dela i celokupno bazno stanje u tom delu EES.

Metodologija Ward-ov ekvivalenta

Klasični Ward-ov ekvivalent sastoji se u redukciji kompleksne matrice admitansi čvorova, koja se sprovodi u sledećim koracima:

Created by Dragan Vlaisavljevic - 97 -

Page 98: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

1. Svi čvorovi povezanog EES-a dele se u tri grupe: Interni (I), Granični (B) i Eksterni (E). Pri tome se kao granični čvorovi definišu čvorovi sopstvenog sistema (interni) i čvorovi spoljašnjeg sistema (eksterni), koji su međusobno povezani (pripadaju čvorovima i internog i eksternog sistema).

Zatim se uzima linerani model sistema po metodu čvorova.

2. Eliminišu se svi čvorovi u eksternom sistemu.

3. Formiraju se na kraju relacije (jednačine) koje daju ekvivalent modela. Ove relacije opisuju internu mrežu i ekvivalent spoljašnje mreže, i formiraju bazu za proračun tokova snaga, pri čemu granični čvorovi (B) mogu zadržati originalnu klasifikaciju potrošačkih (PQ), ili naponski kontrolisanih čvorova (PV i PQV).

U klasičnoj primeni ovog ekvivalenta, nezavisno od promenjenih zahteva za aktivnom i reaktivnom snagom u sistemu od interesa, nova – fiktivna injektiranja kompleksnih snaga u graničnim čvorovima ostaju konstantna, pa ovaj ekvivalent daje iidentične rezultate kao i proračun celog sistema (bez redukcije) ali samo za stanje za koje je ekvivalent izveden (osnovno stanje).

Za proračun Ward-ovog ekvivalenta spoljašnjeg dela sistema, proračun tokova snaga u povezanim EES-ima vrši se na isti način kao i za slučaj izolovanih sistema, s tim što se na model internog sistema doda spoljašnji ekvivalent.

Metodologija proširenog Ward-ovog ekvivalenta

Klasični Ward-ov ekvivalent je pasivni ekvivalent i on ne modeluje reakciju eksternog sistema na promenjene zahteve za reaktivnom i aktivnom snagom u sistemu od interesa, pa su u kasnijim razvojima ti nedostaci otklonjeni. Monticelli i saradnici [6] su modifikovali osnovni Ward-ov ekvivalent, u cilju uvažavanja PV čvorova eksternog sistema, na promene u zahtevima za reaktivnim snagama u internom sistemu. U tom cilju, svakom graničnom čvoru Ward-ovog ekvivalenta dodaje se po jedna radijalna fiktivna grana i jedan fiktivni čvor sa reaktivnim injektiranjem. Sistem od interesa ovde ostaje modelovan u originalu. Na granične čvorove, priključuje se Ward-ov ekvivalent sa njegovim konstantnim admitansama između graničnih čvorova i injektiranjima u graničnim čvorovima. Tom ekvivalentu dodaju se radijalne grane, čije su admitanse i fiktivni eksterni čvorovi bez otočnih elemenata. Tipovi graničnih čvorova ostaju isti kao pre ekvivalentiranja, dok su svi novi fiktivni čvorovi, PV čvorovi sa nultim aktivnim injektiranjima. U njima se u svakom stacionarnom stanju održavaju moduli napona na vrednostima napona odgovarajućih graničnih čvorova sa kojima su direktno povezani, iz stanja za koje je izveden Ward-ov ekvivalent (osnovno stanje). To znači da ovi fiktivni čvorovi ne remete naponske prilike graničnih čvorova, a time ni naponske prilike sistema od interesa u osnovnom stanju. Čim

Created by Dragan Vlaisavljevic - 98 -

Page 99: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

dođe do perturbacije napona u sistemu od interesa, iz ovih fiktivnih čvorova se injektiraju (pozitivne ili negativne) reaktivne snage, kao reakcija eksternog sistema na te perturbacije. Pored zahteva za poznavanje topologije i parametara sistema koji se ekvivalentira (kao i u slučaju Ward-ovog ekvivalenta), ovde je potrebno da se poznaju i lokacije PV čvorova u eksternom sistemu.

Metodologija generalizovanog Ward-ovog ekvivalenta

U referenci [7] izvedan je generalizovani Ward-ov ekvivalent, sa sličnim karakteristikama kao i prošireni Ward-ov ekvivalent.

Metodologoja Ward-ovog ekvivalenta sa rešenjem reakcije eksternog sistema na promene aktivne snage i učestanosti

U referenci [8] dat je prošireni Ward-ov ekvivalent, sa uvažavanjem reakcije spoljnog dela sistema pri varijacijama učestanosti i aktivnih snaga u internom sistemu. U ovom ekvivalentu, modeluje se samo odziv eksternog sistema posle delovanja primarne regulacije. Polazi se od statičkih karakteristika pojedinačnih generatora i potrošača u eksternom sistemu, pa se proračunavaju te statičke karakteristike za fiktivne generatore priključene na granične čvorove internog sistema. To znači da se pomoću ovog ekvivalenta modeluje ne samo globalni odziv eksternog sistema, već i raspodela tog odziva po pojedinačnim spojnim vodovima između internog i eksternog sistema.

Pored zahteva za poznavanjem topologije i parametara eksternog sistema (kao u slučaju Ward-ovog ekvivalenta), ovde je potrebno da se poznaju lokacije svih generatora sa svojim snagama u sistemu koji se ekvivalentira, zatim podešavanja njihovog stalnog statizma i faktora samoregulacije potrošača.

Metodologija aktivnog P–Q ekvivalenta

Aktivni P-Q ekvivalent predstavlja kombinaciju proširenih Ward-ovg ekvivalenata, u kome je još izvršeno uopštavanje s obzirom na dejstvo sekundarne regulacije učestanosti i snage razmene, koje nije sadržano u ekvivalentu iz ref. [9, 10].

Aktivni P-Q ekvivalent uvažava reakciju eksternog sistema na promene napona, reaktivnih snaga, učestanosti i aktivnih snaga, modelovanjem dejstva primarne i sekundarne regulacije.

Izvođenje parametara ovog ekvivalenata, sprovodi se u dva koraka. U prvom koraku izvode se parametri proširenog Ward ekvivalenta [6], a u drugom, parametri aktivnog P-Q ekvivalenta, s obzirom na reakciju spoljnjeg sistema na poremećaj aktivne snage u sistemu od interesa.

Created by Dragan Vlaisavljevic - 99 -

Page 100: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

S obzirom da je prošireni Ward-ov ekvivalent izveden samo za poremećaje u bilansu i tokovima reaktivnih snaga i naponskih prilika, to će se ovde prvo posmatrati samo takvi poremećaji, koji se isključivo dešavaju u sistemu od interesa. Smatra se da u spoljnom sistemu nema poremećaja, već samo promena izazvanih prethodno navedenim poremećajima. Tako, teorijska razmatranja koja slede daju reakciju spoljneg sistema na navedene promene u sistemu od interesa. Ta reakcija će biti svedena na granične čvorove. Neka je u sistemu od interesa poremećaj tipa ispada grane i−j i ispad reaktivne proizvodnje (ili potrošnje) u specificiranom čvoru. Problem proračuna reakcije spoljnjeg sistema rešava se primenom metode superpozicije, tako da se uvode sledeće aproksimacije:1. Linearni model EES-a daje dovoljno dobru sliku o režimu sistema.2. Čvorovi tipa PV mogu se pri analizi naponsko-reaktivnih poremećaja prikazati

naponskim izvorima.3. Čvorovi tipa PQ mogu se tretirati strujnim izvorima.4. Fazori napona graničnih čvorova u ekvivalentnom kolu sa poremećajem su

jednaki.

Navedeni prošireni Ward-ov ekvivalent ne sadrži reakciju spoljneg sistema na debalans aktivnih snaga usled poremećaja u sistemu od interesa. Ova reakcija je od posebnog interesa kada povezani sistem radi sa učestanošću različitom od referentne, kada sve elektrane (i one u sistemu od interesa i one u spoljnom sistemu) koje su pod dejstvom primarne regulacije menjaju proizvodnju aktivne snage u odnosu na osnovnu.

Za poremećaj u bilansu aktivne snage u sistemu od interesa, i za izvođenje reakcije spoljnjeg sistema na promene u bilansu aktivnih snaga u sistemu od interesa je korišten princip superpozicije linearnih kola, uz uvažavanje aproksimacija 1 i 3. Tretiranje PV čvorova u slučaju analize poremećaja u aktivnoj snazi i učestanosti sprovodi se uz sledeće aproksimacije:

1. Čvorovi tipa PV se pri analizi poremećaja u bilansu aktivnih snaga i učestanosti mogu smatrati čvorovima u kojima se priključeni idealni strujni transformatori. Ovi čvorovi tipa PV u kojima su priključeni izvori koji učestvuju u regulaciji aktivne snage i učestanosti mogu se prikazati idealnim strujnim izvorima promenljivog intenziteta, a oni koji ne učestvuju u regulaciji idealnim strujnim izvorima stalnog intenziteta.

2. Poremećaj u bilansu aktivnih snaga ne dovodi do značajne promene fazora napona graničnih čvorova.

3. Moduli napona u regulisanim čvorovima jednaki su 1 p.u.

Metodologoja Dimo-ovog REI ekvivalenta

REI ekvivalent [11, 12] razvijen je kao ekvivalent prilagođen određenom stanju i rešenom proračunu tokova snaga. Njegova tačnost zavisi i od načina grupisanja čvorova. REI mreža stvara nove povezne grane, pa je REI

Created by Dragan Vlaisavljevic - 100 -

Page 101: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

ekvivalentna mreža gušća nego originalna. Admitanse grana REI mreže mogu imati vrednosti za odnose G/B koji se znatno razlikuju od uobičajnih vrednosti za realne grane mreže, tako da se mogu pojaviti negativni otpori i redni kapaciteti.

Osnovna ideja ove metode sastoji se u tome da se injektirane snage i struje u čvorovima spoljne mreže agregišu u jedan ili više fiktivnih čvorova. Agregacija se vrši po pogodno izabranim grupama čvorova. Osnovni koraci u konstrukciji ekvivalenta su:1. Ukloniti injektiranja iz svih čvorova spoljne mreže.2. Uvesti fiktivni čvor R, čija su injektiranja jednaka sumama uklonjenih

injektiranja.3. Proširiti (pasivnu) mrežu fiktivnim granama kojima se čvor R spaja sa svim

graničnim čvorovima u posmatranoj grupi, preko zvezdišta mreže sa zvezdištem u pasivnom čvoru G.

4. Eliminisati sve čvorove spoljne mreže i čvor G, čime se dobija redukovana mreža u kojoj su svi čvorovi spolkjne mreže zamenjeni čvorom R.

Kod formiranja REI modela, otočne admitanse mogu se zanemariti i spoljna mreža posmatrati kao serijska mreža, ili se ove otočne kompnente mogu u ekvivalentnom modelu modelovati dodatnim injektiranjem reaktivne snage, a na isti način kao i proširenoj Ward-ovoj metodi injektiranja.

U referenci [12] data je detaljna analiza sa potrebnim uslovima da REI ekvivalent daje tačne rezultate u okolini osnovnog radnog režima. Mada su ovi uslovi zadovoljeni samo u izuzetnim slučajevima, oni se mogu koristiti kao uputstvo za izbor takvog grupisanja čvorova spoljne mreže kojom se minimiziraju greške ekvivalentnog modela. Nepovoljnu stranu čini to što ti uslovi zavise od osnovnog stanja sistema, što znači da se odgovarajuća grupisanja čvorova menjaju od slučaja do slučaja. Broj grupa u koje se grupišu čvorovi spoljne mreže može da varira od relativno malog do relativno velikog broja, u zavisnosti od tačnosti modela koja se želi postići. U referenci [11] procenjeno je da je za velike sisteme potrebno između 10 i 100 REI čvorova.

Za modelovanje odziva spoljnog sistema na promene u tokovima reaktivnih snaga, mogu se značajni PV čvorovi spoljne mreže zadržati u ekvivalentu, kao kod Ward-ove metode injektiranja. Druga mogućnost je da se svi PV čvorovi agregišu u jedan PV čvor. U tom slučaju je tačnost modela mnogo manja nego kod agregiranja svih PQ čvorova u jedan REI čvor. Zavisnost modela od osnovnog stanja sistema je tu još više izražena.

Na osnovu izloženih karakteristika može se zaključiti da se osnovni nedostaci REI metode ekvivalentiranja sastoje u sledećem:

1. Zavisnost parametara grana ekvivalentnog modela od osnovnog stanja sistema.

2. Veliki izbor različitih mogućih struktura ekvivalentnog modela, teškoće u izboru najpovoljnije strukture, kao i zavisnost ovog izbora od osnovnog stanja sistema.

3. Tendencija ka slaboj uslovljenosti Jacobi-jana, što dovodi do problema u pogledu pouzdanosti konvergencije algoritma, posebno u slučaju primene

Created by Dragan Vlaisavljevic - 101 -

Page 102: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

raspregnutog algoritma za proračun tokova snaga. Najnepovoljniji aspekt ovog nedostatka je u tome što dati REI ekvivalent u jednom slučaju daje efikasan algoritam, a pri malim promenema u osnovnom stanju sistema, konfiguraciji spoljne mreže ili grupisanju čvorova, može dovesti do slabe uslovljenosti Jakobijana i problema sa konvergencijom.

Primena

Analize statičke sigurnosti povezanih EES-a primenjuju se:

1. U realnom vremenu i odnose se na tekuće stanje EES-a.2. U studijskom modu, u fazi pripreme pogona EES-a i odnose na

planirana stanja EES-a.

U oba ova slučaja koriste se statički ekvivalenti eksternog dela povezanog EES-a, koji preslikavaju odziv eksternog dela sistema pri proučavanju pojava u internom delu sistema.

Ekvivalentno predstavljanje spoljneg sistema u okviru definisanog baznog stanja EES-a mora biti takvo da odgovarajući proračun tokova snaga i naponskih stanja daje rezultate koji su za interni sistem, vodove razmene, X/110 kV transformatore i granične čvorove jednaki odgovarajućim vrednostima za tekuće stanje (u realnom vremenu) ili planirano stanje (u studijskom modu) EES-a.

Literatura

[1] F. F. Wu and A. Monticelli,“Critical Review of External Network Modeling for On-line Security Analysis“, Int. Journal of Electric Power and Energy Systems, Vol. 5, No. 4, pp. 222-235, October 1983.

[2] CIGRE Working Group 38.02, „External Equivalents:State of the Art Report“, January 1986.

[3] S. Deckmann, A. Pizzolante,A. Monticelli, B. Stott, and O. Alsac, „Numerical Testing of the Power System Load Flow Equivalencing“, IEEE Trans. on Power Apparatus and Systems, Vol. PAS-99, No. 11, pp. 2292-2300, November 1980.

[4] S. Deckmann, A. Pizzolante, A. Monticelli, B. Stott, and O. Alsac, „Studies on Power System Load Flow Equivalencing“, IEEE Trans. on Power Apparatus and Systems, Vol. PAS-99, No. 11, pp. 2301-2310, November 1980.

[5] J. B. Ward, „Equivalent Circuits for Power Flow“, AIEE Trans. on Power Apparatus and Systems, Vol.PAS-68, pp. 373-382, 1949.

[6] A. Monticelli, S. Deckmann, A. Garcia, and B. Stott, „Real Time External Equivalents for Static Security Analysis“, IEEE Trans. on Power Apparatus and Systems, Vol. PAS-98, No. 2, pp. 498-508, March-April 1979.

Created by Dragan Vlaisavljevic - 102 -

Page 103: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

[7] R. A. M. Van Amerangen and H. P. van Meeteren, „A Generalized Ward Equivalent for Security Analysis“, IEEE Trans. on Power Apparatus and Systems, Vol. PAS-101, No. 6, pp. 1519-1526, June 1982.

[8] F. C. Aschmoneit and J. F. Verstege, „An External System Equivalent for On-line Steady State Generator Outage Simulation“, IEEE Trans. on Power Apparatus and Systems, Vol. PAS-98, No. 5, pp. 770-779, May 1979.

[9] V. C. Strezoski „Prilog metodama za analizu stacionarnih stanja povezanih elektroenergetskih sistema u uslovima strukturnih poremećaja“, Doktorska disertacija, ETF,Beograd, 1985.

[10]V. A. Levi i V. C. Strezoski, „Teorijski prikaz aktivnog P-Q ekvivalentna povezanih elektroenergetskih sistema“, Elektrotehnika, br. 7-8, str. e1-e6, 1987.

[11]W. F. Tinney and W. E. Powell, „The REI Approach to Power Network Equivalents“, Proc. PICA Conference, pp. 314-320.

[12]F. F. Wu and N. Narasimhammurthi, „Necessary Conditions for REI Reduction To Be Exact“, A79 065-4, IEEE PES Winter Meeting, New York, January 1979.

Created by Dragan Vlaisavljevic - 103 -

Page 104: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

2.3.4. Proračun naponske stabilnosti

U savremenim EES-ima sve veća pažnja se posvećuje problemima regulacije napona i reaktivnih snaga, kao i problematici naponske stabilnosti. Osnovni uzrok naponske nestabilnosti najčešće leži u nemogućnostgi EES da pokrije zahteve za reaktivnom snagom, tj. u pojavi deficita reaktivne snage u sistemu.

Navedeni problemi su se ranije javljali pre svega u slabo povezanim mrežama, u kojima postoje dugački vodovi i koje karakterišu veliki tranziti električne snage. Danas, međutim naponsko-reaktivni problemi se javljaju i u gusto koncentrisanim mrežama i to pre svega zbog visokog nivoa opterećenja usled zahteva za efikasnijim korišćenjem mreže. Ovi zahtevi nastaju pre svega iz sledećih razloga: smanjene investicija u prenosnu mrežu i deregulacije elektroenergetskog sektora tj. uvođenja tržišta električne energije.

U osnovi, postoje dva pristupa u rešavanju ovog problema. Dinamički i statički. Ovde će se razmatrati statički pristup [1].

Osnovu statičkog pristupa analizi naponske stabilnosti čini proračun tokova snaga i naponskih stanja. Klasičnim Newton-Raphson-ovim postupkom ne mogu se uspešno proračunati stanja od značaja za analizu naponske stabilnosti, te se moraju koristiti druge tehnike tzv. kontinualna tehnika proračuna tokova snaga i naponskih stanja koja danas predstavlja osnovu svake analize naponske stabilnosti.

Definicija naponske stabilnosti radne grupe IEEE

Naponska stabilnost definiše se kao sposobnost sistema da se u njemu održavaju naponi tako što se pri povećanju admitanse potrošača, povećava i snaga potrošnje (IEEE,1990 godina). Time su i snaga i napon kontrolabilni.

Drugim rečima, sistem je naponskli stabilan, gledano sa stanovišta nekog potrošačkog čvora, ako dodatnim priključenjem neke male provodnosti u tom čvoru, dolazi do povećanja aktivne snage potrošnje i sniženja napona, odnosno priključenjem negativne susceptanse (induktivnosti) dolazi do povećanja reakitvne snage potrošnje i sniženja napona. Ako ovi uslovi nisu ispunjeni, sistem je naponski nestabilan u tom čvoru.

Naponski slom definiše se kao proces u kome naponska nestabilnost dovodi do veoma niskih napona u znatnom delu sistema.

Sistem postaje naponski nestabilan ako poremećaj ili događaj izaziva propadanje napona koje ni automatika, ni dispečerske upravljačke akcije ne mogu zaustaviti.

Prema navedenim definicijama naponska nestabilnost se javlja kada je snaga potrošnje veća od granične snage prenosa razmatrane mreže. Za najjednostavniji model sistema (vod vezan na čvor potrošnje) to se dešava kada je impedansa prenosnog voda veća od impedanse potrošača.

potrvod ZZ ≥ . (1)

Created by Dragan Vlaisavljevic - 104 -

Page 105: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

VL − Prijemni naponski kraj

VT

~

G ZVod

I

VL

VT − Predajni naponski kraj

SPotr = PPotr + jQPotr

ZPotr

Slika 1: Radijalna mreža sa dva kraja

Osnovna kriva kod analize naponske stabilnosti je tzv. P–V kriva, koja predstavlja zavisnost napona čvora od aktivne snage potrošnje.

VL/VT

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 P/PMax

0,2

0 0

0,4

0,6

0,8

1,0

Slika 2: P–V kriva

Sistem je naponski stabilan u svim tačkama na gornjem delu krive, a naponski nestabilan na donjem delu krive, a vrh krive odgovora graničnoj snazi prenosa date meže. U slučaju da se potrošači mogu modelovati sa P = Const. i Q = Const., tj. kao potrošači konstantne snage, onda vrh krive zaista predstavlja kritičnu tačku u kojoj se javlja naponska nestabilnost. Međutim, ako se potrošači moraju predstaviti kao naponsko zavisni (na primer, kao potrošači konstantne struje I = Const. ili kao konstantne impedanse Z = Const.) moguć je stabilan pogon sistema na donjem delu krive.

Definicija naponske stabilnosti radne grupe CIGRE

Naponska stabilnost je podskup globalne stabilnosti EES-a. Ona ima za posledicu aperiodično snižavanje (ili povećanje) napona, mada se može ispoljiti i

Created by Dragan Vlaisavljevic - 105 -

Page 106: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

kroz neprigušene oscilacije napona. Oscilacije izazvane lošim podešavanjima zaštita, ili sistema za regulaciju nisu obuhvaćene ovim definicijama.

Naponska stabilnost pri velikim poremećajima

Naponska stabilnost pri velikim poremećajima bavi se problemima kontrole napona pri velikim poremećajima, kao što su kratki spojevi, ispadi generatora i drugih regulacionih resursa, ispadi prenosnih vodova i drugi. Sposobnost sistema da zadrži prihvatljive naponsko-reaktivne prilike i u ovakvim okolnostima određuje se na osnovu karakteristika opterećenja i interakcije upravljačkih i zaštitnih uređaja, kontinualnog i/ili diskretnog dejstva. Analiza naponsko-reaktivne stabilnosti pri velikim poremećajima zahteva razmatranje nelinearnih dinamičkih performansi sistema, tokom dovoljno dugog vremenskog perioda, u kome dolaze do izražaja spori regulacioni uređaji (kao što su diskretni regulatori napona transformatora sa promenljivim odnosom transformacije, ograničavači pobude generatora itd.). Period od interesa za analizu može se kretati od nekoliko sekundi do desetinu minuta.

EES je za dato pogonsko stanje i zadati poremećaj naponski stabilan ako nakon poremećaja naponi kod potrošača dostižu vrednosti koje odgovaraju ravnotežnom posthavarijskom stanju. Stanje nakon zadatog poremećaja i svih upravljačkih akcija je unutar „oblasti privlačenja“ stabilnog posthavarijskog ravnotežnog stanja.

Ova definicija odgovora tzv. tranzijentnoj stabilnosti (američka terminologija) ili dinamičkoj stabilnosti (ruska terminologija) za koju se kaže da je svojstvo samog EES, njegovog pogonskog stanja i samog poremećaja.

U ovom slučaju je u analizi neophodno je modelovati EES preko nelinearnih diferencijalnih i algebarskih jednačina.

Naponska stabilnost pri malim poremećajima

Naponska stabilnost pri malim poremećajima odnosi se na sposobnost sistema da upravlja naponima posle izraženih varijacija male amplitude (prvenstveno imajući u vidu permanentne i spore promene potrošnje). Ovaj tip stabilnosti određen je karakteristikama potrošnje i regulacionih uređaja sa kontinualnim i diskretnim upravljačkim dejstvom. Na osnovu tog koncepta, postoji mogućnost da se u svakom trenutku odredi kako će sistem reagovati na male poremećaje.

EES je u razmatranom pogonskom stanju naponski stabilan za male poremećaje ako, nakon bilo kakvog malog poremećaja, vrednosti napona kod potrošača ostaju jednake ili bliske vrednostima pre nastanka poremećaja.

Ovaj tip naponske stabilnosti analizira se pomoću linearizovanog dinamičkog modela EES ispitivanjem da li koreni karakteristične jednačine (sopstvene vrednosti) imaju negativan realan deo.

Created by Dragan Vlaisavljevic - 106 -

Page 107: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

Ova definicija odgovora tzv. statičkoj stabilnosti za koju se kaže da je svojstvo samog EES-a i njegovog pogonskog stanja. Osnovne pojave koje doprinose nestabilnosti pri malim poremećajima su u suštini stacionarnog (statičkog) karaktera. Zbog toga se u ovom slučaju može koristiti statička analiza.

Naponski slom

Usled naponske nestabilnosti u EES-u dolazi do naponskog sloma, ako su naponi kod potrošača u posthavarijskom ravnotežnom stanju nisu prihvatljivih graničnih vrednosti. Naponski slom može biti potpuni (ako je reč o raspadu EES-a) ili delimični.

I usled ugaone nestabilnosti može doći do naponskog sloma u tzv. električnom centru mreže.

Naponska nestabilnost

Naponska nestabilnost je odsustvo naponske stabilnosti i ima za posledicu progresivno sniženje (ili porast) napona.

Raznim upravljačkim akcijama može se dostići stabilno stacionarno stanje i van dozvoljenog opsega napona.

Nekontrolabilnost snage

Stabilan pogon sistema (u slučaju kada je snaga potrošača naponski zavisna) i na donjem delu P-V krive naziva se delimični naponski slom sa nemogućnošću upravljanja (nekontrolabilnošću) snage, jer se dodatnim uključenjem potrošača smanjuje snaga potrošnje.

Metodologija

Statički i dinamički pristup analizi naponske stabilnosti

Tranzijentnom dinamikom obuhvaćene su tzv. elektromehaničke prelazne pojave u generatorima, automatska regulacija pobude, primarna regulacija učestanosti, regulacija i upravljanje u sistemima za jednosmerni prenos na visokom prenosu, kao i prelazne pojave u asinhronim motorima. Tranzijentnom dinamikom obuhvaćene su i trenutne pojave i promene, kao što su promene konfiguracije mreže ili promena potrošnje koja je opisana statičkim modelom. Tranzijentna dinamika opisuje se skupom diferencijalnih i algebarskih jednačina:

),,,,,,( ⋯pwzzyx dcg=0 ; (2)

Created by Dragan Vlaisavljevic - 107 -

Page 108: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

),,,,,,( ⋯pwzzyx dcgdtd =x

, (3)

pri čemu su:x – tranzijentne promenljive stanja koje opisuju dinamiku generatora,

pobudnih sistema, kao što su elektromotorne sile, promena učestanosti i slično;

y – algebarske promenljive stanja (naponi, uglovi fazora napona, struje statora, ..);

zc, zd – promenljive stanja dugotrajne dinamike koje se menajuju kontinualno (indeks „c“) ili diskretno (indeks „d“);

w – ulazne promenljive (aktivna i reaktivna snaga potrošnje, referentne vrednosti regulatora,…);

p – parametri sistema (npr. otpornosti i reaktanse vodova, transformatora, generatora, itd);

dtdx

– prvi izvod x po vremenu.

Jednačine (2) predstavljaju jednačine ravnoteže aktivnih i reaktivnih snaga iz klasičnog proračuna tokova snaga, a jednačine (3) su diferencijalne jednačine koje opisuju prelazne pojave obuhvaćene tranzijentnom dinamikom.

Dugotrajnom dinamikom obuhvaćene su automatske regulacije napona kod transformatora sa mogućnošću promene odnosa transformacije pod opterećenjem, aktiviranje po pobudnoj struji i struji statora, uključenje i isključenje kondenzatorskih baterija, reaktora i uopšte sistema za kompenzaciju reaktivne snage, sekundarna regulacija učestanosti i snaga razmene, sekundarna regulacija napona, odziv termostatski regulisanih potrošača.

Dugotrajna dinamika, pored (2) i (3) predstavlja se i sledećim skupom jednačina:

),,,,,,( ⋯pwzzyxzdcc

c hdt

d = ; (4)

),,,,,,( )()1( ⋯pwzzyxz kdcdkd h=+ ; (5)

)(tϕ=w . (6)

U jednačini (4) opisane su kontinualne, a u jednačini (5) diskretne promene izazvane upravljačkim akcijama i delovanjem regulacionih i zaštitnih uređaja. Promenljive zc predstavljaju, na primer, ograničenja po pobudnoj struji generatora, promenu snage termostatski regulisanih potrošača, a promenljive zd

predstavljaju, na primer, odnose transformacije pri određenoj poziciji kod transformatora sa regulacijom po opterećenjem, zadate vrednosti napona u regulaciji pobude, status uključenosti baterija kondenzatora i slično. Pri tome je bitno napomenuti da je za prelazak iz diskretnog stanja k u naredno stanje k+1 potrebno neko vreme koje je interna karakteristika modelovanog uređaja.

Jednačinama (6) obuhvaćene su aktivna i reaktivna potrošnja i njihova promena sa vremenom.

Created by Dragan Vlaisavljevic - 108 -

Page 109: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

Dinamički pristup analizi naponske stabilnosti podrazumeva rešavanje sistema diferencijalnih i algebarskih jednačina (2)–(6) u vremenu, što omogućava simulaciju naponske nestabilnosti, ili sloma napona. Kako su vremenske konstantne pojava opisanih diferencijalnim jednačinama reda od delova sekundi do nekoliko minuta, obično se vrši rasprezanje pojava i posmatraju se promene samo nekih promenljivih stanja, dok se druge smatraju konstantnim za posmatrani interval.

Sa druge strane, statičkim pristupom se analiziraju „snimci“ sistema u

pojedinim trenucima uz pretpostavku da su svi izvodi (dtdx

, dt

d cz) jednaki nuli.

Time se skup diferencijalnih jednačina svodi samo na skup algebarskih jedančina čime se znatno olakšava njihovo rešavanje i analiza. Pri tome se i u statičkoj analizi vrši vremensko rasprezanje pojava u zavisnosti od toga koji se trenutak posmatra tj. za koji trenutak se vrši „snimak“.

Pretpostavka da su izvodi (dtdx

, dt

d cz) jednaki nuli znači da su odgovarajući

elementi EES-a i uređaji predstavljeni svojim stacionarnim odzivom, tj. pretpostavlja se da je očuvana stabilnost tokom prelaznog procesa. Zbog toga se ovaj pristup naziva i „kvazistatički“ pristup analizi stabilnosti.

U slučaju analize naponske stabilnosti pri malim poremećajima, vrši se linearizacija sistema diferencijalnih i algebarskih jedančina za posmatrano početno stanje što omogućava primenu uobičajnih tehnika za analizu lineranih dinamičkih sistema pri malim poremećajima. Ovakva analiza takođe se može podvesti pod statički pristup.

Ako se sistem koji je u stabilnoj ravnotežnoj tački podvrgne poremećaju (promenom p, zc, ili zd) on će preći u novu „konfiguraciju“. Ako u novoj „konfiguraciji“ sistem uopšte nema radnu tačku, promene p, zc, ili zd izazvale su tzv. statičku bifurukaciju, tj.strukturnu promenu u broju ravnotežnih tačaka, i ako

ne postoji rešenje sistema jedančina u ravnotežnom stanju ( 0=dtdx

, 0=dt

d cz),

tada samo u ovom slučaju može se koristiti statički pristup analizi naponske stabilnosti.

Kontinualna tehnika proračuna tokova snaga i naponskih prilika

Pri određivanju tačaka na P-V krivoj, sa približavanjem graničnoj snazi prenosa, Jacobi-jeva matrica postaje bliska singularnoj matrici i klasični Newton-Raphson-ov proračun tokova snaga divergira. Problem „slabe“ uslovljenosti Jacobi-jeve matrice može se prevazići primenom tzv. kontinualne tehnike za proračun naponskih stanja i tokova snaga (Continuation Power Flow). Ovom tehnikom vrši se transformisanje jednačina ravnoteže aktivnih i reaktivnih snaga f(x) = 0, tako da zadatak postaje „dobro“ uslovljen.

Kontinualna tehnika omogućava da se izračuna kontinuum rešenja navedenog sistema jednačina od nekog početnog stanja (koje se može proračunati klasičnom tehnikom) do kritičnog stanja, tj. stanja koje odgovara

Created by Dragan Vlaisavljevic - 109 -

Page 110: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

graničnoj snazi prenosa, koristeći željeni scenario promene opterećenja sistema. Opšte govoreći, ova tehnika proračuna omogućava generisanje krivih rešenja nelinearnih algebarskih algebarskih jednačina po nekom promenljivom parametru.

1,0

0,8

0,6

0,4

0,2

0 0 2 4 6 8 10 12 14 16 18 20

Nap

on u

r.j.

Predikcija Korekcija A B

V G

D Đ E

Povećanje snage u %

Slika 3: Ilustracija kontinualne tehnike (promenljivi parametar je procenat porasta opterećenja)

U ovom iterativnom postupku polazi se od poznatog rešenja (tačka A). Prvi korak je da se prognozira sledeće rešenje (tačka B) pomoću tangente na krivu u tački početnog rešenja i to za željeni scenario promene opterećenja. To je prva faza − faza prognoze ili predikcije. Ova procenjena vrednost potom se koriguje korišćenjem klasične Newton-Raphson-ove metode. To je druga faza − faza korekcije i kao rezultat se dobija tačno rešenje (tačka V). Korekcija se vrši uz fiksiranje jedne promenljive. U prvom koraku to je procenat promene opterećenja (prava B−V), u nekom sledećem koraku to može biti neka druga promenljiva, na primer napon čvora (prava Đ−E). Navedeni postupak naziva se lokalna parametrizacija, tj. u zavisnosti od oblika krive fiksiraju se različite promenljive u fazi korekcije. Postupak se ponavlja dok se ne proprate sve tačke na krivoj u željenom opsegu.

Osnovna formulacija zadatka kontinualne tehnike proračuna tokova snaga i naponskih stanja

Modifikovanje jednačina ravnoteže aktivnih i reaktivnih snaga vrši se tako što se dodaje procenat povećanja opterećenja kao nova promenljiva. Ova promenljiva istovremeno je onaj promenljivi parametar, za čiju se promenu izračunavaju rešenja sistema nelinearnih jednačina i biće označena sa λ.

Polazi se od jednačina ravnoteže aktivnih i reaktivnih snaga datih sa:

Created by Dragan Vlaisavljevic - 110 -

Page 111: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

( )[ ] 0sincos2 =+−− ∑∈ ij

ijijijijjiiiii BGVVGVPα

θθ , ni ,2,1 ⋯= ; (7)

( )[ ] 0cossin2 =−−+ ∑∈ ij

ijijijijjiiiii BGVVBVQα

θθ ; ni ,2,1 ⋯= , (8)

ili: 0=− Tii PP ; (9)0=− Tii QQ . (10)

( )[ ]∑∈

++=ij

ijijijijjiiiiTi BGVVGVPα

θθ sincos2, ni ,2,1 ⋯= ; (11)

( )[ ]∑∈

−+−=ij

ijijijijjiiiiTi BGVVBVQα

θθ cossin2, ni ,2,1 ⋯= . (12)

Injektiranje snage mogu se izraziti kao zbir snage koja ulazi u čvor (generisane snage) i snage koja izlazi iz čvora (snage potrošnje)

LiGii PPP −= ; (13)

LiGii QQQ −= . (14)Da bi se mogao predstaviti efekat promene opterećenja sistema moraju se

GiP , LiP i LiQ iskazati kao funkcije od λ u obliku:)1(0 GiGiGi kPP λ+= ; (15)

ibiLiLiLi SkPP ψλ cos0 += ; (16)

ibiLiLiLi SkQQ ψλ sin0 += , (17)

pri čemu indeks „0“ označava početno stanje (kada je λ=0), pa oznaka u prethodnim jednačinama imaju sledeća zanačenja:

0LiP , 0LiQ − aktivna i reaktivna snaga potrošnje i-tog čvora u početnom stanju;

Lik − faktor stepena porasta opterećenja i-tog čvora sa promenom parametra λ;

iψcos − faktor snage opterećenja i-tog čvora; Gik − faktor stepena porasta generisane aktivne snage u i-tom čvoru

sa promenom parametra λ; 0GiP − generisana aktivna snaga u i-tom čvoru u početnom stanju;

biS − veličina bazne snage za i-ti čvor, koja omogućava skaliranje

promene opterećenja i koja je jednaka 20

20 LiLi QP + .

Kako se Gik , Lik i iψ mogu specificirati za svaki čvor, može se simulirati bilo kakav scenario promene opterećenja.

Jednačine ravnoteže aktivnih i reaktivnih snaga mogu se napisati kao:

Created by Dragan Vlaisavljevic - 111 -

Page 112: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

0cos)1( 00 =−−−+ TiibiLiLiGiGi PSkPkP ψλλ ; (18)

0sin00 =−−− TiibiLiLiGi QSkQQ ψλ , (19)

ili u obliku 0=)(xf kao:

0=),,( λVθf , (20)

gde je x prošireno sa λ, tj.

=

∈∈

λααθαθ

Vxθ

PVi

PQi

PVi

iVii

,,,

. (21)

Gornji sistem jednačina takođe ima ukupno PVPQ nn +2 jednačina.

Faza prognoze (predikcije) rešenja

Ako postoji početno rešenje proračuna tokova snaga i naponskih stanja (λ=0) prognoza sledećeg rešenja izračunava se korišćenjem linearne aproksimacije (tj.tangente na tačku koja odgovara početnom rešenj) pri promeni bilo koje od promenljivih. Tangenta se izračunava tako što se diferencira

0=),,( λVθf , pri čime se dobija:

0=∆∂∂+∆

∂∂+∆

∂∂ λ

λfff V

θ, (22)

ili:

0=

∆∆∆

∂∂

∂∂

∂∂

λλ

VV

θ

θfff

. (23)

Leva matrica u prethodnom izrazu ustvari je Jacobi-jeva matrica iz klasičnog Newton-Raphson-ovog proračuna tokova snaga, kojoj je dodata još

jedna kolona, odnosno λ∂

∂ f.

Da bi se jednoznačno mogla izračunati tangenta

∆∆∆

=λVθ

t , potrebno je

definisati još jednu jednačinu, jer ima 12 ++= PVPQ nnN promenljivih, a

PVPQ nn +2 jednačina. Zbog toga se dodaje još jedna jednačina kojom se diferencijal jedne od promenljivih fiksira na ±1, odnosno 1±=∆ kx .

Prošireni izraz (23) sada se može napisati kao:

Created by Dragan Vlaisavljevic - 112 -

Page 113: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

±=

∆∆∆

∂∂

∂∂

∂∂

100

λλ V

eV

θθ

k

fff, (24)

gde je ke vektor-vrsta sa jednim nenultim elementom na k-toj poziciji. Ako se indeks k (tj. k-ta promenljiva) izabere pravilno, proširena Jacobi-jeva matrica je nesingularna i u tački u kojoj je neproširena Jacobi-jevaa matrica singularna, pa se može izračunati tangenata kao:

±

∂∂

∂∂

∂∂

=

∆∆∆

=

1

1

00

k

ffft

eVV λ

λθ

θ. (25)

Izbor da li se koristi +1 ili −1 zavisi od toga kako se menja k-ta promenljiva pri izračunavanju tačaka na krivoj. Ako k-ta promenljiva raste koristi se +1, a ako opada −1.

Prognozirano rešenje tada se izračunava kao:

∆∆∆

+

∆∆∆

=

∆∆∆

λσ

λλVVVθθθ

)(

)(

)(

*

*

*

p

p

p

, (26)

Pri čemu indeks * označava prognozirano, a indeks (p) poslednje izaračunato, odnosno početno rešenje. Broj σ omogućava da definišemo dužinu tangente, tj. veličinu koraka. Prognozirano rešenje mora biti dovoljno blisko tačnom, da bi se u fazi popravke tačno rešenje moglo izračunati.

Faza popravke(korekcije) prognoziranog rešenja

U ovoj fazi se osnovnom sistemu jednačina koji se rešava 0=),,( λVθf dodaje još jedna jednačina kojom se fiksira jedna promenljiva. Fiksira se upravo k-ta promenljiva iz predhodnog koraka kada je računato prognozirano rešenje i dobija prošireni sistem jednačina:

0=),,( λVθf ;

*kk xx = . (27)

Ovaj sistem jednačina rešava se pomoću Newton-Raphson-ovog postupka, koji se razlikuje u odnosu na klasični samo u tome što su dodate još jedna promenljiva i još jedna jednostavna jednačina. Fiksirana promenljiva naziva se parametar kontinualne tehnike proračuna i ona se može menjati u svakoj iteraciji.

Created by Dragan Vlaisavljevic - 113 -

Page 114: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

Izbor kontinualne tehnike proračuna

Osnovno pravilo je da se za ovaj parametar bira ona promenljiva kojoj odgovora najveći element vektora tangenta, tj. ona koja ima najveći stepen promene u odnosu na prethodno rešenje:

Nkk

k tttt ,,,max 21 ⋯=⇐x . (28)

Pri proračunu snaga u prvom koraku usvaja se da je λ parametar kontinualne tehnike proračuna i λ ostaje taj parametar u najvećem broju koraka. Do promene parametara dolazi samo oko kritične tačke (tačke kojoj odgovora granična snaga prenosa) i tada je najčešće parametar napon u nekom čvoru, jer je obično tada najveća promena napona u nekom od čvorova.

Prilikom obilazaka oko kritične tačke dolazi do promene znaka λ⋅∆ (na gornjem delu krive je 0>⋅∆ λ , a na donjem 0<⋅∆ λ ) tako da promena znaka

λ⋅∆ kao elementa tangente t signalizira prolazak kroz kritičnu tačku.

Opšti postupak za dobijanje P -V i Q-V krivih

Izrazi za GiP , LiP i LiQ omogućavaju da se generiše niz krivih, i to za različita scenarija promene generisane snage i snage potrošnje. Tako na primer za 0=iψ dobijaju se P-V krive, a za o

i 90=ψ omogućava generisanje Q-V krivih. Sa )( 00 LiLii PQarctg=ψ generišu se krive zavisnosti napona od promene prividne snage uz konstantan faktor snage. Takođe odgovarajućim izborom Lik može se zadati porast opterećenja samo u jednom čvoru, u određenoj oblasti ili u celom sistemu. Slično, pomoću Gik mogu se prozvoljno izabrati oni generatori čija proizvodnja pokriva porast opterećenja.

Za dobijanje P-V i Q-V krivih potrebno je rešiti sledeći sistem jednačina:

0cos)1( 00 =−−−+ TiibiLiLiGiGi PSkPkP ψλλ ; (29)

0sin00 =−−− TiibiLiLiGi QSkQQ ψλ , (30)

gde je:

( )[ ]∑∈

++=ij

ijijijijjiiiiTi BGVVGVPα

θθ sincos2; (31)

( )[ ]∑∈

−+−=ij

ijijijijjiiiiTi BGVVBVQα

θθ cossin2. (32)

Izborom Lik , Gik i iψ definiše se željeni scenario promene opterećenja i rada proizvodnih jedinica. Klasičnim proračunom se izračuinava početno stanje (za 0=λ ). Potom se povećava λ za proizvoljni korak λ⋅∆ i računaju se sva stanja klasičnim proračunom, sve dok postupak ne divergira. Potom se prelazi na kontinualnu tehniku i dobijaju se rešenja i na gornjem (povećanje λ) i na donjem delu krive (smanjenje λ) oko kritične tačke. Kada se ispune odgovarajući uslovi,

Created by Dragan Vlaisavljevic - 114 -

Page 115: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

ponovo se vrši klasični proračun tokova snaga, ovog puta na donjem delu krive smanjenjem λ za korak λ⋅∆ do krajnjeg stanja koje odgovara 0=λ .

Primena

U analizi naponske stabilnosti velikih sistema koristi se statička analiza. Osnovu statičkog pristupa analizi naponske stabilnosti čine algebarske jednačine ravnoteže aktivnih i reaktivnih snaga u svim čvorovima mreže i metode njihovog rešavanja (klasična i kontinualna tehnika proračuna tokova snaga i naponskih stanja). Pri tome, potrebno je posebno modelovati one elemente EES-a koji bitno utiču na naponsku stabilnost (sinhroni generatori, regulacioni transformatori i potrošači).

Statička analiza omogućava generisanje više stacionarnih stanja sistema u vidu P-V i Q-V krivih. Na taj način vrši se svojevrsna „simulacija“ stacionarnih stanja EES za unapred definisani scenario promena parametara EES-a. Na osnovu dobijenih stacionarnih stanja i krivih moguće je odrediti vrednosti niza tzv. indikatora naponskog sloma, koji omogućavaju da se proceni kolika je rezerva stabilnosti i da se identifikuje ograničenja elemenata EES-a u posmatranom stanju. Ovi indikatori mogu takođe poslužiti kao kriterijumi za primenu niza preventivnih i korektivnih akcija. Statička analiza omogućava da se ispitaju različita pogonska stanja i da se simuliraju razni poremećaji.

Opšti algoritam kontinualne tehnike je dat na Slici 4.

Created by Dragan Vlaisavljevic - 115 -

Page 116: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

Izračunavanje početnog stanja klasičnim proračunom tokova snaga

Početni izbor parametara kontinualne tehnike proračuna

Računanje vektora-tangente u odnosu na početno stanje

Izbor parametra kontinualne tehnike proračuna

Početak

Skaliranje vektora-tangente

Računanje prognoziranog rešenja

Računanje tačnog rešenja − popravka (korekcija) prognoze

Da li proračun divergira?

Da li je faktor skalira-nja dostigao mini-malnu vrednost?

Da

Ne

Promena faktora skaliranja vektora-

tangente

Da

Prekid proračuna

Memorisanje izračunatog rešenja

Izračunato stanje postaje početno stanje za sledeći proračun

Da li je ispunjen kriterijum za završetak

proračuna?

Da

Kraj

Ne

Ne Kraj

Slika 4: Algoritam kontinualne tehnike proračuna tokova snaga

Created by Dragan Vlaisavljevic - 116 -

Page 117: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

Literatura

[1] V. Janković, „Statički pristup analizi naponske stabilnosti u elektroenergetskim sistemima“, Magistarski rad, ETF,Beograd, maj 2000.

[2] C.W. Taylor (Editor), “Criteria and Countermeasures for Voltage Collapse”, CIGRE, Report TF 38.02.12, 1995.

[3] * * * “Voltage Stability of Power Systems: Concepts, Analytical Tools and Industry Experience”, IEEE, Special Publication, 2003.

[4] P. M. Anderson and A. A. Fouad, “Power System Control and Stability“, Wiley, 2002.

[5] P. Kundur, “Power System Stability and Control“, McGraw-Hill, 1994.[6] P. W. Sauer and M. A. Pai, “Power System Dynamics and Stability“, Prentice

Hall, 1998.

Created by Dragan Vlaisavljevic - 117 -

Page 118: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

3. Generatorske funkcije

3.1. Real-time funkcije

EES-i danas obično rade kao delovi neke interkonekcije. Osnovni cilj regulacije učestanosti i aktivnih snaga u EES-u je stalno održavanje ravnoteže između proizvodnje i potrošnje. Ukupna aktivna potrošnja u jednom EES-u, tokom 24-časovnog perioda nije konstantna, već se menja u zavisnosti od ciklusa ljudskih aktivnosti u tom periodu, koje se preslikavaju u dnevni dijagram potrošnje. Ove promene su spore, tako da se može uzeti da je u nekom kraćem vremenskom periodu potrošnja sistema konstantna, i da se na tu konstantnu potrošnju superponiraju sporopromenljivi poremećaji. Ovi poremećaji potrošnje se kompenzuju, promenom odatih snaga na generatorima. Ovaj način eliminisanja malih poremećaja naziva se sekundarna regulacija.

Sekundarna regulacija predstavlja superponirano dejstvo na primarnu regulaciju, koja potiče od više lokalnih turbinskih regulatora. Pod primarnom regulacijom podrazumeva se spontano dejstvo turbinskih regulatora sinhronih generatora, koji su osetljivi na promene učestanosti. Primarna regulacija je brza, proporcionalnog tipa (statička), sa konstantnom frekventnom greškom, i ona deluje nakon svakog poremećaja (debalansa aktivnih snaga) u sistemu. Korekcija promene opterećenja generatora je moguća pomoću sekundarne akcije, na ulaz nekih, ili svih turbinskih regulatora generatora u sistemu. Generatori koji učestvuju u sekundarnoj regulaciji nazivaju se regulacioni agregati. Znači da se funkcija sekundarne regulacije ili LFC (Load Frequency Control) realizuje promenom odate aktivne snage generatora, tj. agregata.

Regulaciona oblast je jedan EES koji je u mogućnosti da obavlja funkciju sekundarne regulacije. Za svaku regulacionu oblast pretpostavlja se da je koherentna. To znači da svi generatori u jednoj regulacionoj oblasti sačinjavaju jednu koherentnu grupu, koja zajednički osciluje i ima istu učestanost.

Konvencionalna sekundarna regulacija bazira se na “principu neintervencije”. Ovaj princip podrazumeva da se regulaciono dejstvo (upravljačka akcija) preduzima samo u onoj regulacionoj oblasti povezanih EES-a, koja je “odgovorna” za promenu opterećenja, koja uzrokuje promenu učestanosti i snaga razmene u interkonekciji od unapred definisanih (planiranih) vrednosti. Na ovaj način obezbeđuje se autonomnost i ekonomičnost rada svake regulacione oblasti.

Automatska regulacija proizvodnje (AGC – Automatic Generation Control) obuhvata regulaciju učestanosti i snaga razmene između EES-a (LFC) i regulaciju raspodele opterećenja na generatore u pogonu uz minimiziranje troškova pogona EES (EDC – Economic Dispatch Calculation). Kao prateći programi u okviru AGC-a nalaze se programi za planiranje razmene (ITS – Interchange Scheduling) i programi za nadzor rezervi (ORM – Operating Reserve Monitoring).

Mogu se definasati sledeća četiri eksploataciona moda rada AGC-a, koja pokrivaju sve radne režime EES-a, odnosno regulacione oblasti, a to su:

Created by Dragan Vlaisavljevic - 118 -

Page 119: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

- osnovni mod- permisiv mod- havarijski mod- korekcioni mod

Osnovni regulacioni mod karakteriše rad u normalnom radnom režimu EES-a, gde nisu narušena ograničenja potrošnje, pogonska ograničenja i ograničenja sigurnosti. U ovom modu ekonomičnost rada generatora je primarni cilj. Ovaj mod se i naziva “normal control”.

Permisiv regulacioni mod se naziva i “permissive control” mod. U ovom modu osnovni cilj je da se redukuje greška regulacione oblasti (ACE – Area Control Error), ali uvažavajući vrednosti baznih snaga generatora dobijenih proračunom ekonomskog dipsečinga.

Havarijski mod se ima kada u EES-u nastupe veliki poremećaji, koji prouzrukuju veliku regulacionu grešku, i kada je sigurnost sistema ugrožena. U ovom modu se ne uvažavaju vrednosti baznih snaga generatora dobijenih proračunom ekonomskog dipsečinga. U ovom modu svi regulacioni agregati otklanjaju regulacionu grešku. Ovaj regulacioni mod naziva se i “emergency assist”.

Korekcioni mod se primenjuje da bi se korigovala akumulisana vremenska greška sistema i neželjena snaga razmene.

AGC predstavlja sistem sekundarne regulacije, namenjen upravljanju povezanih EES-a. Zadatak AGC je da:

- održava učestanost sistema na nominalnoj vrednosti; - reguliše snagu razmene sa susednim EES i održavanje snage razmene

na planiranim vrednostima; - regulacija proizvodnje prema opterećenju sistema, tj. regulacione oblasti; - vrši korekciju vremenske greške i neželjene snage razmene na zahtev

operatora; - izvrši ekonomičnu raspodelu opterećenja sistema između regulacionih

agregata u sistemu

AGC prva četiri zadatka obavlja kroz LFC modul, a peti zadatak se obavlja uz pomoć modula za EDC.

Da bi se uradili gore pomenuti zadaci AGC-a, AGC koristi PI regulatore koji su smešteni u dispečerskim centrima. Ovakvi AGC sistemi se baziraju na klasičnoj teoriji servomehanizama za LFC petlju, i optimizacionim procedurama za EDC.

Na Slici 1 prikazan je globalni blok dijagram AGC-a.

Created by Dragan Vlaisavljevic - 119 -

Page 120: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

RTU

SCADA

merenja komande

LFC Nadzor rezervi (RM)

Ekonomski dispečing

Nadzor Performansi (PM)

Bazne snage i koeficijenti učešća

Planiranje razmene (ITS)

Slika 1: Globalni dijagram AGC-a

Created by Dragan Vlaisavljevic - 120 -

Page 121: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

3.1.1. Sekundarna regulacija P-f

Na Slici 1 prikazan je globalni blok dijagram LFC-a.

LFC Procesiranje re-gulacione greške

Filtriranje re-gulacione greške

PI regulator

Alokacija proizvodnje

Upravljanje regulacionim agregatima

Korekcija vremenske greške i neželjene razmene

ITS

ED

Postavne vrednosti

Reg. Imp.

Nadzor performansi

S C A D A

merenja

merenja

Slika 1: Globalni dijagram LFC-a

AGC regulatori treba da imaju sledeće osobine:1. AGC povezanih EES-a mora biti decentralizovanog tipa, gde svaka

regulaciona oblast učestvuje u regulaciji.2. Svaki decentralizovani regulator, odnosno regulator regulacione oblasti, mora

imati sopstvenu povratnu spregu, baziranu na merenjima iz te oblasti, a koja se prenose u dispečerski centar.

3. AGC treba da koristi model svoje regulacione oblasti i njenih interkonektivnih vodova.

4. Osnovni upravljački zakon u regulacionoj oblasti bi trebalo da bude baziran na linearnoj povratnoj sprezi, koja je nezavisna od poremećaja opterećenja u sistemu.

5. AGC mora da bude robustan, neosetljiv na strukturne poremećaje u sistemu i narušavanje parametara sistema.

6. Regulacione greške (ACE) u stacionarnom stanju sistema moraju se redukovati na nulu.

Created by Dragan Vlaisavljevic - 121 -

Page 122: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

7. AGC treba da bude projektovan za adekvatan rad u svim upravljačkim modovima.

8. AGC regulatori treba da obezbede kontinualnu regulaciju.9. U radu AGC mora voditi računa o sigurnosnim ograničenjima sistema

(regulacioni opseg agregata, dinamička ograničenja, itd.)10.Kroz ekonomski dispečing AGC treba da poboljša ekonomiju sistema.11.LFC – EDC interfejs treba da se reši na pogodan način, sa inkorporacijom

EDC-a u AGC kao nezavisne funkcije.12.AGC treba da koristi neophodan iznos telemerenja, resursa daljinskog

upravljanja kao i računarskih resursa.13. AGC treba preko SCADA sistema da upravlja regulacionim agregatima

slanjem impulsa “više” ili “niže” ili slanjem postavnih vrednosti (set point).14. Funkcija AGC je kritična funkcija realnog vremena, pa sama SW/HW

realizacija AGC treba da obezbedi rad u „hot standby“ režimu, sa vremenom „failovera“ ne većim od 20 sekundi.

Procesiranje regulacione gre š ke

Regulaciona greška je izračunata veličina iz koje LFC određuje neophodne upravljačke akcije da bi se održala planirana učestanost i snage razmene u okviru definisanih granica.

U LFC modulu regulaciona greška oblasti (ACE) se u zavisnosti od izabranog moda regulacije, računa na sledeći način:

1. Regulacija učestanosti i snaga razmene (Mod1)

ACE=(P1 – P0) + B*(F1 – F0)

2. Regulacija snage razmene (Mod2)

ACE=P1 – P0

3. Regulacija učestanosti (Mod3)

ACE=B*(F1 – F0)

4. Mod1 + korekcija vremenske greške (Mod4)

ACE=(P1 – P0) + B*(F1 –(F0 + ΔF1))

5. Mod3 + korekcija vremenske greške (Mod5)

ACE=B*(F1 - (F0 + ΔF1))

Created by Dragan Vlaisavljevic - 122 -

Page 123: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

6. Mod1+korekcija neželjene razmene (Mod6)

ACE=(P1 – (P0+ΔP1)) + B*(F1 – F0)

7. Mod2 + korekcija neželjene razmene (Mod7)

ACE=P1 – (P0 + ΔP1)

gde je:

P1 – stvarna snaga razmene (MW)P0 – planirana snaga razmene (MW)B – regulaciona konstanta regulacione oblasti (MW / Hz)F1 – stvarna učestanost sistema (Hz)F0 – planirana (nominalna) učestanost sistema (Hz)

Planirana snaga razmene P0 dobija se od programa za planiranje razmene (ITS), ali i ručni unos vrednosti P0 od strane operatora treba da ažurira ovu vrednost.

Planirana učestanost sistema iznosi 50 Hz (Evropa), ili 60 Hz (USA).Vrednosti za F1 i P1 dobijaju se od SCADA sistema sa vremenima

ažuriranja koja su duplo kraća u odnosu na ciklus rada LFC modula. Na primer, tipično vreme ciklusa LFC modula iznosi 4 sekunde a veličine P1 (suma aktivnih snaga po svim interkonektivnim dalekovodima regulacione oblasti) i F1 se ažuriraju svake 2 sekunde.

Vrednost konstante B se unosi ručno, i ako je ona jednaka vrednosti koeficijenta samoregulacije sistema, onda se ima rad sekundarne regulacije regulacione oblasti uz poštovanje principa neintervencije.

ΔF1 – promena referentne učestanosti regulacione oblasti radi korekcije vremenske greške. Tipične vrednosti su ±(0,02 – 0,05)Hz.

ΔP1 – greška snage razmene, koja predstavlja integral devijacije između stvarne razmene reg.oblasti i planirane vrednosti.

Filtriranje regulacione greške primenom linearnog filt era

Nakon proračuna sirove greške regulacione oblasti ACE, LFC „pegla“ ovu grešku pomoću rekurzivnog filtera u formi:

FACE(t) = ALFA*ACE(t) + (1 – ALFA)*FACE(t – T)

gde su:

FACE – filtrirana regulaciona greška

Created by Dragan Vlaisavljevic - 123 -

Page 124: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

ALFA – konstanta peglanja (obično je između 0,7 i 1,0)T – period izvršavanja LFC, dužina trajanja ciklusat – tekuće vreme

Konstanta peglanja ALFA je parametar koji se podešava prema ispitivanjima za svaki EES posebno.

Korekcija vremenske greške

Prilikom korekcije vremenske greške sve regulacione oblasti u interkonekciji tada preduzimaju korektivnu akciju koju je propisao neki koordinacioni centar interkonekcije, ili u izolovanom radu operator sam preduzima tu akciju.

U ovom algoritmu LFC se ne primenjuje funkcija automatske korekcije vremenske greške, čim se prekorači neka propisana granica, već se korekcija inicira od strane operatora.

Granica alarma za prekoračenje vremenske greške treba da je podesiva parametarski. Takođe su propisane i dozvoljene promene referentne učestanosti radi korekcije vremenske greške i one iznose ΔF1 = ± (0,02 – 0,05)Hz.

Vremenska greška uvek se računa u odnosu na 50 Hz (ili 60 Hz), bez obzira na planiranu učestanost. Vremenska greška za ciklus koji je u toku računa se po izrazu:

GrVr = (F1 – 50)*ΔT/50Kumulativna vremenska greška u k-tom ciklusu data je izrazom:

δT(k)=δT(k-1) + GrVr

Korekcija neželjene energije razmene

LFC algoritam integrali devijaciju, koja se javlja između stvarne razmene regulacione oblasti i planirane vrednosti koja se dobija iz programa Planiranje Razmene (ITS). Integraljenje se obavlja u svakom ciklusu LFC-a, a kao rezultat se dobija akumulisana neželjena razmena.

Kao i kod korekcije vremenske greške, LFC algoritam omogućava da se na zahtev operatora počne da vrši korekcija neželjene razmene. Korekcija se vrši tolikim iznosom da ne pređe granicu neželjene razmene što će prouzrokovati alarm. Kao parametar, definiš se limit u MW koji se postavlja kao granica za neželjenu snagu razmene preko koje se generiše alarm.

Kada se vrši otklanjanje greške neželjene razmene, planirana razmena P0 se modifikuje na sledeći način:

Pomodif = P0 + ΔP1

ΔP1 se računa na sledeći način:ΔW(k+1) = ΔW(k) + (P1 – P0) * Δt / 3600 (MWh)

Created by Dragan Vlaisavljevic - 124 -

Page 125: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

ΔP(k) = 60 * ΔW(k) / (60 – Tminuta) (MW)U prethodnim izrazima Tminuta je vreme u minutama od početka novog

sata, k označava k-ti ciklus LFC-a, Δt je trajanje jednog LFC ciklusa u sekundama, Po je planirana snaga razmene, ΔW je neželjena energija razmene a ΔP je korektivni faktor za snagu razmene.

PI regulator

U okviru ove funkcije se realizuje Proporcionalno - Integralni (PI) zakon upravljanja. PI regulator se uvodi u cilju svođenja vrednosti ACE (tj. FACE) na nulu (u praksi to je svođenje regulacione greške na male vrednosti u okolini nule). U kontinualnom domenu ovaj zakon upravljanja dat je sledećim izrazom:

PI_ACE(t) = Kp*FACE(t) + Ki*∫FACE(t)*dtgde je:FACE – filtrirana regulaciona greškaKp – konstanta proporcionalnog dejstvaKi – konstanta integralnog dejstva

Kako je potrebno realizovati digitalni regulator, neophodno je izvršiti diskretizaciju prethodnog izraza. Pogodan metod diskretizacije prethodnog izraza je tzv. Tustinova aproksimacija, čijom primenom se dobija sledeći izraz:

PI_ACE(k) = PI_ACE(k-1) + a*FACE(k-1) + b*FACE(k-1)gde su: a = (Kp + Ki*Δt/2); b = (-Kp + Ki* Δt/2); Δt - dužina trajanja ciklusa LFC-a

Određivanje režima rada LFC prema nivou regulacione greške

Created by Dragan Vlaisavljevic - 125 -

Page 126: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

ACE (MW)

1

2

3

4

5

6

7

8

Normalna regulaciona greška

Havarijska regulaciona greška

Blokada rada LFC regulatora

Slika 2: Prikaz nivoa regulacione greške

Blok Opis

1 Osnovna mrtva zona regulatora2 Osnovni regulacioni mod3 Mrtva zona permisiv moda4 Permisiv mod5 Havarijska mrtva zona6 Havarijski mod7 Alarmna mrtva zona regulatora 8 Vrednost ACE za koji se blokira rad regulatora

Objašnjenje rada regulatora uzimajući u obzir veličinu regulacione greške:

- Kada je FACE<ACE1 tada je

FACE = 0

- Kada je ACE1< FACE <ACE3

Generišu se upravljačke akcije koje uzimaju u obzir vrednosti dobijene iz proračuna ED kao što su bazne snage i koeficijenti učešća ED-a. Ovde je cilj regulacije da se sa agregatima upravlja tako da se njihove odate snage što više približe baznim snagama koje predstavljaju najekonomočnije vrednosti snaga agregata.

- Kada je ACE3 < FACE < ACE5

Created by Dragan Vlaisavljevic - 126 -

Page 127: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

Ovde se generišu upravljačke akcije koje imaju za cilj pre svega da redukuju vrednost ACE, ali na način da se poštuje permisiv način rada. To znači da se regulacioni impulsi gore-dole šalju ka agregatima koji će svojim doprinosom u promeni odate snage redukovati ACE na nulu. U ovom režimu rada regulacioni impulsi generisani u regulatoru, prolaze ka regulacionim agregatima, čija je regulaciona grška agregata po znaku ista sa znakom regulacione greške oblasti. Pri tome, proračun upravljačke akcije uvažava baznu snagu određenu proračunom ED, a koeficijenti učešća u regulaciji agregata se baziraju na tzv. regulacionim koeficijentima.

- Kada je ACE5 < FACE < ACE7

Generišu se upravljačke akcije koje ne uvažavaju vrednosti baznih snaga dobijenih iz proračuna ED i osnovni cilj je da se što brže redukuje vrednost regulacione greške ispod vrednosti ACE5. Koeficijenti učešća svih regulacionih agregata se postavljaju na vrednost 1.

- Kada je FACE > ACE7

Tada je FACE = ACEMAX i Blokira se rad regulatora.

U slučaju pojave ovakve velike greške generiše se alarm prevelike vrednosti regulacione greške i blokira se rad regulatora, sve dok se vrednost regulacione greške ne spusti ispod vrednosti ACE7, bilo delovanjem primarne regulacije, i/ili delovanjem operatora (dispečerska akcija) prema agregatima da se „ručno“ digne, ili ispusti snaga agregata u zavisnosti od znaka regulacione greške.

Proračun koeficijenata učešća agregata u regulaciji

Permisiv regulacioni koeficijenti

Ovde se koeficijenti učešća računaju srazmerno odstupanju od bazne snage regulacionionih agregata. Hidroelektrane se tretiraju kao jednoagregatne elektrane, što je isti slučaj i sa termoelektranama. Kod hidroelektrana sa više agregata koji učestvuju u sekundarnoj regulaciji, grupni regulator dobija upravljačke komande (postavne vrednosti ili regulacione impulse gore-dole) od strane sekundarnog regulatora iz dispečerskog centra a zatim grupni regulator komanduje turbinskim regulatorima pojedinih hidroagregata.

Ekonomski regulacioni koeficijenti

Created by Dragan Vlaisavljevic - 127 -

Page 128: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

Ovaj metod podrazumeva da je ED problem rešen na način tako što se snage generatora menjaju u skladu sa optimalnim programima rada koji prate promenu konzuma sistema a koja je relativno mala. Polazi se od programa baznih snaga generatora. Dalje, se ima promena konzuma i shodno tome treba da se odredi promena snage na svakom generatoru tako da se ima nova snaga generatora koja treba da zadovolji konzum na najekonomičniji način.

Pretpostavlja se da postoje izvodi prvog i drugog reda krive )( ii PF :

i

ii

PFF

δδ='

i 2

2''

i

ii

PFF

δδ= .

Polazeći od inkrementalne krive troškova generatorske jedinice ima se za iP∆ promena inkrementalnih troškova sistema od tačke 0λ na vrednost λλ ∆+0 .

Za malu promenu u snazi jedinice ima se:

iiii PPF ∆≅∆=∆ )( 0''λλ

Promena opterećenja u sistemu mora da odgovora sumi promena snaga po generatorima:

∑∑==

∆=∆=∆N

i i

N

ii

FPP

1''

1

1λ .

Iz ovih relacija mogu se odrediti faktori učešća generatora (Ekonomski regulacioni koeficijenti):

''1

''

1

1

ii

ii

F

FPP

∑=

=

∆∆

Proračun željene snage agregata u regulaciji

Željene snage regulacionih agregata izračunavaju se na sledeći način:

Pdes(i) = Pbp(i) – K(i)*PI_ACE(i),

gde su:

Pdes – željena snaga agregata; Pbp – bazna snaga agregata (određuje se u zavisnosti od upravljačkog moda

agregata); K – koeficijenat učešća agregata u regulaciji (može biti regulacioni ili

ekonomski koeficijenat); PI_ACE – regulaciona greška (može biti uzeta reg.greška sa ili bez upotrebe PI

regulatora);

Created by Dragan Vlaisavljevic - 128 -

Page 129: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

„i“ – indeks reg.agregata, i=1,2,3,....,n, gde je n ukupan broj regulacionih agregata.

Nakon proračuna željene snage za svaki regulacioni agregat, vrši se provera ove vrednosti u odnosu na gornje i donje dozvoljene radne oblasti za svaki regulacioni agregat.

U slučaju komandovanja od strane LFC-a sa slanjem postavnih vrednosti (set point value), onda postavna je vrednost jednaka izračunatoj željenoj snazi proizvodnje regulacionih agregata. Željena proizvodnja agregata predstavlja aktuelni zahtev za snagom prema agregatu, tj. ovo je ukupna vrednost snage koju agregat treba da ima za razliku kada se ima slučaj kada se šalju regulacioni impulsi koji predstavljaju komandovanje sa inkrementima snage.

Upravljanje regulacionim agregatom

Podfunkcija upravljanja regulacionim agregatom određuje upravljačku akciju koja je neophodna da bi se regulisao regulacioni agregat kako bi agregat odavao snagu koja je jednaka Pdes. Ova podfunkcija izvršava se svakih „n“ ciklusa LFC-a, gde je „n“ vrednost koja može da se menja od strane operatora.

Ova podfunkcija izvršava sledeće zadatke svakih „n“ ciklusa rada LFC-a:

1. Izračunava reg.grešku agregata (UCE – Unit Control Error) za svaki regulacioni agregat.

2. Izračunava akumulisanu reg.grešku agregata.3. Vrši se filtriranje reg.greške primenom mrtve zone UCE.4. Izvršava se ograničenje vrednosti UCE limitiranjem opsega.5. Generišu se upravljačke komande (regulacioni impulsi gore – dole).

Vrednost UCE je računska veličina koja kvantifikuje odstupanje aktuelne snage od željene snage regulacionog agregata u regulaciji.

UCE se računa na sledeći način:

UCE(i)=Pdes(i) – Pgen(i) – Presp(i) + Pkumul(i)

gde su:„i“ – indeks agregataPdes – željena snaga agregataPgen – stvarna snaga agregataPresp – očekivana greška u snazi zbog odziva agregata na predhodno poslate

upravljačke impulse. Ovim članom uzima se u obzir brzina odziva agregata da bi se izbegao nepotreban regulacioni rad.

Pkumul – član koji se uvodi radi korekcije dugotrajnih malih odstupanja vrednosti za UCE.

Pkumul(k+1) = Pkumul(k) + UCE, za RegImp = 0Ili

Created by Dragan Vlaisavljevic - 129 -

Page 130: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

Pkumul(k+1) = 0 za RegImp ≠ 0

Vrednost UCE može da se upotrebi direktno kao upravljačka akcija u formi regulacionog impulsa gore–dole. Ova bezuslovna implementacija u zatvorenoj petlji koristi UCE da bi se izvršilo komandovanje u bilo kom smeru i u bilo koje vreme. Ova forma regulacije se naziva komandno upravljanje.

Alternativa ovom komandom upravljanju je permisiv upravljanje, kod kojeg se slanje reg.impulsa gore–dole dozvoljava samo prema regulacionim agregatima, čija promena snage će dovesti da ACE se svodi na nulu. Ovaj način upravljanja može da redukuje regulacioni rad regulacionog agregata. Permisiv upravljanje pogoršava mogućnost AGC-a da vrši raspodelu opterećenja na način postizanja ekonomskog optimuma u smislu ED-a, a u cilju bolje regulacije ACE (tj svođenja ACE na nulu). LFC funkcija koristi oba metoda upravljanja, komandni i permisiv. LFC koristi komandno upravljanje kada je ACE malo (ACE1<ACE<ACE3), ali se LFC prebacuje na permisiv upravljanje kada je ACE veće od permisiv mrtve zone. Isto tako kada je ACE>ACE5, LFC se prebacuje na komandno upravljanje. Na ovaj način se vrši filtriranje vrednosti UCE.

Režimi rada regulacionih agregata

U okviru LFC paketa treba da budu podržani sledeći režimi rada proizvodnih jedinica:

REŽIM RADA OPIS

OFF –LINE Regulacioni agregat nije u pogonu (nije povezan na EES)

TEST LFC može da šalje upravljačke akcije u cilju merenja odziva regulacionog agregata. Upravljačke akcije se iniciraju ručno od strane operatora LFC-a.

FAULT Regulacioni agregat je u ovom režimu ako ne odgovara na upravljačke akcije LFC-a ili neodgovarajuće odgovara sa promenom snage na izdate upravljačke komande.

AUTO.REGULATION Regulacioni agregat učestvuje u otklanjanju normalne regulacione greške. Bazna snaga agregata određena proračunom ED.

AUTO.FULL Regulacioni agregat učestvuje u otklanjanju normalne i havarijske regulacione greške.

Created by Dragan Vlaisavljevic - 130 -

Page 131: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

Bazna snaga agregata određena proračunom ED.

AUTO.BASE Regulacioni agregat je upravljan samo prema vrednosti bazne snage određene proračunom ED. Regulacioni agregat ne učestvuje u otklanjanju reg.greške.

AUTO.ASSIST Regulacioni agregat učestvuje samo u otklanjanju havarijske reg.greške. Bazna snaga agregata određena je proračunom ED.

PROG.BASE Agregat menja snagu samo po upravljačkim nalozima operatora elektrane, ali je agregat spreman da bude angažovan od strane LFC-a.

Parametri LFC-a koji se podešavaju

Sistemski parametri regulacije

Promena statusa regulacije

LFC sistem može biti u jednom od sledeća tri stanja:

• U RADU (LFC radi i šalje regulacione impulse ili postavne vrednosti regulacionim agregatima).

• NADZOR (LFC radi u nadzoru. Tada se proračunava regulaciona greška ali se ne šalju regulacioni impulsi).

• SUSPENDOVAN (LFC ne proračunava reg.grešku niti šalje reg.impulse).

Izbor moda regulacije

LFC može da bude u jednom od sedam modova regulacije, detaljniji opis dat podpoglavlju „Procesiranje regulacione greške“ ovog dokumenta.

Sistemski parametri LFC-a

Pre nego što se LFC pusti u rad potrebno je podesiti sistemske parametre. Unos i promena sistemskih parametara treba da je moguće izvršiti i za vreme rada LFC-a.

U sistemske parametre LFC-a spadaju:

- konstanta peglanja ALFA

Created by Dragan Vlaisavljevic - 131 -

Page 132: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

- regulaciona konstanta regulacione oblasti B (MW/Hz) - osnovna mrtva zona regulatora (MW)- mrtva zona permisiv moda (MW)- havarijska mrtva zona (MW)- alarmna mrtva zona regulatora (MW)- granica osnovnog regulacionog moda (MW)- granica permisiv regulacionog moda (MW)- granica havarijskog regulacionog moda (MW)- granica reg.greške za koju se blokira rad regulatora (MW)- trajanje LFC ciklusa (sec)- broj LFC ciklusa za detekciju odziva agregata (sec), ako se agregat ne odazove

za ovo vreme prevodi se u režim FAULT.- limit devijacije učestanosti (Hz). Kada se pojavi merena vrednost učestanosti koja je veća od ovog limita tada rad LFC treba da se blokira (Stanje SUSPENDOVAN)

- režim rada PI regulatora (ON ili OFF)- proporcionalni član PI dejstva (p.u.)- integralni član PI dejstva (1/sec)

Parametri alarma LFC-a

- granica osnovnog regulacionog moda (MW)- granica permisiv regulacionog moda (MW)- granica havarijskog regulacionog moda (MW)- granica reg.greške za koju se blokira rad regulatora (MW)- granica greške neto razmene regulacione oblasti (MW)- alarmna vrednost ukupne energije greške razmene (MWh)- alarmna vrednost vremenske greške (sec)- alarmna vrednost devijacije učestanosti (Hz)

Parametri elektrana

Elektrana – dati ime i indeks elektrane.

Maksimalna snaga elektrane na pragu (MW) – predstavlja podatak o maksimalnoj snazi elektrane na pragu. Unosi se podatak ukupne snage sinhronizovanih agregata na mrežu.

Tehnički minimum elektrane (MW) – predstavlja podatak o tehničkom minimumu elektrane. Unosi se podatak koji korespondira broju sinhronizovanih agregata na mrežu.

Gornja dozvoljena granica regulacije elektrane (MW) – predstavlja podatak o gornjoj dozvoljenoj granici regulacionog opsega elektrane. Ovaj podatak može biti jednak ili manji od maksimalne snage elektrane na pragu.

Created by Dragan Vlaisavljevic - 132 -

Page 133: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

Donja dozvoljena granica regulacije elektrane (MW) – predstavlja podatak o donjoj dozvoljenoj granici regulacionog opsega elektrane. Ovaj podatak mora biti nešto veći od tehničkog minimuma elektrane.

Mrtva zona regulatora na elektrani (MW) – Da bi se sprečio nepotreban regulacioni rad reg.agregata uvodi se ovaj podatak. Ovaj parametar se koristi kada treba da se raspodeli reg.greška na više regulacionih elektrana. Ako je greška elektrane ispod mrtve zone, ne šalje se impuls elektrani i ako ona, na primer, trenutno greši. Sa druge strane, da bi se obezbedilo da elektrana u dužem periodu ne greši, na primer, stalno se nalazi u okviru mrtve zone, radi postizanja dobrog kvaliteta regulacije, u LFC algoritam je uvedeno i kumulativno dejstvo. Kumulativno dejstvo ima svrhu da pamti grešku elektrane koja nije ispravljena jer je ušla u opseg mrtve zone. Kada se ta greška akumulira i biva veća od ove mrtve zone elektrani se pošalje impuls da ispravi svoju grešku.

Brzina promene opterećenja (MW/min) – Ovaj podatak se koristi da bi se unapred proračunao vremenski odziv elektrane. U zavisnosti od brzine odziva elektrane prediktivni deo LFC algoritma proračunava snagu do koje je elektrana trabalo da stigne, bez obzira što se elektrana još nije odazvala, pa u narednom ciklusima regulacije vodi računa o tom podatku prilikom odlučivanja da li će regulacioni impuls ponovo biti poslat. Ovaj podatak omogućuje da se vodi računa da se regulacioni napor pođednako raspodeljuje na brze i na spore regulacione elektrane, kada one rade zajedno.Vrednost regulacionog impulsa (MW) - predstavlja vrednost promene snage regulacione elektrane kada se pošalje jedan impuls. Utvrđuje se eksperimentalno.

Postavna vrednost bazne snage (MW) – ova vrednost predstavlja optimalnu snagu koja bi trebala da se dobije iz programa Ekonomski dispečing. Ova vrednost mora biti između granica ekonomičnosti rad agregata (ecomax i ecomin).

Gornja granica regulacionog opsega (MW) – može biti maksimalno jednaka gornjoj dozvoljenoj granici regulacije elektrane.

Donja granica regulacionog opsega (MW) – može biti maksimalno jednaka donjoj dozvoljenoj granici regulacije elektrane.

Created by Dragan Vlaisavljevic - 133 -

Page 134: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

CURCAP

ECOMIN

ECOMAX

LFCMAX Primarna regulaciona margina

Sekundarna regulaciona margina

LFCMIN

CAPMIN Primarna regulaciona margina

Sekundarna regulaciona margina

Opseg generatorske snage

Opseg referentnih vrednosti

MW

0 Vreme

Slika 3: Regulacioni opsezi LFC-a

Katalog dalekovoda

Katalog dalekovoda je funkcija koja definiše dalekovode razmene koji učestvuju u proračunu regulacione greške oblasti. Plan razmene (ITS) mora biti usaglašen sa dalekovodima razmene koji su u pogonu. Algoritam LFC-a automatski, prilikom proračuna greške regulacione oblasti, uzima u obzir status dalekovoda i merenja (primarno ili back up merenje treba da se izabere za svaki dalekovod) sa tih dalekovoda kod obračuna regulacione greške.

3.1.2. Nadzor rezervi

Odgovarajući nivo rezervi je važan faktor sigurnosti u radu EES-a. Operativna rezerva predstavlja rezervu u snazi iznad vrednosti sistemskog opterećenja, koja je neophodna da pokrije svaki nepredviđeni ispad generatorske jedinice, ili zbog pokrivanja grešaka u prognozi potrošnje.

Ova funkcija (NR − nadzor rezervi) omogućava davanje tekuće informacije u vezi raspoložive operativne rezeve u EES-u. NR periodično izračunava proizvodne mogućnosti generatora, u cilju proračuna vrednosti u snazi koja pravazilazi tekuće opterećenje EES-a. Funkcija NR proračunava za svaki generator, kao i za sistem u celini, rezerve u snazi po kategorijama koje doprinose operativnoj rezervi.

Created by Dragan Vlaisavljevic - 134 -

Page 135: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

Za svaki specificirani period vremena, rezerva se izračunava po kategorijama rezervi, sumira i poredi sa zahtevima za rezervom po kategorijama rezervi. Ove sumirane vrednosti rezervi se označavaju kao klase rezervi.

Klase rezervi Tipična vremena reagovanja

Brza rezerva 20 sekundi

Spremna da digne opterećenje generatora odmah nakon akcije regulatora po primarnoj regulaciji.

Obrtna rezerva 15 minuta

Definiše se kao iznos kapaciteta generatora koji nije opterećen, a pri tome generator je povezan i sinhronizovan na mreži.

Ne - obrtna reserve 15 minuta

Definiše se kao iznos kapaciteta generatora koji nije opterećen, a pri tome generator nije povezan i sinhronizovan na mreži, ali može u roku od 15 minuta da se poveže na mrežu i u potpunosti optereti.

Spora rezerva 1 satSastoji se od svih raspoloživih proizvodnoih resursa koji nisu odmah

raspoloživi, ali mogu biti na mreži u roku od 1 sata. Ostali izvori rezervi ovog tipa, kao što su programi satnih snaga razmene, takođe se mogu tretirati u ovoj klasi rezervi.

Operativna rezerva predstavlja sumu obrtne i ne-obrtne rezerve.Obrtna rezerva (spinning reserve) sastoji se od dve komponente:

regulaciona rezerva (predstavlja sumu rezervi u snazi koja se ima na regulacionim agregatima) i ne-regulaciona rezerva (predstavlja sumu rezervi u snazi koja se ima na agregatima koji su pod ručnom kontrolom operatora elektrane). Obe ove klase obrtne rezerve treba da se posebno računaju od strane ovog programa i prikazuju operatoru.

Ne-obrtna rezerva (non-spinning reserve) predstavlja sumu rezervi na agregatima, koji se mogu u određenom vremenu sinhronizovati na mreži, i za tipično vreme odziva pojedine rezerve (ovaj parametar treba da je promenljiv od strane operatora), angažovati od strane operatora elektrane.

Primer prikaza rezervi dat je na Slici 1.

Created by Dragan Vlaisavljevic - 135 -

Page 136: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

Slika 1: Prikaz rezervi

Created by Dragan Vlaisavljevic - 136 -

Page 137: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

3.1.3. Nadzor performansi sekundarne regulacije

Nadzor performansi sekundarne regulacije (NPSK) analizira i pravi izveštaje, koristeći NERC kriterijume performansi, kako za normalne uslove rada, tako i za slučaj pojave poremećaja u EES.

Kriterijumi za normalan pogon su: Pod normalnim uslovima rada definišu se oni u kojima je apsolutna vrednost regulacione greške (ACE) manja od vrednosti Lmag koja predstavlja graničnu vrednost normalnog pogona.

Kriterijumi za ACE prolazak kroz nulu (A1) su: Tokom svakog sata, NPSK funkcija izračunava koliko puta tokom vremena je ACE prošla kroz nulu i to uzimajući u obzir desetominutne intervale vremena, koji se računaju u odnosu na prethodni prolazak ACE kroz nulu.

Kriterijumi za ACE srednju vrednost odstupanja (A2) su: Tokom svakog sata, NPSK funkcija izračunava koliko puta srednja vrednost ACE za desetominutne intervale prevazilazi vrednost Ldisp, koja se definiše od strane operatora.

Po oba kriterijuma A1 i A2, proračunavaju se sledeći podaci:ukupna njihova vrednost po danusrednja vrednost po danumaksimalan broj po satuminimalan broj po satuprocenat vremena rada regulacije unutar koga su zadovoljena oba kriterijuma.

Kriterijum za pogon sa poremećajem je: Pogon sa poremećajem definiše se kada je apsolutna vrednost ACE prevazilazi ograničenje Lmag.

Kriterijum za ACE sa poremećajem je: NPSK izračunava koliko puta nakon nagle promene ACE, ACE prevazilazi Lmag, gde je Lmag jednako trostrukoj vrednosti Ldisp.

Kriterijum za oporavak vrednosti ACE nakon poremećaja (B1) je: Funkcija NPSK izračunava koliko puta ACE uspe da prođe kroz nulu unutar desetominutnog intervala nakon početka poremećaja.

Created by Dragan Vlaisavljevic - 137 -

Page 138: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

Kriterijum za korektivnu akciju ACE nakon poremećaja (B2) je: Funkcija NPSK izračunava koliko puta ACE ne kreće da ima tendenciju koja vodi ka vrednosti nula, jedan minut nakon početka poremećaja.

Aplikacija NPSK funkcije treba da obuhvata i nadzor nad:- Proverom ograničenja Abnormalni uslovi rada treba da se alarmiraju u skladu sa opštim proverama narušavanja ograničenja.

Provera ograničenja kao minimum, treba da obuhvate sledeće:- Poređenje merenja snage po interkonektivnim vodovima sa vrednostima

maksimalnog opterećenja po tim vodovima.- Poređenje merenja snage odate od strane generatora sa maksimalnom

snagom generatora.- Prevelikog odstupanja tekuće vrednosti učestanosti u odnosu na

nominalnu vrednost.- Preveliko odstupanje ACE. - Preveliko odstupanje mernih vrednosti dobijenih preko primarnih mernih

uređaja u odnosu na rezervne merne uređaje.- Preveliko odstupanje vremenske greške. - Nedostatak u rezervi snage u EES-u.

Sva narušena ograničenja treba da se alarmiraju, ponavljanje generisanja istih alarma treba da bude sprečeno. Mrtva zona za svaku veličinu treba da postoji, kako bi se sprečila pojava cikličnog alarmiranja.

Created by Dragan Vlaisavljevic - 138 -

Page 139: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

Slika 1: Prikaz funkcije Nadzor performansi sekundarne regulacije

Created by Dragan Vlaisavljevic - 139 -

Page 140: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

3.2. On-line funkcije

3.2.1. Ekonomski dispečing

Osnovna uloga funkcije ekonomskog dispečinga (ED) jeste da izvrši alokaciju snage na generatore, usled promene snage opterećenja EES-a, tako da se postigne ekonomski optimum sa stanovišta opterećenosti generatora.

Funkcija ED treba da ima adekvatan grafički interfejs za unos, modifikaciju i verifikaciju parametara proračuna.

Proračun ED može da se zasniva na iterativnoj ili ne-iterativnoj proceduri (algoritmu) i treba da se izvršva ciklično unutar specificiranog vremena za izvršavanje proračuna.

Funkcija ED sastoji se od sledećih modula:

- Moduo proračuna u realnom vremenu- Moduo normalnog proračuna- Moduo kompletnog proračuna

Moduo proračuna u realnom vremenu treba da izračunava baznu snagu, faktore učešća generatora i ograničenja po generatorima uvažavajući kriterijume njihove ekonomičnosti rada.

Moduo normalnog pogona obuhvata proračun ED nad svim generatorima u pogonu koji su pod upravljanjem, ili mogu biti pod upravljanjem nadređenog dispečerskog centra. Izvršavanjem ovog modula može da se odredi snaga sa kojom bi se opteretio generator ako se on stavi u mod rada koji je određen proračunom ekonomskog dispečinga, a pre toga je radio po svom programu proizvodnje.

Moduo kompletnog proračuna ED izvršava se uzimajući u obzir sve generatore, bez obzira da li su oni spremni da se sa njima upravlja iz dispečerskog centra. Rezultati ovog proračuna mogu da posluže za izračunavanje troškova proizvodnje svih generatorskih jedinica. Pored toga, rešenje ovog slučaja daje optimalno opterećenje za sve generatore, uvažavajući ekonomiju snabdevanja opterećenja EES-a.

Funkcija proračuna ED izvršava se na periodičnoj vremenskoj bazi, gde interval izvršavanja proračuna se softverski zadaje od strane operatora. Pored toga, funkcija proračuna ED takođe se izvršava i u sledećim slučajevima:

- na zahtev operatora- kada se ima značjna promena opterećenja u EES u odnosu na

opterećenje koje se imalo kod poslednjeg proračuna ED- kod promene moda rada generatora

ED u studijskom modu

U studijskom modu, funkcija proračuna ED koristi se za analizu potecijalnih

Created by Dragan Vlaisavljevic - 140 -

Page 141: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

scenarija. U ovom modu proračun ED se zasniva na istim principima kao proračun u realnom vremenu, ali sa samo sa slučajevima koji su se dogodili, ili koji se potencijalno mogu dogoditi.

Okruženje za proračun ekonomskog dispečinga

Generatori se modeluju sa više krivih zagrevanja, koje se koriste kada se vrši ekonomska evaluacija, tako da ED program izračunava bazne snage generatora na osnovu ovih krivih. Ove krive treba da budu modelovane da mogu da sadrže u sebi i područja u kojima je zabranjen rad generatora.

ED algoritam treba da obuhvati dodatne opcije, kao što su tretman ograničenja po snazi generatora, uzimanje u obzir kod proračuna zahteva za držanje rezervi na generatoru.

Termogregati treba da mogu da se modeluju za različite vrste goriva (kako po tipu, tako i po kalorijskoj moći istog tipa goriva). Modelovanje koriščćenja mešavine više tipova goriva isto tako treba da bude obezbeđeno kod algoritma za ED proračun za termoagregate.

Formulacija problema

Sistem od interesa sastoji se od N jedinica (tipa termoelektrana), koje snabdevaju ukupno električno opterećenje rP . Ulazna karakteristika za svaku jedinicu data je preko krive troškova i označena je sa iF . Izlazna veličina svake jedinice je označena sa iP , i predstavlja aktivnu snagu. Ukupni troškovi TF , tj. kriva troškova za ceo sistem data je kao suma krivih troškova pojedinačnih jedinica. Osnovno ograničenje u sistemu je:

∑=

=N

iir PP

1(1)

Problem koji treba da reši može da se izrazi ako pronalaženje minimuma funkcije TF uz zadovoljenje ograničenja (1). U ovom slučaju formulacije problema zanemaruju se gubici u prenosnoj mreži.

)(......min1

21 iN

iiNT PFFFFF ∑

==+++= (2)

∑=

−==ΦN

iir PP

10 (3)

Ovaj optimizacioni problem rešava se primenom Lagrange-ovog metoda, tako što se formira proširena Lagrange-ova funkcija:

λ φ+= TFL (4)

Created by Dragan Vlaisavljevic - 141 -

Page 142: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

gde je λ Lagrange-ov multiplikator.U ovom slučaju ima se N+1 promenljivih, od toga N promenljivih tipa iP i

jedna tipa λ. Rešenje ovog optimizacionog problema dobija se kao:

0)( =−=∂∂ λ

δδ

i

ii

i PPF

PL

ili λδδ −=

i

iPF0 (5)

Neophodan uslov za postojanje minimuma kriterijumske funkcije ( iF ) optimizacionog problema dobija se kada se ima jednakost inkrementalnih troškova za sve proizvodne jedinice i oni treba da budu jednaki vrednosti za λ, uz uvažavanje uslova datog jednačinom (3).

MW MW MW

$/MWh $/MWh $/MWh

• • • •

λ •

1P 2P nP

nPPP +++ ⋯21Ukupno generisanje = Ukupna potrošnja

Slika 1: Uslov optimalnosti za λ=const.

Za realni sistem od N jedinica ovaj optimizacioni problem treba da se modifikuje proširujući ga sa modelovanjem nejednakosti za svaku jedinicu, tj. snaga svake jedinice Pi mora da bude između minimalne i maksimalne snage svake jedinice.

Uvažavajući i ograničenja tipa nejednakosti ima se:

λδδ =

i

iPF

, N jednačina (6)

maxminiii PPP ≤≤ , 2N nejednačina (7)

∑=

=N

iir PP

1, 1 ograničenje (8)

sada se imaju sledeći neophodni uslovi za rešavanje problema:

λδδ =

i

iPF

za maxminiii PPP << ; (9)

λδδ ≤

i

iPF

za maxii PP = ; (10)

Created by Dragan Vlaisavljevic - 142 -

Page 143: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

λδδ ≥

i

iPF

za minii PP = (11)

Trošak goriva = cena goriva / (kalorična vrednost goriva X efikasnost)($/GJ) ($/tona) / (GJ/Tona) x rel. jed.

Slika 2: Karakteristične krive termoelektrana za proračun ekonomskog dispečinga

Izračunavanje inkrementalne krive troškova generatora

Created by Dragan Vlaisavljevic - 143 -

Page 144: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

Efikasnost bojlera

Troškovi pogona i održavanja

Inkrementalna kriva troškova agregata

(ICC)

Podaci o gorivima za jedinice Osnovno gorivo Mešovito gorivo

Podaci o gorivima Cena Efikasnost Polutanti

Vremenski plan angažovanja Inkrementalna kriva

zagrevanja agregata (IHRC)

Slika 3: Inkrementalna kriva troškova generatora

Slika 4: Određivanje prosečnih troškova sa krive troškova

Created by Dragan Vlaisavljevic - 144 -

Page 145: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

Metode za rešavanje problema ekonomskog dispečinga

Lambda metod a) Grafički Lagrange-ov metod – neiterativni pristup

Funkcija ED koristi princip da se najekonomičniji pogon za datu kombinaciju generatorskih jedinica ima kada se ima jednakost inkrementalnih troškova za sve generatorske jedinice koje snabdevaju sistemski konzum. Da bi se zadovoljio ovaj kriterijum jednakih inkrementalnih troškova može da se primeni ne-iterativni metod dispečiranja baziran na principu metoda grafičkog Lagrange-ana. Ovaj algoritam treba da uvažava i donje i gornje ograničenje snage za svaku generatorsku jedinicu.

Ovaj algoritam izvršava se u dve faze:

Faza 1: Izvrši se konstrukcija inkrementalnih krivih troškova za svaku generatorsku jedinicu i za ceo proizvodni sistem.- inkrementalna kriva zagrevanja (IHR) modeluje se kao kriva sastavljena od

linearnih segmenata na osnovu ulazno-izlane (I/O) krive za svaku generatorsku jedinicu.

- IHR kriva modeluje se sa segmentima ograničenim tačkama prekida a isto tako mogu se modelovati i vertikalni delovi krive (diskontinuiteti).

- Nakon toga vrši se konstrukcija inkrementalne krive troškova (ICC) na sledeći način:

ICCi = (IHRi*(FPi*OMi)) / EFi za svaku jedinicu ''i'', ($/MWh)gde su:FPi – cena goriva (GJ/MWh)OMi – varijabilni i fiksni troškovi jedinice ($/GJ)EFi – faktor efikasnosti

- Kriva ICCsystem za ceo proizvodni sistem dobija se sumiranjem inkrementalnih krivih troškova svih generatorskih jedinica u rastućem redosledu, uvažavajući tačke preloma za svaku jedinicu.

Faza 2:

- primenjuje se tabelarna interpolacija - željena snaga koja treba da se dispečira dobija se iz AGC-a- određuje se inkrementalni sistemski trošak λ iz krive za sistem ICCsystem - određuju se bazne snage jedinica na osnovu kriterijuma jednakih

inkrementalnih troškova i krivih ICC za svaku jedinicu.- vrši se proračun faktora regulacije za svaku jedinicu kao

ERFi = (1/ Si*a) / (∑1/ Sk)

Created by Dragan Vlaisavljevic - 145 -

Page 146: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

gde su:Si – nagib krive ICC za i-tu jedinicu na segmentu (za vrednost bazne snage)k – skup jedinicaa – odnos regulacionog zahteva pridodat jedinicama koje učestvuju u EDa = SE/(SE+SB+SR)SE – zbir regulacionih opsega jedinica u EDSB – zbir regulacionog opsega za sve jedinice u modu baznih snagaSR - zbir regulacionog opsega za sve jedinice u ramp modu

b) Iterativni metod (ref.1, poglavlje 3.3)

Izračunavanje iP za Ni ,,2,1 ⋯=

Izračunavanje

∑=

−=N

iir PP

Prva iteracija

ε < tolerancija

Korekcija λ

Dobijen program generatora

Kraj

DA

DA

NE

NE

Polazno λ

Start

Slika 5: Iterativni metod ekonomskog dispečinga

Kriva troškova po jedinici je data u sledećem obliku

iiiiii cPbPaF ++= 2 , (12)

Created by Dragan Vlaisavljevic - 146 -

Page 147: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

pri čemu iP mora da bude između minimalne i maksimalne snage svake jedinice:

maxminiii PPP ≤≤ . (13)

Izračunavanje polazne vrednosti za λ i njene korekcije po iteraciji:

)2(

)2(min

max

iiiMIN

iiiMAX

bPaMin

bPaMax

+=

+=

λ

λ(14)

2

2minmax

maxmin0

λλλ

λλλ

+=∆

+=(15)

λ korekcija po iteraciji:

=

=+

<∆−

>∆+= N

i

ki

k

N

i

ki

k

k

PzaP

PzaP

1

)()(1

)()(

)1(

;

;

λλ

λλλ (16)

2

)()1(

kk λλ ∆=∆ + (17)

pri čemu se iterativni proces zaustavlja kada je:

ε<− ∑=

N

i

kiR PP

1

)( . (18)

Gradijentni metod

Primena gradijentne metode polazi od jednačina (2) i (3) i od pretpostavke da se sistem nalazi u dopuštenoj radnoj oblasti, odnosno da je zadovoljena jednačina (1).

Zatim se pretpostavlja da se snaga svake generatorske jedinice menja za relativno mali iznos, tako da se uvek ima rad u dopuštenoj oblasti.

Razvojem jednačine (2) u Taylor-ov red, i zanemarivanjem članova višeg reda sem prvog, dobija se sledeći izraz:

NN

NT P

PFP

PFF ∆++∆=∆

δδ

δδ ....1

1

1 . (19)

Uzimajući u obzir jednačinu (1) i pretpostavljajući da se ima mala promena snage na generatorskim jedinicama, tada se ima sledeće ograničenje:

Created by Dragan Vlaisavljevic - 147 -

Page 148: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

01

=∆∑=

N

iiP . (20)

Ograničenje dato jednačinom (20) smanjuje stepen slobode problema za jedan, tako da se jedna jedinica mora izabrati da bude zavisna. Neka ta zavisna jedinica bude označena sa 'x'. Tada se ima da promena snage zavisne jedinice mora biti jednaka negativnoj sumi promena snage na ostalih (N-1) jedinica, što je dato sledećim izrazom:

∑≠

∆−=∆xi

ii PP . (21)

Na osnovu gore navedenih jednačina izvodi se sledeća relacija:

∑ ∑≠ ≠

∆=∆

−=∆

xi xii

i

Ti

x

x

i

iT P

PFP

PF

PFF

δδ

δδ

δδ

(22)

U poglavlju 3.4 reference [1] je dat blok dijagram proračuna ED koristeći gradijentni metod.

Određivanje baznih snaga i faktora učešća

Ovaj metod podrazumeva da je ED problem rešen na način tako što se snage generatora menjaju u skladu sa optimalnim programima rada, koji prate promenu konzuma sistema, a koja je relativno mala. Polazi se od programa baznih snaga generatora. Dalje, se ima promena konzuma i shodno tome treba da se odredi promena snage na svakom generatoru, tako da se ima nova snaga generatora, koja treba da zadovolji konzum na najekonomičniji način.

Pretpostavlja se da postoje izvodi prvog i drugog reda krive )( ii PF :

i

ii

PFF

∂∂='

i 2

2''

i

ii

PFF

∂∂= .

Polazeći od inkrementalne krive troškova generatorske jedinice ima se za

iP∆ promena inkrementalnih troškova sistema od tačke 0λ na vrednost λλ ∆+0 . Za malu promenu u snazi jedinice ima se:

iiii PPF ∆≅∆=∆ )( 0''λλ . (23)

Promena opterećenja u sistemu mora da odgovora sumi promena snaga po generatorima:

∑∑==

∆=∆=∆N

i i

N

ii

FPP

1''

1

1λ . (24)

Iz ovih relacija mogu se odrediti faktori učešća generatora:

Created by Dragan Vlaisavljevic - 148 -

Page 149: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

''1

''

1

1

ii

ii

F

FPP

∑=

=

∆∆

. (25)

EKONOMSKI DISPEČING KADA SE UVAŽAVAJU GUBICI U MREŽI

Formulacija problema

Osnovna formulacija problema je data u podpoglavlju „Formulacija problema“, i ona se ovde modifikuje da bi se uvažili gubici u mreži. Odnosno jednačina (3) transformiše se u:

01

==−+ ∑=

φN

iiLr PPP (26)

gde su: rP - ukupno opterećenje (potrošnja) u sistemu; iP - aktivna snaga injektiranja generatora; LP - gubici u prenosnoj mreži, koji zavise od impedanse prenosne mreže;

raspodele potrošnje u mreži kao i od nivoa proizvodnje.

Ovde se za proračun uzima samo sledeća zavisnost

),...,( 1 NLL PPPP = . (27)

Lagrange-ova funkcija koja će biti predmet rešavanja je:

0=+= λ φTFL , (28)

tako da se imaju tzv. koordinacione jednačine za i=1,2,...,n:

0)1( =∂∂−−=

∂∂

i

L

i

i

i PP

dPdF

PL λ , (29)

koje se zajedno rešavaju sa jednačinom (26), uz uvažavanje ograničenja: maxminiii PPP ≤≤ ,

ili:

λλ =∂∂+

i

L

i

iPP

dPdF

;

01

=−+ ∑=

N

iiLr PPP .

Postoje dva generalna pristupa da bi se rešile koordinacione jednačine. Prvi pristup je da se gubici u mreži izraze samo u funkciji aktivnog injektiranja generatora u mreži (u ovom dokumentu će se razraditi ovaj pristup).

Created by Dragan Vlaisavljevic - 149 -

Page 150: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

Drugi pristup bazira se na inkorporiranju jednačina tokova snaga, kao bitnih ograničenja u formulaciji optimizacionih problema za rešavanje, i to problem se rešava kao rešenje optimalnih tokova snaga u mreži (OPF).

Neophodni optimalni uslovi rešenja jednačina (28) su:

)1(0i

L

i

i

i PP

dPdF

PL

∂∂−−=

∂∂= λ (30)

∑=

−+=∂∂=

N

iiLr PPPL

10

λ , za i=1,2,...,N imaju se penalizacioni faktori gubitaka za

svaki generator

i

Li P

PPF∂∂−= 1 , (31)

odnosno ima se da je λ data sledećim izrazom:

)1(i

L

i

iPP

dPdF

∂∂−=λ . (32)

Ako je 1>iPF , onda ako iP raste, onda se ima povećanje gubitaka u mreži. Ovo znači da ako su penalizacioni faktori veći od jedinice onda važi prethodna tvrdnja (važi i obrnuta tvrdnja za 1<iPF ).

Algoritam za proračun ED sa gubicima

Na Slici 6 dat je dijagram toka iterativnog proračuna optimalne raspodele opterećenja na generatore u sistemu kada se rešava problem ED uz uvažavanje gubitaka u mreži.

Created by Dragan Vlaisavljevic - 150 -

Page 151: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

Postaviti inicijalne vrednosti za iP

Izračunavanje penalizacionih faktora generatora iPF . Modifikovati koeficijente krivih troškova generatora sa

iPF .

Izračunati ukupne gubitke u mreži

Ažurirati vrednosti iP koristeći proračun ED bez gubitaka, ali sa modifikovanim koeficijentima krivih troškova i

ε<−−∑=

LrN

ii PPP

1

Test konvergencije

ε<−−∑=

LrN

ii PPP

1

STOP

Da

Ne

START

Slika 6: Dijagram toka iterativnog proračuna optimalne raspodele opterećenja na generatore u sistemu

Korak 1 – inicijalizacija vrednosti Pi se uradi uzimajući vrednosti za iP dobijene proračunom ED bez uvažavanja gubitaka.

Korak 2 - penalizacioni faktori se računaju koristeći jednačinu (31), a zatim se u Koraku 2 ako je kriva troškova generatora data sa:

2)( iiiiiii PcPbaPF ++= (33)

Created by Dragan Vlaisavljevic - 151 -

Page 152: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

Onda se koeficijenti ib i ic modifikuju na sledeći način

iiif

i PFbb *mod = ;

iiif

i PFcc *mod = . (34)

Korak 3 – ukupni gubici mreže LP mogu se dobiti kao rezultat proračuna statičke estimacije stanja kada se ima proračun ED u realnom vremenu.

Korak 4 – Ovde se vrši proračun ED bez uvažavanja gubitaka, ali sa modifikovanim koeficijentima ib i ic a isto tako opterećenje/potrošnja sistema se modifikuje na sledeći način

)()(mod kLr

kifr PPP += , k- broj iteracija

Korak 5 – Izvršava se test konvergencije za unapred specificiranu toleransu ε. Ako je zadovoljena sledeća jednačina

ε<−−∑=

)(

1

)( kLr

N

i

ki PPP

Onda je proces proračuna konvergirao i dobijena su rešenja ED sa uvažavanjem gubitaka u prenosnoj mreži, u suprotnom slučaju ide se na Korak 2 i iterativni postupak se ponavlja sve dok proces rešavanja ne konvergira.

PRORAČUN PENALIZACIONIH FAKTORA GUBITAKA U MREŽI

Formulacija problema

U rešavanju ovog problema može da se pođe od tzv. B matrice gubitaka (vidi literaturu [1]), što je istorijski prvi pristup koji se koristio. Ovde će se izložiti drugi (noviji) pristup za rešavanje.

Ovaj pristup bazira se na korišćenju referentnog čvora u mreži, koji uvek menja snagu injektiranja kada se dogodi promena u injektiranju generatora povezanih na mrežu, a koji su predmet proračuna ED.

Ako se ima promena proizvodnje u i-tom generatoru:

ioldi

newi PPP ∆+= ,

i ako se pretpostavi da opterećenje (potrošnja) ostaje nepromenjena tada se ima kompenzacija ove promene snage promenom snage u referentnom čvoru, što se može izraziti kao:

refoldref

newref PPP ∆+= .

Pri ovim promenama injektiranja u čvoru „i“ i „ref“ čvoru ima se promenama i u gubicima LP∆ . Tada je:

Created by Dragan Vlaisavljevic - 152 -

Page 153: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

Liref PPP ∆+∆−=∆ .

Sada se može definisati koeficijent iβ (videti materijal za LP OPF), na sledeći način:

i

refi P

P∆∆−=β , odnosno (35)

i

L

i

Lii P

PP

PP∂∂−=

∆∆−∆= 1β ;

refbusi

iPF

1=β . (36)

Polazi se od sledeće tvrdnje:Svi generatori se ekonomski dispečiraju i kada se ima promena ΔP u MW za bilo koji generator prema referantnom čvoru, tada se nema promena troškova proizvodnje u sistemu, jer je ΔP proizvoljno mala veličina.

Ako su ukupni troškovi proizvodnje jednaki:

∑=

N

iii PF

1)( . (37)

Onda za iP∆ ima se promena u troškovima proizvodnje:

refref

refrefi

i

iit P

dPPdF

PdP

PdFP ∆+∆=∆)()(

cos ; (38)

iiref PP ∆−=∆ β .

Onda je:

iref

refrefii

i

iit P

dPPdFP

dPPdF

P ∆−∆=∆ )()(cos β .

Da bi se zadovoljio uslov ekonomičnosti dispečiranja ima se:

0cos =∆ tP

ili:

ref

refi

i

iidP

PdFdP

PdF )()( β= . (39)

Gornja jednačina može se preformulisati na sledeći način:

ref

refref

i

ii

i dPPdF

dPPdF )()(1 =

β . (40)

Created by Dragan Vlaisavljevic - 153 -

Page 154: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

U ovom dokumentu (u podpoglavlju Gradijentni metod) data je jednačina (22) i ako se primeni gradijentni metod za rešenje ED uz uvažavanje gubitaka ima se:

∑≠

−=∆

refii

ref

refi

i

iT P

dPdF

dPdFF β (41)

U jednačini (41) je „ref“ zamenilo „x“ koje je dato u jednačini (22).

Penalizacioni faktori referentnog čvora

Penalizacioni faktori referentnog čvora izvode se korišćenjem jednačina tokova snaga. Ovde treba da se nađe vrednost data jednačinom (41). Kako je vrednost refP u zavisnosti od veličine vrednosti napona i uglova čvorova u mreži, tako kada se ima promena iP∆ , sve vrednosti modula napona i uglova čvorova mreže se menjaju.

Znači, refP∆ je u funkciji i∆ Θ i iV∆ , odnosno kada se izrazi i u funkciji promena iP∆ i iQ∆ , može se napisati sledeća matrična jednačina:

[ ]1

11*............. −

∂∂

Θ∂∂

∂∂

Θ∂∂=

∂∂

∂∂

∂∂

∂ JVPP

VPP

QP

PP

QP

PP

N

ref

i

ref

i

ref

i

ref

N

ref

N

refrefref (42)

ge je J jakobijeva matrica.

Tako kada se odrede vrednosti za 1P

Pref∂

∂ (na osnovu rešenja jednačine (42)), a

pre toga se odredi vrednosti jakobijana J rešenjem statičke estimacije stanja kod primene ED proračuna u realnom vremenu, onda se izračunavaju penalizacioni faktori korišćenjem jednačine (42).

OPIS PROGRAMSKOG MODULA ZA PRORAČUN ED UZ UVAŽAVANJE GUBITAKA U MREŽI

U ovom poglavlju biće modifikovani opisi dati u prethodnom poglavlju, a u cilju obuhvatanja u proračun gubitaka u mreži, kao i deo za izračunavanje participacionih faktora za AGC.

ED algoritam se sastoji od sledećih modula:- izračunavanje minimuma troškova proizvodnje u sistemu- ažuriranje λ- izračunavanje EPF koeficijenata- izračunavanje snage razmene sistema

Created by Dragan Vlaisavljevic - 154 -

Page 155: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

Minimizacija troškova proizvodnje

Jednačine za optimalno MW dispečiranje se izvode na bazi metoda Lagrange-ovih multiplikatora.

Ako je: )( ii PC – trošak proizvodnje i-tog termoagregata, a iP je aktivna snaga

generatoradP – ukupan konzum sistemalossP – gubici u prenosnoj mreži,

tada je: ∑=i

ii PCC )( – ukupni troškovi proizvodnje sistema

∑ +=i

lossdi PPP , ovde se ne zanemaruju gubici u prenosu.

Da bi se minimizirala funkcija C uz ograničenja jednakosti formulise se sledeća funkcija:

∑∑ −−−=i

lossdii

ii PPPPCH )(()( λ , (43)

onda sledi:

0=∂

∂+−∂∂=

∂∂

i

loss

i

i

i PP

PC

PH λλ , (44)

odnosno:

∂−−∂∂=

∂∂

i

loss

i

iP

PPCH 1λ

λ ;

0=−−=∂∂ ∑ lossd

ii PPPH

λ . (45)

Jednačine (44) i (45) rešavaju se iterativno u cilju određivanja optimalnih vrednosti za iP koristeći tehniku ažuriranja za vrednosti λ .

Literatura:

[1] A. Wood and B. Wollenberg, ''Power Generation, Operation and Control'', Chapters 2 and 3.

Created by Dragan Vlaisavljevic - 155 -

Page 156: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

3.2.2. Programi razmene sekundarne regulacije

Programi razmene sekundarne regulacije (ITS − Interchange Transaction Scheduling) omogućavaju operatoru da vrši unos planiranih razmena snaga sa susednim EES-ima, kako za buduće vreme, tako i za slučaj kada treba da se brzo promeni vrednost snage razmene. Ovi programi razmene mogu da se unose u obliku tabela sa satnom rezolucijom (uneta vrednost u MW na satnom nivou, tipa Exel tabela), ili kao stringovi u kojima se definiše početno i krajnje vreme za koje važi program razmene, sa zadatom snagom razmene za svaki određeni period.

ITS program ove podatke razmene posle prosleđuje programu LFC na izvršenje.

Isto tako treba da je omogućeno definisanje “ramp-rate” (brzine promene snage na početku i na kraju svakog sata u kome se ima promena programa razmene).

ITS program se periodično izvršava, ili se izvršava na poziv operatora, kada se unosi novi ili vrši modifikacija postojećeg programa razmene. Znači, na svaki određeni period (obično na svaki pun sat) ITS program sumira sve programe razmene, kao i sve brzine promene snage i dostavlja ih LFC programu na izvršenje.

Funkcija ITS obuhvata sledeće: prihvata i validira sve unose od strane operatora; uređuje sve unose programa razmene po hronološkom redosledu, uzimajući u

obzir početno vreme za svaki program razmene; vrši zapis informacije o svakom unosu programa razmene i brzinu promene

opterećenja za tu razmenu od strane korisnika; upozorava korisnika pet minuta pre otpočinjanja početka novog programa

razmene; omogućava izvršenje funkcije u slučaju pomeranja sata zbog smene sezona

tokom godine (obrada dana sa 23 ili 25 sati); vrši grupisanje programa razmene po kompanijama sa kojima se imaju ovi

programi razmene.

Kod programa razmene koji se definišu sa svojim početnim i krajnjim vremenima specificiraju se sledeći podaci: početno vreme (do jedne godine unapred); krajnje vreme (do jedne nakon početnog vremena); trajanje vremena promene opterećenja, ili vrednost promene snage na

intervalu od 10 minuta; iznos snage razmene, kao i smer razmene (prijem ili predaja); ime kompanije i tip transakcije (kupovina, prodaja, razmena, havarijska

ispomoć, garantovana isporuka, ne-garantovana isporuka); Cena po MW snage (novčana jedinica/MWh).

Created by Dragan Vlaisavljevic - 156 -

Page 157: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

Programi razmene prikazuju se sa satnom diskretizacijom u tabelarnom obliku, pri čemu se sastoje od sledećih podataka: satna vrednost u koloni od 24 podatka; unos programa razmene do 7 dana unapred; tretman dozvoljene vrednosti promene snage po svakom satu, kao unapred

zadate nominalne vrednosti.

ITS program obezbeđuje podatke programu za nadzor rezervi neto snagu razmene koja može da se trenutno redukuje u cilju obezbeđenja rezervi, ako su određeni programi razmene označeni da se mogu otkazati (nisu garantovani u komercijalnom smislu, na engleskom “nonfirm”).

Created by Dragan Vlaisavljevic - 157 -

Page 158: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

Slika 1: Primeri prikaza rezultata funkcije programa razmene sekundarne regulacije

Created by Dragan Vlaisavljevic - 158 -

Page 159: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

3.3. Off-line funkcije

3.3.1. Proračun troškova proizvodnje

Funkcija proračuna troškova proizvodnje (PTP) treba da izračunava troškove proizvodnje i to za svaku proizvodnu jedinicu i za svaki sat pogona. Ovaj proračun obuhvata: obračun troškova sa baznom snagom određenom u proračunu ekonomskog dispečinga, kao i obračun troškova goriva koje se troši u ovakom radu proizvodne jedinice.

Funkcija PTP proračunava prosečne troškove pogona (nov.jed./MWh), kao i količine goriva koje se koriste za ovaj pogon (GJ/h).

Troškovi startovanja proizvodnih jedinica, kao i fiksni troškovi proizvodnih jedinica uzimaju se u obračun troškova proizvodnje. Funkcija PTP takođe izračunava korišćenje goriva, kako po tipu goriva, tako i za svaku proizvodnu jedinicu i elektranu u celosti. Na kraju se određuju troškovi na nivou cele kompanije.

Svi ovi proračuni se arhiviraju u bazi podataka i služe za funkciju izveštavanja u cilju kreiranja izveštaja o radu proizvodnih jednica.

METODOLOGIJA

Funkcija PTP vrši uzorkovanje snage svake proizvodne jedinice na svakih 5 (15) minuta (ovo vreme se može menjati), tako da se izvode sledeći proračuni:

1. Za svaku proizvodnu jedinicu se njena inkrementalna kriva troškova (IKT) koristi da se odredi tekuća vrednost snage u MW, za proračun troškova proizvodnje (obuhvata sumiranje troškova goriva, pogona i održavanja).

2. Za svaku proizvodnu jedinicu u pogonu, a koja radi po ED proračunu, integrali se IKT krivih za vrednosti željene bazne snage koja se dobija proračunom ekonomskog dispečinga. Na ovaj način dobijaju se ekonomični troškovi proizvodnje (ED radi u modulu realnog vremena). Ovde postoje proizvodne jedinice koje rade po svom programu rada.

3. Za sve proizvodne jedinice (ED radi u modulu „kompletan proračun“), korišćenjem njihovih IKT krivih i proračunatim baznim snagama od strane ED-a, određuju se ukupni optimalni troškovi proizvodnje.

4. Određivanje srednje vrednosti troškova proizvodnje po proizvodnoj jedinici računa se kao trošak proizvodnje jedinice podeljen sa ukupnom MW snagom proizvodne jedinice u pogonu.

5. Proračun potrošnje goriva po tipu goriva za svaku proizvodnu jedinicu. Ovde se trošak izražava u GJ.

Created by Dragan Vlaisavljevic - 159 -

Page 160: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

Na svakih 5 (15) minuta troškovi proizvodnje se akumuliraju, tj. sumiraju na satnom nivou, na osnovu izračunatih troškova po proizvodnoj jedinici, elektrani i/ili za celu kompaniju.

Ove vrednosti se porede između sebe, tj. porede se podaci proizvodnje za:- aktuelne (ostvarene) troškove pogona; - troškove pogona prema proračunu ED u modu realnog vremena; - troškove pogona prema proračunu ED u modu kompletnog proračuna.

ULAZNE VELIČINE

Za proračun PTP funkcije koriste se:- podaci o aktuelnoj snazi proizvodne jedinice; - podaci o jediničnoj ceni goriva; - troškovi održavanja, troškovi rada i troškovi startovanja proizvodne jedinice.

Izlani rezultati proračuna su:- troškovi proizvodnje – aktuelni; - troškovi proizvodnje – po baznim snagama iz ED proračuna za neke jedinice; - optimalni troškovi proizvodnje – po baznim snagama iz ED proračuna za sve

jedinice.

Slika 1: Primeri prikaza rezultata funkcije proračuna troškova proizvodnje

Created by Dragan Vlaisavljevic - 160 -

Page 161: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

Literatura:

[1] AREVA – Tehnička specifikacija EMS sistema.

Created by Dragan Vlaisavljevic - 161 -

Page 162: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

3.3.2. Procena transakcija tipa A

Funkcija procene transakcije tipa A (TPA) treba da omogući analizu troškova/dobiti za potencijalne dodatne transakcije električne energije tipa kupovine ili prodaje, na vremenskom horizontu u narednih 168 časova.

Funkcija procene transakcije obično se realizuje za rad u sledeća dva moda:

- Mod A (evaluacija efekata transakcije radi se primenom proračuna ekonomskog dispečinga, i to za slučaj kada se ima jedno radno stanje dobijeno rešenjem programa za angažovanje agragata – UC (Unit Commitment)).

- Mod B (evaluacija transakcija se radi primenom programa UC, odnosno variraju se radna stanja, tj. pod stanjem se podrazumeva jedna kombinacija agregata u pogonu).

U svrhu poređenja rezultata kod analize transakcija koristi se tzv.podfunkcija „poređenje slučajeva“ (Case Comparison – CA). Funkcija CA kao izlazne rezultate prezentuje razlike koje se imaju u ulaznim i izlaznim podacima u funkciji PTA.

METODOLOGIJA

PTA funkcija izvršava redispečing sa inkrementalnim blokovima snage u smeru povećanja, ili smanjenja snage opterećenja sistema, i to za višesatni vremenski domen.

Rezultat proračuna funkcije PTA obuhvata inkrementalne i srednje troškove za svaki blok snage u svakom analiziranom satu, i za ceo vremenski period koji se analizira.

Analiza transakcije izvršava se na osnovu stanja koje se dobije nakon uspešno rešenog UC problema. Upravljački parametri funkcije PTA koji se određuju su:- vremenski interval za koji se radi analiza, tj. procena transakcije. - veličina koraka promene snage u MW, kao i broj koraka.

Za svaki korak, veličina promene snage (na smanjenje ili povećanje), dodaje/oduzima se na ukupnu snagu razmene (suma svih transakcija), sve dok zahtevi za proizvodnjom i za određeni nivo rezevi ne budu zadovoljeni, ili dok se ne dođe do maksimalne veličine definisane za opterećenje. Zatim se proračunava srednja vrednost za troškove proizvodnje, i to za vremenski interval od interesa.

Funkcija PTA određuje promenu sistemske marginalne cene koja je posledica inkrementalnih promena snaga po blokovima.

Pravila za slučaj kupovine su:

Created by Dragan Vlaisavljevic - 162 -

Page 163: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

[1] Trošak kupovine električne energije obračunava se, ali ne i trošak zakupa kapaciteta.

[2] Nivo proizvodnje redukuje se za iznos snage koja se kupuje.[3] Analiza, tj. proračun se završava kada se ima zahtev za nivom

proizvodnje generatora koji je manji od minimuma angažovane snage svih generatora u pogonu.

Pravila za slučaj prodaje su:

[1] Zahtevi za držanjem nivoa proizvodnje i održavanjem rezervi u sistemu se moraju zadovoljiti.

[2] Nivo proizvodnje se povećava za iznos snage koji se prodaje.

Slika 1: Rezultati proračuna funkcije PTA

MODELOVANJE VELIČINA ZA PTA FUNKCIJU

a) Parametri generatorskih jedinica

1. Minimalna vrednost snage u MW na koju se može izvršiti dispečiranje.2. Maksimalna vrednost snage u MW na koju se može izvršiti dispečiranje.3. Maksimalna obrtna rezerva u MW.4. Brzina promene opterećenja obrtne rezerve (MW/h).5. Minimalno vreme za koje se može izvršiti puno opterećenje (h).6. Maksimalno vreme za koje se može izvršiti rasterećenje (h).7. Vreme van pogona.8. Vreme u pogonu.9. Vrednost snage sa kojom se vrši inicijalizacija opterećenja generatora

(MW) – početna snaga. 10. Faktor penalizacije – dobijen proračunom ekonomskog dispečinga.11. Parametri troškova startovanja.12. Parametri troškova održavanja.13. Kriva zagrevanja.

Created by Dragan Vlaisavljevic - 163 -

Page 164: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

b) Paramteri modela za opis transakcija

1. Definisanje oblasti sa kojom se ima transakcija. 2. Definisanje transakcije u smislu da li je konstantna ili promenljiva, sa

stanovišta upravljanja. 3. Ograničenje po energiji (MWh) za transakciju

- postavljaju se ograničenja za nivo energije po transakciji. - prodaja je označena sa pozitivnom vrednošću, a kupovina je označena sa negativnom vrednošću.

4. Transakcija koja predstavlja neželjeno kruženje energije u interkonekciji (wheeling transaction - WT). Ako se definiše uz transakciju, onda transakcija ne utiče na sumu nivoa snage razmene oblasti.

5. Cena za kompenzaciju u slučaju WT transakcije (nov.jed/MWh). 6. Penalizacioni faktori transakcije (iz proračuina ED).

Za svaki vremenski period dodatno se specificiraju sledeće veličine:1. Ograničenje po snazi za svaku transakciju (MW). 2. Cena transakcije (nov.jed./MWh). 3. Maksimalana kapacitet rezerve potreban za transakciju (MW). 4. Konstantna vrednost transakcije u MW za jedinicu vremena po kojoj se

definiše transakcija (obično je to 1 sat, a u novije vreme koriste se i 15 minutni intervali).

Literatura:

[1] AREVA – Tehnička specifikacija EMS sistema.

Created by Dragan Vlaisavljevic - 164 -

Page 165: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

3.3.3. Energetski obračuni

Funkcija energetskih obračuna sastoji se od:a) Obračuna razmene električne energije.b) Obračuna proizvodnje.v) Obračuna potrošnje.g) Obračuna regulacije elektrana u sekundarnoj regulaciji.

Gore pomenuti obračuni izvršavaju se na podacima dobijenim iz SCADA sistema, i to prenosom stanja brojila i korišćenjem statističke obrade (integracijom) nad analognim merenjima.

Ovako izračunati gore pomenuti obračuni koristi se od strane dispečera u cilju praćenja rada EES-a nad kojim je nadležan.

Izveštaji koje će formirati funkcija energetskih obračuna treba da budu formirani na dnevnoj bazi, s tim da se oni sastoje od srednje satnih podataka relevantnih veličina za obračun.

Ovako formirani izveštaji na dnevnoj bazi treba da se arhiviraju u cirkulacionoj datoteci, koja će obuhvatati period od 30 dana.

Sadržaj datoteke pre brisanja treba da se prenosi u bazu podataka u podsistem za informacionu podršku.

a) Obračuni razmene električne energije

Sadržaj izveštaja je sledeći :

- srednje satni podaci na svim dalekovodima razmene, i to stavka prijem, stavka isporuka i total (algebarska suma prijema i isporuke).

- Izračunata srednje-satna vrednost ukupne razmene i to prijem, isporuka i total (algebarski zbir ukupnog prijema i isporuka).

Izvor podataka za ovaj izveštaj su stanja brojila i integrisane veličine analognih merenja. Pored toga, ručni upis od strane operatora treba da se obezbedi.

Podaci u izveštajima treba da budu dati u MWh i MVArh, i to u formi dnevnih (24 časovnih) izveštaja.

b) Obračuni proizvodnje

Obračun proizvodnje treba da izračunava neto proizvodnju i sopstvenu potrošnju elektrana u EES-u.

Izveštaj o obračunatoj proizvodnji treba da se sastoji od:- srednje satnih podataka o proizvodnji generatora (MWh i MVArh). - sumarni srednje satni podaci o ukupnoj proizvodnji u EES. - srednje satni podaci o sopstvenoj potrošnji agregata.

Created by Dragan Vlaisavljevic - 165 -

Page 166: Opis EMS Application

Opis funkcija EMS Opis_EMS_Application.doc2

Izvor podataka za ovaj izveštaj su stanja brojila i integrisane veličine analognih merenja. Pored toga ručni upis od strane operatora treba da se obezbedi.

Podaci u izveštajima treba da budu dati u MWh i MVArh, i to u formi dnevnih (24 časovnih) izveštaja.

v) Obračuni potrošnje

Potrošnja u EES-u treba da se izračunava na osnovu obračuna proizvodnje i obračuna razmene električne energije. Ovako izračunata potrošnja treba da se usklađuje sa veličinom rasterećenja potrošnje unetom od strane dispečera, ukoliko dođe do rasterećenja (redukcija) potrošnje.

Izveštaj o obračunatoj potrošnji treba da se sastoji od:- srednje satnih podataka opterećenja EES-a.

Izvor podataka za ovaj izveštaj su stanja brojila i integrisane veličine analognih merenja. Pored toga ručni upis od strane operatora treba da se obezbedi.

Podaci u izveštajima treba da budu dati u MWh i MVArh, i to u formi dnevnih (24 časovnih) izveštaja.

g) Obračun regulacije elektrana u sekundarnoj regulaciji

Izveštaj o obračunu regulacije treba da za svaki generator na satnoj osnovi koji je učestvovao u sekundarnoj regulaciji treba da sadrži:- vrednost regulacionog opsega (u MW).- broj časova učešća generatora u regulaciji.

Izvor podataka za ovaj izveštaj je ručni unos dispečera.Podaci u izveštaju treba da budu dati u MW, i to u formi dnevnih 24

časovnih izveštaja.

Created by Dragan Vlaisavljevic - 166 -