25
ATB Advanced Technology Board Study on Globaliza/on Observa/ons, Findings and Recommenda/ons January 3, 2013 1

Observa/ons,&Findings&and& Recommenda/ons&

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Observa/ons,&Findings&and& Recommenda/ons&

ATB

Advanced  Technology  Board  Study  on  Globaliza/on  

 Observa/ons,  Findings  and  

Recommenda/ons    

January  3,  2013    

1  

Page 2: Observa/ons,&Findings&and& Recommenda/ons&

ATB Outline  

Ø Background  Informa0on  

–  Charter,  Membership,  &  Process  

Ø Observa0ons  and  Findings  

Ø Recommenda0ons  

Ø Addi0onal  Informa0on  

2  

Page 3: Observa/ons,&Findings&and& Recommenda/ons&

ATB

Background  Informa/on  

3  

Page 4: Observa/ons,&Findings&and& Recommenda/ons&

ATB Board  Charter  

Ø  Board  established  by  ADNI/AT&F.  

Ø Objec0ve  is  to  provide  an  external  perspec0ve  on  policy,  industry  best  prac0ces,  technology  breakthroughs  and  best  in  class  solu0ons.  

Ø  Board  will  meet  no  less  than  quarterly.  

Ø Membership  limited  to  12  ci0zens  from  the  private  sector  and  academia.  

Ø  Ini0al  term  of  Board  is  2  years.  

4  

Page 5: Observa/ons,&Findings&and& Recommenda/ons&

ATB Par/cipa/ng  Members  

Ø  Vicki  L.  Colvin,  Rice  University  Ø  Robert  A.  Fein,  consultant  Ø  Theodore  M.  Hardebeck,  consultant  Ø  Daniel  E.  Has0ngs  (co-­‐chair),  MIT  Ø William  A.  Jeffrey,  HRL  Ø  Alexander  H.  Levis,  George  Mason  University  Ø  Richard  T.  Roca  (co-­‐chair),  JHU/APL  

Ø  Patrick  Cook  (staff),  MITRE  Ø  John  Prevar  (staff),  DNI  

5  

Page 6: Observa/ons,&Findings&and& Recommenda/ons&

ATB Assignment  &  Process  

Ø  CIA  Ø  Na0onal  Research  Council  Ø  Na0onal  Security  Agency  Ø  ODNI  Ø  US  Navy    Ø  USSTRATCOM  

Ø  Ball  Aerospace  Ø  BAE  Systems  Ø  IBM  Ø  Lockheed-­‐Mar0n  Ø  QUALCOMM  Ø  Orbital  

6  

The ATB was asked to provide advice to the ADNI as to how the IC might better address the challenges of globalization.

It heard briefings from US Government agencies with relevant S&T responsibilities and from various companies in the private sector, both companies focused at supporting DoD and/or the IC and companies who focus at the commercial marketplace.

Using information from these discussions along with the experience base of ATB members, Observations and Findings were created along with several Recommendations for ADNI consideration.

Page 7: Observa/ons,&Findings&and& Recommenda/ons&

ATB

Observa/ons  and  Findings  

7  

Page 8: Observa/ons,&Findings&and& Recommenda/ons&

ATB Underlying  Givens  

Ø  Science  is  created  throughout  the  world,  not  just  in  a  few  highly  developed  countries,  and  this  globaliza0on  trend  is  increasing.  

Ø  Scien0fic  results  are  being  shared  globally.    But,  as  the  volume  has  increased  and  the  channels  for  dissemina0on  have  mul0plied,  the  signal  to  noise  ra0o  has  dropped  and  greater  discernment  is  required  to  separate  valuable  results  from  those  of  licle  use.    

Ø  The  private  sector  is  driving  most  areas  of  technology  -­‐  par0cularly  in  data  management/movement/processing.  

Ø  S&T  monopolies  (whether  by  country  or  by  ins0tu0on)  will  last  for  rela0vely  short  periods  of  0me  in  highly  compe00ve  domains.    

Ø  “U.S.  Industry”  will  maintain  technology  leadership  in  some  areas  but  not  in  all.    But,  these  areas  may  or  may  not  be  of  interest  to  the  IC.    

Ø  Many  successful  na0onal  firms  will  likely  evolve  to  be  mul0-­‐na0onal  ones.    

Ø  The  U.S.  has  been  the  best  to  date  in  crea0ng  new  industries  where  none  existed  before.    

8

Page 9: Observa/ons,&Findings&and& Recommenda/ons&

ATB Observa/ons  and  Findings  –  1    

Ø  Physical  engagement  in  S&T  is  irreplaceable  (in  addi0on  to  literature  surveys  and  scientometrics).  

Ø  Organiza0ons  use  fast  feedback  to  guide  investments  –  For  profit  firms:  through  product/service  marketplace  success  –  Academia:  formerly  through  journals;  currently  through  web  based  

interest  groups.  Ø  To  make  money,  

–  Companies  follow  markets,  talent  and  IP  globally;  –  Companies  are  borderless;    –  Companies  have  reacted  to  the  changing  S&T  landscape.    

Ø  Mul0-­‐Na0onal  Corpora0ons  (MNCs)  have  geographically  distributed  networks  of  labs  where  R&D  is  performed.    

Ø  No  widely  accepted  model  for  global  S&T  planning  has  emerged  (other  than  the  above:  physical  engagement,  fast  feedback,  …)  

Ø  Industry  has  created  rela0onships  with  foreign  universi0es.    9

Page 10: Observa/ons,&Findings&and& Recommenda/ons&

ATB Observa/ons  and  Findings  –  2    

Ø  Companies  engage  other  companies  to:  –  get  technology,  –  influence  design,  and  –  influence  standards.  

Ø  Companies  use  suppliers  to  get    –  specialized  and/or  focused  skills,  and  –  exposure  to  a  broader  environment.  

Ø  Companies  engage  academia  worldwide  to  –  get  fast  follower  advantage,  –  have  an  opportunity  to  transfer  technology  back  to  the  corpora0on  

through  their  employees  who  collaborate,  and  –  influence  academics’  research  agendas  to  be  relevant  to  their  

corporate  challenges.  

10

Page 11: Observa/ons,&Findings&and& Recommenda/ons&

ATB Observa/ons  and  Findings  –  3      

Ø  The  IC  has  two  principal  interests  in  technology.  –  It  is  an  observer  of  the  technologies  of  others  and  uses  this  knowledge  to  

understand  the  capabili0es  of  others  (Indica0ons  &  Warnings).  –  It  uses  technology  to  create  capabili0es  for  itself    

Ø  The  development  of  technology  within  the  IC  has  certain  characteris0cs  that  influence  the  IC’s  ability  to  deploy  technology.  –  There  is  minimal  science  performed  –  the  focus  is  on  applica0on.  –  There  exist  special  and  innova0ve  (but  small)  ini0a0ves  such  as  IARPA  &    

In-­‐Q-­‐Tel  that  are  used  to  address  technological  challenges.  –  Realiza0on  processes  are  Agency  specific  rather  than  IC  wide.  –  There  is  a  significant  use  of  secrecy  throughout  these  realiza0on  processes.  –  There  is  significant  use  of  contractors  within  these  realiza0on  processes.  –  There  is  uneven  engagement  by  Agencies  outside  of  the  IC  ecosystem.  

11

Page 12: Observa/ons,&Findings&and& Recommenda/ons&

ATB Key  Ques/ons  

Several  key  ques0ons  presented  themselves  as  a  result  of  the  ATB’s  engagement  with  technology  planners  and  leaders  both  within  the  government  and  outside  of  it.  

1.  How  should  the  IC  learn  about  the  global  use  of  technology?  

2.  How  should  the  IC  engage  with  mul0-­‐na0onal  corpora0ons?  

3.  What  roles  should  academia  (domes0c  and  foreign)  play?  

4.  How  should  the  IC  plan  for  technology  obsolescence?    

5.  How  should  secrecy  and  classifica0on  (as  barriers  to  obtaining  technology)  be  addressed?    

6.  How  should  all  the  above  be  incorporated  into  IC    S&T  processes  and  culture?    

12  

Page 13: Observa/ons,&Findings&and& Recommenda/ons&

ATB

Recommenda/ons  

13  

Page 14: Observa/ons,&Findings&and& Recommenda/ons&

ATB Overall  Recommenda/ons  

The  Advanced  Technology  Board  recommends  the  following:  

A.  Becer  leverage  the  global  S&T  community.    

B.  Increase  awareness  of  the  IC’s  rela0ve  S&T  global  compe00ve  posi0on.    

C.  Apply  “first  principles”  methods  to  understand  capability  vulnerabili0es.    

D.  Exploit  leading  edge  IT  technologies  such  as  social  networking.    

E.  Conduct  case  studies  addressing  key  issues.    

14  

Page 15: Observa/ons,&Findings&and& Recommenda/ons&

ATB A.  BePer  Leverage  the  Global  S&T  Community.                

Ø  Create  global  academic  “centers  of  excellence”  (e.g.,  Intel  model)  at  which  IC  staff,  academic  staff  (including  non-­‐US  ci0zens)  and  MNC  staff  (including  non-­‐US  ci0zens)  join  together  in  open  collabora0on  (within  a  research  agenda  of  interest  to  the  IC)  that  is  published.      –  Consider  only  those  academic  ins0tu0ons  that  are  leading  edge  in  their  respec0ve  fields  (even  if  they  are  foreign?).      

–  The  first  choice  of  science  topics  to  pursue  are  those  that  the  IC  has  iden0fied  as  areas  in  which  it  wishes  to  be  a  thought  leader.  

Ø  Encourage  temporary  rota0ons  of  IC  S&T  staff  outside  of  the  IC  ecosystem  in  other  parts  of  the  government  (e.g.,  NIH,  NSF,  NIST,  NASA)  and  in  the  private  sector  (MNCs,  na0onal  labs,  etc.)  

15  

Page 16: Observa/ons,&Findings&and& Recommenda/ons&

ATB B.  Increase  Awareness  of  the  IC’s  Rela/ve                                                      S&T  Global  Compe//ve  Posi/on.  

Ø  Encourage  persistent  use  of  the  knowledge  of  S&T  global  compe00veness  within  the  IC’s  S&T  management  processes.      –  For  example,  where  appropriate  require  an  analysis  of  the  state  of  S&T  global  compe00veness  as  part  of  funding  requests  for  investments  in  technology.  

–  For  example,  where  appropriate  require  speaking  to  the  state  of  S&T  global  compe00veness  during  all  pormolio  reviews.  

Ø  As  an  experiment,  pick  one  technology  area  of  interest  to  mul0ple  agencies  within  the  IC  and  conduct  a  mul0-­‐day  colloquium  focused  solely  at  global  technology  ini0a0ves  using  presenters  from  throughout  the  world.  

16  

Page 17: Observa/ons,&Findings&and& Recommenda/ons&

ATB C.  Apply  “First  Principles”  Methods  to  Understand  Capability  Vulnerabili/es.  

Ø  Apply  the  first  principles  based  “Submarine  Security  Program”  methodology  to  key  IC  capability  areas  where  such  analysis  can  support  insighmul  capability  vs.  counter-­‐capability  planning    

Ø  Include  lessons  learned  within  the  Submarine  Security  Program  such  as  the  importance  of  technical  thought  leaders,  dedicated  teams,  persistent  inves0ga0ons  and  focused  government  leadership.  

17  

Page 18: Observa/ons,&Findings&and& Recommenda/ons&

ATB D.  Exploit  Leading  Edge  IT  Technologies                                                                  Such  as  Social  Networking.  

Ø  Social  Networking  has  had  a  profound  effect  in  various  segments  of  society  and  of  the  economy.  

Ø  The  Intelligence  Community  has  had  internal  social  networking  capabili0es  for  some  0me.    Examples  of  use  by  IC  include:  –  Internal  to  IC  S&T  Communi0es  of  Interest  

–  External  to  IC  S&T  Communi0es  of  Interest  

–  Crowd  sourcing  to  an0cipate  technology  trends  

Ø  Examine  current  trends  in  social  networking  and  determine  the  best  strategy  for  the  Intelligence  Community  going  forward  in  how  to  exploit  these  capabili0es  for  addressing  science  and  technology  needs.  

18

Page 19: Observa/ons,&Findings&and& Recommenda/ons&

ATB E.  Conduct  Case  Studies  Addressing                                      Key  Issues.  

Ø  Study  how  one  private  firm  has  been  affected  as  it  evolved  from  a  US  Company  into  an  MNC  and  has  had  components  of  its  firm  evolve  into  overseas  instan0a0ons.  

Ø  Study  how  the  IC  of  one  other  country  has  (successfully)  addressed  the  issue  of  globaliza0on  of  technology.  

Ø  Study  how  one  MNC  has  changed  its  own  realiza0on  processes  to  take  into  account  the  globaliza0on  of  technology.  –  How  is  intellectual  property  protected?  

–  How  are  language  barriers  overcome?  

–  How  are  differences  in  na0onal  laws  and  customs  overcome?  

19  

Page 20: Observa/ons,&Findings&and& Recommenda/ons&

ATB

Addi/onal  Informa/on  

20  

Page 21: Observa/ons,&Findings&and& Recommenda/ons&

ATB Industry  –  Academia  Collabora/on  Example  –  Intel  Labs  Berkeley    

The  Intel  Lab  at  Berkeley  was  in  downtown  Berkeley,  a  10  minute  walk  from  campus.  It  had  2  co-­‐directors,  one  from  Intel  and  one  from  Berkeley.  The  Berkeley  posi0on  was  a  2-­‐year  rota0on  (faculty  would  go  on  leave).  The  first  one  was  David  Culler  (2001-­‐03),  then  Joe  Hellerstein  (2203-­‐05),  then  Eric  Brewer  (2005-­‐08),  and  Anthony  Joseph  (2008-­‐11).  It  had  15  or  so  full-­‐0me  Intel  researchers  [1],  several  visi0ng  faculty  researchers,  and  many  Berkeley  students  who  had  desks  in  the  lab  to  collaborate  with  the  Intel  researchers.  There  was  a  large  internship  program:  each  researcher  would  have  at  least  one,  some0mes  two  interns.  Not  all  of  these  interns  were  from  Berkeley,  although  about  half  were.        The  focus  of  the  lab  would  shis  with  directors;  under  Culler  it  focused  on  sensor  networks;  under  Hellerstein  it  looked  more  into  databases;  under  Brewer  its  big  projects  were  technology  for  developing  regions.        Generally  speaking,  for  a  research  lab  of  its  size,  it  had  a  very  impressive  publica0on  record:  several  of  its  researchers  went  on  to  top  faculty  posi0ons.  The  lab  shut  down  in  early  2011  as  part  of  Intel's  reorganizing  its  research  arm,  moving  to  centers  (see  part  b).      Reference  hcp://berkeley.intel-­‐research.net/people/          

21  

Page 22: Observa/ons,&Findings&and& Recommenda/ons&

ATB Industry  –  Academia  Collabora/on  Example  –  Intel  S&T  Center  

SCRUB  –  Secure  Compu0ng  Research  for  Users’  Benefit  The  Intel  Science  and  Technology  Center  (ISTC)  for  Secure  Compu0ng      The  mission  of  the  ISTCs  is  to  build  global  collabora0ons  with  academic  pioneers  who  will  discover  and  drive  the  ways  in  which  compu0ng  will  enrich  the  human  experience  for  genera0ons  to  come,  and  to  be  leaders,  leveraging  the  resul0ng  insights  to  influence  Intel.    Each  research  community  is  Intel-­‐funded,  jointly-­‐led,  and  focused  on  a  specific  technology  area  or  discipline,  bringing  together  top  researchers  from  across  academia  working  with  Intel  to  explore  and  uncover  not  only  new  answers,  but  new  ques0ons.  SCRUB  [2]  is  one  of  seven  ISTCs  set  up  by  Intel.  It  involves  five  universi0es  (UC-­‐Berkeley,  Carnegie  Mellon,  Drexel,  Duke,  and  Univ.  of  Illinois).  The  Management  Team  consist  of  two  Principal  Inves0gators:    David  Wagner,  Professor  at  UC-­‐Berkeley  and  John  Manferdelli,  Senior  Principal  Engineer  at  Intel  Corpora0on.  The  Program  Director  is  Rajiv  Mathur  from  the  University  Collabora0on  Office  of  Intel  Labs,          Reference:  hcp://scrub.cs.berkeley.edu/      

22  

Page 23: Observa/ons,&Findings&and& Recommenda/ons&

ATB Industry  –  Academia  Collabora/on  Example  –  Hyundai  Center  of  Excellence  

Hyundai  Signs  R&D  Deal  with  UC  Berkeley,  UC  Davis      Posted:  September  4,  2012  at  12:39  am      

Hyundai  Motor  Group  is  kicking  off  a  new  long-­‐  range  R&D  program  by  partnering  on  automo0ve  technology  development  with  the  University  of  California,  Berkeley  and  University  of  California,  Davis.      The  three  organiza0ons  have  signed  a  memorandum  of  understanding  to  create  a  Hyundai  Center  of  Excellent  at  each  university.    The  facili0es  will  bring  together  Hyundai  engineers  and  university  researchers  to  work  on  advanced  vehicle  dynamics  and  safety  technologies.      Hyundai  did  not  disclose  the  investment  involved  or  indicate  when  the  centers  would  begin  work.  The  company  says  business  partners  in  the  two  centers  include  Spain’s  Applus  IDIADA,  Austria’s  AVL  and  England’s  Ricardo.      The  ini0a0ve  is  the  first  under  Hyundai’s  new  R&D  Global  Fron0er  Program,  which  aims  to  bolster  the  company’s  technological  prowess  through  coopera0ve  research  projects  in  such  areas  as  ride  and  handling,  NVH,  crashworthiness,  safety  and  materials.      

 23  

Page 24: Observa/ons,&Findings&and& Recommenda/ons&

ATB Case  Study  -­‐  Globaliza/on  of  Academia    “Global  Research  Universi/es”  by  D.  Normile  –  Science  Magazine  ;  September  7,  2012    HONG  KONG  AND  SINGAPORE—Ambi0ous  academics  have  always  been  a  mobile  lot.  But  Stephanie  Wehner  has  taken  mobility  to  a  new  level.  And  her  career  choices  reflect  a  fundamental  shis  in  where  some  of  the  best  science  is  being  done  around  the  world.    The  35-­‐year-­‐old  quantum  informa0on  scien0st  completed  her  undergraduate  degree  in  her  na0ve  Germany,  earned  a  master's  degree  from  the  University  of  Amsterdam  and  a  Ph.D.  from  the  Centrum  Wiskunde  &  Informa0ca  in  Amsterdam,  and  did  a  postdoc  at  the  California  Ins0tute  of  Technology  (Caltech)  in  Pasadena.  Then  she  asked  herself:  “Where  would  it  be  scien0fically  interes0ng  for  me  to  go?”  The  answer  took  her  further  west,  across  the  interna0onal  dateline,  in  fact,  to  the  Centre  for  Quantum  Technologies  at  the  Na0onal  University  of  Singapore  (NUS).  The  center,  established  in  December  2007,  is  already  recognized  as  one  of  the  world's  top  ins0tutes  for  quantum  studies.  “It  is  unique”  in  combining  computer  science  and  physics,  theory,  and  experiments,  says  Wehner,  who  joined  its  ranks  in  July  2010.  The  ins0tute's  generous  funding  from  the  government—$126  million  over  10  years—means  there  is  money  for  postdocs  and  state-­‐of-­‐the-­‐art  equipment  for  experimentalists.  It  also  allows  Wehner  to  concentrate  on  her  research  without  having  to  apply  for  grants.  A  reduced  teaching  load  of  only  one  course  a  semester  is  another  bonus.  With  those  advantages,  it's  no  accident  that  the  center's  150  researchers  hail  from  33  countries.  Such  diversity  has  long  been  the  norm  at  the  top  U.S.  research  universi0es.  For  several  decades  aser  World  War  II,  top  academic  talent  gravitated  to  the  United  States.  Researchers  were  acracted  by  generous  and  rising  funding  and  a  con0nually  improving  infrastructure,  the  result  of  broad  societal  support  for  higher  educa0on  and  a  poli0cal  consensus  that  investment  in  research  reaped  economic  and  social  dividends.    Foreign-­‐born  scien0sts  s0ll  come  to  the  United  States,  but  that  faith  in  the  benefits  of  vibrant  universi0es  is  arguably  stronger  now  in  Asia.  “Many  Asian  governments  see  educa0on  as  a  very  cri0cal  way  of  societal  and  economic  advancement,  so  they  are  inves0ng  very  heavily  in  their  universi0es,”  says  NUS  President  Tan  Chorh  Chuan.  To  achieve  academic  excellence,  “acrac0ng,  nurturing,  and  retaining  top  talent  is  the  most  vital  strategy,”  he  adds.  With  the  region's  rising  investment  in  educa0on,  he  says,  “condi0ons  are  right  for  Asian  universi0es  to  acract  top  faculty  from  the  rest  of  the  world.”    GLOBAL  RESEARCH  UNIVERSITIES  It's  not  a  fluke  that  the  United  States  is  home  to  most  of  the  leading  research  universi0es  in  the  world.  But  it's  also  not  a  given.  Many  countries  have  paid  close  acen0on  to  what  it  took  for  the  United  States  to  climb  to  the  top  of  the  global  academic  research  ladder  in  the  past  half-­‐century.  Some  have  now  translated  those  lessons  into  na0onal  strategies  that  they  hope  will  lis  them  up  the  ladder.  What  will  it  take  for  them  to  reach  the  top  rungs?    Over  the  next  several  months,  Science  will  examine  the  key  ingredients  needed  to  create  and  maintain  what  we  have  labeled  global  research  universi0es.  Indeed,  ranking  these  universi0es  has  become  a  cocage  industry.  Although  there  is  licle  consensus  on  what  metrics  to  use,  most  scien0sts  carry  around  in  their  heads  their  own  list  of  top  schools,  compiled  on  the  basis  of  anecdotal  evidence,  reputa0on,  and  personal  preferences.    The  first  story  in  the  series  explores  the  role  of  mobility  by  focusing  on  the  increasing  flow  of  talent  into  East  Asia,  in  par0cular  Hong  Kong  and  Singapore.  Subsequent  stories  will  look  at  other  important  factors  that  shape  an  ins0tu0on's  ability  to  become  a  global  research  powerhouse.    More  than  bragging  rights  are  at  stake  in  this  race  to  the  top.  A  world-­‐class  university  system  is  a  powerful  engine  for  economic  development,  and  research  is  the  fuel  powering  that  engine.    Although  its  impact  on  academic  mobility  is  hard  to  quan0fy,  the  great  recession  that  has  staggered  Western  economies  appears  to  have  given  Asia  an  edge.  “People  on  my  science  advisory  board  say  this  is  a  good  0me  to  hire  Americans  because  there  are  no  jobs  and  funding  is  looking  dreadful,”  says  geologist  Kerry  Sieh.  In  2009,  the  former  tenured  professor  at  Caltech  became  founding  director  of  the  Earth  Observatory  of  Singapore,  another  one  of  the  city's  five  centers  of  excellence,  based  at  Nanyang  Technological  University.  Most  of  the  center's  54  researchers  were  lured  from  posi0ons  overseas.  The  Hong  Kong  University  of  Science  and  Technology  (HKUST)  has  made  worldwide  recrui0ng  a  firm  policy.  “We  are  filling  all  posi0ons—faculty,  deans,  vice-­‐presidents,  and  presidents—through  open  interna0onal  searches,”  says  Khaled  Ben  Letaief,  the  school's  dean  of  engineering.    Hong  Kong  and  Singapore  schools  aren't  alone  in  recrui0ng  globally.  The  Na0onal  Research  Founda0on  of  Korea  has  commiced  $728  million  for  a  5-­‐year  World  Class  University  Project  that  has  acracted  321  foreign  academics,  most  on  full-­‐0me  appointments.  Three  years  ago,  Japan's  Ministry  of  Educa0on  began  a  program  to  interna0onalize  both  the  faculty  and  the  students  at  its  universi0es,  although  budget  constraints  have  crimped  the  effort.  And  Taiwan's  Ministry  of  Educa0on  has  an  Aim  for  the  Top  University  Project  that  supports  overseas  recruitment.    China  has  employed  a  variety  of  schemes  in  the  past  decade  to  lure  back  scien0sts  who  went  overseas  for  advanced  degrees  or  jobs.  These  include  the  Ministry  of  Educa0on's  Changjiang  Scholars  Program  and  the  Chinese  Academy  of  Sciences'  100  Talents  Program.  Last  fall,  it  broadened  that  search  by  launching  a  program  aimed  at  hiring  1000  nonethnic  Chinese  scien0sts,  engineers,  and  entrepreneurs  over  10  years.    Universi0es  are  tapping  into  these  schemes,  but  in  most  countries  they  are  star0ng  from  a  low  level  of  interna0onaliza0on.  The  Korea  Advanced  Ins0tute  of  Science  and  Technology  in  Daejeon  has  used  the  government  support  to  more  than  double—to  49—the  number  of  nonethnic  Koreans  holding  tenure-­‐track  posi0ons  since  2007.  The  University  of  Tokyo  is  aiming  to  boost  the  percentage  of  non-­‐Japanese  permanent  and  fixed-­‐term  staff  members  from  7%  to  at  least  10%  by  2020.  (Only  2.4%  of  its  current  full-­‐0me  faculty  is  nonna0ve.)  And  Na0onal  Taiwan  University  is  aiming  to  recruit  20  foreign  full-­‐0me  faculty  members  each  year  for  the  foreseeable  future  to  bolster  their  presence,  now  at  7%.     24  

Page 25: Observa/ons,&Findings&and& Recommenda/ons&

ATB Case  Study  –  USAF  Materials  Center  at  JHU  

Johns  Hopkins  Center  will  support  next  genera/on  of  military  aircra ̀  Air  Force  selects  university  to  conduct  research  aimed  at  developing                                                                                                                                                      

lightweight,  durable  components  for  future  aircra ̀  A  team  of  Johns  Hopkins  engineers  has  been  selected  by  the  U.S.  Air  Force  to  start  a  new  materials  research  Center  of  Excellence  that  will  develop  novel  computa0onal  and  experimental  methods  to  support  the  next  genera0on  of  military  aircras.    The  Center  of  Excellence  on  Integrated  Material  Modeling  (CEIMM)  will  advance  the  Air  Force’s  Computa0onal  Integrated  Materials  Science  and  Engineering  Ini0a0ve.  Their  research  will  contribute  to  the  design  of  high-­‐performance  devices  and  components  in  future  aircras  structures  and  turbine  engines.    The  center  brings  together  the  na0on’s  top  academic,  military,  and  industry  researchers  under  a  $3  million  U.S.  Air  Force  award.  Somnath  Ghosh,  the  Michael  G.  Callas  professor  in  Johns  Hopkins’  departments  of  Civil  Engineering  and  Mechanical  Engineering,  is  the  new  director  of  CEIMM.  "We’ll  start  by  understanding  exis0ng  materials  from  the  atomic  scale  all  the  way  to  the  structural  scales  through  state-­‐of-­‐the-­‐art  research,  and  then  we’ll  move  to  designing  a  new  genera0on  of  advanced  aerospace  materials,”  Ghosh  said.    Researchers  will  focus  on  advanced  computa0onal  and  experimental  methods  of  determining  how  different  materials  respond  to  different  levels  of  loading  and  temperatures  that  can  cause  failure  in  aircras  engines  and  other  components.  The  center  will  operate  within  the  Hopkins  Extreme  Materials  Ins0tute  (HEMI)  which  opened  earlier  this  year.  “With  the  establishment  of  HEMI,  and  now  this  center,  we  have  pulled  together  the  na0on’s  leading  academic,  industry  and  military  leaders  to  pave  the  way  toward  a  21st  century  genera0on  of  materials,”  said  Nicholas  P.  Jones,  Benjamin  T.  Rome  Dean  of  the  Whi0ng  School  of  Engineering.  “This  mission  is  cri0cal  to  the  na0on’s  security,  and  we  are  proud  to  play  a  key  role.”        The  Air  Force  award  for  the  center  also  will  provide  funding  for  new  educa0onal  opportuni0es.    It  is  expected  to  support  research  that  will  involve  more  than  a  dozen  doctoral  students,  postdoctoral  researchers  and  undergraduates  annually.    (JHU  Gazece  October  2012)  

25