28
Next-generation biomedical implants using additive manufacturing of complex, cellular and functional mesh arrays by L. E. Murr, S. M. Gaytan, F. Medina, H. Lopez, E. Martinez, B. I. Machado, D. H. Hernandez, L. Martinez, M. I. Lopez, R. B. Wicker, and J. Bracke Philosophical Transactions A Volume 368(1917):1999-2032 April 28, 2010 ©2010 by The Royal Society

Next-generation biomedical implants using additive manufacturing of complex, cellular and functional mesh arrays by L. E. Murr, S. M. Gaytan, F. Medina,

Embed Size (px)

Citation preview

Page 1: Next-generation biomedical implants using additive manufacturing of complex, cellular and functional mesh arrays by L. E. Murr, S. M. Gaytan, F. Medina,

Next-generation biomedical implants using additive manufacturing of complex, cellular and functional mesh

arrays

by L. E. Murr, S. M. Gaytan, F. Medina, H. Lopez, E. Martinez, B. I. Machado, D. H. Hernandez, L. Martinez, M. I. Lopez, R. B. Wicker, and J. Bracke

Philosophical Transactions AVolume 368(1917):1999-2032

April 28, 2010

©2010 by The Royal Society

Page 2: Next-generation biomedical implants using additive manufacturing of complex, cellular and functional mesh arrays by L. E. Murr, S. M. Gaytan, F. Medina,

Commercial ‘Trabecular Metal’ cellular tantalum.

L. E. Murr et al. Phil. Trans. R. Soc. A 2010;368:1999-2032

©2010 by The Royal Society

Page 3: Next-generation biomedical implants using additive manufacturing of complex, cellular and functional mesh arrays by L. E. Murr, S. M. Gaytan, F. Medina,

Aluminium alloy (6101) cellular foam.

L. E. Murr et al. Phil. Trans. R. Soc. A 2010;368:1999-2032

©2010 by The Royal Society

Page 4: Next-generation biomedical implants using additive manufacturing of complex, cellular and functional mesh arrays by L. E. Murr, S. M. Gaytan, F. Medina,

EBM system schematic and SEM inset showing initial powder.

L. E. Murr et al. Phil. Trans. R. Soc. A 2010;368:1999-2032

©2010 by The Royal Society

Page 5: Next-generation biomedical implants using additive manufacturing of complex, cellular and functional mesh arrays by L. E. Murr, S. M. Gaytan, F. Medina,

Software (CAD) rendering of metal (aluminium alloy) cellular foam from the microCT scan.

L. E. Murr et al. Phil. Trans. R. Soc. A 2010;368:1999-2032

©2010 by The Royal Society

Page 6: Next-generation biomedical implants using additive manufacturing of complex, cellular and functional mesh arrays by L. E. Murr, S. M. Gaytan, F. Medina,

(a) Materialise software elements, (b) models and (c) EBM-fabricated Ti-6Al-4V prototype test blocks.

L. E. Murr et al. Phil. Trans. R. Soc. A 2010;368:1999-2032

©2010 by The Royal Society

Page 7: Next-generation biomedical implants using additive manufacturing of complex, cellular and functional mesh arrays by L. E. Murr, S. M. Gaytan, F. Medina,

Examples of early EBM-built structures for Materialise dode-thin software element increases (1–3) and 3S software unit-cell ‘bone’ element (4).

L. E. Murr et al. Phil. Trans. R. Soc. A 2010;368:1999-2032

©2010 by The Royal Society

Page 8: Next-generation biomedical implants using additive manufacturing of complex, cellular and functional mesh arrays by L. E. Murr, S. M. Gaytan, F. Medina,

Software model views and EBM-fabricated prototypes using the Materialise dode-thin software element.

L. E. Murr et al. Phil. Trans. R. Soc. A 2010;368:1999-2032

©2010 by The Royal Society

Page 9: Next-generation biomedical implants using additive manufacturing of complex, cellular and functional mesh arrays by L. E. Murr, S. M. Gaytan, F. Medina,

FESEM views of EBM-fabricated Materialise dode-thin (figure 5) element model corresponding to a density of 0.86 g cm−3 (table 2).

L. E. Murr et al. Phil. Trans. R. Soc. A 2010;368:1999-2032

©2010 by The Royal Society

Page 10: Next-generation biomedical implants using additive manufacturing of complex, cellular and functional mesh arrays by L. E. Murr, S. M. Gaytan, F. Medina,

Optical micrographs showing acicular α-phase microstructures in a plane perpendicular to the build direction.

L. E. Murr et al. Phil. Trans. R. Soc. A 2010;368:1999-2032

©2010 by The Royal Society

Page 11: Next-generation biomedical implants using additive manufacturing of complex, cellular and functional mesh arrays by L. E. Murr, S. M. Gaytan, F. Medina,

Comparison of residual microstructures for (a) triple-melt-pass fabrication of fully dense monolith in longitudinal plane with (b) optimized single-melt-pass fabrication of 1.59 g cm−3

dense, Materialise dode-thin element strut.

L. E. Murr et al. Phil. Trans. R. Soc. A 2010;368:1999-2032

©2010 by The Royal Society

Page 12: Next-generation biomedical implants using additive manufacturing of complex, cellular and functional mesh arrays by L. E. Murr, S. M. Gaytan, F. Medina,

The α′ (martensitic) phase dominating the microstructure of struts for mesh arrays fabricated (by EBM) from Materialise software elements (figure 5a).

L. E. Murr et al. Phil. Trans. R. Soc. A 2010;368:1999-2032

©2010 by The Royal Society

Page 13: Next-generation biomedical implants using additive manufacturing of complex, cellular and functional mesh arrays by L. E. Murr, S. M. Gaytan, F. Medina,

TEM bright-field images showing (a) α-phase and (b) α′-phase (martensite) microstructures.

L. E. Murr et al. Phil. Trans. R. Soc. A 2010;368:1999-2032

©2010 by The Royal Society

Page 14: Next-generation biomedical implants using additive manufacturing of complex, cellular and functional mesh arrays by L. E. Murr, S. M. Gaytan, F. Medina,

TEM bright-field image comparisons for single-melt-pass EBM fabrication of fully dense Ti-6Al-4V monoliths with variations in build thermal history to create dislocation density variations in

the α-phase.

L. E. Murr et al. Phil. Trans. R. Soc. A 2010;368:1999-2032

©2010 by The Royal Society

Page 15: Next-generation biomedical implants using additive manufacturing of complex, cellular and functional mesh arrays by L. E. Murr, S. M. Gaytan, F. Medina,

TEM bright-field image showing microstructural details for optimized EBM Ti-6Al-4V products.

L. E. Murr et al. Phil. Trans. R. Soc. A 2010;368:1999-2032

©2010 by The Royal Society

Page 16: Next-generation biomedical implants using additive manufacturing of complex, cellular and functional mesh arrays by L. E. Murr, S. M. Gaytan, F. Medina,

Knee implant (tibial stem) prototype development and EBM processing.

L. E. Murr et al. Phil. Trans. R. Soc. A 2010;368:1999-2032

©2010 by The Royal Society

Page 17: Next-generation biomedical implants using additive manufacturing of complex, cellular and functional mesh arrays by L. E. Murr, S. M. Gaytan, F. Medina,

3S software bone unit cell and model for a 5 mm cell dimension prototype.

L. E. Murr et al. Phil. Trans. R. Soc. A 2010;368:1999-2032

©2010 by The Royal Society

Page 18: Next-generation biomedical implants using additive manufacturing of complex, cellular and functional mesh arrays by L. E. Murr, S. M. Gaytan, F. Medina,

(a,c) 3S bone element software models for 4 and 5 mm unit cell sizes, respectively, along with (b,d) views of EBM-fabricated 5 mm prototype monoliths.

L. E. Murr et al. Phil. Trans. R. Soc. A 2010;368:1999-2032

©2010 by The Royal Society

Page 19: Next-generation biomedical implants using additive manufacturing of complex, cellular and functional mesh arrays by L. E. Murr, S. M. Gaytan, F. Medina,

Conceptual design for complex, functional, intramedullary rod or stem.

L. E. Murr et al. Phil. Trans. R. Soc. A 2010;368:1999-2032

©2010 by The Royal Society

Page 20: Next-generation biomedical implants using additive manufacturing of complex, cellular and functional mesh arrays by L. E. Murr, S. M. Gaytan, F. Medina,

CAD model showing build table set-up (a) and dual-functional, fabricated (3S bone element) cylindrical prototype of Ti-6Al-4V.

L. E. Murr et al. Phil. Trans. R. Soc. A 2010;368:1999-2032

©2010 by The Royal Society

Page 21: Next-generation biomedical implants using additive manufacturing of complex, cellular and functional mesh arrays by L. E. Murr, S. M. Gaytan, F. Medina,

Ti-6Al-4V cellular foam prototypes fabricated by EBM using the software models shown in figure 4 (table 4).

L. E. Murr et al. Phil. Trans. R. Soc. A 2010;368:1999-2032

©2010 by The Royal Society

Page 22: Next-generation biomedical implants using additive manufacturing of complex, cellular and functional mesh arrays by L. E. Murr, S. M. Gaytan, F. Medina,

Software (CAD) models incorporating an inner foam element and an outer S3 bone element.

L. E. Murr et al. Phil. Trans. R. Soc. A 2010;368:1999-2032

©2010 by The Royal Society

Page 23: Next-generation biomedical implants using additive manufacturing of complex, cellular and functional mesh arrays by L. E. Murr, S. M. Gaytan, F. Medina,

Software models incorporating different density inner and outer foam elements as in figure 21.

L. E. Murr et al. Phil. Trans. R. Soc. A 2010;368:1999-2032

©2010 by The Royal Society

Page 24: Next-generation biomedical implants using additive manufacturing of complex, cellular and functional mesh arrays by L. E. Murr, S. M. Gaytan, F. Medina,

X-ray image examples of (a) right femur complete fracture (arrow) in for an 18-year-old motorcycle accident patient and (b) the corresponding bone union with intramedullary rod

inserted (after 18.8 months recovery time).

L. E. Murr et al. Phil. Trans. R. Soc. A 2010;368:1999-2032

©2010 by The Royal Society

Page 25: Next-generation biomedical implants using additive manufacturing of complex, cellular and functional mesh arrays by L. E. Murr, S. M. Gaytan, F. Medina,

Examples of commercially developed femoral hip, rod and stem devices.

L. E. Murr et al. Phil. Trans. R. Soc. A 2010;368:1999-2032

©2010 by The Royal Society

Page 26: Next-generation biomedical implants using additive manufacturing of complex, cellular and functional mesh arrays by L. E. Murr, S. M. Gaytan, F. Medina,

AM–EBM fabricated Ti-6Al-4V complex, functional mesh/mesh and mesh/foam bone shaft stem or rod device prototypes.

L. E. Murr et al. Phil. Trans. R. Soc. A 2010;368:1999-2032

©2010 by The Royal Society

Page 27: Next-generation biomedical implants using additive manufacturing of complex, cellular and functional mesh arrays by L. E. Murr, S. M. Gaytan, F. Medina,

Relative stiffness (E/Eo) versus relative density (ρ/ρo) for all the open cellular and reticulated prototypes illustrated in tables 1–4.

L. E. Murr et al. Phil. Trans. R. Soc. A 2010;368:1999-2032

©2010 by The Royal Society

Page 28: Next-generation biomedical implants using additive manufacturing of complex, cellular and functional mesh arrays by L. E. Murr, S. M. Gaytan, F. Medina,

Elastic modulus (E) versus porosity for all the open cellular and reticulated prototypes illustrated in tables 1–4.

L. E. Murr et al. Phil. Trans. R. Soc. A 2010;368:1999-2032

©2010 by The Royal Society