22
Navigation Accuracy and Interference Rejection for an Adaptive GPS Antenna Array David S. De Lorenzo, Jason Rife, Per Enge Stanford University GPS Lab Dennis Akos University of Colorado 27 Sept 2006 The authors gratefully acknowledge the support of the JPALS Program Office, and the Naval Air Warfare Center Aircraft Division through contract N00421-05-C-0068.

Navigation Accuracy and Interference Rejection for an ......5 120 20 -2.8 -154 34.3 6 150 60 -2.2 154 38.7 7 210 70 -2.4 -129 38.9 ... PRN 7 PRN 8 PRN 9 PRN 10 PRN 11 Test satellite

  • Upload
    others

  • View
    8

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Navigation Accuracy and Interference Rejection for an ......5 120 20 -2.8 -154 34.3 6 150 60 -2.2 154 38.7 7 210 70 -2.4 -129 38.9 ... PRN 7 PRN 8 PRN 9 PRN 10 PRN 11 Test satellite

Navigation Accuracy and Interference Rejectionfor an Adaptive GPS Antenna Array

David S. De Lorenzo, Jason Rife, Per EngeStanford University GPS Lab

Dennis AkosUniversity of Colorado

27 Sept 2006

The authors gratefully acknowledge the support of the JPALS Program Office, andthe Naval Air Warfare Center Aircraft Division through contract N00421-05-C-0068.

Page 2: Navigation Accuracy and Interference Rejection for an ......5 120 20 -2.8 -154 34.3 6 150 60 -2.2 154 38.7 7 210 70 -2.4 -129 38.9 ... PRN 7 PRN 8 PRN 9 PRN 10 PRN 11 Test satellite

10/12/2006 Stanford University JPALS Research 2

Joint Precision Approach and Landing System (JPALS)

Navigation AccuracyInterference Rejection

Adaptive GPS Antennas

Page 3: Navigation Accuracy and Interference Rejection for an ......5 120 20 -2.8 -154 34.3 6 150 60 -2.2 154 38.7 7 210 70 -2.4 -129 38.9 ... PRN 7 PRN 8 PRN 9 PRN 10 PRN 11 Test satellite

10/12/2006 Stanford University JPALS Research 3

Az El1 0 40 -2.0 85 37.52 30 30 -1.9 42 36.83 60 40 -1.5 -27 37.64 90 50 -2.3 -83 38.15 120 20 -2.8 -154 34.36 150 60 -2.2 154 38.77 210 70 -2.4 -129 38.98 240 20 -0.5 141 33.69 270 30 -3.0 76 35.910 300 80 -2.7 67 38.8

PRN

Pseudorange and carrier-phase biases for the centerantenna of a 7-element array, as a function of incomingsignal line-of-sight; isotropic signal power of 40 dB-Hz.

Incoming SignalLine-of-Sight Pseudorange

Bias (m)Carrier-Phase

Bias (deg)C/No

(dB-Hz)

Antenna Distortion, Code & Carrier Biases

• Antenna gain/phase response varies as a function of incoming signal azimuth, elevation, and frequency– Correlation peak distortion– Carrier-phase bias– Signal attenuation

-1.5 -1 -0.5 0 0.5 1 1.50

1

2

3

4

5

6x 10

4

Code Offset (chips)

Cor

rela

tion

Out

put

PRN 1PRN 2PRN 3PRN 4PRN 5PRN 6PRN 7PRN 8PRN 9PRN 10PRN 11

Test satellite – idealcorrelation peak

1500 1550 1600 1650-200

-100

0

100

200

300

400

Frequency (MHz)

Pha

se

Antenna Phase vs. Frequency Response, w.r.t. Look Direction

PRN 1PRN 2PRN 3PRN 4PRN 5PRN 6PRN 7PRN 8PRN 9PRN 10

Page 4: Navigation Accuracy and Interference Rejection for an ......5 120 20 -2.8 -154 34.3 6 150 60 -2.2 154 38.7 7 210 70 -2.4 -129 38.9 ... PRN 7 PRN 8 PRN 9 PRN 10 PRN 11 Test satellite

10/12/2006 Stanford University JPALS Research 4

Motivation – Biases vs. RFI Rejection

• Antennas:– Introduce biases in code-phase and carrier-phase

• Multi-Element Antenna Arrays:– Increase C/No– Reject RFI– Compound biases

• How to calibrate biasesfor STAP?

• Goal: Evaluate trade-spacebetween RFI and biases

Page 5: Navigation Accuracy and Interference Rejection for an ......5 120 20 -2.8 -154 34.3 6 150 60 -2.2 154 38.7 7 210 70 -2.4 -129 38.9 ... PRN 7 PRN 8 PRN 9 PRN 10 PRN 11 Test satellite

10/12/2006 Stanford University JPALS Research 5

Methodology – Overview

• STAP response depends on signal environment and receiver tracking implementation

• Therefore, we need to estimate bias and noise performance in the context of realistic GPS tracking scenarios– End-to-end study

• Antenna characterization• Signal generation• Weight adaptation• Signal tracking

– All variables are under direct control, allowing isolation and estimation of parameters of interest

Page 6: Navigation Accuracy and Interference Rejection for an ......5 120 20 -2.8 -154 34.3 6 150 60 -2.2 154 38.7 7 210 70 -2.4 -129 38.9 ... PRN 7 PRN 8 PRN 9 PRN 10 PRN 11 Test satellite

10/12/2006 Stanford University JPALS Research 6

Stanford HW & SW Development

Analog front-end4-channel GP2015 with10 MHz common clock

Data collection computer(2) ICS-650 cards

sampling at 5-65 MHzand 12-bit A/D resolution

Software Receiverall-in view, multi-signal

GNSS receiverwith STAP array

processing

7-element arrayrectangular patch

antennas manufacturedat Stanford University

2m high-gain dish* Possibility of including data from OSU’s

multi-element antenna array.

HP VectorSignal

Analyzer

Page 7: Navigation Accuracy and Interference Rejection for an ......5 120 20 -2.8 -154 34.3 6 150 60 -2.2 154 38.7 7 210 70 -2.4 -129 38.9 ... PRN 7 PRN 8 PRN 9 PRN 10 PRN 11 Test satellite

10/12/2006 Stanford University JPALS Research 7

Software-Based Signal Simulator

Bandlimited WGN& CW interference

C/A & “P” code1.023 & 10.23 Mchip/sec

Front-endA/D

Front-endA/D

• Gain/phase data for each look direction (10 S/V constellation) and antenna (7 rectangular patches)

– Data courtesy Ung-Suok Kim

Gain/phase response for PRN #1[Azimuth = 0°, Elevation = 40°]

1480 1500 1520 1540 1560 1580 1600 1620 1640 1660 16800

0.2

0.4

0.6

0.8

1

1.2

Frequency (MHz)

Gai

n

Antenna Gain Response for PRN #1 [Az = 0 deg, El = 40 deg]

Antenna #1Antenna #2Antenna #3Antenna #4Antenna #5Antenna #6Antenna #7

Front-end BW ~40MHz

1450 1500 1550 1600 1650 1700-50

0

50

100

150

200

250

Frequency (MHz)

Pha

se

Antenna Phase Response for PRN #1 [Az = 0 deg, El = 40 deg]

Antenna #1Antenna #2Antenna #3Antenna #4Antenna #5Antenna #6Antenna #7

Front-end BW ~40MHz

Page 8: Navigation Accuracy and Interference Rejection for an ......5 120 20 -2.8 -154 34.3 6 150 60 -2.2 154 38.7 7 210 70 -2.4 -129 38.9 ... PRN 7 PRN 8 PRN 9 PRN 10 PRN 11 Test satellite

10/12/2006 Stanford University JPALS Research 8

Signal Generation w/ Antenna Distortion

s(t) and gain/phase data are antenna & S/V specific

Gain/phase distortion data available from HFSS simulation

– Verified by comparison to anechoic chamber testing

– Data courtesy Ung-Suok Kim

( )ts

( )tsout

fft ( )fS

1480 1500 1520 1540 1560 1580 1600 1620 1640 1660 16800

0.2

0.4

0.6

0.8

1

1.2

Frequency (MHz)

Gai

n

Antenna Gain Response for PRN #1 [Az = 0 deg, El = 40 deg]

Antenna #1Antenna #2Antenna #3Antenna #4Antenna #5Antenna #6Antenna #7

Front-end BW ~40MHz

0 5 10 15 20 25 30 35 40Frequency (MHz)

Pow

er/fr

eque

ncy

(dB

/Hz)

Power Spectral Density Estimate via Welch

⊗ 1−fft

-1.5 -1 -0.5 0 0.5 1 1.50

0.5

1

1.5

2

2.5

3

3.5

4 x 104 P-code Correlation Peak Distortion - PRN #1

Code Offset (chips

Cor

rela

tor O

utpu

t

-1.5 -1 -0.5 0 0.5 1 1.50

0.5

1

1.5

2

2.5

3

3.5

4x 104 P-code Correlation Peak w/o Distortion - PRN #1

Code Phase (chips)

Cor

rela

tion

Out

put

Autocorrelation of s(t)

Autocorrelation of sout(t)

1450 1500 1550 1600 1650 1700-50

0

50

100

150

200

250

Frequency (MHz)

Pha

se

Antenna Phase Response for PRN #1 [Az = 0 deg, El = 40 deg]

Antenna #1Antenna #2Antenna #3Antenna #4Antenna #5Antenna #6Antenna #7

Front-end BW ~40MHz

Page 9: Navigation Accuracy and Interference Rejection for an ......5 120 20 -2.8 -154 34.3 6 150 60 -2.2 154 38.7 7 210 70 -2.4 -129 38.9 ... PRN 7 PRN 8 PRN 9 PRN 10 PRN 11 Test satellite

10/12/2006 Stanford University JPALS Research 9

Standard Satellite Constellation

1480 1500 1520 1540 1560 1580 1600 1620 1640 1660 16800

0.2

0.4

0.6

0.8

1

1.2

Frequency (MHz)

Gai

n

Antenna Gain Response for PRN #10 [Az = 300 deg, El = 80 deg]

Antenna #1Antenna #2Antenna #3Antenna #4Antenna #5Antenna #6Antenna #7

Front-end BW ~40MHz

1480 1500 1520 1540 1560 1580 1600 1620 1640 1660 16800

0.2

0.4

0.6

0.8

1

1.2

Frequency (MHz)G

ain

Antenna Gain Response for PRN #1 [Az = 0 deg, El = 40 deg]

Antenna #1Antenna #2Antenna #3Antenna #4Antenna #5Antenna #6Antenna #7

Front-end BW ~40MHz

1480 1500 1520 1540 1560 1580 1600 1620 1640 1660 16800

0.2

0.4

0.6

0.8

1

1.2

Frequency (MHz)

Gai

n

Antenna Gain Response for PRN #2 [Az = 30 deg, El = 30 deg]

Antenna #1Antenna #2Antenna #3Antenna #4Antenna #5Antenna #6Antenna #7

Front-end BW ~40MHz

1480 1500 1520 1540 1560 1580 1600 1620 1640 1660 16800

0.2

0.4

0.6

0.8

1

1.2

Frequency (MHz)

Gai

n

Antenna Gain Response for PRN #3 [Az = 60 deg, El = 40 deg]

Antenna #1Antenna #2Antenna #3Antenna #4Antenna #5Antenna #6Antenna #7

Front-end BW ~40MHz

1480 1500 1520 1540 1560 1580 1600 1620 1640 1660 16800

0.2

0.4

0.6

0.8

1

1.2

Frequency (MHz)

Gai

n

Antenna Gain Response for PRN #4 [Az = 90 deg, El = 50 deg]

Antenna #1Antenna #2Antenna #3Antenna #4Antenna #5Antenna #6Antenna #7

Front-end BW ~40MHz

1480 1500 1520 1540 1560 1580 1600 1620 1640 1660 16800

0.2

0.4

0.6

0.8

1

1.2

Frequency (MHz)

Gai

n

Antenna Gain Response for PRN #5 [Az = 120 deg, El = 20 deg]

Antenna #1Antenna #2Antenna #3Antenna #4Antenna #5Antenna #6Antenna #7

Front-end BW ~40MHz

1480 1500 1520 1540 1560 1580 1600 1620 1640 1660 16800

0.2

0.4

0.6

0.8

1

1.2

Frequency (MHz)

Gai

n

Antenna Gain Response for PRN #6 [Az = 150 deg, El = 60 deg]

Antenna #1Antenna #2Antenna #3Antenna #4Antenna #5Antenna #6Antenna #7

Front-end BW ~40MHz

1480 1500 1520 1540 1560 1580 1600 1620 1640 1660 16800

0.2

0.4

0.6

0.8

1

1.2

Frequency (MHz)

Gai

n

Antenna Gain Response for PRN #7 [Az = 210 deg, El = 70 deg]

Antenna #1Antenna #2Antenna #3Antenna #4Antenna #5Antenna #6Antenna #7

Front-end BW ~40MHz

1480 1500 1520 1540 1560 1580 1600 1620 1640 1660 16800

0.2

0.4

0.6

0.8

1

1.2

Frequency (MHz)

Gai

n

Antenna Gain Response for PRN #8 [Az = 240 deg, El = 20 deg]

Antenna #1Antenna #2Antenna #3Antenna #4Antenna #5Antenna #6Antenna #7

Front-end BW ~40MHz

1480 1500 1520 1540 1560 1580 1600 1620 1640 1660 16800

0.2

0.4

0.6

0.8

1

1.2

Frequency (MHz)

Gai

n

Antenna Gain Response for PRN #9 [Az = 270 deg, El = 30 deg]

Antenna #1Antenna #2Antenna #3Antenna #4Antenna #5Antenna #6Antenna #7

Front-end BW ~40MHz

PRN #1

PRN #2

PRN #3

PRN #4PRN #5

PRN #6

PRN #7

PRN #8PRN #9 PRN #10

Page 10: Navigation Accuracy and Interference Rejection for an ......5 120 20 -2.8 -154 34.3 6 150 60 -2.2 154 38.7 7 210 70 -2.4 -129 38.9 ... PRN 7 PRN 8 PRN 9 PRN 10 PRN 11 Test satellite

10/12/2006 Stanford University JPALS Research 10

Satellite & RFI Constellation

8030010

302709

202408

702107

601506

201205

50904

40603

30302

4001

ElevationAzimuthPRN

102706

02505

02254

01203

0452

001

ElevationAzimuthRFI

Bandlimited WGNand/or

CW interference

Page 11: Navigation Accuracy and Interference Rejection for an ......5 120 20 -2.8 -154 34.3 6 150 60 -2.2 154 38.7 7 210 70 -2.4 -129 38.9 ... PRN 7 PRN 8 PRN 9 PRN 10 PRN 11 Test satellite

10/12/2006 Stanford University JPALS Research 11

Multi-signal Software GNSS Receiver

WeightControl

Algorithm

Correlatorsintegrate& dump

TrackingLoops

CarrierNCO

CodeNCO

cos

C/No Estimator

Pseudorange & Carrier-phaseBias Estimator

carrierwipeoff

code wipeoff

Early

Prompt

LateFFT-basedCoherent

Acquisition

sin

reference signal

Weight control processing supportsFRPA & CRPA antennas and

adaptive LMS & Applebaum arrays

Page 12: Navigation Accuracy and Interference Rejection for an ......5 120 20 -2.8 -154 34.3 6 150 60 -2.2 154 38.7 7 210 70 -2.4 -129 38.9 ... PRN 7 PRN 8 PRN 9 PRN 10 PRN 11 Test satellite

10/12/2006 Stanford University JPALS Research 12

SW Receiver Output & Bias Estimation

• Tracking signals containing noise & RFI produces noisy estimates of code- and carrier-phase bias

0 1000 2000 3000 4000 5000-10

-8

-6

-4

-2

0

2

4

6

8

10

Time (ms)

Cod

e Ph

ase

Bias

(m)

Code Phase Biases

0 1000 2000 3000 4000 5000-200

-150

-100

-50

0

50

100

150

200

Time (ms)

Car

rier P

hase

Bia

s (d

eg)

Carrier Phase Biases

0 1000 2000 3000 4000 500015

20

25

30

35

40

45

50

55

Time (ms)

C/N

o (d

B-H

z)

Filtered C/NoPRN 1PRN 2PRN 3PRN 4PRN 5PRN 6PRN 7PRN 8PRN 9PRN 10PRN 11

Applebaum-based STAPC/No = 40 dB-Hz

plus six RFI sourcesat J/S = 20dB

Page 13: Navigation Accuracy and Interference Rejection for an ......5 120 20 -2.8 -154 34.3 6 150 60 -2.2 154 38.7 7 210 70 -2.4 -129 38.9 ... PRN 7 PRN 8 PRN 9 PRN 10 PRN 11 Test satellite

10/12/2006 Stanford University JPALS Research 13

Methodology – Step 1 (of 2)

GPSsignals

Receivertracking

EstimateC/No

RFIsources

Antennadistortion

WGN

WeightControl

Algorithm

Storeweights

• Constellation & array geometry• P-code sampled at 80 MHz• Antenna response from HFSS

• Standard PLL & DLL• FRPA, CRPA, & STAP modules• Spatial & temporal constraints

Signal Simulator Software Receiver

• Track signals containing RFI & noise• Save weight vector for STAP algorithms• Determine noise performance: C/No

+

+

Page 14: Navigation Accuracy and Interference Rejection for an ......5 120 20 -2.8 -154 34.3 6 150 60 -2.2 154 38.7 7 210 70 -2.4 -129 38.9 ... PRN 7 PRN 8 PRN 9 PRN 10 PRN 11 Test satellite

10/12/2006 Stanford University JPALS Research 14

Methodology – Step 2 (of 2)

GPSsignals

Receivertracking

Estimate code& carrier biases

RFIsources

Antennadistortion

WGN

WeightVector

Multiply

Storedweights

• Constellation & array geometry• P-code sampled at 80 MHz• Antenna response from HFSS

• Standard PLL & DLL• FRPA, CRPA, & STAP modules• Spatial & temporal constraints

Signal Simulator Software Receiver

• Track noise-free signals• Use stored weight vector for STAP algorithms• Determine code & carrier biases

+

+

Page 15: Navigation Accuracy and Interference Rejection for an ......5 120 20 -2.8 -154 34.3 6 150 60 -2.2 154 38.7 7 210 70 -2.4 -129 38.9 ... PRN 7 PRN 8 PRN 9 PRN 10 PRN 11 Test satellite

10/12/2006 Stanford University JPALS Research 15

Methodology – Tracking Output & Biases

0 1000 2000 3000 4000 5000-10

-8

-6

-4

-2

0

2

4

6

8

10

Time (ms)

Cod

e Ph

ase

Bias

(m)

Code Phase Biases

0 1000 2000 3000 4000 5000-200

-150

-100

-50

0

50

100

150

200

Time (ms)

Car

rier P

hase

Bia

s (d

eg)

Carrier Phase Biases

0 1000 2000 3000 4000 500015

20

25

30

35

40

45

50

55

Time (ms)

C/N

o (d

B-H

z)

Filtered C/NoPRN 1PRN 2PRN 3PRN 4PRN 5PRN 6PRN 7PRN 8PRN 9PRN 10PRN 11

0 1000 2000 3000 4000 5000-10

-8

-6

-4

-2

0

2

4

6

8

10

Time (ms)

Cod

e Ph

ase

Bias

(m)

Code Phase Biases

0 1000 2000 3000 4000 5000-200

-150

-100

-50

0

50

100

150

200

Time (ms)

Car

rier P

hase

Bia

s (d

eg)

Carrier Phase Biases

0 1000 2000 3000 4000 500015

20

25

30

35

40

45

50

55

Time (ms)

C/N

o (d

B-H

z)

Filtered C/NoPRN 1PRN 2PRN 3PRN 4PRN 5PRN 6PRN 7PRN 8PRN 9PRN 10PRN 11

Step 1:• Track signals containing

RFI & noise• Save weight vector for

STAP algorithms• Determine noise

performance: C/No

Step 2:• Track noise-free signals• Use stored weight vector

for STAP algorithms• Determine code & carrier

biases

Page 16: Navigation Accuracy and Interference Rejection for an ......5 120 20 -2.8 -154 34.3 6 150 60 -2.2 154 38.7 7 210 70 -2.4 -129 38.9 ... PRN 7 PRN 8 PRN 9 PRN 10 PRN 11 Test satellite

10/12/2006 Stanford University JPALS Research 16

Methodology – Tracking Output & Biases

0 1000 2000 3000 4000 5000-10

-8

-6

-4

-2

0

2

4

6

8

10

Time (ms)

Cod

e Ph

ase

Bias

(m)

Code Phase Biases

0 1000 2000 3000 4000 5000-200

-150

-100

-50

0

50

100

150

200

Time (ms)

Car

rier P

hase

Bia

s (d

eg)

Carrier Phase Biases

0 1000 2000 3000 4000 500015

20

25

30

35

40

45

50

55

Time (ms)

C/N

o (d

B-H

z)

Filtered C/NoPRN 1PRN 2PRN 3PRN 4PRN 5PRN 6PRN 7PRN 8PRN 9PRN 10PRN 11

0 1000 2000 3000 4000 5000-10

-8

-6

-4

-2

0

2

4

6

8

10

Time (ms)

Cod

e Ph

ase

Bias

(m)

Code Phase Biases

0 1000 2000 3000 4000 5000-200

-150

-100

-50

0

50

100

150

200

Time (ms)

Car

rier P

hase

Bia

s (d

eg)

Carrier Phase Biases

0 1000 2000 3000 4000 500015

20

25

30

35

40

45

50

55

Time (ms)

C/N

o (d

B-H

z)

Filtered C/NoPRN 1PRN 2PRN 3PRN 4PRN 5PRN 6PRN 7PRN 8PRN 9PRN 10PRN 11

Step 1:• Track signals containing

RFI & noise• Save weight vector for

STAP algorithms• Determine noise

performance: C/No

Step 2:• Track noise-free signals• Use stored weight vector

for STAP algorithms• Determine code & carrier

biases

C/No estimatefrom step 1

Page 17: Navigation Accuracy and Interference Rejection for an ......5 120 20 -2.8 -154 34.3 6 150 60 -2.2 154 38.7 7 210 70 -2.4 -129 38.9 ... PRN 7 PRN 8 PRN 9 PRN 10 PRN 11 Test satellite

10/12/2006 Stanford University JPALS Research 17

Uncompensated Code & Carrier Biases

• Pseudorange biases ~2m• Carrier-phase biases uniformly distributed• 7-element arrays yield ~8.5 dB-Hz improvement in

C/No• Biases unacceptable for high-integrity carrier-phase

differential navigation!

Averages over10-satellite

constellation

Single-elementFRPA

7-elementdeterministic

CRPA

Blind-adaptive STAPbeam/null steering

(LMS-based)

Steering-vector STAPbeam/null steering(Applebaum-based)

Pseudorangebias (m) 2.13 1.88 1.94 1.88

Carrier-phasebias (deg) 96 96 96 96

C/No(dB-Hz) 37.0 45.7 45.7 45.7

Uncompensated pseudorange and carrier-phase biases;isotropic signal power of 40 dB-Hz.

Page 18: Navigation Accuracy and Interference Rejection for an ......5 120 20 -2.8 -154 34.3 6 150 60 -2.2 154 38.7 7 210 70 -2.4 -129 38.9 ... PRN 7 PRN 8 PRN 9 PRN 10 PRN 11 Test satellite

10/12/2006 Stanford University JPALS Research 18

Pseudorange & Carrier Bias Compensation

Front-end Code & carrierwipeoff Correlators Tracking

Loops

Code & carrierwipeoff

BiasCompensation

Bias CalibrationLook-up Table(code & carrieraz/el-dependent

corrections)

PVTProcessing

Receiver Signal Processing

Corrected estimates ofcode & carrier phase

Look-up table-based compensationscheme covered by Kim et al. (ION

2005) for non-ideal antennas anddeterministic beamsteering arrays.

Deterministic Biases Deterministic Corrections

Page 19: Navigation Accuracy and Interference Rejection for an ......5 120 20 -2.8 -154 34.3 6 150 60 -2.2 154 38.7 7 210 70 -2.4 -129 38.9 ... PRN 7 PRN 8 PRN 9 PRN 10 PRN 11 Test satellite

10/12/2006 Stanford University JPALS Research 19

Bias Residuals After Compensation

• Two types of LOS-based (az/el) calibration are possible:– Single-Element (FRPA) calibration– Multi-Element (CRPA) beamforming calibration

• Best calibration option depends on STAP algorithm

Blind-adaptive STAPbeam/null steering

(LMS-based)

Steering-vector STAPbeam/null steering(Applebaum-based)

Pseudorangebias (m) 0.23 0.28

Carrier-phasebias (deg) 0.5 9.2

Pseudorangebias (m) 0.06 0.00

Carrier-phasebias (deg) 9.3 0.0

Pseudorange and carrier-phase biases;isotropic signal power of 40 dB-Hz.

Bias residualsw.r.t. single-element

FRPA calibration

Bias residualsw.r.t. 7-element

CRPA calibration

Averages over10-satellite

constellation

Page 20: Navigation Accuracy and Interference Rejection for an ......5 120 20 -2.8 -154 34.3 6 150 60 -2.2 154 38.7 7 210 70 -2.4 -129 38.9 ... PRN 7 PRN 8 PRN 9 PRN 10 PRN 11 Test satellite

10/12/2006 Stanford University JPALS Research 20

Bias Residuals - 7-element Array withSingle-element and Array Calibration

0

0.1

0.2

0.3

0.4

0.5

0 2 4 6 8 10 12

C/No Improvement vs.Deterministic CRPA (dB-Hz)

Cod

e-ph

ase

Bia

s (m

)

LMS, single time-tapLMS, 3 time-tapsApplebaum, single time-tapApplebaum, 3 time taps

Compensation vs. RFI Tradeoffs (1)

six 30dBRFI sources

no RFI

• Two cases considered: No RFI case and 30 dB RFI on six sources

• STAP enables noiserejection at expenseof biases

• Code-phase biasesequivalent for bothSTAP algorithms

Page 21: Navigation Accuracy and Interference Rejection for an ......5 120 20 -2.8 -154 34.3 6 150 60 -2.2 154 38.7 7 210 70 -2.4 -129 38.9 ... PRN 7 PRN 8 PRN 9 PRN 10 PRN 11 Test satellite

10/12/2006 Stanford University JPALS Research 21

Compensation vs. RFI Tradeoffs (2)

Bias Residuals - 7-element Array withSingle-element and Array Calibration

0

2

4

6

8

10

0 2 4 6 8 10 12

C/No Improvement vs.Deterministic CRPA (dB-Hz)

Car

rier-p

hase

Bia

s (d

eg) LMS, single time-tap

LMS, 3 time-tapsApplebaum, single time-tapApplebaum, 3 time taps

• Carrier-phase biases lower for Applebaum than for LMS

• Maximum achievablenoise rejection betterfor LMS than forApplebaum

six 30dBRFI sources

no RFI

Page 22: Navigation Accuracy and Interference Rejection for an ......5 120 20 -2.8 -154 34.3 6 150 60 -2.2 154 38.7 7 210 70 -2.4 -129 38.9 ... PRN 7 PRN 8 PRN 9 PRN 10 PRN 11 Test satellite

10/12/2006 Stanford University JPALS Research 22

Conclusions

• Deterministic corrections (LOS-based lookup table) will reduce pseudorange and carrier-phase biases in the tracking output– Carrier-phase residual

is likely livable– Code-phase biases appear

troubling – need further work

• As RFI power increases, STAPalgorithms become more desirable

• There is a balance between theability to reject interference andthe necessity of limiting errors

Code-phase 10s of cmCarrier-phase 0-10 deg.

Bias Residuals AfterCompensation, 7-element

Adaptive Array