178
N7 4- 33789 NASA CR-134662 PWA-5069 TWO-STAGE LOW NOISE ADVANCED TECHNOLOGY FAN I. AERODYNAMIC, STRUCTURAL, AND ACOUSTIC DESIGN 30 September 1974 by H. E. Messenger, J. T. Ruschak and T. G. Sofrin Pratt & Whitney Aircraft Division United Aircraft Corporation Prepared for National Aeronautics and Space Administration NASA Lewis Research Center Contract NAS3-16811

N7 4- 33789

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: N7 4- 33789

N7 4- 33789

NASA CR-134662PWA-5069

TWO-STAGE LOW NOISE ADVANCED TECHNOLOGY FAN

I. AERODYNAMIC, STRUCTURAL, AND ACOUSTIC DESIGN

30 September 1974

by

H. E. Messenger, J. T. Ruschakand T. G. Sofrin

Pratt & Whitney Aircraft DivisionUnited Aircraft Corporation

Prepared for

National Aeronautics and Space Administration

NASA Lewis Research CenterContract NAS3-16811

Page 2: N7 4- 33789

1. Report No. I 2. Government Accession No.

NASA CR-134662 I4. Title and Subtitle

Two-Stage Low Noise Advanced Technology Fan

I. Aerodynamic, Structural, and Acoustic Design

7. Author(s)

H. E. Messenger, J. T. Ruschak and T. G. Sofrin

9. Performing Organization Name and Address

Pratt & Whitney Aircraft Division

United Aircraft Corporation

East Hartford, Connecticut 0610812. Sponsoring Agency Name and Address

National Aeronautics and Space AdministrationWashington, D. C. 20546

3. Recipient's Catalog No.

5. RePort Date

30 September 19746. Performing Organization Code

8. Performing Organization Report No.

PWA-506910. Work Unit No.

11. Contract or Grant No.

NAS3-1681113. Type of Report and Period Covered

Contractor Report14. Sponsoring Agency Code

15. Supplementary Notes

Design Report - Project Manager, W. L. Beede, Fluid System Components Division.Technical Advisor, M. F. Heidmann, V/STOL and Noise Division.NASA - Lewis Research Center_ Cleveland, Ohio 44135

16. Abstract

A two-stage fan was designed to reduce noise as much as 20 dB below current requirements.

The first-stage rotor has a design tip speed of 365.8 m/sec (1200 ft/sec) and a hub/tip ratioof 0.4. The fan was designed to deliver a pressure ratio of 1.9 with an adiabatic efficiencyof 85.3 percent at a specific inlet corrected flow of 209.2 kg/sec/m 2 (42.85 lbm/sec/ft2).

Noise reduction devices include acoustically treated casing walls, a flowpath exit acoustic

splitter, a translating centerbody sonic inlet device, widely spaced blade rows, and the

proper ratio of blades and vanes. Other features include multiple-circular-arc rotor airfoils,resettable stators, split outer casings, and capability to go to close blade-row spacing.

17. Key Words (Suggested by Author(s))

Quiet Fan

Two-Stage Fan

Aerodynamic Design

Structural Design

19. Security Classif. (of this report)

Unclassified

18. Distribution Statement

Acoustic DesignAcoustic TreatmentsSonic Inlet Unclassified - Unlimited

I nclass,fied 1 1" For sale by the NationalTechnical InformationService, Springfield, Virginia 22151

22. Price"

NASA-C-I68 (Rev. 6-71)

Page 3: N7 4- 33789

TABLE OF CONTENTS

SUMMARY

INTRODUCTION

AERODYNAMIC-ACOUSTIC CONSIDERATIONS

FLOWPATH AND VELOCITY VECTOR DIAGRAM DESIGN

Design IterationsLosses

Flow Blockages

Air Angles and Velocities

Flowpath Spacings

LoadingsExit Duct Aerodynamic Design

AIRFOIL DESIGN

RotorsAirfoil Series

Partspan Shrouds

Chords, Thicknesses, and Numbers of Blades

Incidence and Deviation AnglesChannel Areas

Rotor GeometryStators

Airfoil Series

Chords and Thicknesses

Incidence and Deviation AnglesChannel Areas

Stator Geometry

INLET AERODYNAMIC DESIGN

Objectives and Techniques

Sonic Inlet Geometry

Inlet Cowling and CenterbodySonic Inlet Lip Shapes

Inlet Mach Number Distribution, Boundary Layer Characteristics,

and Estimated Pressure Recoveries

Page

3

34

4

5

5

6

7

8

8

8

8

8

9

10

l0

10

10

1011

11

12

12

12

13

1313

13

iii

Page 4: N7 4- 33789

TABLE OF CONTENTS (Cont'd)

STRUCTURAL AND VIBRATION ANALYSIS

RotorsBlade and Disk Vibration

Rotor Blade Stresses

Rotor Blade Flutter

Partspan ShroudsDisk and Attachment Stresses

Stators

Stator VibrationStator Stresses

Stator Flutter

Interstage Seals

Sonic Inlet Support Struts

Critical Speeds and Forced ResponseBaseline Standard Inlet Cowling Configuration

Sonic Inlet Configuration

ACOUSTIC DESIGN

Sonic Inlet, Acoustic Considerations

Flowpath and Blade Geometry

Rig Spectra Predictions

Treatment Attenuation TargetsAcoustic Treatment Selection

Inlet

Interstage and Aft Fan Duct

Predicted Attenuation - Interstage and Aft Treatment

Competing Noise Sources

APPENDIXES

A. Symbols and Definitions

B. Aerodynamic SummariesC. Airfoil Geometry on Design Conical Surfaces

D. Airfoil Coordinates on Manufacturing Surfaces

E. Two-Ring Acoustic Inlet Aerodynamic and Acoustic Design

REFERENCES

DISTRIBUTION LIST

Page

14

1515

15

16

17

18

18

18

19

19

19

19

20

20

21

21

2122

23

23

23

24

25

25

89

95

105

109

157

161

163

iv

Page 5: N7 4- 33789

Figure

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

LIST OF FIGURES

Title

Rotor and Stator Total Loss Spanwise Profiles

Rotor Adiabatic Efficiency Spanwise Profiles

Rotor Inlet and Exit Relative Air Angles Spanwise Profiles

Rotor Meridional Velocity Spanwise Profiles

Stator Meridional Velocity Spanwise Profiles

Inlet and Exit Mach Number Spanwise Profiles for Rotors

Inlet and Exit Mach Number Spanwise Profiles for Stators

Fan Flowpaths

Schematic of the Quiet Two-Stage Fan

Rotor Diffusion Factor Spanwise Profiles

Stator Diffusion Factor Spanwise Profiles

Total Pressure Ratio Spanwise Profiles

Stator Inlet and Exit Absolute Air Angle Spanwise Profiles

Fan Exit Duct and Acoustic Splitter Flowpath

Multiple-Circular-Arc Airfoil Definitions

Rotor Airfoil Thickness Spanwise Profiles

Rotor Chordwise Location of Airfoil Maximum Thickness

Spanwise Profiles

Rotor Chord Spanwise Profiles

Rotor Inlet and Exit Metal Angle Spanwise Profiles

Rotor Incidence Angle Spanwise Profiles

Page

26

27

28

29

29

30

3O

31

32

33

33

34

34

35

36

37

37

38

39

40

V

Page 6: N7 4- 33789

Figure

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

LIST OF FIGURES (Cont'd)

Title

Rotor Deviation Angle Spanwise Profiles

Minimum Rotor Channel Area Ratio Spanwise Profiles

Rotor Front Camber Angle and Chord-Camber Parameter

Spanwise Profiles

Rotor Channel Area Ratios Versus Axial Distance

Meridional View and Polar Representation of Blade Mean-Camber-Line

Airfoil Coordinate Definition for Manufacturing Sections

Stator Chord Spanwise Profiles

Stator Chordwise Location of Maximum Thickness Spanwise

Profiles

Stator Airfoil Thickness Spanwise Profiles

Stator Incidence Angles Spanwise Profiles

Stator Deviation Angles Spanwise Profiles

Stator Inlet and Exit Metal Angles Spanwise Profiles

Ratios of Channel-Throat-Area to Captured-Area Versus Spanfor Stators

Stator 1 Front Camber Angle and Chord-Camber Parameter

Spanwise Profiles

Stator 1 Channel Area Ratios Versus Axial Distance

Baseline Standard and Sonic Geometries

Baseline Standard Inlet Outer Wall Mach Number and Shape FactorDistributions

Sonic Inlet Throat Mach Number Spanwise Profile - Approach

Configuration

vi

Page

41

42

43

44/45

46

46

47

48

48

49

50

51

52

53

54

55

56

57

Page 7: N7 4- 33789

Figu re

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

LIST OF FIGURES (Cont'd)

Title

Mach Number Distributions Along Inlet Walls - Approach Configuration

Mach Number Distributions Along Inlet Walls - Cruise Configuration

Mach Number Distributions Along Inlet Walls - Takeoff Configuration

Boundary Layer Shape Factor Distributions Along Inlet Walls - Cruise

Configuration

Boundary Layer Shape Factor Distributions Along Inlet Walls -

Approach Configuration

Boundary Layer Shape Factor Distributions Along lnlet Walls-

Takeoff Con figuration

Rotor 1 Campbell Diagram

Rotor 2 Campbell Diagram

Rotor 1 Tip Mode Campbell Diagram

Rotor 2 Tip Mode Campbell Diagram

Rotor 1 Goodman Diagram

Rotor 2 Goodman Diagram

Schematic of Rotor Partspan Shrouds

Stator 1 Campbell Diagram

Stator 2 Campbell Diagram

Rotor Sideplate Seal Resonance

Stator Seal Resonance

Sonic Inlet Support Struts, Campbell Diagram

Spring-Mass Model for Critical Speed Analysis - Standard Inlet

Spring-Mass Model for Critical Speed Analysis - Sonic Inlet

Critical Speed Mode Shapes

vii

Page

57

58

59

60

61

62

63

64

65

66

67

67

68

69

70

71

71

72

73

74

75/76

Page 8: N7 4- 33789

Figure

60

61

62

63

64

65

66

67

68

69

70

71

72

LIST OF FIGURES (Cont'd)

Title

Schematic of Sonic Inlet Configuration

Effect of Rotor- Stator Spacing on Blade-Passing Frequency NoiseLevel

Fan Aft One-Third Octave Spectra - Untreated

Fan Aft Noise Attenuation Targets

Inlet Estimated Attenuation Due to Wall Treatment - Approach

Summary of Acoustic Treatment

Treatment Attenuation - Fan Discharge Ducts

Tuning Curves

Analytically Predicted Attenuation of Aft Fan Noise at Takeoff

Predicted Jet and Treated Fan Noise Levels - Approach

Predicted Jet and Treated Fan Noise Levels - Takeoff

Two-Ring Acoustic Inlet Design Schematic

Two-Ring Acoustic Inlet Predicted Attenuation

Page

77

78

79

8O

81

82

83

84

85

86

87

158

159

°.o

Vlll

Page 9: N7 4- 33789

Table

I

II

Ili

IV

V

VI

VII

VIII

IX

X

XI

XII

XIII

XIV

XV

XVI

XVII

XVIII

XIX

XX

XXI

XXII

LIST OF TABLES

Title

General Aerodynamic Design Parameters

Design Performance

Flow Blockages (% of Annulus Area) at Blade Edge Axial Location

Predicted Blade Aerodynamic Diffusion Factors at Stall

Flow Blockages Assumed for Exit Duct Design

Rotor Blading Parameters

Stator Blading Parameters

Baseline and Sonic Inlet Total Pressure Recoveries

Summary of Rotor Steady Stresses - 105% Design Speed

Rotor First Coupled Mode Flutter Parameters

Partspan Shroud Parameters

Rotor Disk and Attachment Stresses - 105% Design Speed

Analytically Predicted Fan Aft PNL at 45.7 Meter (105 Foot) Radius

Identification of Aerodynamic Summary Table Headings

Identification of Spans and Diameters for Blade Element Data

Aerodynamic Summary - Rotor 1

Aerodynamic Summary - Stator 1

Aerodynamic Summary - Rotor 2

Aerodynamic Summary - Stator 2

Airfoil Geometry on Design Conical Surfaces - Rotor 1

Airfoil Geometry on Design Conical Surfaces - Stator 1

Airfoil Geometry on Design Conical Surfaces - Rotor 2

Page

3

4

5

7

7

9

II

14

16

17

17

18

25

95

96

97/98

991100

1011102

103/104

105

106

107

ix

Page 10: N7 4- 33789

Table

XXIII

XXlV

XXV

XXVI

XXVII

XXVIII

LIST OF TABLES (Cont'd)

Title

Airfoil Geometry on Design Conical Surfaces - Stator 2

Airfoil Coordinates on Manufacturing Surfaces - Rotor 1

Airfoil Coordinates on Manufacturing Surfaces - Stator 1

Airfoil Coordinates on Manufacturing Surfaces - Rotor 2

Airfoil Coordinates on Manufacturing Surfaces - Stator 2

Two-Ring Acoustic Inlet Treatment Parameters

Page

]O8

109/123

124/133

134/147

148/156

157

X

Page 11: N7 4- 33789

TWO-STAGE, LOW NOISE ADVANCED TECHNOLOGY FAN

I. AERODYNAMIC, STRUCTURAL, AND ACOUSTIC DESIGN

H. E. Messenger, J. T. Ruschak and T. G. Sofrin

SUMMARY

Advanced, long-range, commercial transport aircraft will require a major reduction in enginenoise without compromising requirements for high efficiency and adequate stall margin.

To achieve a reduction of noise 20 dB below current requirements and to attain efficiency

levels, stall margin, flow, and pressure ratio typical of an advanced fan, a two-stage, low tip-speed fan was selected as optimum for the flight Mach number range of 0.85 to 0.90.

Design features to reduce noise include use of low tip speeds and moderate blade aerodynamic

loadings, proper relationship of the number of blades and vanes, axial spacings between blade

rows of two aerodynamic chord lengths, acoustically treated casing walls, a towpath exit

acoustic splitter, and a translating centerbody sonic-inlet device.

The aerodynamic design was governed by the approximate parameters specified in the con-

tract and applicable test data. Successful NASA-sponsored research fans tested by P&WA TM

were used to establish criteria for good efficiency and stall margin. Important fan design

parameters include a pressure ratio of 1.90 with a fan adiabatic efficiency of 85.3 percent,

a first-stage rotor tip speed o f365.8 m/sec (1200 ft/sec), and a specific flow at the first-stage rotor inlet of 209 kg/sec/m 2 (42.85 lbm/sec/ft2). Other features of the design include

a fan flowpath with a constant outer diameter of 0.836 m (32.90 in.), constant diameter

hub sections between blades and vanes to facilitate use of axial spacers for alternate test

configurations, multiple-circular-arc rotor airfoils, stators with resettable stagger anglecapability, and split outer casings to accommodate on-stand configuration changes.

Structural and vibration analyses included calculation of blade-disk frequencies and their

resonances with rig excitations, blade and vane steady-state stresses and flutter parameters,rig critical speeds, and rotor forced response to unbalance. Predicted stresses due to centri-

fugal, gas bending, and untwist forces are well within the capabilities of the materials selected.

To avoid resonances and flutter, first-stage and second-stage rotor blades have a partspan

shroud at 66.5 and 60 percent span from the hub, respectively. All blades and vanes werepredicted to be free of flutter.

INTRODUCTION

A fan research program is being conducted by P&WA for NASA-Lewis Research Center un-

der Contract NAS3-16811. The objective of the program is to develop fan technology for

application in turbofan engines for an advanced, long-range commercial transport with a

cruise Mach number of 0.85 to 0.9. These future engines will be required to meet stringent

noise reduction goals with minimum performance penalties. To achieve these goals, fans in-

cluded in such engines must, during their design phase, incorporate features both to minimize

the generation of noise and to obtain the maximum suppression of the noise generated.

Page 12: N7 4- 33789

An earlierNASA-Lewisstudyhadbeenconductedfor Advanced-Technology-Transport(ATT)applicationto determinetheoptimumfanconfigurationandperformanceparametersfor acruiseMachnumberof 0.85to 0.9andthestringentnoisereductiongoalof 20dBbelowcurrentrequirements(FAR 36). Thestudyshowedthat theoptimumconfigurationwasalowtip-speed,two-stagefanwith a low hub/tip ratio [ref. 1]. Theoptimumpressureratiowas1.9andthetip speedwas365.8m/sec(1200ft/sec). Undercurrentprogram,ContractNAS3-16811,thisoptimumfanis to bedesigned,constructed,andtested.

Severalfeaturesthat havethepotentialfor minimizingnoisewereincorporatedin this two-stagefan. Thesefeaturesincludesubstantialaxialspacingbetweenbladesandvanes,properrelationshipof thenumberof bladesandvanes,extensiveuseof acoustictreatmentin casingwallsandin aflowpathexit acousticsplitter,andasonicinlet deviceusingatranslatingcenterbody.

Aerodynamicconditionsfor thefanarewithin therangeof dataobtainedon two earlier,successfulNASA-Lewissponsoredresearchfanstestedby P&WA: 1)a304.8m/sec(1000ft/sec)tip-speed,low-noise,single-stagefan [ref. 2] and2) atwo-stage,442.0m/see(1450ft/sec)tip-speedfan [ref. 3]. Theinformationobtainedfrom thesetwopreviousprogramsprovideasolidfoundationfor performancepredictionsandfor selectionof bladeandvanesectionsfor thecurrentdesign.

Thisreportpresentsdetailsof theaerodynamic,structural,andacousticdesignof thecurrenttwo-stagefan. Specialterms,abbreviations,andsymbolsusedin thisreportarede-finedin AppendixA.

AERODYNAMIC-ACOUSTIC CONSI DERATIONS

Both general design parameters and detailed elements of the fan design were significantly

affected by the need to incorporate low noise features. A low tip-speed of 365.8 m/see

(1200 ft/sec) and moderate blade loadings were selected for low noise. As a result, two

stages were required to obtain the design pressure ratio. A rather high fan-flow/unit-annulus-area of 209.2 kg/sec/m 2 (42.85 lbm/sec/ft 2) was chosen consistent with low enginefrontal area and minimum diffusion from sonic inlet throat to fan inlet. The numbers of

blades and vanes were chosen to restrict propagation of interaction tone noise at blade-

passing frequency and yet maintain the desired solidities. These aerodynamic-acoustic

considerations imposed a blade number relationship of s = 2r + 6, where s is the number of

stator vanes in a given stage and r the number of upstream rotor blades. To reduce blade-passing tone noise, axial spacings between blade and vane rows were set such that at all

spanwise positions the leading edge of each blade row is a minimum of two aerodynamic

chords downstream of the trailing edge of the upstream blade. Constant diameter casing

wall sections are provided between blade rows to permit tests with alternate spacings and tofacilitate incorporation of wall acoustic treatments. Fan exit ducting was designed to in-

clude a removable acoustically treated flow splitter as well as wall treatments. A two-ring,

acoustic inlet was initially selected to aid in suppression of forward radiated noise; however,

this eftbrt was discontinued in favor of a translating centerbody sonic inlet device. Acoustic

treatments were also included in the inlet casing walls.

2

Page 13: N7 4- 33789

FLOWPATH AND VELOCITY VECTOR DIAGRAM DESIGN

General aerodynamic design parameters (Table I) for the two-stage low noise fan were

chosen to conform with contract requirements, to provide similarity with advanced-techno-

logy NASA fan-stages of proven high performance, and to permit the use of existing hardware

and test facilities. Because this fan is for application in an engine with a rather high bypass

ratio, representative aerodynamic and acoustic data can be obtained without splitting the ductand core flow at the fan exit.

TABLE I

GENERAL AERODYNAMIC DESIGN PARAMETERS

Overall Total Pressure Ratio

Overall Adiabatic Efficiency (%)

Parameters at Inlet to First Rotor:

Tip Diameter - meters (inches)

Tip Speed- m/sec (ft/sec)

Hub/Tip Ratio

Specific Flow- kg/sec/m 2

(lbm/sec/ft 2)

Corrected Flow - kg/sec

(lbm/sec)

Corrected Speed (rpm)

CONTRACT WORK

STATEMENT

1.8-2.0

0.762 (30) (min.)

335.3-396.2 (1100-1300)

0.4 (approx)

DESIGN

1.90

85.3

0.836 (32.90)

365.8 (1200)

0.4

209.2 (42.85)

96.39 (212.5)

8367

DESIGN ITERATIONS

The flowpath and velocity vectors used to design the rotor and stator blade elements of the

fan were determined from a series of iterations. The iterations were started using a reasonable

flowpath shape and general design parameters consistent with requirements for a high bypass

ratio turbofan engine, together with estimated efficiency profiles and flow blockages.

Velocity vectors and flow conditions were then calculated by a computation system that

provides an axisymmetric, compressible flow solution of continuity, energy, and radial

equilibrium equations, with curvature, enthalpy, and entropy gradient terms included in the

equilibrium equation [Appendix A of ref. 4]. To control velocities and loadings and to

maximize predicted stall margin, a series of streamline analysis program runs was used to

adjust flowpath shape, blade solidities, and spanwise total pressure slopes. Losses were

reestimated using correlations of loss versus Mach number and loading for each significant

Page 14: N7 4- 33789

aerodynamicchange.Stallmarginwasestimatedby usingtheflowfieldcalculationto pre-dict bladeloadingincreasesasthefanisback-pressuredandbyusingloadinglimits es-tablishedfromtestdataascriteriafor stall. Thefinal setof designvelocityvectors,to-getherwith assumedsoliditiesandnumbersof blades,wasthenusedin thedesignof rotorandstatorbladeelements.Stressandvibrationanalyseswereperformedconcurrentlywiththeaerodynamicdesignt? insurethattheaerodynamicdesignwouldbecompatiblewithmechanicaldesigncriteria. In subsequentflowpathandvelocityvectoriterations,calcula-tion stationswererevisedto conformto actualleadingandtrailingedgelocationsof eachbladeandvanerow andto retaindesiredaxialspacingsbetweenbladerows.Performanceparametersat thedesignpointaresummarizedin TableI1.

TABLE II

DESIGN PERFORMANCE

Blade Row

PRESSURE RATIOLocal Cumulative

(per blade row)

ADIABATIC EFFICIENCYLocal Cumulative

(per blade row)

Rotor 1 1.485 1.485 89.5% 89.5%

Stator 1 0.984 1.461 85.6%

Rotor 2 1.317 1.924 90.9% 87.3%

Stator 2 0.987 1.898 85.3%

Stage

First 1.461 85.6%

Second 1.298 86.1%

LOSSES

Design values of rotor loss (Figure 1, lower set of curves) were estimated using a correlationof total loss versus inlet relative Mach number and loading based on fan rotor test data. No

additional losses were added in the partspan shroud regions. Design stator losses (Figure 1,

upper set of curves) were based on data correlated as loss parameter versus diffusion factor

and percent spa_. A comparison of the final estimated values of rotor and stator designlosses with data T from tests of the 304.8 m/sec (1000 ft/sec) single-stage _a'ef. 5] and the

442.0 m/sec (1450 ft/sec) two-stage [ref. 3] NASA fans is also shown in Figure 1. The corre-

sponding spin, wise profiles of rotor adiabatic efficiency are given in Figure 2.

FLOW BLOCKAGES

Flow blockages were included in the aerodynamic design to account for boundary layer

growth on casing walls and to account for the presence of a partspan shroud on each rotor.

Blockages due to casing boundary layers at the fan inlet were calculated from analytical

predictions of displacement thicknesses. Wall boundary layer growth through the blade rows

was estimated from test data from the 442.0 m/sec (1450 ft/sec) fan which achieved itsdesign flow rate [ref. 3]. In addition, to account for the presence of the retor partspan

Unless otherwise indicated, all data shown in comparisons are for test points at design speed on all

operating line pas_ing through the design point of the referenced fan.

Page 15: N7 4- 33789

shrouds, a blockage equal to the percent of annulus area occupied by each shroud wasapplied at the exit of the rotors, and approximately one-fourth of this amount was used atthe inlet of each rotor. In calculating the design velocity vectors and flow conditions, thetotal blockages listed in Table III were applied equally to all stream tubes at each of theindicated axial locations.

TABLE III

FLOW BLOCKAGES (% OF ANNULUS AREA)AT BLADE EDGE AXIAL LOCATIONS

LOCATION TOTAL BLOCKAGE

RI L.E. 2.6

PAT. E. 4.9

$I L.E. 3.1

S1 T.E. 3_3

R2 L.E. 3.7

R2 T.E. 6.1

$2 L.E. 4.3

$2 T.E. 4.6

AIR ANGLES AND VELOCITIES

The fan was designed with a constant tip diameter to, allow all the flowpath convergence tobe taken at the root of the flowpath, which tends to minimize critical root-loadings and thelarge past-axial turnings inherent in a low speed, low hub/tip ratio fan rotor. As shown inspanwise profiles of flow angle (Figure 3), the first-stage rotor is designed to turn the flowapproximately 30 degrees past axial at the rsot, about 10 degrees less than the rotor designvalue of the 304.8 m/sec (1000 ft/sec) fan [ref. 6].

Fan exit flow (aft fan-duct) is axial, as specified by contract, and the annulus area is set toprovide an average exit Mach number of about 0.40, a practical value for effective noisetreatment and for low losses from struts and ducting downstream of the fan. Flowpathconvergence and curvature of the inner casing walls between the inlet spinner and fan exitwere used to control velocity profiles and blade aerodynamic loadings (diffusion factors).Resulting profiles of meridional velocity and Mach number at leading and trailing edges ofblade rows are shown in Figures 4 through 7.

FLOWPATH SPACINGS

Two flowpath configurations are shown in Figure 8. The lower configuration is the basictest configuration, and the upper configuration is an alternate configuration with more

Page 16: N7 4- 33789

closelyspacedbladerows. Toreducenoiseassociatedwith blade-vanewakeinteractions,theaxialspacingsbetweenadjacentbladerowsof thebasicflowpath(wideblade-spacing,lowerconfiguration)weresetsuchthat atall spanwisepositionstheleadingedgeof eachbladerow isaminimumof two aerodynamicchordsdownstreamof thetrailingedgeof theupstreambladerow. Constantradiushubsectionswerespecifiedbetweenbladerowstofacilitatetheuseof spacersfor increasingor decreasingaxiallengthsbetweenbladerowsforalternatetestconfigurations.Thealternateconfiguration,theupperconfigurationinFigure8, hasaxialspacingsbetweensuccessivebladerowsof 1, 1,and2aerodynamicchordsandanoveralllengthapproximately0.17m (6.5in.) lessthanthatof thebasiccon-figuration. Streamlineanalysiscalculati?nsindicatethatvelocityvectorsfor thetwo con-figurationsaresubstantiallythesameand,hence,no significantdifferencesin aerodynamicperformancearepredicted.

A schematicshowingthemechanicallayoutof therig ispresentedin Figure9.

LOADINGS

Spanwise profiles of design diffusion factors for the current fan are compared in Figures10 and 11 with the diffusion factors that had been obtained from tests of the two previousresearch fans. The Figures show that the average loadings of the current fan are lower thanthose of the 304.8 m/sec (1000 ft/sec) single-stage fan [ref. 5] and the 442.0 m/sec (1450ft/sec) two-stage fan [ref. 3] at test points where each was operating with a practical stallmargin and high efficiency. Considerable effort was devoted to balancing the design loadingsamong blade rows to achieve maximum predicted stall margin. Parameters which werevaried in these attempts include hub casing contours, average total pressure ratios and span-wise total pressure slopes of each rotor, and first-stage stator exit air angles. Stall marginwas estimated by using the flowfield calculation to predict blade loading increases as thefan is back-pressured and using loading limits established from test data as criteria for surge.The fan stall margin obtained with this method, which in previous applications has givengood agreement with test values, is about 18 percent. The predicted fan stall was set by thesecond-stage stator hub which reached diffusion factor levels of 0.65, considered the loadinglimit for statars.

The resulting higher loadings and design pressure ratios of the first-stage relative to second-

stage, as shown in Figures 10, 11 and 12, reflect a provision for an anticipated, more rapidincrease of second-stage blade loadings with an increase in fan back-pressure. Radial profiles

of total pressure were sloped negatively (i.e., higher pressure near the hub than near the tip)

to obtain high velocities on the hub wall to reduce critical loadings. Also, as part of the at-

tempt to achieve a desirable loading balance, flow angles were set at 7.5 degrees at the exit

of the first-stage stator (Figure 13).

The predicted loadings for the four blade-rows at the estimated stall point are presented inTable IV below.

6

Page 17: N7 4- 33789

TABLE IV

PREDICTED BLADE AERODYNAMIC DIFFUSION FACTORS AT STALL

HUB MEAN TIP

(5% Flow) (50% Flow) (90% Flow)

Rotor 1 0.55 0.55 0.51

Stator 1 0.62 0.46 0.45

Rotor 2 0.61 0.47 0.42

Stator 2 0.65 0.47 0.50

Tabulations of aerodynamic parameters at rotor and stator leading and trailing edges are pro-

vided in Appendix B (Tables XVI to XIX).

EXIT DUCT AERODYNAMIC DESIGN

The exit ducting and acoustic splitter contours for the fan were selected: 1) to provide con-

ical casing surfaces convenient for incorporation of acoustic treatment, 2) to control Mach

numbers for low losses and low noise, and 3) to allow use of existing rig hardware. Blockages

were included in the flowfield calculation in order to account for boundary layer growth

along the four flow-surfaces of the exit duct, and annulus areas were gradually increased along

the duct to compensate for boundary layer growth to hold a Mach number of about 0.4

throughout the duct at the design point. The boundary layer parameters were estimated

from limited test-data on flow over a perforated plate which is qualitatively similar to the ac-

oustic treatments of the present design. Annulus blockages were set somewhat higher than

are probably required, which should provide ability to operate at lower than design back

pressure without choking of the flow in aft portions of the duct. Exit duct blockage values

are listed in Table V. Use of these parameters and of an existing inner support structure re-

sulted in the nearly parallel sloped duct casing walls and splitter contours as shown in Figure14.

TABLE V

FLOW BLOCKAGES ASSUMED FOR EXIT DUCT DESIGN (% OF ANNULUS AREA)

AXIAL LOCATION FROM ROTOR 1

ROOT L.E. REFERENCE PLANE

(Meter) (inch)

TOTALBLOCKAGE

(%)

1.0363 40.8

1.0668 42.01.3208 52.0

1.5748 62.0

1.8288 72.0

2.0930 82.4

2.3368 92.0

5.6

6.0

7.3

8.9

10.5

12.212.2

7

Page 18: N7 4- 33789

Splitter geometry was determined from acoustic treatment dimensions, which set splitterthickness at 0.0157 m (0.62 in.), and from the previously discussed Mach number consid-

erations. The splitter nose was designed as an ellipse with a ratio of semi-major to semi-minor

axis of 2.5: 1, and the splitter trailing edge was clesigned as a boattail with a 15-degree in-

cluded angle. In order to reduce the splitter incidence angle, and hence to eliminate under-

sirable flow separations at the fan aerodynamic design point, the splitter nose was inclined

at an angle of 3 degrees with respect to the rig centerline as compared to a 7-degree angle

for the major portion of the splitter. The splitter is supported by two sets of five struts which

are circumferentially aligned with five exit duct support struts (Figure 14). These struts arecontoured as 400 series airfoils.

AIRFOIL DESIGN

ROTORS

Airfoil Series

Rotor blades for both stages of the fan were designed using multiple-circular-arc (MCA)

airfoils generated on conical surfaces which approximate streamsurfaces of revolution. Asshown in Figure 15, each MCA airfoil section is defined by specifying a value of total chord,

front chord, tot',d camber, front camber, maximum thickness and its chordwise location, and

leading and trailing edge radii. Blades of this airfoil series have been used successfully in

several applications, providing much useful test data for design of airfoils in the transonic

and high subsonic Mach number regimes. Such data have been applied to the present design.

Partspan Shrouds

Both rotors have a partspan shroud to provide mechanical stability. These shrouds are lo-

cated at 66.5 and 60 percent span from the hub of rotor 1 and rotor 2, respectively, with

relative spanwise positions chosen such that the second-stage rotor shroud lies approximately

in line with the expected wakes from the first-stage rotor shroud, thus minimizing total loss

and other aerodynamic penalties normally associated with the shrouds.

Chords, Thicknesses, and Numbers of Blades

A summary of rotor blading parameters is given in Table VI. Chords, solidities, and numbers

of blades were chosen to be consistent with acceptable aerodynamic loadings, moderate axial

lengths, structural requirements, low noise,:and previous experience. In particular, to restrict

propagation of blade-vane interaction noise, the numbers of blades and vanes were selected

according to the relation s = 2r + 6, where s is the number of stator vanes in a given stage

and r the number of upstream rotor blades. The number of rotor 1 blades was determinedaccording to the relation s = 2r + 6, where s is the number of stator vanes in a given stage

and r the number of upstream rotor blades. The number of rotor 1 blades was determined

flutter-free operation and by maximum solidity limits which were set by channel flow area

requirements. The number of rotor 2 blades was selected to provide a 5:4 ratio for the num-ber-of-rotor-2 blades to the the number-of-rotor-1 blades to give desirable fan noise character-

istics (see the Acoustic Design Section).

Page 19: N7 4- 33789

TABLE VI

ROTOR BLADING PARAMETERS

R1 R2

Number of Airfoils 28 35

Airfoil Series

Aspect Ratio (1)

Aspect Ratio (2)

Taper Ratio (3)

MCA

2.75

2.19

1.232

MCA

2.54

2.21

1.028

Hub Chord- meter (inch)

Tip Chord- meter (inch)

Tip Solidity

0.0897 (3.530)

0.1105 (4.350)

1.18

0.0859 (3.382)

0.0883 (3.476)

1.18

Hub Solidity 2.28 2.14

(1)(2)(3)

Average length/axially projected hub chord

Average length/chord at tip

Tip chord/hub chord

Rotor maximum-thickness to chord ratios, t/c, (Figure 16) were selected to provide mech-

anical stability while maintaining minimum airflow blockage. The chordwise locations of

maximum thickness for both rotors (Figure 17) were set to give the blades the minimum

possible leading edge wedge angles without creating cusp-shapes in the front portion of the

blades. Rotor total chords and front chords are shown in Figure 18.

Incidence and Deviation Angles

Rotor leading and trailing edge metal angles (Figure 19) were determined from application

of incidence and deviation criteria to the design velocity vectors. For rotor airfoil sections

whose inlet relative Mach number exceeded 1.0, incidence angles (iss a,) were set at a locationhalfway between the leading edge and the poiat from which a Mach wave emanates that meets

the leading edge of the following blade. A nominal design value of issa, of 1.5 degrees was

chosen to account for development of the suction surface boundary layer, blockage at the

blade leading edge, and bow wave losses. Actual values of incidence for rotors of the subject

design (Figure 20) varied between approximately 1.0 and 2.4 degrees, the variation resulting

from a selection of geometry to fulfill channel area requirements and to provide smooth

blades. For subsonic sections, incidences were chosen at the leading edge at values consistent

with minimum loss data from previous tests and with smooth distributions of blade geometry.

9

Page 20: N7 4- 33789

Rotor deviation angles were calculated using P&WA's cascade method modified by correction

factors based on applicable rotor test data. Figure 21 shows the predicted deviations and

comparisons with deviation angles calculated using Carter's Rule.

Channel Areas

To provide sufficient fan flow capacity while allowing the rotors to operate near minimum

loss, the minimum critical area ratio (A/A*) rain. in channels between adjacent blades forboth rotors (Figure 22) was set at approximately 1.03 over most of the span. Desired channel

areas were obtained by varying the chordwise distribution of airfoil camber. Near the location

of each shroud, front camber was increased to provide higher values of (A/A*) rain." In cal-

culating A* through the blade channels, losses were distributed in the following manner: no

loss was applied ahead of the assumed normal shock at the blade passage entrance, a normalshock loss was applied at the blade passage entrance, and the remaining loss was distributed

linearly through the rest of the channel.

The resulting profiles of front camber angle and chord-camber parameter are shown in

Figure 23. Distributions of flow area ratio through the blade channels of both rotors areshown in Figure 24 for several spanwise locations. The distinctive shape of the A/A* distribu-tion at the root of rotor 1 is typical of a rotor root with past-axial turning [ref. 6].

Rotor Geometry

Rotor geometry on design conical surfaces is summarized in Appendix C (Tables XX andXXII); for each airfoil section, two values of total and front camber are tabulated. Figure 25

gives a polar representation of a blade mean-camber-line and the two definitions used tocalculate these values of camber. For manufacturing purposes, the airfoil sections were re-

defined on planes normal to the stacking line, a radial line through the center of gravity ofthe root conical section. Rotor blade coordinates for these redefined sections are tabulated

in Appendix D (Tables XXIV and XXVI), and Figure 26 gives the airfoil coordinate definitionsused in these tabulations.

STATORS

Airfoil Series

MCA airfoils were also used in design of the first-stage stator vanes since this series of airfoils

offers greater control of channel area than more conventional airfoil series and the potentialfor lower stator losses at the rather high stator root inlet Mach numbers of the present design.The second-stage stators were designed as 65/CA vanes (circular arc meanline with 65 series

thickness distribution) since these vanes will operate with inlet Mach numbers less than 0.65,

a regime where 65/CA airfoils have low losses.

Chords and Thicknesses

A summary of stator blading parameters is given in Table VII. To restrict propagation ofblade-vane interaction noise, the numbers of vanes were selected according to the relation

10

Page 21: N7 4- 33789

s = 2r + 6 as discussed under Rotors. Stator chords and the locations of maximum thickness

for both stators are shown in Figures 27 and 28. To provide low stator losses, maximum

thickness-to-chord ratios were set at minimum values consistent with structural requirements.

These thickness ratios (Figure 29) are somewhat higher than those for stators tested in pre-

vious NASA fans because of the higher aspect ratios of the present design. Any loss penalties

should be small, however, since most of the thicker airfoils will operate with rather low inletMach numbers.

TABLE VII

STATOR BLADING PARAMETERS

Sl S2

Number of Airfoils 62 76

Airfoil Series MCA 65/CA

Aspect Ratio (1) 5.03 3.89

Aspect Ratio (2) _ 3.81 3.73

Taper Ratio (3) 1.099 0.9709

Hub Chord- meter (inch) 0.0513 (2.020) 0.0489 (I .930)

Tip Chord- meter (inch) 0.0564 (2.220) 0.0475(1.8707)

Tip Solidity 1.33 1.38

Hub Solidity 2.50 2.46

(1) Average length/axially projected hub chord

(2) Average length/chord at tip(3) Tip-chord/hub chord

Incidence and Deviation Angles

Selection of design incidence angles and calculation of deviation angles for both stators

(Figures 30 and 31) were based on P&WA's cascade system and minimum loss data from

previous tests. The resulting metal angles are shown in Figure 32.

Channel Areas

Minimum values of channel area ratio (A/A*)min" near the stator 1 hub were set a few per-cent above the A/A* for the corresponding stator inlet Mach number (Figure 33) according

to a correlation of capture-area/throat-area ratio at minimum loss as a function of stator inlet

Mach number [ref. 7]. The outer half of the blade has a front camber selected to give nearly

11

Page 22: N7 4- 33789

double-circular-arc (DCA) airfoils for this low Mach number portion of the vane. The re-

sulting profiles of front camber and chord-camber parameter are shown-in Figure 34, andthe channel distributions of A/A* for stator 1 are given in Figure 35. Channel area ratio was

not a critical parameter in the design of stator 2 airfoils since the inlet Mach numbers are

sufficiently low (0.50 - 0.65) that choking problems should not be encountered with the vanes

selected by means of the P&WA correlation of cascade data.

Stator Geometry

Stator geometry on design conical surfaces is summarized in Appendix C (Tables XXI and

XXIII). For manufacturing purposes, the airfoil sections were defined on planes normal to a

radial (stacking) line. The resulting blade coordinates are presented in Appendix D (Tables

XXV and XXVII).

INLET AERODYNAMIC DESIGN

OBJECTIVES AND TECHNIQUES

The purpose of the inlet aerodynamic designs is to provide inlet configurations that meet the

program acoustical requirements while providing a minimum length in order to approach

practical requirements of aircraft installation. Two inlet configurations were chosen for the

program: a baseline standard inlet cowling configuration and a translating plug, choked (sonic)inlet configuration. Contours of these two configurations are shown in Figure 36.

The principal reason a translating centerbody, sonic inlet was chosen is because it provides a

means of controlling flow area to achieve throat Mach numbers that give the desired noise

suppression for a range of fan operating conditions. Furthermore, this configuration requiresa minimum inlet length without excessive boundary layer growth or separation. Originally

a two-ring, acoustic inlet had been selected; however, that design was discarded when the

sonic inlet configuration was decided upon. A summary of the limited work done on the

two-ring inlet is provided in Appendix E.

An inlet fabricated previously for another program is to be used as the baseline standard

inlet cowling. This inlet provides a one-dimensional throat Mach number of 0.68 and has an

inlet-length to fan-t, ip-diamete, r ratio (L/D) of 1.03 and an overall contraction ratio (Ahighlite/Athroat ) of 1.65 -- 'highlight is defined as the farthest forward point on the inlet cowling(Figure 36). The aerodynamic contours of the sonic inlet were designed using a transonic

axisymmetric flow analysis and a modified Reshotko-Tucker mass-momentum integral bound-

ary layer solution. The inlet contours for both the baseline and sonic inlet configurations

were selected to minimize the velocity overspeed along the surface downstream of the throat

which should result in the best diffuser performance with the least distortion at the fan face.

It should be noted that the inlet flow for the aircraft approach condition used in the aero-

dynamic design of the sonic inlet was assumed to be 80 percent of design flow, which is

believed to be the lowest practical flow for a sonic inlet design within present constraints.

12

Page 23: N7 4- 33789

Any lowerflow assumptionwouldnecessitatelengtheningtheinlet beyondpracticalmech-anicalandflightenginelimits. The80percentdesignflow conditionis theoreticallypossiblewith avariable,fan-ductnozzle,permittingfanoperationat ahigherspeed(approximately80percentdesignspeed)andalowerpressureratio (1.19)at thedesiredthrustconditionforaircraftapproach.

Thegeometriesof the fixedouterinletcowlingandtheinnertranslatingcenterbodyareshownin Figure36in thefully extended,intermediate,andfully retractedpositions.Thesepositionsarespecifiedastheapproachpositionat 80percentdesignflow, thetakeoffposi-tion at 92.6percentdesignflow,andthecruisepositionat 100percentdesignflow. Theone-dimensionalthroatMachnumbersassociatedwith thesepositionsarerespectively0.9,0.9,and0.71.

SONIC INLET GEOMETRY

Inlet Cowling and Centerbody

Since the fan aerodynamic design was essentially complete when the sonic inlet aerodynamic

design was initiated, the inlet design had to be compromised to retain the fan root flow angleassociated with the conventional spinner. This resulted in an overall inlet length of about

1.2 meters (47.5 inches) for an inlet-length to fan-tip-diameter ratio (L/D) approximately

1.45, which is somewhat larger than 1.0, the maximum ratio judged practical for a flightapplication. An L/D ratio of 1.0 would have been possible had it not been necessary to dif-

fuse the inlet flow to a rather high area in order to retain the fan root platform contour.

A 0.0032 meter (0.25 inch) truncation, or step, was added at the trailing edge of the center-

body to improve boundary layer characteristics in the region where the centerbody meets

the fan spinner (Figure 36). The maximum centerbody radius was set at 0.19 meter (7.39

inches) at the throat of the inlet. The minimum cowling radius was set at 0.37 meter (14.55

inches) at an axial station 1.02 meters (40.0 inches) upstream of the first-stage rotor hubleading edge (reference plane).

Sonic Inlet Lip Shape

Since the sonic inlet is to be tested at static conditions only, an attempt was made to re-produce, as nearly as possible, the accelerations on the inlet surface which would be encoun-

tered at aircraft approach flight conditions. This was done by generating a 2.5:1 elliptical

shape from the throat to approximately the inlet highlite station and then blending this con-

tour to a circular arc by making them tangent and continuing the circular arc to complete

the inlet contour. The overall contraction ratio (A highlite /A throat ) of this configuration isequal to 1.45.

INLET MACH NUMBER DISTRIBUTIONS, BOUNDARY LAYER CHARACTERISTICS,AND ESTIMATED PRESSURES RECOVERIES

The outer wall Mach number and the boundary layer shape factor distributions were calcu-

lated for the baseline standard inlet configuration, and the results are shown in Figure 37

for the 100 percent speed, cruise flight condition. The shape factors are well under theseparation limit of 2.2 to 2.5.

13

Page 24: N7 4- 33789

For the sonic inlet configuration, attempts were made to obtain a uniform Mach number

profile at the inlet throat to meet acoustic criteria. As shown in Figure 38, the desired flat

profile was achieved for the approach configuration at the throat, an axial distance of 1.016

meters (40 inches) upstream of the rotor 1 hub leading edge.

Mach number and shape factor distributions along the sonic inlet walls for the approach, cruise,

and takeoff positions are shown in Figures 39 through 44. The Mach numbers along both

inner and outer walls for the approach configuration (Figure 39) are quite similar, showing

a peak Mach number of approximately 0.92 near the throat of the inlet, while peak Mach

numbers for the cruise configuration (Figure 40) are 0.77 and 0.83 for the inner and outer

walls, respectively. At takeoff (Figure 41), the inner wall Mach number reaches a peak of

0.98 near the inlet throat while the outer wall value is 0.81 at this location.

The shape factors for the wall boundary layers shown in Figure 42 for the cruise configura-

tion indicate a stable boundary layer on the outer wall, but the inner wall boundary layer

deteriorates rapidly as the flow approaches the centerbody truncation. This deterioration

could lead to locally separated flow in this region - separation is indicated when shape factor

reaches values of 2.2 to 2.5. This would, however, be followed by a reacceleration and re-

attachment of the flow on the spinner surface. A similar deterioration of shape factor in the

area of centerbody and plug shaft truncation for the approach configuration is indicated in

Figure 43 and an improvement in the boundary layer can be noted as the constant area por-

tion of the inlet duct is reached; additional improvement will occur as the flow accelerates

around the spinner. The takeoff configuration shown in Figure 44 has shape factor distribu-

tions similar to the cruise condition with the inner wall approaching a critically high value

(2.17) near the intersection of the centerbody spinner. As in the cruise condition, the flow

is expected to reattach on the spinner if any local separation occurs.

Baseline and sonic inlet total pressure recoveries were estimated from the analytical boundary

layer solution and are presented in Table VIII.

TABLE VIII

BASELINE AND SONIC INLET TOTAL PRESSURE RECOVERIES

FLOW CONDITION

INLET CONFIGURATION (%W_'/$) (Throat Mach No.) TOTAL PRESSURE RECOVERY

Baseline, Cruise 100 0.68 0.993

Sonic, T/O 92.0 0.90 0.975

Sonic, Cruise 100 0.71 0.987

Sonic, Approach 80 0.70 0.970

STRUCTURAL AND VIBRATION ANALYSIS

Design of the fan blading included structural and vibration analyses to determine configurations

that satisfy mechanical design requirements. The analyses included calculation of: blade-disk

frequencies and their resonances with rig excitations, steady-state stresses, blade-vane flutter

parameters, rig critical speeds, and full rotor system response due to imbalance at the rotor 1

location.

14

Page 25: N7 4- 33789

The material for rotor 1 blades is AMS 4973F (titanium alloy) and for rotor 2 blades is

AMS 4928 (titanium alloy). The material for the stator vanes is AMS 5613 (stainless steel),

and the material for the disks, hubs, spacers, and seals is AMS 5616 (stainless steel).

ROTORS

Blade and Disk Vibration

A partspan shroud is required for each rotor to avoid first bending resonances with first and

second order rig-frequencies in the operating range. The airfoil geometry and shroud loca-

tion were chosen to provide the best compromise between high speed margin with a 3E re-sonance (3E = 3 excitations per rotor revolution) and the speed at which a 4E resonance

would occur. The shroud location selected for rotor 1 (i.e., 66.5 percent span from the hub)gives this rotor a predicted 5.6 percent 1st coupled mode (bending and torsion) 3E resonance

frequency margin at 105 percent of design speed and positions the 1st coupled mode 4E

resonance at 75 percent design speed (Figure 45). For rotor 1, no 2nd coupled mode or 3rd

coupled mode critical resonances exist in the operating range.

During sonic inlet testing, the five support struts for the translating centerbody will createa 5E, 1st mode resonance on rotor 1 at 4800 rpm (Figure 45). This resonance is not consi-

dered a problem because the inlet struts are 0.254 meter (10 inches) forward of rotor 1 lead-

ing edge and the resonance occurs low in the speed range where the excitation energy is low.

The second-stage rotor, with a shroud location at 60 percent span from the hub, has a 1st

coupled mode 3E resonance frequency margin of 5.4 percent and a 1st coupled mode 4E

resonance at 72 percent design speed (Figure 46). For rotor 2, no 2nd coupled mode or 3rd

coupled mode critical resonances exist in the operating range. The 5.6 and 5.4 percent mar-

gins on 1st coupled mode 3E resonance are adequate, based on previous test results that have

shown good correlation with design predictions. Moreover, increasing these margins on 3E

resonance would position the 1st coupled mode 4E resonance at higher speeds in the operat-

ing range. Due to these limiting 3E margins, the operational speed of the fan will be held to105 percent corrected design speed during the test program.

Rotor blade tip chordwise bending modes are of great concern with the thin tip sections ot

modern fan blades. Excitations from inlet struts and stator vanes upstream and downstream

of the rotor can interact with the natural frequency of these tip chordwise modes to produce

high dynamic stresses. Figures 47 and 48 show that the tip chordwise bending mode reson-

ances will not occur in the critical portion of the speed range (70 - 105 percent of designspeed).

Rotor Blade Stresses

Stresses due to centrifugal forces, air loads, and untwist forces were calculated for 105 per-cent of design speed, and the results are shown in Table IX. The allowable stresses for the

blade material based on 338.6°K (150°F)metal temperature for rotor 1 and 421.9°K (300°F)

15

Page 26: N7 4- 33789

metaltemperaturefor rotor 2arealsoshownin thistable. Themaximumcombinedstressesof 3.24x 108N/m2 (47,000lbf/in.2) for rotor 1and2.03x 108N/m2 (29,500lbf/in.2) forrotor 2 arecomparableto stresslevelspresentin experimentalandproductionbladesandarewellbelowtheallowablestresses.

Gasbendingstresseswith centrifugalrestorationswerecalculatedat 105percentof designspeed.Airfoil stresseswereminimizedfor thecombinationof loadandnoloadconditions.Theselectedaxialandtangentialtilt of 0.00107meter(0.042inch)resultsin amaximumstressof 4.1 x 107N/m2 (6,000lbf/in.2) for rotor 1and2.8x 107N/m2 (4,000lbf/in.2)for rotor 2.

TABLE IX

SUMMARY OF ROTOR STEADY STRESSES

105% of Design Speed - N/m 2 x 10-7 (Ibf/in. 2 x 10"3)

ROTOR1 ROTOR 2

P/A 20.0 (29) 14.5 (21)

Centrifugal Untwist 8.3 (12) 3.1 (4.5)Gas Bending 4.1 (6) 2.8 (4)Combined 32.4 (47) 20.3 (29.5)Allowable 60.7 (88) 53.1 (77)

Modified Goodman diagrams (Figures 49 and 50) indicate that at the maximum steady stresspoints the maximum allowable vibratory stresses for rotors 1 and 2 are 10.67 x 107 (15,500

lbf/in. 2) and 12.72 and 107 N/m 2 (18,500 lbf/in.2), respectively. During testing, a vibratorystress limit of 6.89 x 107 N/m 2 (10,000 lbf]in. 2) will be imposed. Since no low order reson-

ances are expected in the high speed operating range, the actual vibratory stress levels thatwill be encountered during testing should be less than the 6.89 x 107 N/m 2 (10,000 lbf/in. 2)

limit set as part of the test procedures.

Rotor Blade Flutter

Flutter is a self-excited, self-sustaining vibration which occurs in either a torsional or bendingmode or a combination of both. To prevent rotor blade flutter, a partspan shroud is required

for each rotor of the two-stage fan. Values of flutter parameters for the shrouded blades

were calculated at 105 percent of design speed, the operating speed considered most critical

in regard to flutter, and these values were compared with correlated test data from previousprograms. The calculated values of reduced-velocity parameters (2 V' i/cco b) and torsional-

twist-to-bending-deflection ratio (q_ c/d) for the 1st coupled mode flutter are summarized

in Table X and lie within the range of P&WA experience where flutter problems have not

been encountered. Values of reduced-velocity parameter (2 V' 1/ c co t) for torsional flutter,calculated at 105 percent speed (0.95 for rotor 1 and 1.2 for rotor 2) are also well within

the range where flutter has not been experienced. The torsional frequency, oat , is based on

the entire blade.

16

Page 27: N7 4- 33789

ROTOR

1

2

Partspan Shrouds

TABLE X

ROTOR FIRST COUPLED MODE FLUTTER PARAMETERS

REDUCED VELOCITY PARAMETER

(2 Vtl/C cob)

TORSIONAL TWIST/

BENDING DEFLECTION

(_ c/d)

2.75 0.16

3.05 0.14

The partspan shrouds were sized and positioned to satisfy aerodynamic and structural re-

quirements, including the 3E margin requirement. Shroud design parameters and stresses

are summarized in Table XI, and a sketch of the shrouds is shown in Figure 51. Bearin_

stresses for the shroud are 3.55 x 107 N/m 2 (5,150 lbf/in. 2) for rotor 1 and 3.45 x 10TN/m 2

(5,000 lbf/in. 2) for rotor 2, which are below values tested successfully on P&WA research rigs,

e.g. 5.86 x 107 N/m 2 (8500 lbf/in.2). The shrouds were designed to fit together sufficiently

tight to provide adequate damping of vibrations without "shingling".

The Z* ratios, a measure of the relative stiffnesses of the shroud and adjacent airfoil as de-

fined in Appendix A, are within the realm of successful experience.

Spanwise Location

(% Span From Hub)

Contact Angle - deg.

Z* Ratio

Bearing Stress

- N/m 2 x 107 ( lbf/in. 2 )

Bending Stress- N/m 2 x 10-7 ( lbf/in. 2 )

Thickness -

meter (inch)

TABLE Xl

PARTSPAN SHROUD PARAMETERS

( 105% Speed)

ROTOR 1

66.5

55.0

1.30

3.55 (5,1513)

4O.O (58,000)

o.oo5 (0.20)

ROTOR 2

60.0

70.0

1.49

3.45 (5,000)

29.1 (42,246)

0.0046 (0.18)

17

Page 28: N7 4- 33789

Disk and Attachment Stresses

Conventional dovetail attachments were selected for the blades of both rotors. The calcu-

lated and allowable disk and attachment stresses for critical locations are listed in Table XII.

All calculated values fall below the maximum allowed. In addition, the dynamic stress ratio

(airfoil root stress divided by attachment stress) is above the minimum recommended value

of 2.0, indicating that the attachment can withstand vibratory stresses greater than those theairfoil can tolerate.

TABLE Xll

ROTOR DISK AND ATTACHMENT STRESSES

(105% Design Speed)

LOCATION TYPE OF STRESS

CA LCU LATE D ST R ESS/A L LOWAB L E ST RESS

N/m2x 10 -7 (Ibf/in.2 x 10"3)ROTOR 1 ROTOR 2

Blade Attachment Combined 27.6/53.1 (40]77)

Bearing 26.2/59.3 (38/86)Disk Tangential (avg.) 26.2/66.2 (38/96)

Radial (max.) 15.9/53.8 (23/78)

Front Seal Hoop 22.1/96.5 (32/140)

Bending 4.1/96.5 (6/140)

Rear Seal Hoop 22.1/96.5 (32/140)

Bending 8.3/96.5 (12/140)

17.2/59.3 (25]86)

20.0/66.2 (29/96)

42.7/58.6 (62/85)

11.0/47.6 (16/69)

37.1/95.2 (53.8/138)

13.8/95.2 (20/138)37.1/95.2 (53.8/138)

10.3/95.2 (15/138)

STATORS

Stator Vibration

Stator frequencies were calculated from a coupled bending-torsion analysis which included

a model with the following end conditions:

• bending motion - moment restraint at airfoil hub and tip

torsional motion - free at tip and restraint at spindle/actuation-arm junction

(includes torsional flexibility of actuator arm).

As shown in Figures 52 and 53, the first two bending and torsion modes for stators 1 and 2

will not be excited by blade-passing orders in the operating range. Adequate margin on the

first bending mode 3E resonance exists throughout the operating range and, based on past

experience, higher order excitations should not result in vibrational problems.

Stator Stresses

Stator vane bending stresses due to air loads were calculated at 105 percent design speed.

The maximum bending stress for stator 1 was calculated as 3.03 x 108 N/m 2 (44,000 lbf/in. 2)

18

Page 29: N7 4- 33789

and for stator 2 as 2.99 x 108 N/m 2 (53,500 lbf/in.2).which are considerably lower than the

allowable stresses of 58.6 x 107 N/m 2 (85,000 lbf/in. 2) and 52.4 x 107 N/m 2 (76,000 lbf/in.2)

for stators 1 and 2, respectively. Stress allowables are based on vane material properties which

are a function of metal temperatures. Vane metal temperatures used to determine allowable

stresses for stator 1 and stator 2 are 65.56°C (150°F) and 148.89°C (300°F), respectively.Since no critical resonances are predicted in the operating range, vibratory stress levels are

expected to be low. A maximum vibratory stress level of +6.89 x 107 N/m 2 (-+10,000 lbf/in. 2)will be imposed during test operation.

Stator Flutter

Flutter parameters were calculated for both stators and compared with correlated test data.

Values of the dimensionless reduced-velocity parameter for bending flutter (2V/CCOb) cal-culated for stators 1 and 2 were 2.1 and 1.4, respectively, which are within the successful

(no flutter) area determined through experience. A similar conclusion was indicated by

the values of reduced-velocity parameter (2V/coot) for torsional flutter, which were com-puted as 2.05 and 1.87 for stators 1 and 2, respectively.

INTERSTAGE SEALS

The resonances were checked for the interstage rotor sideplate and stator seals (Figure 9)because of the long, cantilevered, stator inner-shrouds required for acoustic considerations.

Frequencies of the seals were obtained from shell revolution structural analysis programs.

The hoop stiffness effects of the stator inner shroud honeycomb construction were included

in the vibration analysis. Resonances for all rotor and stator seals are above the 25 percent

frequency margin requirement at 105 percent of design speed, as shown in Figures 54 and55.

SONIC INLET SUPPORT STRUTS

Frequencies were calculated for the fan inlet strut using fixed-end conditions. The resultingfrequencies are shown in Figure 56. The blade passing frequency for rotor 1 does not excite

the fundamental bending and torsion modes. There are no low order resonances (1E and

2E) in the operating range. Static load (one-G) plus the maximum aerodynamic load on thecenterbody causes a maximum stress of 2.95 x 107 N/m 2 (4280 Ibf/in. 2) on the inlet struts

at the inner and outer diameter fillet welds. This is well below the allowable stress of 54.5 x

107 N/m 2 (79,000 lbf/in. 2) for the AMS 5613 material used. The dimensionless, reduced-

velocity parameter (2V/C_b) for bending flutter was calculated to be 1.25, within the suc-cessful (no flutter) area determined through experience. The torsional flutter, reduced-

velocity parameter (2V/coot) was calculated to be 0.6, also in the stable area.

CRITICAL SPEEDS AND FORCED RESPONSE

A rotor-frame critical-speed analysis was performed to determine the vibrational characteristics

of the fan, with and without the sonic inlet configuration. The analysis was based on models

which included all significant structural members of the rig and used the spring-mass system

shown in Figure 57 for the baseline standard engine inlet cowling and Figure 58 for the sonicinlet.

19

Page 30: N7 4- 33789

BaselineStandardInlet CowlingConfiguration

Two critical speeds occur within the rig operating range at 4811 rpm and 8764 rpm for the

standard inlet cowling configuration. Two other critical speeds occur at 10,729 rpm and

15,777 rpm, which are above the expected maximuin operating speed (8785 rpm). Themode shapes of the 4811 rpm, 8764 rpm and 10,729 rpm speeds are shown in Figure 59.

The mode at 8764 rpm has only 1.6 percent of the total of the rotor strain energy and, hence,

is of little concern. The modes at 4811 rpm and 10,729 rpm have significant motion of the

fan rotors and have more than 25 percent of the total strain energy in the rotating compon-

ents. To determine whether a bearing damper is needed to reduce the vibratory amplitudes

of these modes, a forced response analysis was performed on the system with and without a

front bearing damper for these two critical speeds. This analysis was similar to the critical-

speed analysis except that an unbalance was simulated and the resultant vibratory deflections

calculated. Deflections were calculated at the first-stage roto_ plane and at the flexible dia-phragm behind the second bearing for an unbalance of 72 x 10 '_- kg-m (one oz-in.).

A damper was chosen for the front bearing due to the relatively high 7.6 x 10-4m (0.030

in.) deflection at the rotor for a 72 x 10-5 kg-m (one oz-in.) unbalance at the lowest criticalspeed without a damper. The damper would reduce this sensitivity to 0.13 x 10-4 m (0.0005in.)

per 72 x l0 -5 kg-m (one oz-in.). The rotor assembly will be balanced to better than 36 x 10-5

kg-m (0.05 oz-in.) unbalance but may reach 17 x l0 "5 kg-m (0.25 oz-in.) during testing. This

will give a maximum deflection of 0.030 x 10 .4 m (0.00012 in.) at the rotor at 4811 rpmand 0.46 x 10-4 m (0.0018 in.) at 10,729 rpm, well within the tip clearance tolerance. Vibra-

tion accelerometers and amplitude pickups will be used to monitor rig and drive system vibra-

tion during testing.

Sonic Inlet Configuration

The addition of the sonic inlet did not change the critical-speed predictions of the standard

inlet fan although it did create two additional natural frequencies at 2215 rpm and 8909

rpm, both out of the normal operating range. The mode at 8909 rpm, although close to the105 percent speed line, should not present a problem since only a rather small fraction of

the rotor strain energy is involved.

An analysis was made to determine the amount of radial "closure" at the sonic inlet throat

in its fully extended position due to static (one - G) stress and dynamic deflections at all cri-

tical speeds. A schematic is presented in Figure 60 defining radial closure and showing the

relative locations of the centerbody and bearing supports. The static (one - G) radial closureat the throat is 2.3 x 10-4 m (0.009 in.). The maximum total inlet throat dynamic closure

in the operating range due to a 0.51 x 10 -4 m (0.002 in.) deflection at each bearing suppo_rz_is4 104 0010m d namlc foratotalof48x 10 m2.3x10- m (0.009 in.) static plus 2.5 x " ( . " .) y " ,

(0.019 in.) occurring at 8685 rpm. This total deflection is judged to be acceptable, and theprobability of any resulting wall-separation or inlet total pressure distortion should be mini-

real. The effect of structural damping, not included in this analysis, will reduce the dynamicdeflections further.

20

Page 31: N7 4- 33789

ACOUSTIC DESIGN

Known concepts of low noise turbofans were incorporated in the design of this two-stagefan. A low tip-speed and moderate design aerodynamic loadings were chosen to minimize

generated noise. The number of blades and vanes were chosen to "cutoff" blade-passingtones, and an axial blade spacing of two chords was selected to minimize blade interaction

noise. However, to meet the extremely low levels implied by FAR 36 minus 20 PNdB, thebasically quiet fan must also incorporate extensive noise suppression in the inlet and exhaust

duct. The noise spectra of the basic fan design were estimated, and the desired noise attenua-

tions identified. Acoustic treatment was selected using both analytical and empirical models,and a final prediction of noise reduction was made. A sonic suppression device was selected

to attenuate inlet radiated noise in lieu of inlet acoustic splitters (Appendix E). An aft acous-

tic splitter was incorporated to provide the required suppression of aft radiated noise.

SONIC IN LET, ACOUSTIC CONSIDERATIONS

An inlet operating with a completely choked throat does not transmit sound upstream. Ina rig or engine, the exact variation of attenuation as throat Mach number increases toward

1.0 is a function of the details of the inlet design. Extensive information on this subject is

available in the literature and from a variety of tests performed at Pratt & Whitney Aircraft.At full choke, the amount of attenuation that can be measured is not a function of design

but depends on flanking path and background noise levels. The sonic inlet for this rig was

designed for a Mach number of 0.9 with the capability of running at full choke or less. In

order to allow operation at part-choke conditions for reduced distortion generation, a

limited amount of acoustic treatment was incorporated in the sonic inlet design so that full-choke noise attenuation characteristics could be approximated. Selection and design of the

sonic inlet for this rig were based on aerodynamic, structural and engine compatibility con-siderations that are described in the Inlet Aerodynamic Design section of this report. The

only acoustic design criterion used was that the flow disturbances produced by the sonic

inlet hardware be minimized so that aft-radiated fan interaction noise could be kept as lowas possible.

A translating centerbody was selected as the most practical compromise among acoustic,

aerodynamic, and mechanical design criteria. The centerbody will be tested in three axial-

positions representing the ATT engine (STF 433 engine) [ref. 1 ] conditions of cruise (design),takeoff, and approach with the latter two positions having capability of sonic inlet Machnumbers.

FLOWPATH AND BLADE GEOMETRY

To reduce the interaction tone noise at blade-passing frequency, the numbers of fan blades

and vanes were chosen using the Tyler-Sofrin criterion [ref. 8] which specifies that if the

number of stator vanes (s) is greater than twice the number of rotor blades (r), interaction

noise generated at subsonic tip-speeds willdecay within the inlet and exit ducts of a fan.

The numbers actually selected (see Tables VI and VII) satisfy the relationship s = 2r + 6

for all adjacent blade row combinations except stator -1/rotor -2 which, due to mechanical

and aerodynamic constraints limiting the number of stator 1 vanes, satisfies the relationships=2r-8.

2l

Page 32: N7 4- 33789

Axial spacingsbetweenbladerowswereselectedto reducearesidualblade-passingtonenoiseassociatedwith blade/vanewakeinteractions.Asshownin Figure61, thisnoisecom-ponentdecreasesrapidlyasspacingis increasedup to two or threechordlengthsrelativetotheupstreambladerow. After two or threechordsspacing,furtherreductionsin noisecan-notbeobtainedwithoutsevereweightandlengthpenalties.Thevaluesselectedfor thecon-figurationto betestedin thecurrentprogramaretwo aerodynamictip chordlengths;how-ever,the capabilityfor alternatecloserspacingisprovidedin themechanicaldesignof therig.

An additionalnoisecontrolfeaturewasincorporatedin thefandesignfor psychoacousticpurposes.A ratioof blades35/28(=5/4) in thetwostageswaschosento avoid,asfar aspossible,dissonantchordsusuallypresentin multistagemachines.Thisratio iscalleda"major third" inmusicaltheoryand,by westernstandards,isconsidered"consonant".Psychoacoustictests,usingoscillatorsandabroadbandnoisegenerator,wererun at P&WAto simulateanumberof twin rotorbuilds. Rotor frequencyratiosselectedaccordingto mu-sicalprincipleswasfoundto producelessannoyingspectrathanthoseselectedrandomly,but thisadvantageheldonly at lowfrequencies,roughlybelow1000Hz. At higherfrequen-ciestypicalof flightoperations(approachandtakeoff),theadvantageof harmoniustonestendedto disappear.However,theharmonicratioconceptwasretainedin thesubjecttwo-stagefansinceit coulddonoharmandshouldprovidealessannoyingspectrumat speedscorrespondingto someairportgroundoperatingconditions,suchastaxiingandidling.

RIG SPECTRA PREDICTIONS

As in the case of the full scale ATT engine (STF 433), noise spectra for the two-stage rig

were predicted using one-third octave band data for an existing two-stage fan engine, the

JT3D. This procedure may appear to have a disadvantage in that the differences in the ratio

of the number-of-rotor-2-blades/number-of-rotor-l-blades, 35/32 in the JT3D and 35/28 in

the present rig, prevent accurate spectral simulation. However, the 35/28 = 1.25 ratio issufficiently close to 1.26 (_/'ff) to insure that both rotor tones are in neighboring third

octave bands, so that for purposes of PNdB calculations and for selecting sound absorbing

liner parameters the predicted spectral shapes should be satisfactory.

To predict the rig spectrum at a particular condition (e.g., approach), tlm blade linear tipspeed was found for the approach RPM. At this tip speed, fan data from the JT3D engine

were selected. To convert these spectral data to the higher rig blade-passage frequencies,the one-third octave JT3D spectra were shifted to the right by the required number of third

octaves.

Next, corrections for changes in size, blade-vane spacing, and pressure ratio were applied,as noted below. A correction of 2 dB was added to each frequency band to allow for the

estimated increase in aft radiated noise associated with use of the sonic inlet. This amount

was obtained from a set of choked inlet tests run on a JT8D engine in the late 1960's and

represents both the backscattering at the sonic throat of forward propagating sound and ad-

ditional noise generation caused by blade interaction with inlet flow velocity disturbances

produced by the sonic inlet hardware.

22

Page 33: N7 4- 33789

Thecorrectionsmentionedabovewereasfollows:

• Blade-vanespacing, dB= 10log(projectedchordratio)= -3.5 dB

• Fansizecorrection, dB= 20log(diameterratio)= -3.9 dB

• Fanpressureratio, dB= 20log(pressurerise)= +3.8dB

Thespacingcorrectionwasappliedin thethirdoctavescontainingblade-passagetones;othercorrectionswereappliedacrossthe spectrum.Thesecorrectionswerebasedon resultsof anFAA fundedfannoiseresearchprogram(ContractNo.DOT-FA69WA-2045)andextensivedocumentationof P&WAenginenoisecharacteristics.Theywereincorporatedinto acom-puterprogramthat predictsthespectralcharacteristicsof studyengines.

Theresultingpredictedrigsourcesound-pressure-level(SPL)spectraat a45.7m (150ft)radiusfor theangleof maximumperceived-noise-level(PNL)aft of therigarepresentedinFigure62.

TREATMENT ATTENUATION TARGETS

To determine the appropriate acoustic treatment, the dominant annoying frequency range

first had to be identified. For the inlet, this is described under Acoustic Treatment Selection.

For aft noise, the dominant annoying frequency range was determined from source noise

spectra transformed into subjective "NOY" values. These spectra were simply truncateduntil a required integrated value of target attenuation was established for the aft noise. Since

the full-scale engine study [ref. 1 ] predicted a level just at FAR 36, and the goal of this con-tract is to achieve levels of FAR 36 minus 20 PNdB, a target attenuation of 20 PNdB was

set as the treatment goal. Figure 63 shows the resulting aft attenuation spectrum at approachand takeoff with a peak attenuation near 3500 Hz.

ACOUSTIC TREATMENT SELECTION

Inlet

To provide improved attenuation of forward-radiated noise during operation with the sonic

inlet not at full choke, a limited amount of treatment was applied to the walls of the sonic

inlet. The inlet treatment was designed to be mainly effective in absorbing the upstream trav-

eling waves (i.e., treatment was tuned to attenuate waves propagating forward from within the

fan). The forward attenuation spectrum expected from the inlet treatment is shown in Fig-ure 64 and represents a preceived noise level of 3 PNdB.

The inlet treatment was restricted to axial locations where the wall Mach number does not

exceed 0.7 at any of the operating points. Flow separation at the wall could occur because

of surface roughness in a region of flow diffusion if the treatment had been extended to re-

gions of higher Mach number. With the translating centerbody in the forward (approach)

position, the lengths of treatment exposed are approximately 0.482 m (19 in.) on the inner

wall and 0.599 m (22 in.) on the outer wall to provide a treatment length to passage height

23

Page 34: N7 4- 33789

ratioof about1.6. Retractionof thecenterbodycoversthetreatmenton theinnerwallandreducestheratioby aboutone-half.Backingdepthis0.635cm(0.25in.)anddesignfacingsheetpercentopenareaissixpercentbothfor theinnerandouterwall treatments.Thesevalueswerechosen,in accordancewith methodsdescribedin thenextsection,to tunetheinlet treatmentto thecenterof the inlet attenuationtargetspectrum.

InterstageandAft FanDuct

Thetreatmentin the interstageregionwasselectedto attenuatethelowestblade-passing-frequency(28Eat approach);thelongaft duct treatments,includingtreatmenton theinnerandouterwallsandonbothsidesof thesinglesplitter,weretunedfor thecenterof thetarget,about3200Hz(Figure63). Onthebasisof empiricaldata,includingcurvesof tuningversusbackingdepthandPNLreductionversustreatment-lengthto duct-heightratio, thissinglesplitterconfigurationwasfoundto besuperiorto theno-splitterandtwo-splitterdesigns.By selectionofdeeperbackingdepthsfor theductwall treatmentandmoreshallowdepthsfor thesplitter,arelativelythin, 0.016m= (0.62in.) splitterwaspossibleandaminimumblockageachievable.At thesametime,theattenuationspectrum,comparedto aspectrumfor thesplitterandwalltreatmenttunedto thesamefrequency,couldbebroadenedto covertheattenuationtarget. Thefacingsheetvaluesshownin Figure65werechosenfor anopti-mumcombinationof bandwidthandpeakattenuationratherthan for peakattenuationalone.

Preliminaryestimatesof requiredtreatmentareaweremadeby referenceto guidelinecurvesof PNdBreductionasafunctionof treatment-lengthto passage-heightratio (L/H) suchasshownin Figure66. Thisfigurecontainsdatafromvarioustests,includingseveralNASAfundedprograms,for fanductswith L/H ratiosup to 23. It hasbeenobservedinaxialtraversetestsatP&WAthat theflatteningof thesecurvesat highervaluesof L/H isnot dueto afailureof longtreatmentsto attenuatefannoisebut ratherto the limitingeffectofflankingpathnoiseandthepresenceof othernoisesources,suchasjet noise,on theoverallobservedattenuationspectrum.For thecurrentprogram,NASAQuietTwo-StageFanRig,anaxial lengthof about1.016m (40 in.) availablefor treatmentandapassageheightof0.178m (7 in.)wouldresultin L/H ratiosof about5.8with nosplitter,12with onesplitter,and20with twosplitters.Thecross-sectionalblockageof thesplittersreducesthe passageheight,andthishasbeentakeninto account.Thesingle-splitterconfigurationwastakenasastartingpointfor thedesignonthebasisof Figure66andvariousotherconsiderationsdis-cussedabove.

Tuningcurves,suchasshownin Figure67, that relatetreatmentbackingdepthto frequencyof peakattenuationwereusedfor initial selectionof backingdepths.Generally,the initialvalueof facingsheetinstalled-resistanceis takento beequalto thevalueof thedimension-lessfrequencyparameterin Figure67at thedesignpoint. A successionof iterationswasthenperformedin whichattenuationspectrawerecalculatedby meansof ananalyticalsolu-tion of thewaveequationfor theprincipalmodein theduct [ref. 9] for incrementedvaluesof backingdepthsandfacingsheetresistancesuntil anoptimumcoverageof theattenuationtargetwasfound.

24

Page 35: N7 4- 33789

PREDICTED ATTENUATIONS - INTERSTAGE AND AFT TREATMENT

On the basis of the procedures previously described, the attenuations shown in Figure 68 were

obtained. PNL numbers for takeoff and approach at 45.7 m (150 ft) radius and maximumPNL are summarized in Table XIII.

TABLE XIII

ANALYTICALLY PREDICTED FAN AFT PNL AT 45.7 METER(150 FOOT) RADIUS

DESIGN PNL PNL PNLCONDITION SPEED UNTREATED TREATED ATTENUATION

Approach 70% 112.3 dB 92.6 dB 19.7 dB

Takeoff 94% 125.0 dB 104.2 dB 20.8 dB

The results of the analytical design system indicate a reduction of approximately 20 PNdBin aft noise.

COMPETING NOISE SOURCES

In tests it is often difficult to realize large predicted values of duct attenuation. Fan jet mix-

hag noise and additional noise generated by the rig fan air scrubbing the test rig afterbody

tend to obscure measurements of treated fan noise levels in the farfield. However, empirical

estimates of jet mixing noise have determined that at low speeds (e.g., approach) the majority

of fan noise attenuation should be measureable at the farfield microphones (Figure 69).Use of narrow band spectral analysis, which increases the ratio of tone to broadband noise,

will facilitate detection of fan noise attenuation. Further signal detection will be provided

by operating at the widest possible nozzle condition, which reduces the jet nozzle velocityand consequently the jet noise. At higher speeds, the high levels of jet noise will at least

partially mask the effect of the treatment (Figure 70).

25

Page 36: N7 4- 33789

% DESIGN

SYMBOL SPEED VANE M 2 ROOT M 2 TIP

100 $1 0.85 0.61

100 $2 0.66 0.51

(_ 85 S1 (REF 3) 0.82 0.59

(_ 85 S2 (REF 3) 0.77 0.53

13 [] 100 S (REF 5) 0.88 0;68

.2

o_ ui Lr _ u0 10 20 30 40 50 60 70 80 90 100

¢n HUB TIP

13

¢/3O

.J

I.-OI.-

OI-On,.

% DESIGNt tiP

SYMBOL SPEED BLADE m/sec ft/sec M 1

100 R1 365.8 1200 1.31

100 R 2 329.8 1082 1.08

(_ 85 RI(REF 3) 376.1 1234 1.22

(_ 85 R2 (REF 3) 305.4 1002 1.10

95 R1 (REF 3) 419.4 1376 1.12

[] 100 R (REF 5) 304.8 1001 1.40

.3

.2[

.1(_ (}

0 10

ROTO R

Q

20 30 40 50 60 70 80 90 100

PERCENT SPAN AT TRAILING EDGE TIPHUB

Figure 1 Rotor (lower) and Stator (upper) Total Loss Spanwise Profiles

26

Page 37: N7 4- 33789

CE0I-0n"

(1N301::13ci) Or& 'AO3NIOI-I-13 311VSVlQV i:lOIOH

O

c_

C/3

q,)

<

©

©c_

q.)

L_

27

Page 38: N7 4- 33789

7O

6O

40

<

LU20

I--

_1IJ.It.,r 1P

I--

a oz

k-

_1Z -10

OI-O -20

-30

/ I

..4( i

0 10 20

I

ROTOR 2 INLE'I

ROTOR 2

EXIT / /

: : J /

_(ROTOR , /." / EX IT_z !

/ ,-.

i J j. i

;: -- .

!

HUB

E

i

ROTOR EXIT (DESIGN), REF. 6

Eg TEST DATA, REF. 5

FLAGGED SYMBOLS ARE EXIT AIR ANGLES

i

30 40 50 60 70 80 90

PERCENT SPAN

, -'- "'1

i i

I

' i!

I

i

i

i

i

1O0

TIP

Figure 3 Rotor Inlet and Exit Relative Air Angles Spanwise Profiles

28

Page 39: N7 4- 33789

>>-

(JoU..j i11uJ ¢/_>_

Z

o_5-m

I,LI

230

220

210

2O0

190

180

170

160

150

140

IJ..Io_

I--1,4.

740

700

. I" ROTOR 1 INLETI

_j_[Yo" o n [] r] ooon660 J f []

620

"_"0 ;'_'_' 0 [] or 7T°R 2 IN_ ET

,80Y

ROTOR 2EXIT "" "-_

500"1 "-r"} REF 5 -- %_%(FLAGGED SYMBOLS ARE

EXIT VELOCITIES) _-

46o I I I I I0 10 20 30 40 50 60 70 80 90 100

HUB PERCENT SPAN TIP

Figure 4 Rotor Meridional Velocity Spanwise Profiles

220

210

2O0

>=190

6UOua-- _ 180

>2_1 w,_ F- 170

g_5-

160iii=£

150

140

130

--720 E_O g rL] __ _oo _' c½ _ o o

_o_O E_ [3" o" o"_o d o-_

-- 620 fSTATOR 1 INLET

°oo580ILl -" Cf STATOR I EXIT I _ "-"

I _ " STATOR 2 INLET-540 ] / [ -.. -_ ./

STATOR 2 EXIT _ _ _ _"520 l/"

=o[480

4400

HUB

l_l REF. 5

(FLAGGED SYMBOLS ARE

EXIT VELOCITIES)

I l10 20 30 40 50 60 70 80 90

PERC ENT SPAN

100

TIP

Figure 5 Stator Meridional Velocity Spanwise Profiles

29

Page 40: N7 4- 33789

1.30

1.20 --

I I I I[] REF 5

O REF 3 (85% DESIGN SPEED)__,

(FLAGGED SYMBOLS ARE

/

,.,o EX'TMAOHNUMBERS'I /ROTOR I INLET / --] _j,,

; _/ o >._,==" ,.oo / 0 0 .E>-"

// .. o .E_"

= ,o,o XTl..ir-.

" . Cf + (f.5o_"O" + Cf

O 10 20 30 40 50 60 70 80 90 100

HUB PERCENT SPAN TIP

Figure 6 Inlet and Exit Mach Number Spanwise Profiles for Rotors

,9O

.8(

.70

.60

.51

O

ee_

.40 --

.30

HUB

10 20 30

[] REF. 5 ]

(FLAGGED SYMBOLS ARE IEXIT MACH NUMBERS) I

__ J._w_.STA .3 @ [] [] I

-STATOR 2 INLE T_TO_ _.._.__.__. 1 Q [_ _

_-ch- -_.ok 4 -_cf J _ _ _,

STATOR 1 EXIT ........ _ ----[]_.[_J"

STATOR 2 EXIT --_ _-- _--b

40 50 60 70 80 90

PERCENT SPAN

lu0

TIP

Figure 7 Inlet and Exit Mach Number Spanwise Profiles for Stators

3O

Page 41: N7 4- 33789

I

II

Oz

,<

0o

uJ

:;"7.

e9 --o0 0do_, m_

L i I I J J I I l

i m

z

5co m

I. I I I I ! I I I

_ r_m

- _ N

_o Z_ 0

I..-

w I,u j

,<

c

_D

O 0

I

I

0

i Q

r-i

(S:IHONI) (S3HONI)

l I I l J I I I I Jo0 _ _. e_ o _ _ _: e_ o

(S1::13131N) (S1::13131N)

O ' I:131:IINVIO O ' I:131:11NV IO

L_

OO

¢.)

o,,-_

3]

Page 42: N7 4- 33789

×N

w_

0

CY

0

_d

32

Page 43: N7 4- 33789

P,

OI-tj

U.

zO

:3iiii

OI-OIx:

.60

.50

.3o

.2o

.1£

_ CO_ c

( - "-'i'-/

E

3

[]

0

_____<

[]

IC ROTOR 1

ROTOR 2 _ _ (

-_j_

O R1 (REF 3)

R2 (REF 3)[] R (REF 5)

0

HUB

lO 20 30 40 50 60 70 80

PERCENT SPAN AT TRAILING EDGE

9O 100

TIP

Figure 10 Rotor Diffusion Factor Spanwise Profiles

a

n-oi--

<IJ.

zO

.40

IJ.

.30OI-

I-t,_

60

.50

_\ .._ STATOR 1 0

-,,--.. .-..... _ _

STATOR 2 /

I IO Sl (REF 3)

(]_ S2 (REF 3)

[] S (REF 5)

I DJ0 0

.2G0 10 20 30 40 50 60 70 80 90

HUB PERCENT SPAN AT TRAILING EDGE

#,/(

f

Y

ioo

TIP

Figure 11 Stator Diffusion Factor Spanwise Profiles

33

Page 44: N7 4- 33789

ill/ZI

D.

dm

illa:

uJ

D.

.J

I-0I-

2.0

1.8

1.6

1.4

1.2

__ OVERALL (2 STAGES

f-------

m_ m

.... ROTOR 1.......

STAGE 1

ROTOR 2

1.0

0 10 20 30 40 50 60 70 80 90 100

HUBPERCENT SPAN AT TRAILING EDGE TIP

Figure 12 Total Pressure Ratio Spanwise Profiles

62

60 [

m 58

(-9 56wa

LU_ 54" 52 k

,-, \\Z

< so \ _

<E 48 " X46--

-I 44 k

42 _,

< XI-- 40i

,,, /Z 38 / _'-

OJ-

0

STATOR 1 EXIT AIR ANGLE = 7.5 _

STATOR 2 EXIT AIR ANGLE = 0°

STATOR 1 INLET

""//

36 _ STATOR 2_ i_'/"

INLET /_ /

320 10 20 30 40 50 60 70 80 90 100

HUB TIP

PERCENT SPAN AT LEADING EDGE

Figure 13 Stator Inlet and Exit Absolute Air Angle Spanwise Profiles

34

Page 45: N7 4- 33789

LL

,,=,I.-

I

00

I I I I0 0 0 0

'_" ('3 (_I

(S3H:DNI)

-_.

03

O O

I.g

.I-(..)z

C_I

(N

O

(_.

i

1,4.1

z

,,.I

O..

1.1.1

Z

I,.g

U.I

ILl

nruJ

I-O

v f,,.

O

1.1.1

Z

I,-.

.,]

o[.i.,

o,...q

O'3

OO

<

c_

o,..w

c_

(L)

b0

[.T.,

Ii

eq

l I I Io. _ (.q. ,_.

(SU3J.31AI)

O 'U313WVIQ

35

Page 46: N7 4- 33789

TANGENTIAL DIRECTION

CONSTANT ANGULAR MOMENTUM

STREAMLINE AT MID-GAP

"OTAL CAMBE R, (_

AXIAL

DIRECTION

CAMBER

• MAXIMUM

THICKNESS, t

FRON

CHORD. c t

TRANSITION

POINT

DISTANCE TO LOCATION

MAXIMUM THICKNESS

CHORD, c

ROTATION

DIRECTION

Figure 15 Multiple-Circular-Arc Airfoil Definitions

36

Page 47: N7 4- 33789

R2Z

_ ill IflJll I I I I I I III I

<f-,, _ R1

z_ 1 I IIIII III I I I I I I I I I II I<

I I

II

I

I

I

I I

I

I

II

I J

.09

A

dIll0

iiiZv

1-I--

X

.07

.06

.05

.04

.03

",,,,, "_

_ _'_,,, _,_____ROTOR I

/

ROTOR 2 •

.02

0

HUB

10 20

Figure 16

3O 40 50 60 7O 80

PERCENT SPAN AT LEADING EDGE

Rotor Airfoil Thickness Spanwise Profiles

90 100

TIP

LU 70

(J 60<1--.:;z /

Ore

w

1-

5Oo o.,.I

HUB

Figure 17

If

ROTOR 1

_ o_ _' _'m_' _w' _

10 20 30 40

I

ROTOR 2

I50 60 70

I

PERCENT SPAN AT LEADING EDGE

I

80

f

90 O0

"IP

Rotor Chordwise Location of Airfoil Maximum Thickness Spanwise Profiles

37

Page 48: N7 4- 33789

3.0

dr,r'

I-- "'

zOrt-M.

.07

.06 m

.05- "r"

.03

2.8

2.6

2.4

2.2

2.0

1.8

1.6

1.4

1.2 'J'_

ROTOR

.%

\ROTOR 2

1.0

r,r'O A"r(.3 r_

I.-

.11 -

.10 --

.09

.08 "=

4.4

4.2

_,_

3.8

Z

= /3.6 /

3.4 ....

3.20 10

HUB

20 30 40 50 60

m_ mm

ROTOR 2

170 80 90

PERCENT SPAN AT LEADING EDGE

lOO

TIP

Figure 18 Rotor Chord Spanwise Profiles

38

Page 49: N7 4- 33789

60

qo..

.=1

Z

I--.

I.LI

5O

40

30

2O

I0

0

-10

-20

-3O

-40

J

//

/f

//

//

/

/

ROTOR

/

/

//I'/ /

' //

2

J I

F

1 t

-50

.,1

Z

w e_

I,-w'_.1Z

60

50

40

I30

20

0 10

HUB

Figure 19

J

I

ROTOR 2

/v ROTOR 1

20 30 40 50 60 70 80

PERCENT SPAN AT LEADING EDGE

Rotor Inlet and Exit Metal Angle Spanwise Profiles

9O 100

TIP

39

Page 50: N7 4- 33789

2

_ Z _ 0

-- 0 -4--

-6

()0 _ 0

i

0 0 °

tM, >1.0

M',>,.o _1

ROTOR 1

ROTOR 2

Z ,,-I-n:

_z_ w

0 10 20 30 40 50 60 70

HUB PERCENT SPAN AT LEADING EDGE

d)

" io.80 90 100

TIP

Figure 20 Rotor Incidence Angle Spanwise Profiles

40

Page 51: N7 4- 33789

i11i11n,"(9iii

v

LU..I

n."

f.,On,.-l.t.I

l=

o

Io

// n b (_ (]

2/D O O _ 3 D O _:)ROTOR 2

-2

[]

E

O R1 (REF 3)

(_ R2 (REF3)

[] R (REF 5)

-4

I.LIIaan,"f3U,.I13

o

{,,,Q

--IcOz

z0P

W0

18 /

0

1_ O (

• ()

y "\\\c.) O "_D O [] |

12 OR 1

6

ROTOR 2 O 00

40 10 20 30 40 50 60 70 80 90 100

HUB TIPPERCENT SPAN AT LEADING EDGE

Rotor Deviation Angle Spanwise ProfilesFigure 2141

Page 52: N7 4- 33789

o_ []

_,,',._,,= ,.0_ _o o _,o_' oO ,,_

O R1 (REF 3)O..a

,,_ (_ R2 (REF 3)_ .95[

] r"-I R (REF 5)"2

° 1 I.90

0 10 20 30 40 50 60 70 80 90

HuBPERCENT SPAN AT LEADING EDGE

10o

TIP

Figure 22 Minimum Rotor Channel Area Ratio Spanwise Profiles

42

Page 53: N7 4- 33789

iiiLLIn,-r3iiic't

1.5..J

Z

IJJoo

l-Zon-

,lb.

15

10

5,."

0

-5

m

\

ROTOR 1

--10

v "E

EwI-w

a.

w111

O

o

U

1.5

DCA CAMBER DISTRIBUTION

1.0 _

_OTOR 1

! "FRONT CAMBER = O ROTOR 2-- --

--.5 %""%

\'t

--1.0

-1.50 10 20 30 40 50 60 70

HUB PERCENT SPAN AT LEADING EDGE

8O 9O

• /

100

TIP

Figure 23 Rotor Front Camber Angle and Chord-Camber Parameter Spanwise Profiles

43

Page 54: N7 4- 33789

ROTOR 1

m -,-,-_- ROTOR 2

<-iii

.J({(J

F-

(J

O

<Illt_

.J<

F-(J

II

O

O

1.3

1.2

1.1

1.0

1.3

1.2

1.1

1.0

1.2

1.1

1.00

I

0% SPAN (HUB)

(SPANS TABULATED

ARE AT LEADING

EDGES OF BLADES_Ip

i I

S I

1.3

1.2 /

1.0

27.3%SPAN

//

/

dJ

//

SPAN

1.3

1.2

1.1

1.0

38.4%p

7

!

48'6%P/SPT_

1.2

1.1

SPAN_

1.01.0 2.0 3.0 0 1.0 2.0

INCHES

I I I I I I I I•02 .04 .06 .08 0 .02 .04 .06

METERS

AXIAL DISTANCE FROM BLADE LEADING EDGE, Z-ZLE

3.0

I.08

44

Figure 24 Rotor Channel Area Ratios Versus Axial Distance

Page 55: N7 4- 33789

=k

<

<{

<-iii

<{

..J

<{

mp.

(J

0I-

<

n-

I-0

IJ..

0

0

}--

n-

1.2

1,3 n

1,2 m

1.1

1.0

1.1

1.0

,9

O

t0

62.7% /

_ '_5%SPAN

I I

ROTOR 1

m _ _ ROTOR 2

1.2

67.2% / /

sPAN_j_ ,o

,.,,.,_ 69.3%SPAN

I I

71.6%

PA____73.5

SPAN

I I

1.3 m

1.2--

1.1--

1.0

75.8% /

sP%,.4'_ '_7.6%

I I sPAN

_92.2% SPAN 1.1

B 92.9% 1.0SPAN

lOO%./ /SPA",'_V//X- o

_(J 100_ (TIP)

SPAN

I I I .9 I I1.0 2.0 3.0 INCHES 0 1.0 2.0

I I I l i I I.02 .04 .06 .08 METERS 0 .02 .04 .06

AXIAL DISTANCE FROM BLADE LEADING EDGE, Z-ZLE

I3.0

I.08

Figure 24 (Cont'd) Rotor Channel Area Ratios Versus Axial Distance

45

Page 56: N7 4- 33789

LOCUS OF TRAILING EDGES

LOCUS OF POINTS WITH

RADIUS r, POLAR RADIUS R

AND AXIAL LOCATION Z

LOCUS OF LEADING EDGES

APEX OF CONICAL

DESIGN SURFACE

ETE

BLADE MEAN

CAMBER LINE

ON UNWRAPPED

CONICAL SURFACE

POLAR RADIUS R

R LE

MERIDIONAL VIEW

OF BLADE SECTION

Figure 25 Mefidional View and Polar Representation of Blade Mean-Camber-Line

Q

AIRFOIL SECTION ON PLANE

NORMAL TO RADIAL STACKING LINE

Figure 26 Airfoil Coordinate Definition for Manufacturing Sections

46

Page 57: N7 4- 33789

6e¢0

z0

n..w

z

0

,_1

I-0I--

.O6

.O5

.04

.03

.02 --

c/}UJ.I.(,3Z

2.4

2.2

1.8

1.6

1.4 _,

1.2

1.0

.8

.60 10

HUB

__I

C

STATOR

C

STATOR 2

II

cf

STATOR 1

JI v

20 30 40 50 60 70 80 90

PERCENT SPAN

//

100

TIP

Figure 27 Stator Chord Spanwise Profiles

47

Page 58: N7 4- 33789

52,

50(/)

uJZ

48

t_ 46

UJ

_ 44I,I,.o_Z0-- 42I.--

0

40----

STATOR 1 /

/

STATOR 2J

-- __f

3E0

HUB

Figure 28

10 20 30 40 50 60 70 80 90

PERCENT SPAN AT LEADING EDGE

100

TIP

Stator Chordwise Location of Maximum Thickness Spanwise Profiles

.10

O-r

o_o')iiiZv

m

I--

X<

.09

.0_

.07 F

.06

Jf

.05

J

STATOR 2

fJ

f /STATOR 1

.040

HUB

10 2O 30 40 50 60 70

PERCENT SPAN AT LEADING EDGE

80 90 100

TIP

Figure 29 Stator Airfoil Thickness Spanwise Profiles

48

Page 59: N7 4- 33789

10

i,iiii¢f

iii

¢3

iii/

Z

uJ

F

c_.m

O STATOR 1 /

-15

-20

10

$1 (REF 3)

--10 (_ S2 (REF 3) / _

[7 S (REF 5) STATOR 2 / _

-200 10 20 30 40 50 60 70 80 90

HUB

PERCENT SPAN AT LEADING EDGE

100

TIP

Figure 30 Stator Incidence Angle Spanwise Profiles

49

Page 60: N7 4- 33789

w 4i,u

,,,o_J

= J (1_ 3(!I [iiiI-- J STATOR 2 []

" C rl-: [3

C C%

I-4 0%

-6

()

18_

16

O Sl (REF 3)

14( [] [] (_ $2 (REF 3)

i! _ _,._ -- STATOR 2

(;[_-_ _ _ !_"_'

[

C'_,] [ _"_ ]"_ • STATOR 1

6 C

O

4 (_)"0 10 20 30 40 50 60 70

HUB

PERCENT SPAN AT LEADING EDGE

80 90 100

TIP

Figure 31 Stator Deviation Angle Spanwise Profiles

50

Page 61: N7 4- 33789

A

ILlU.Ir¢

U.Ir_v

,,IOZ

,.I

I-iii

I-

Xu,I

10

-10.

5 ....

/ _ W......-- _ "_

/

0 / 4_m 'mm" _ _mm,

/ _ s_o_

-15

-20,

I/ STATOR 1

I

2

60,

ELI

,e_ 50.

'"- % "x .-/_ _ , m _mm m mmmm,mm li _, i m imm Immmmmm #

I"- 40.

"' /w

Z"J 35. /

-- STATOR 1 /

300 10 20 30 40 50 60 70 80 90 100

HUB TIP

PERCENT SPAN AT LEADING EDGE

Figure 32 Stator Inlet and Exit Metal Angle Spanwise Profiles

51

Page 62: N7 4- 33789

1.08

1.06

1.04

I

O $1 (REF 3)

I_ $2 (REF3)

[] S (REF 5)

1.02 0 L..]

"_" STATOR 1 / ) C 0 /

D @.9( @

•94 0 10 20 30 40 50 60 70 80 90 100

HUB TIPPERCENT SPAN AT LEADING EDGE

Figure 33 Ratios of Channel-Throat-Area to Captured-Area Versus Span for Stators

52

Page 63: N7 4- 33789

3O

iii

ill

n-

iii

r_v

U.

iii

tn

Z0

l.i=

25

20

15

10

5

J

fI

J

STATO R 1

/

la,I. -_-,_

C

• _ (_,

W

W

<0.

e_w

e_

o

1.4

1.2

1.0

.8

.6

/

.2

DCA CAMBER

DISTRI BUTION

/

/

ff

_J

STATOR 1

NO FRONT CAMBER

/0 10 20 30 40 50 60 70 80 90 100

HUB PERCENT SPAN AT LEADING EDGE TIP

Figure 34 Stator 1 Front Camber Angle and Chord-Camber Parameter Spanwise Profiles

53

Page 64: N7 4- 33789

({

<-L&Jn-

.J({O

(J

0

e_

0

0

0

F-

ew

1.4

1.3

1.2

1.1

1.0

0 % SPAN (HUB)

(SPANS TABULATED

ARE AT LEADING

EDGES OF VANES)

1.4

39.5% SPAN

1.3 /1.2

1.4

15.8% SPAN

1.3 /1.2

1.1 j

1.0

1.4

1.3

1.2

1.1 1.1

1.4 1.4

1.3

I84.5% SPAN

/1.2

59.1% SPAN

/

1.3

1.2

I100% SPAN (TIP)

i//

1.1 1.10 1.0 2.0 3.0 0 1.0 2.0

INCHES

L I i I I I I I I0 .02 .04 .06 .08 0 .02 .04 .06

METERS

3.0

I.08

AXIAL DISTANCE FROM VANE LEADING EDGE, Z - ZLE

Figure 35 Stator 1 Channel Area Ratios Versus Axial Distance

54

Page 65: N7 4- 33789

F--iii.JZ

(3

_:-J

zo<(J

w DZO

w ._1(,_ _J,_w

,.JJ

_J

AI'--

z_

Z_

u.

_.1 w

7- ,c):__ jz .JOW(/) co

I I I I Ico o c_l

I IIco

I I I I_- _D

$3H::3NI

I I

81:1:113141

U3131AIVIO

OJ

cc_.zO

<_° III\ M

! I-

I&l

, • w

I 9

]]

<

o IO

n.-wl--ZLUO

D

X

Z

wO

u_- I

%

_ ZO

_-O

I I I Ic0 c3

I Io

-o

co- I

(D

_r(N

I

3:

Z

COI

O

"CO

-- C3

-?

(N

I11(JZ

_o

O

O

55

Page 66: N7 4- 33789

"1"

OI-tJ

ii

i11a.,<3:cniii..,I

ill

P,

O

ZD

E:i,i0D

Z

3:

<

..=I

..I<

1.8

1.6

1.4

1.2

1.2

1.0

.8

.6

/

I I-_-'-'LOCATIION OF MINIMUM FLOW AREAI I

ROTOR 1 ROOT

LEADING EDGE

LOCATI ON

/

.435 30 25 20 15 10 5 0

AXIAL DISTANCE'vlNCHES

I I I I I8 6 4 2 0

METERS

AXIAL DISTANCE

Figure 37 Baseline Standard Inlet Outer Wall Mach Number and Shape Factor Distributions

56

Page 67: N7 4- 33789

.95

.9C

n,"u,J

.85:::)Z

'I"tJ"_ .80=E,--I

....I

.75

rr

.700 10 20 30 40 50 60 70 80 90 100

HUB TIPPERCENT SPAN

Figure 38 Sonic Inlet Throat Mach Number Spanwise Profile - Approach Configuration

=;

I,LI

IIl

z

-v-

.-I

J

1.0

.8

.7

.6

.5

.4

.3 I-60

I

CORRECTED FLOW = 77.11 KG/SEC (170 LBM/SEC)

'ouz . /WALL

t-,,..._,NNERWALL

-5O

LOCATIONOF MINIMUM FLOW AREA

I-4O -30

(INCHES)

ROTOR 1 ROOT--

LEADING EDGE

LOCATION

1-20 -10 0

I-1.4

I I I I I I I-1.2 -1.0 -.6 -.4 - .2 .1 0

(METERS)

AXIAL DISTANCE

Figure 39 Mach Number Distributions Along Inlet Walls - Approach Configuration

57

Page 68: N7 4- 33789

m (_3 ILU

nn_1

N

oi.u

(.9v

t,0

(D

II

o_1

u.

clI.U

I-oLUrrt_0

q

)/

//

/

//

//

!I

\\

/

/rrw _1

D<o_

I--"'O%9OOn" uJ Z O_ e,..90

__ 1.1.rrz I_

......... o _,<____

zo_I--

O_1

O

z_z

<

5d ,L

_ i _ O

=

IN'U::ISINNNHOVIAI11VM

e3

o<LU

--<f-

oOO--_1 ,,

O

O

-- O

__ ID

,-

OI

T

I

ulI--ul

N

Z

5,,,,1<x

o°,_

O

I

o

o

• ,-,-I

z

O

&

58

Page 69: N7 4- 33789

o.

IN 'H=IglNFINHOVIN -I"IVM

O

o

c,l."

',.0

ot..-

i

_cN

,¢."T,

l-q

r.,©

O

[..I

C/3

%

<

©

./3

,.O

=

,.=O

$9

Page 70: N7 4- 33789

!I-W

8_CE u.I Z

_z_r-wO

n- ._1 ._1

LLI

._1LD

L_LU

[3VO3O3

03

II

O.JU.

OUJI--

ILln"n-OO

00 CD q¢

,,=,_ \

\IIlllI

\I

H _ UOIOV-I ::IdVHS 3"ISISS31:IdlNOONI

A.-I.-I

_<_

Z W

II

O<_Z LU

V_<

_0

-J ii

_1

I

_J

Y_

_D

0,_zwOn"

O0O_._1 u_

o

o

o

UJ"1"

Z

-- o

m

_o."T

--,.1,

-- 'T

LUI--W

1

©

.<

N .o

u

N "©

0.,=.i

0 0

'm"

60

Page 71: N7 4- 33789

I.U

-I

o

_tO_LI..I

(.9V

r':

II

Ore_i-

t.t-

mU..II'-¢OLUn-rrOqO

f

(\

//

// /

\w _

o_

00n'-LU z_0

rr_zV--0

Owo0

w

W0

Z --

z_ vO_

I--Z

°"_0

H _ 1::101:3V-I 3dYHS 3"ISISS3EIclIAIOONI

O

O¢',,I I,_

<I

=*

ouP N

i"

_ _ 0_ Z "'.._

,,' _ ._

< V

r_

0 0

,_,_

61

Page 72: N7 4- 33789

H _ HOIOV::I 3dVHS 3"ISISS::II:IdlNOONI

O

O

UJ

3:OZ

-- O

Nw"

w

X

O

o

I

_=

r_O

<

o

L_

.J 2

o o

62

Page 73: N7 4- 33789

N

ZLM

OUJ

g.

1.0

.6

.4

NOTE: TOTAL S

IN LET SUPPORT STRUTS

FOR CENTERBODY

n

50% SPEEDm

m

1ST COUPLED

MODEm

0 1 2 3

3RD COUPLED

MODE

105% 12E

DESIGN SPEED

SPEED 10E

2ND COUPLED

MODE

OPERATING RANGE

4 5 6 7 8

ROTATIONAL SPEED, RPM X 10 .3

8E

6E

5E

4E

3E

6% FREQUENCY

MARGIN

9 10 11

I12

Figure 45 Rotor 1 Campbell Diagram

63

Page 74: N7 4- 33789

N-I-v

Z

0

1.8

1.6

1.4

1.2

1.0

.8

.6

.4

.2

0 1 2

50%

SPEE

3RD COUPLED

MODE

2ND COUPLED

MODE

DESIGN iSPEED

/

__ _ _05% SPEED 4E

1ST COUPLED

MODE

5.4% FREQUENCY

MARGIN

OPERATING RANGE _-_

II I I l3 4 5 6 7 8 9 10 11 12

ROTATIONAL SPEED RPM X 10 .3

Figure 46 Rotor 2 Campbell Diagram

64

Page 75: N7 4- 33789

N"I-v

>-

Z

0u,I

ii

1062E (STATOR 1)

_/ _ SPEED

1 2 a

DESIGN

SPEED

_OPERATING RANGE_

I I I I4 5 6 7 8

2ND MODE

#F, 105% SPEED

1ST MODE

I I I9 10 11 12

ROTATIONAL SPEED, RPM Xl0 "3

Figure 47 Rotor 1 Tip Mode Campbell Diagram

65

Page 76: N7 4- 33789

10 76E

(STATOR 2)

62E (STATOR 1)

N"r

>-Z

0Ill /

4 --

3

2-- 50%

I I I I0 1 2 3 4

DESIGN

SPEED 105%

OPERATING RANGE _._,..

I I I I I I

5 6 7 8 9 10

I

11

ROTATIONAL SPEED, RPM X 10 .3

2ND

MODE

1ST

MODE

12

r_,=- ....

66

Page 77: N7 4- 33789

50

AMS 4973F TITANIUM

3 _ AT 338.6°K (150°F)

40 SMOOTH

_ % 3o

__.:" _2o _

STEADY

STRESS

o _ _0 20 40 60 80 100 120

LBF/IN 2X 10 -3

I I I I I I I I I I0 1 2 3 4 5 6 7 8 9

N/M 2 X 10 -8

STEADY STRESS

14o

Figure 49 Rotor 1 Goodman Diagram

5O

3

40

_ . '_ 30

i i2o10

MAX. STEADY

STRESS I

t I0 1

\

20 4L, 60 80 100

LBF/IN.2X 10 -3

I I I I I I2 3 4 5 6 7

N/M 2 X 10 .8

AMS 4928 TITANIUMo o

AT ,421.9 K(300 F)

120 140

I I8 9

STEADY STRESS

Figure 50 Rotor 2 Goodman Diagram

67

Page 78: N7 4- 33789

0.0051 METERS (.20 IN.)

35 °

.033M --1

F 11.3 iN.)

a) R-1

0.0046 METERS (.18 IN.)

B-B

L.E.

b) R-2

68

Figure 51 Schematic of Rotor Partspan Shrouds

Page 79: N7 4- 33789

N"I"v

>-

Zw

0.i

u.

2.0

35E(ROTOR 2)

RANGE

__.I.__L__3 4 5 6 7

ROTATIONAL SPEED, RPM X 10 -3

10

Figure 52 Stator 1 Campbell Diagram

69

Page 80: N7 4- 33789

N

-I-v

>-

z

0U.I

I,L

3.0I

2.5

2ND BENDING

2.02ND TORSION

1.5

(ROTOR

//

50% SPEED

/

1.0

2)

il

DESIGN

SPEED

105% SPEED --

1ST BEN_G

/ lS_TORS,ON/_5 4E'_i_ I I

• _ _ ,._

0 2 4 6 8 10

ROTATIONAL SPEED, RPM X 10 .3

Figure 53 Stator 2 Campbell Diagram

70

Page 81: N7 4- 33789

8000

7000

6000

O ROTOR

r-] ROTOR

_ ROTOR

N

"r 5000

)-

4000

_ 3000

lOOO _ _

0 1

].1 REAR SIDEPLATE _f

2 FRONT SlDEPLATE

2 REAR SlDEPLATE

I I25% FREQUENCY MARGIN

@ 105% SPEED

I I I2 3 4 8 9 10 11 12

NODAL DIAMETER

Figure 54 Rotor S_deplate Seal Resonance

10,000

9000

8000

7000

6000

5O00

4O00

200

1000

O STATOR 1

STATOR 2

,..I jr

2 3 4 5 6 7 8 9 10 11 12

_*_25% FREQUENCY

MAHGIN @ 105% --SPEED

NODAL DIAMETERS

Figure 55 Stator Sideplate Seal Resonance

71

Page 82: N7 4- 33789

N"r

>-ZuJ

Ot_

M.

3000

2500

2OOO

1500

1000 ""

500

NO. OF: ROTOR" 1 BLADE'S /

28E

50% SPEED

DESIGN

SPEED

105% SPEED

2ND TORSION

/

2ND BENDING

1ST TORSION

/

/

!

1ST BENDING j

3 4 5 6 7

ROTATIONAL SPEED, RPM X 10-3

i

i

_..,_

I

8 9 10

Figure 56 Sonic Inlet Support Struts, Campbell Diagram

72

Page 83: N7 4- 33789

¢,,1(

n"

01'-

0rr

tr

0I--

0

rr

88

Z

G ou. xu.

0

z_ _

I-

I-

Z

mJ

X

Z

__oo.... _d

II II II II II II II Ii

ou G55

_'o qqq

x o o o o

-- I'--

x

oo o_._qqqd6odoo_

II Ii Ii II

- S_8_o-_ =

r_

i

<"0

r_

"0

0

.=.

°,._

73

Page 84: N7 4- 33789

n-

OI-

0

CC

I1:

0

F-

0I1:

v

0Z

_ee

d_Z_

/rr

0 o

v I--

\I-

Xw

I_LO .JCC _ Ir_

\<o

._1Z

Z

u.

v

-_A_._ z_

D

Z0

n-O

h-<

z

r_<

.J

xZ

× Vo_ooo

_ n II II II II

.E

o_ooo

_ooo_oo_ooox ii ii ii ii . ii ii ii ii ii ii II

0

<

0°_

0

O0

74

Page 85: N7 4- 33789

FAN jFLEXIBLE FRONTINLET & DIAPHRAGM

CAS S /SEARING T

_-/ SUPPORT j DRIVE SHAF

'_r"" NO. 2 SEARING --

NO t FAN SHAFT

ROTOR 2

NATURAL FREQUENCY = 48112 RPM

I I

AXIAL DISTANCE

INLET & FAN

CASE J ROTOR2 BEARING

- J" .j_uPPORT

X" "PAN /\\j.\ S. FT / "N,.

NATURAL FREQUENCY = 8764 RPM SHAFT _. _

AXIAL DISTANCE

Figure 59 Critical Speed Mode Shapes

?5

Page 86: N7 4- 33789

O

ROTOR 2

FAN SHAFT BEARING

_ SUPPORT

/

/_ FAN CASES FLEXIBLE

FAN CASES _RArLOp_TRAGM

ROTOR 1

I I I

NATURAL FREQUENCY = 10,729 RPM

AXIAL DISTANCE

Figure 59 (Cont'd) Critical Speed Mode Shapes

76

Page 87: N7 4- 33789

.o

0

0

0

0

'7'7

Page 88: N7 4- 33789

0n-

OT(D

Q)

Z

ZO

_o

O_,_1 ''

o.

u_

%

On-O7"C)

Q)

Z

0

0

/,i

I I

c.o

t_

-1

' ' T T T

0

z

cr

aD

o

o

o

o

o

+d

_D

8P '1::1^:11 ::ISION NI 39NVH3

78

Page 89: N7 4- 33789

106

102.

98.

_Z 94.

_ 90,d

_ 86.,,-I,

-1

_ 82.

_ 78.

74.

//

///

_ACH

50 100 20066.

0 a _, I

r/J

FREQUENCY, HZ

400 800 1600 3200 6400

= 1.) I 16 I ,

ONE-THIRD OCTAVE BAND NUMBER

I 24

Figure 62 Fan Aft One-Third Octave Spectra - Untreated

79

Page 90: N7 4- 33789

3("

28

26

24

22

ZO

_--- 20

ZN"' _ 18

uJ >. 16> aILl

,,

'" _ 12

Z:3 100

4

I50

_m

I l,k ''' TAKEO F F

I |

//!) t!

S'I1I _,rFREQUENCY, HZ I

100 2(_0 I 4o0 6oo

4 6 8 10 12 !4 !6

I3200

!8 20

I640O

I

22 24

ONE-THIRD OCTAVE BAND NUMBER

Figure 63 Fan Aft Noise Attenuation Targets

8O

Page 91: N7 4- 33789

//

/

(\

O

OOmCNo'3

00f,O

\\

OmO0

00

N"r

>-

zW

0

0UJ

I=u.i

zQz

.i>

o uQ

E

I--

z0

O_

(_IND/S3NAO _000"0:31:1) 8P

NOI1VnN::IllV "13A3"1 31drlss31dd ON/lOS

c_

<i

¢,)

E

¢,)I-i

[...,

%

o

.o

¢,)

4.a

<

¢U

8]

Page 92: N7 4- 33789

82

zw o

'0Ig_

_ 0 21

Q- 0 .J:

\

w..I

NNoZ

l,-

X

Z

.JZ

Zo

w

_Z _

_wz_

oz

o

w _

U_z oog8_c dddo

oq_

.<

©

0,,-i

Page 93: N7 4- 33789

,

I-

J

W

l-zW

--z_

rroI

_7

(/)

Z

LL

LU

Z

0pl.-

LU

7

iiiII

%

uJ UJ,,_I _I

_J .JW W

z z

z z

8PNd 'NOIlVNN :I/J.V

:ON

¢NCN

_1

"1"

Ill

ILl

ZCN ILl

I--

ILl'O it"

I-

g.

o"1-

oo I-

(.9ZIll...I

(D

C3

oo

_J

J::_J

LuI

O=

_J

<

(D

4-)

[-

L_

83

Page 94: N7 4- 33789

W

Z

a.Wt_

Z

<t_

O

UJ

m

t_

1.0

0.1

0.01

0.2

TREATMENT LENGTH

DIMENSIONLESS

DISTANCE BETWEEN TREATMENTS

1.0

(FREQUENCY OF PEAK ATTENUATION) (DISTANCE BETWEEN TREATMENTS)

(SPEED OF SOUND) (1 + FLOW MACH NO.)

i0

_" DIMENSIONLESS

Figure 67 Tuning Curves

84

Page 95: N7 4- 33789

At_l

O

(4uJZ>-C_

ooo

iiirr

n_"13-IuJ>Ill..I

UlE3(nu)iiiEQ.

aZ3O¢n

1O0

95

90

85

80

75'

7O

65

/

/-- FAN

"%%% %'_%

%

DIS HAR

_A,N N O'pSLETTTRE_ ED -_

00 100060 L i

10 12 14

NOISE UNTREATED

ESTIMATED FAN JET

MIXING NOISE --

OPERATING LINE

\

\ V

\\ \

\

\\

\\

\%

FREQUENCY, HZb

2000 4o,00 800016 18 20 22 24

ONE-THIRD OCTAVE BAND NUMBER

Figure 68 Analytically Predicted Attenuation of Aft Fan Noise at Takeoff

85

Page 96: N7 4- 33789

90

8O

85 / _ FAN NOISE UNTREATED

JI

I

75 '_,,

a

_ _,_ _EST,_ATED_AN_ET

_ /_,×,N_ NO,SEO_RA_,_70-% _ /LINE

. \65

¢t)f'n ESTIMATED J%_ _ "

FAN JET / %

o. MIXING NOISE j • ,_ •Z_ -- WIDE OPEN -,I_ ,_

DISCHARGE _ /\\O 60

FAN NOISE TREATED %

(WITH SPLITTER)q

55

I FREQUENCY, HZ, I

400 1000 2000 400050 L

10 12 14 16 18 20

%%

%

22 24

ONE-THIRD OCTAVE BAND NUMBER

Figure 69 Predicted Jet and Treated Fan Noise Levels - Approach

86

Page 97: N7 4- 33789

34,

(N

tJ

o0UJZ>-C_

Nooo.o

IJJE

32

3O

28

26

24

22

m 20

9I-- 18,<

Zm 16I--I-,<.JIll 14>.1.J

w 12e_

¢.n

ul 10

o.

Z_ 80¢,n

I

50

\

TOTAL -- ,

,<f -"XDISCHARGE

# DUCT

II

I

/ii'

/FREQUENCY, HZ /

1O0 200 400 800I Irl

2 4 6 8 10 12 14

//

/I1600

F

16 18

INTER-STAGE/

\3200 6400

.|,

20 22 24

ONE-THIRD OCTAVE BAND NUMBER

Figure 70 Predicted Jet and Treated Fan Noise Levels - Takeoff

8?

Page 98: N7 4- 33789

APPENDIX A

A

A/A*

a

a f

C

C

D

E

G

H

I

1D

i

K

APPENDIX A

SYMBOLS AND DEFINTIONS

area - meters 2 (feet z)

ratio of actual-area to critical-area (where local Mach number is 1.0)

distance along chord from leading edge of airfoil to point of maximum

elevation of airfoil above chord line - meters (inches)

a point on the suction surface of a blade halfway between the leading edge

and the point from which a Mach wave emanates that meets the leading edge

of the following blade

structural damping coefficient - N/m-sec (lbf/in.-sec)

Chord (aerodynamic on flow surface) - meters (inches)

diffusion factor,

for rotor

for stator

r2 V02 - r 1V01t P

= 1-Vz/V 1 +(r I + r2) V'o

r2 Vo2-r3 V03= 1-V3/V 2 +

(r2 + r3) V 2 o

displacement in the direction normal to the minimum moment of inertia

axis - meters (inches)

epse, the angle between rays drawn to a conical design surface, one ray to

the leading edge of an airfoil section, the second to some other point on theairfoil - degrees;

excitations per rotor revolution

gravitational force

boundary layer shape factorpassage height

moment of inertia about minor axis - meters 4 (inches 4 )

inner diameter of casing - meters (inches)

incidence angle, inlet air angle minus blade metal angle - degrees

blockage factor;

linear spring constant - N/m (lbf/in.)

89

Page 99: N7 4- 33789

L

L.E.

M

MCA

N

OD

P

P

PNL

RLE

RPM

RTE

r

R

r, O, z

S

S

SPL

T

T° E.

U

90

SYMBOLS AND DEFINITIONS (Cont'd)

length of inlet - meters (inches)

length of acoustic treatment

leading edge of blade row

Mach number

multiple-circular-arc

rotor speed (rpm)

outer diameter of casing - meters (inches)

static pressure - N/m 2 (lbf/in. 2)

total or stagnation pressure - N/m 2 (lbf/in. 2)

perceived noise level (dB)

leading edge airfoil radius - meters (inches)

revolutions per minute

trailing edge airfoil radius - meters (inches)

radius measured from rig centerline - meters (inches);

number of rotor blades

rotor

cylindrical coordinate system, with z axis as rig centerline

stator

blade spacing - meters (inches);

number of stator vanes

sound pressure level (dB)

total temperature - °K (°R);

torsional spring constant - m-N/rad (in. - lbf/deg)

trailing edge of airfoil

blade maximum thickness - meters (inches)throat

rotor speed - m/sec (ft/sec)

APPENDIX A

Page 100: N7 4- 33789

PRATT& WHITNEY AIRCRAFT APPENDIX A

V

W

Z'ratio

z

A_

3'

6 °

0

p

O

_E

SYMBOLS AND DEFINITIONS (Cont'd)

air velocity - m/sec (ft/sec)

weight flow - kg/sec (lbm/sec)

(I/C)shroud cross-section /(l /C ) airfoil cross-section above shroud

axial distance - meters (inches)

absolute air angle [cot "1 (V m/V 0)] - degrees

vibratory twist deflection - degrees

relative air angle [cot-1 (V m/V_)] - degrees

metal angle, on conical surface, between tangent to mean camber line and

meridional direction at leading and trailing edge - degrees

air turning angle - degrees

blade chord angle, angle between a chord line and axial direction (measured

in a plane parallel to z-axis) - degrees;ratio of specific heats for air

ratio of total pressure to standard pressure of 1.01 x 105 N/m 2 (2116 lbf/ft 2)

deviation angle, exit air angle minus tangent to blade mean camber line at

trailing edge - degrees

angle between tangent to streamline projected on meridional plane and axialdirection - degrees

efficiency (percent)

ratio of total temperature to standard temperature of 518.7°R

mass density - kg/m 3 (lbm/ft 3)

solidity, ratio of aerodynamic chord to gap between blades

blade camber angle, difference between blade angles at leading and trailing

edges on conical surface, 13'*1 -/3'* 2 for rotors and/3* 2 -/3* 3 for stators -degrees

blade camber angle on plane of "unwrapped" conical surface fl'*l -/3"2 -E_ for rotors and/3*2 -/3*3 "ETE for stators - degrees

amplitude of torsional vibration (radians)91

Page 101: N7 4- 33789

APPENDIX A

COb

COt

Subscripts

ad

f

Ef

in

LE

m

P

SS

st

t

TE

Z

0

0

SYMBOLS AND DEFINTIONS (Cont'd)

total pressure loss coefficient,

_.X.__

t

- P2

t

P1 "Pl

P2 - P3(stators)

P2 - P2

bending vibrational frequency (Hz)

torsional vibrational frequency (rad/sec)

adiabatic

front

refers to front camber definitions which include epse angle E

inlet

leading edge

meridional (velocity); mean camber line (angle)

profile (loss); polytropic (efficiency)

suction surface

stage

transition, throat

trailing edge

axial component

tangential component

plenum chamber

(rotors)

92

Page 102: N7 4- 33789

APPENDIX A

1

2

3

Superscripts

t

SYMBOLS AND DEFINITIONS

station into rotor

station out of rotor or into stator

station out of stator

(Cont'd)

relative to rotor

blade metal (angle); critical, at Mach number unity (area)

93

Page 103: N7 4- 33789
Page 104: N7 4- 33789

APPENDIX B

¢,/3

zE3,<LLI"l-

ILl.--I133

I->-

xo X

0 "'

_ u_'_ 0

z0k--<

LL

z

121

_ _ _ _1=.o

,,=,

=_ ,,=,

wGEa_ _"

,¢,.L

,,=,

,,=,

z">l>u. > 01-

_1.- >_ u.>_- _ ,_ ,,==,_._

_ _ °> _ =.=o_-_ > _w j>,,. _ _ Oz _ =.o

t

,,=, OI-

_ >_

,,=, ,=,

_.u_

,,=, ,,=,

u_ _u___= _- __o ._=I,-

o_ _

01-I.-- _u

o I.-=.uJ

_,_>_. >_

¢n

,,=,

=.lu,.u_

,,=,

t-

_o "_

_0

s

qg _ 8I.- 1.--

o1.-

_ o

z _ ._=

u_ _-

¢u_

o_;_ =,-t=.o

ok

¢: I.-- ¢n

zZ_ z

95

Page 105: N7 4- 33789

APPENDIX B

>XLU.,_1nt_<I-

,¢I--<aI-zu.I

I,.U._1LLI

LUa<,.,Jnt_

n-

OLI_

t.Dn-LUI"LU

a

z<

z<

_,)

0z_oI-.-<ou-

F-ZU,l

Z

n-OI-

Z

ne0I-

N._

0I.-

z

o

o

z

o

96

Page 106: N7 4- 33789

APPENDIX B

>xLUJnn

I-

n-OI-0rc

I>-

t,O ,,....

(jO0

<Z>-o0a=ILl<

L' I W I,_ e • • • • el • • • • • • • • •

'!- I_ r4 N p.._ ,-_ ..4 N f'J _ N' IN N r_l,_ N _!

W IN • • •r • • • • • • •:

i '

z oooo.og_ o:,_,_ogogOO

_" _.._ N rq I'-- ,-,_'_- _'_ O'_._ ',_ I'" _1 _,_ I_ _" CI_ _'_

• • e i • • • • • • • I:

I V'_ wDI_ eO _" (D _ ,,4r ,o ¢o 61" O N c'_ '4" I,¢', ,,61

_m_ . m _._._, _ • • • • • • • .m. ed. • •

_o_ _¢_I;I I I I I I I I

,......... 9_ 9_.=9

I I I I I I I I I I I I

I I I I

• .I.. • . . . . ._._

I1_: I0 ol, o 0 0'_ _ 0 0 0 _[_, m mi_ _

, I

• • OQ

_ o,-,.-,o o 9 o"_,-- • .',. ooooo oo•,.:_,',,_I 001000000'000000:00

_,_!_ _ o _:.-, _ ,_ ¢I.L _ rr_ ,0 0,". eo ,0 l.q -,11-N _'_,6_

ooo_cooo_go_o_

:I:: 4" 4" 4" _t ,4" q- 4" .4" 4" ,,lr _lr iq- -4r q- :4. 4"

er..

O ?_ _') -,,t

F- • • • • • • • • • • • •o: _ c o c, o o o* o o o _ o ,_, o ,,._o

>._ _-,-'_ _¢ _ _ _,_,0 _ ._ _,

_.ooo O0 o o Oo o, 0o,,__o0 o

_.0O0o_..o00o0oooo00

ooo

I I I I I I I I I I

I_ o

_,_

,4"eo

g _

I'- I

,,.4 'J

." _, C._ O"

I-_ o_

._uJ _ _

C2 _

i,- _ rr,

p.££ -

9'7

Page 107: N7 4- 33789

APPENDIX B

A"o

E0(J

m

>XI.U_.1

<I--

I:E0I-0rr

I>-

_5(_.-

0 E

<Z>-ao

u.I<

N u 4.1,0,0 _

" C#} ,_ll/_ I•" _00

_. % @. I'" m 4"

Iw,4 U _ I_I 0

O'l O"

i " I iOIM N e. WDO!cO

b" _;" e °!_C)r "Jr WD,O I_ ,i/-. _%z • • ,-;-I-- I, 0 0 0 O: 0

,,40"ZI,-i NI Irl I'- (OI i_

QI" o'.r..., .4" _ o,,_.I:IC r...I cc, co cc, I _, .,...,.

olo

C3'1 _ mi,o o, m;,_

=:io:....,,)_, .. o,,_ 4._!o

I-- ,,li" _ _ lo1 i-,,o,ZN Ii_ ._ IZ) r'-i I_

tic 000

er • • e •

ClO 0 clo

i =olooo',o,_llUj el • e, •I IE 01000=0

i "_ ,_

, u ,_ e_ _ _-i_

•,,I ua • • e. •

, ,. ,:,,; • .i

LL

o.;_ • e. • • e! • • e, • • • • • ei • •

I " "i.....I : 'N u 4. c0 0 ,_ 0;4. ,-_ <) _ 0 _ 0 ,-_iN 4.,o..t..-i.°. ........

>!Z'_"I T4.",iiT , ,, ,, ,: i

•-.,Iu 4. ._ _ _ m i..-,,.n 4. im" ._ _or..-o._ o

_, _. ccJ..._'_ O" ,"n!o o i.,n I_ ,o 0,!_ 0 ¢',',i..00_'1-- 4. _ I_ ,.i_r'.- (1:)'0. o. o ,--, ..-_l.-i c'M._,,lT,,l,?,;,lc_ ......

i , _| Iii

l _ • • • • el • • • • • • •i • • ED I o

•'-_IUJ 4. e_l 0 I_ eni_t O_ O_ i_ P"- L-".!i'_ 0 0 I

ml_U m (n,tm, rn 4.1,,t _ /

u._- • • • • e; erie • • • • • • •

l*lu_P _ a_iO"°" °'l°" _I ; o" o'. _ m m Ir'- r'.. _,o _"4.0,

I O" I.'_ CD ='_ I/_ ,_ _O IN I_" <r P" °° :_'l 4. •

IAlO ,0 ,-_i_ t,g I.gl_ I% ,-_,0" i_ {'_ r'- ,-_

i,_li-.- or., O, lO, O" O" O" _ O',iO" O" O" _ cO cO IP.- p.-

i ooio ¢I _, c!o _'_ ,,', _ [,-, ,.-,

.. .... _oo_ o! .-,oo_._o0 _-_- ,--,- ,- I= _,

"i.......I I

r_1" _ICr_ @ 4. N L'P'

_'1-- 000 E"O 0000000OiG " • • • "1" • • .,. • e'• •

._,_-o c!o oo o _; _!o c:c _oo oio o; I _ I ' ul

._lq. ur, O, I<r 4. P-;,-_ _lr p- i(_ _ 0 ;P. 0 i_ ¢0 t_ ,4{o9 ¢_

,_°[ _l__°°'°°°°°;_;°°'°°°'°°'''4' r-_

;o o 0!o (l_ o oi_..) o o,o o

-Jr _1 O- 0 04. ,_ _ ,-_'0- _ a0 :_ 0 O- ,_, I'-- _u__'... ..... ..o 4.!_-...... ,- ,:!_ 4d

=' I ' I i u_

T! ' :•_ 0 I,,I",0 "{.':,'-= ,.-.*!0" I_.r_ _ _ N _ P-

• ............. ..... _._ ._

I 4 _1"'4. 4.4

_,,, <r ,IL,o-.OGO_O ,Or-- ,Or-log .t Nle_ I"- r _

_r_'; .'.'; , ,', , ,', . , .... ,__: ;_

"-u-'_ '.":4.4.K'i"" """" _ •

_ _ _ _ _ _ _ _ _ _ 0 _ _ _ " _ I_ _

G

E • • • • • • • • • • • • • e • •

_UJ

4.Cu'_

Z__.-_l.U I I '1 I I I 1 I I I

98

Page 108: N7 4- 33789

APPENDIX B

Ii

>Xw._Inn

I-

n-OI-<

03

I>-

o_ (./3

(J

<Z

>-aorrI.U

<

' ,-,-, ,o:o ,0 o; o. o =--i,o ,o _i o ,t ,-,I

N_lm _. m N N N:N N N N m mi'¢ =n_'!OOe'd'F'_ • • • el • • • _ • • • i • • e,

,..41,.._ _.._ F.4' I,.G ,.-q ,-_1,...4 i-_ _.4=I-W ,.-4 ,..4[

o. ! ; : !

,o _-_1..-.o ,o!o,=oI0,o _ ,_,o_'o _ .-.O;_...i 41-! m m _ N N N!N N NIN ee, ml._ m _ -'

(3 I

Z,s-

=:: o!o o o o o olo o cio ooio ool

,OVI3 ,0 ,_!,13 ,13

O'o 0 c:o 0 01o C o 0 0 o:o o o!: : i

z L_ .... ',_., ,o t-,c, @ o, o, 0,;0 _ O" o_:0 0;0 0O0

c_ _'_i0 0 0 0 0 CIO 0 0 0 0 0 000_,

_ o, ..o.¢ re;o, N _io-- ,--,,0 _- _ ¢ o _ ,-,ud • • • e: • • el I e • • • •

i i

> _, o_,m :o r- _ _ r- r- r.- r-- r- r--r- r-r,-

i :

,5_=g.;gdgdg_ggg_,gdggI

.-, z g311_ _ (7, u,,. ,,t r... i_- 0, _ o _'1 _ o _ o

_r_ N1_l ,_ ,_ ,-_0 0 0 0 0 0 0 0 0 0 0

I

,_S' I-- N

i

u_ I.- ,a_

,'_ iOC :4"

13.

'0 "4I--

(:3 --I u_ er,l.J Z _. •

_ O"

99

Page 109: N7 4- 33789

APPENDIX B

A

"o

c-O

¢..)

i

>XLLI.--Im<I-.

n-OI--<I--oO

I

>--_.n" ._< ,-

m_

<Z

0

<

!o _ I¢U I0_i•

1",,3 •

I

a.P-

:_- Z O_° I,,0Lu a...o !o0

I -J :

C )-- :_

_N-J

Z_

100

Page 110: N7 4- 33789

APPENDIX B

>Xiii,_1ey-=

I-

CN

rr"

OI-orr

I>-rr

r-

mN

i

Z

O

LLI

'riu

:>_

Oa-,_I

C_rZi

Z'j=4

14.1, I,_+-h N I.u(:31 _'1

_'_i =3E314J

UJ UQ. ,=1 _V'j I _+

O _

OZe_

|Z.E

! m

uq

v_

_i'_+=i '_-_'+°°_°°. • ....C0_.(%lO, l_;=0p,.i o! • • • • •0, p.. I<i ¢O +.-= I_(O,_ 0_i O O ,.-_i N ',4" ,,tPI=fX P.. P"- _ ¢0=.-(+-4 ,.411_11%1NI N N NII%I N N N (%1

• l+ • • e'o • It(i • o'= •,,..+ =_. o_ 0+.i o:_ .4r _ m r,.,- ,,,11"!,,...0_, t,_! ,,,.,.+co

N!P++ N NI¢_I N eq(l_ I_ PP, I_ ¢<'1mll_

NI +'- O 0ol_ =", m._ ,"0 ,-+iraP" _ _ _- _ I_ i_'._ 03 NI_I "If _'4"P'_ _P_ I'_

• _ • • + • • • • • • • •

OOOOO:OOO)OOOOO

=0:N_ S O'O

".O ,O P. I"- p- ¢O {0i =)..... +. _. _,+_,* ° ° °O'O OOOO OiO O O'O

i) 41 • • • • o, • •

O'O N I_ _" ,,0,P- N I_ ,4" _m m:m m

o, ,,t ,.-+ o, ,o N O-iP',-_ un _ _ Oe I'_ _ O:• • • e, • • •! • • •- • •

i<Y _.-= O_ I_ tf_ (%1O: p-. i.ex +.4t-i_ _.10 O @ O !

g_g ..... , .......oooo!oooog_ogg)

prl O i_ p.- _ 0. _.-+I

,g;gg_¢;g_.'ggg;gggJ_gi

++iP" P'-._'.o e .+;< ,+ .+..,_ ,_.+ +o.+%:-)• • •l+ • •1 • • • • • •

OOOG,)OOO_OOO!OOOOOO i' i

......... _ ......

oooo;oooooo oooo,o

• • ,• • e • • • • •:

1_'l_'_ ..... _.'_ _' ")_ _ _'_,i• • • •l = • • e • • • • •

(

• • • • • • _=_ll_P+,f "-

1

i +

_+_:_

_:_e•oooe•••l••o••

Oi IIIIIIIIII

_eolo, el,•leo•el

• i I l+l l I l I I I l l,l I I,I

i ) !

=_ _+_-=_,_

?

_', "r

T

_mo_+mo_mo_mo+_N+

5_ooooooo,2.oodo_ddI I 1 I

_;Sg_dLd_;gd;dJd3IIII

....... o_

_OOOOOOOOOOOOOOO

lllllllllllllll

_2_gdg_ .......

........ ++

_g_g_g_dggdS_;Jg

00000

lllllllll

NI

?

LG_

=

o

_u 0

_JID P-

=w _mu.-J •

_u

_u_

I01

Page 111: N7 4- 33789

APPENDIX B

A

"1o

OOv

>xu.I_.1m

<I-.

cq

n-OI---orr

I>-_

<'E

D.'._

<Z

i:10¢.ruJ<

• ._• • .t • • ",• g ,_1,,:g,:,00 (_ ,_ ,,l" ,,-i ,4" _0i _

I ,- ._.=,__i,=..=,..,- ,. ®= = _,lo,o,o.i

;" = ®= o`o`!oo 0.-..-,.,-,°'!".,,-,,,,-,,i" " "i"4 " "P"" "" '-';

O0., N I.- 0 ¢o!wO m ,_!..t .-, .-4'_ .1" N=_t P- NI

I I'1 O` "O I'_'; _0 f" O`! 00 ¢e' ¢_ ¢'4 _ U"t J'_" " P"

z .i.• •...... I.. • ._._.;o o o o'o o olo o olo oo:o o ol

i,_l| ¢Oi ¢_.1 .,,-n r_T e40 N .,.._ o O O _:o i"- u_ ,"_ I",

01- ,"' ,0 o ,",ho '-' '-".io` _ mlr" o _ "i" "o r"_,_" ,_ ,,_ I',- I'.-rl-- ® m _ O, O, O` O O:Oi ,I • • , • o •; • • , , , •= •°°i

o,ooo;ooo oo oio..._,._- [O! i i

o _ _-_1_ _-_'1_ = = '__ _ o o ......UJ: , I I '

% _1_ r.- ot_ ¢o ,,rio ,0 o`o_ ¢o ,-.,!.4 h- o[

0 t

0 Gio` O` O_ ,,,_ ,_ r ,.-

ZhN I_',,_ _ mlo` ¢o 0{_ P- i_ii _ O, O` o,_ O" ,4"

i I _ _ O` r.,-/u". _ olr--z!t r.,- r-- ,.D ,,o _D _D _1_ _ =-qu". _ ar%l _ '4" at_ I

=1 °;°°°l°°°l°°°; °°°'°°°I

t_ 4.

_oo._oooogglgggiggg,

liP, 1 _.I" 4. ,<r I,,o o!

(_'- i,_;m t_, i.lrlll 'li" i_. %tJ

i I _ I '

.............. _-_:ig _:,-,a_.aD i_- Ira- f"- P-- ,_ I"" i"" r-:P.-

I _ ' i i Ii i ii

%,='_io_"d_'_.'_i_._'°I.• • ., . .:

t_

Ir

oc!,_ _ _,4.° =o',=o o`lo _̀ .-.:.''1 O_ .% 4. _ 4. 4. 4. i'_l rq "..t i'n i_I _ li'i i_i i_i J'[

r,--r.- i'--- I--:1--. r'.-

...... ......u. I

............ _ o o.o,.,

_. IT ,,t _-, u% .._ _'_ ,,0 ,,0 ,r,, ,.0 u-% _ ,.'%

I _ .-_ r_ .G .-_ e'% t'- .b (_ t'- _ _un "& "_ "-_ rr, ,_

<;

• • • • • • • • • • • •

wC_ I i I I

o3 J, ¢. ,'_ u_ L_ .4" 4. O` O, O"

u=L.i

I,L 0 !ll_l O` _

i.u_;

i

I--

i

,_l IVi

I I,l. ll_' •"el

u..._a, •7 c_

,,_ kJI -J •

u. Z,_

'%-1, _"

1.t

12., I,.- _a

102

Page 112: N7 4- 33789

APPENDIX B

Oq

n-OI-<1-00

I>-

X n,'_

X :E'2uJ :ED_1

<Z

ao

<

,,,'- " .,I., _ _,._ _-..... ..., • ,...,_"''i =i

u,J'_ e,,nUO-I_'xl N e%I0 N b- m _ ..,,,01_0,.: _ --q _0: O- 0,;1'1_'_O'_ 0,_ _ 0 ol@ ,

o4. .........i,_. _-0 "_ "_I _4 _'4 "I "_ _'_ _'4 P4 _'_

_oiI_- _i_ _ I_'i_ _ ._1"!_

_,¢, .4: ,.t ,¢ ,4" ,.t" ,¢ ,,t ! .t _}i" Io!ogg ...... "gOOOOOO!'3,

ur,je'_ u_,,,t ,"¢ eol_, e_ pfp-

_.,__ _,__.,I._._.,I.,eOu_ O• O OOIO Oi O!C_O 0 o , .i o • o o _

oio o o!o o cio,_o_o_ooooooo,ooo!oo °I _-, O_ O OOOOOOO_OOO_olo°ocoolcooo

ooooloooo

_/z .......... , z

,_o!odoiooooool_. o o

;? _ oioo o,o o olo o %0 o.C.,IC, o OIo

:_,_. I I I>:_ I :

i i i *

i

? _,_..0 ....... _'_'

i _..) o,,I _c, ,._ _, ,.q N aD N _ ,M_¢,j 0

u_,,_:_ • .,. • ._0 • o_o •

U N f"-_, Ch _ q- _!i".-0 ,"-'_ .,.I"

>_-I _ P- f" I" P-.'_ ,,2,_.,_

0,o do••••do

t'-_ _--0 _t N O _. _0 ,,0 ,4" rr_ r-,I ,.-0 ,.,_ ,-_

_ _'_'_o ° ° °.° ° °.°.°°._._• • . •._oo _3oo,,oooo

,u.

io

i*.-, i<,

Icoo,

i_- ,

ii- i

_,J _•

rq

103

Page 113: N7 4- 33789

APPENDIX B

R-0I-,<I-r_

.-o I4ha,- >-0r.j

XXLU--Inn

I-

A

n-._

Z)'-

r.Jt_m

<_Z>-aoG/LU<_

Ioo _o oooooo eel •

.,="1 ;... _o=.o, o _,.., _ _ i

,,.,i" _.-, .-,_., .-,_.,., ..,......o / I i I

., I I i !Uul _. _ O. o,_ N (',,_ 0 (M r.,-I a0 _,) • • ,,t O, _! 0 _0 ,-_i_-1%. -J ,OtO, _ N_ m ¢'_ ,-._ 00;_- r"- _i_o ,,,t"_1"

_ _ e_ • • e_ • • el • • • • • • • • el

0_'1 I | {

_]1 o o o o l,o o O o o o IO o o o o o

f "1 ° ° "_ ' ° ' " ° °' " " " ' ° ''O00CiO00000iO00000',

I _U 000 OJO 0000 C':O 00!00 Or'N LU • * • _ • • e' • • • • • e, • • *_

I _-OjOOOO0000 C_'O 0000 c"

i i

i _J 0',0 0 0 0 0 0!0 00IO 0 0'0 00'

,,,o o,_i " .

u.. i : !

• • • • • • ,, • e, • ,

u,,.

u-

o

i !o I I _ !

• "J* * ' • " "i "-- *le , .I, ,

Ldki I • • _ • • • I • • el • •, _I t'%l _"I _,,.,,I0 _ [ I:0 el • •

_Jl i i

I i

I I- _ , , I

i ! I !_n _ * • * * *1 ° • °: ° ° • • • ,, ° °

_'etl.-'-t'bi'<,.0 ,Gir.-q _0 ¢)tac 0 _ 0"10_ 0, _0f _ r- t_D

_,-_ _r _1"..- oO o0 o0 0 O O" O" O'ql@ o_ _Ir-- ,c,0!0 O" 0_0 O" _@ 0 0"0" 0 _ 0_@ O" 0 _ O" @a.a. * "I" • *: • " ° * • " • • "_" °

I O00000_OIO00CO000

_,_, o e e e ele e e • • e • • • • •

,,-_i_" 001000,000,0 001000iO 0

t,",'_.4"t..-._, i _o I_'r'"

._!,._,.; oo.o_o_oooooC31 O0000i_O000000(_

N _r_.-_ .,,I-o!_t _ ,,I"10` O" _,!_1"

N i °°"°°°i°°°°°°c°_!°°i

a_ i i , ]

o, .,t .,._ t_ _0 ',_ _<r _ N aD _'_ _ rM 0 _

> •._.•.!•. ,jJ_,,_11,;

i ; I I

ua_._ • • • • • • • • •....... o_,;,o,o C

I.)_ • e • •

" 2.? 7 7 7 _ .... _ "" =. ,, ,,,,,, _.0 oo__,

I

0..I-- i_)

ILL IN_ •

i

i '°i0,

i° I'-'!

:< L_ rm

u_u..,

,_ _ .

j.

uJ fr_

_wwu_

.._ a. m

u 2_ _ _J

104

Page 114: N7 4- 33789

APPENDIX C

u xX X

z --JuJ rt_,', <,<

oooo000

L • • •

)- 0000

• • o •

O0_N

0 (q *_l ¢NI

0 N I). I_*0 it- l0 ,el

g_g_

. . • .... ._ .. - .

0 III III I_ I_ ,'l N _II -0

,I I) I .4

• • • • I.L

1/14_Ifll_l l_ •e ¢l_I . • • I • • * • . . • •

_ $ .... o .... o,.,.., o. ,,,O0, O 41 O N N I O _"t O _1 :r O O ,0

;I* Ul lIl l"

g°I" N o._.o.__._.o.o._.=._._..:?.._.

In _ N

_===.,

zz_

t,,J bJ lU _V *,J *J

LLL L

%oE

$5 N I- Cl Oil 0_ Or.I-

• I • i * • o o I

...._ _:_-,, ..

:rN ,e mm---- --

011"0 *UlO0 • i * • • * 01"_;_ "_ ....... ..._...

Ul _1" e's 41 0 0 0 dl I_* Ir i_. m O. I_ ar Url

'_-- I_ • I-- • • I INII._I_-O I_111 ;Ip • *

ILl

_.mO •UIO0 • • • * * • •OW

,_ .-_---_-I_o:-

x

o

105

Page 115: N7 4- 33789

APPENDIX C

m

XxLU.--I

<I-

W r.t _l

O I-- 0D ¢l

I-- ,,< •

< ,,;LL "J

N

,.oz_ ,,:-

.j _,-, ,,. <W • e

Z _ 'c)

In

zw :r _)

_,_ Z: utt .o ix:

_tJ

(_ • I IILl

O '_[ ,,( .J

n-I- :,_

-,,jouJ(_9._1

OLLrr

<

00000000

m. • i t e

00000- 0000

tJn-o

ON

ON _t _t

O:r

o_ _..•4) ram

o• i._

e . • •

o_

O_ ,_

N N N N

r.J m a0 _J_

o dl ::r _'1

_J<9--

--I G. G. 0..

O_ L I. I.

I o IO • • e I • • o I • e e e

N

N _ _m

:ri0

_ I I 0 e e e I e _ e I _ e I I

• e 00 • e _ i . • e o _ • e•m N

o• •e e &_ i _ e e e I _ e e e o I

m

N

$

e,-

• • •Q . • • • • • • • • • e •

oo_.. ...... :-:- ..

_<

p v_ N

--_ °

_-®oo

N _ m

_-l;g

f- • • +_

oI

2_

.. --_: _._.. -.

: o•_o_._._. _._.: :_ _.

_ ®_o._:_oo ....... _

• e • • o • . r*

.. -*..:_.._-_ ..

:oOoO........• e • e . . •_r

o • o • • o , -0

_ o o e+o o_O

000_ om :r e-') =r :rtoo(3 • o • • • • •_un

w _r =r

! • • e ! I e o _ z

. .._" ... - . .... .

E

106

Page 116: N7 4- 33789

APPENDIX C

i

XXLU--IIZI<I--

nt'-

0I-0h-

I

of)ILl

<C1.1_O:

00

_1<

Z00

Z

00LUa

Z0>-n-I--LU

0ILl

-J

0LL

<

• o • o o

_" ooze@ ,; -- _- _• •. o o R o o o . _ oe . •

O ,0. • e •

lid i-I e,I

_"O QW • •

o • • .

5 gg.. ® oOOg__._2 _ ....

o

(#l

in 4[x _,,:r,

Z _ 01o .O ,n

_ :T T:T T

0

• • e O N_I :r

_ % ....01"_ ill :T

k P L. N NN N

oo = g_2

,J_Z _

oo-®_III --I_

IN :I" _,_ ,-I

2[

III:,, hl

.J .l )-

I_ llJ llJ Id

I,JW

L 0-II. L

• .. - ..... _-; ...._n -- • el--

• ue _ Is DD_

_1 -- D e t _

A

:B

O• O• ooO N_ _ -- (3(3 O• ,0

.... " " N'_" "£( "-_"

_'I-- ill lll.e

oo_#- _• O• •• • • • •

• _ ,_ • •_.OI-O.e.----iDe it " "

mT _lm _t O• N:r O _'0 m _N Ul

I/I p_l_ m T _1_ Lnh, NN N'I --lllh I N_I I'_ 1,11 _" ---- "II Ul r_ I_ Ill I/I l"lr_.

r"

-- i.l m m 0 _0 T 0

U'J o o• • • . o . o.-*... • • .

• .......

Ill N

m N

......0 0_ _

i _"_o

_ o

.9o

107

Page 117: N7 4- 33789

APPENDIX C

xxI,.U_1

<I-

O0 ooo000

eL • • o •

OOIO.,0.1 °

_ft _ dt_ g,_ 4p. dt_

• o * o

• ". 0.. P- t.

0 e,.. ° *,'t

0 _l ee eeQ e0 O,eo

0 wee• N

,O'4,O'.4

0 m 0 _'qOON_

0 ,ID _'_ :It

• • • .

gg_X

• e o •

tit J_ 4 4

0000

_ 0000oe*o

ZZZ

LL_

A

rr

U_

O_tOUll 0_o _

• . -.'._..-;...

NN_I

er _

• oOo •oe_eoo

O0 .UnooN:o_.4_

oo-.o=.=:•

oo°°o_ggg.'---

oo .,, o o_ = o,..,w _

• e 0 e • • • • v • •w t'4

NS_ O0 ql_ dl _ _NN

:_ oo o• _,.,.,o _• •Oo • 0_ • o

• m O0

• 000 • o400 • •

:._ oooo o2_0- o-

• O0 o •• • 0 e • • _ d • •

w" arm

C_

ae dl O0 _. _. I 0 <) _r ,-')

• * • P,. _n

e e • • • •

e-

r-

U.I

• • • • • (P. • •

w _r w N

O• • •_h * • *

• e 0 e • • • o • • • $ 0(_1 _ • o teeJ _ J_. • •

• e e * • e • e r-o_ • •

• • O • • 4) 0 • • • •q;" _ N

• o O • • e • • e • •

K %'o

• •O0 • oNOO • •

qr Uf0 .,0 _ N

,4) OOON_" O•.o .. 8 o°_._._.:. °

• o• • • •un sll _ • •

E

0 Uj LU,N

108

Page 118: N7 4- 33789

APPENDIX D

axm

zuJO.

<C

>XxLU--In_<CI-

n.-0I-0n-"

I(/)LU

C)<LL

n-

O')

Z ©

_ .-_I-- "

_ .9Z ,_-< .E

Z _0 u.

uJI---<Z

an"00

_.1

0

<

O0

00_ . .

_ _ o°go°o°o°o=o°oooooooo o°ooooo°°ggI I I • • II • •

"E ....... ¢

N __ __ -_ - _ - _ go ==-00 b_IW ,,(

"1:3; .J_- I

_, ,_ _ _,......... _,.¢ ......

E

0 , • ................... ;, ===ZZZ

-- 0000000 000 0000000000 00000 000000 01"10

_JN

------ _----01_I

• • • | •

t_ I/m U'. Z k_

Z ZZ_'_

Z

.YW._c

_ °°°°o0° .... oo• • • • • • m m

¢D

_)

u')

u,_ u'_ I/I I/I

gggo°gggg@go°°o° .... oo°o°oooogg_ggg _,_,_,l I I I ....

_ ¢# N >--

I,-0¢

A

e-

v

e" L

e-

109

Page 119: N7 4- 33789

APPENDIX D

A

t-O

C.)v

>

XXuJ._1

<CF-

rY-0

0rr

I

LIJ

0

<_LL

rr

U_

(3Z

rr

0

<LL

Z

<_

Z

0

t.u

<_Z

a

n-

O00

.J

0LL

nr

_o_-

e0o _w N

+ + o • o * - •

- _ o°o°o°o°g_ °ooo....... o oooo°ooo0oooooooooo°_=%°o°-- I I I I I I I •

._'_ _ gggggggg g go•o°•••••••••°•••••• _.,=_=w_,

]E =£ ',¢

tJ

.;._ ........ - ........ 5 ....... ;.. ..... _

o_NO

.... "_ I e • • • • +

a- .,o P.. (P --_1 N _ 0000

e _ °°°°°_°°°°°°°oo°o°o ....... o• ....... °oo°o . .......,_ MA

0000 0000000 _

I- I- ¢n _:

EE _ _J

¢_ • • • • . • • + + • • • • • • • e • _ _ + • + . • _ • • • • • • • •

r"-- • I I • I l I •

• o P_ P- -- ur,

E >" O O _ ° -- -- N N N P_ P) _1 ;:r ;;It" ,;1" ;=r _" ¢1_ _lrl _l'_ _ll_ ,_lrl ¢r :it ::r =f" P_ P'_ N N -- O O O ;,I,I ;,I,_ I_ --O

o

.;.. ........ 5 ........ : ........ -:.... _ _:_

llO

Page 120: N7 4- 33789

APPENDIX D

A

t-O

Ov

>

XXu.I_1nn,<I--

n-OI-On--

IO9UJ(D

<:LL.

n"

(.9

Z

Q:

O

LL

D

Z

<:

Z

OGOLU

I--<:Z

n-

O

OO

_J

OLL

lZ:

<(

r< ,_I -- -- r_l I_I :I-

U

m

v • I | II II | II I

:_ , , • ............. , , _:==== -. • e .. • . . . ..... • . • .

_ ZZZZ ZZ_

._ .,®_=,. _. _,_.,® =,.o,_ o_,_'__'2fE

................................... _N#_ _=

goOggooog o_oogoo_ In _" 000 00000 000000000000 00

v -- I-

;o.ooooooooooooooooooooooo oOoooooooooo r- .... W_O

AIn

t-- >-

(.1

E

v

C_

cLU

111

Page 121: N7 4- 33789

APPENDIX D

A

-o

o

v

>XxLU.--Inm.¢I--

n-Op-otr

I09LU0

U_rr

CO

£.9Z

n-

eD<u_

Z

Zo00LU

<Z

an-O0(D_J

ou_n-

A

r- _n

U

.--

=_

r-

II II • I II II il •

........ g_r_ .... g_gg--N ...............

e o • . . e . . ° * + o * * - • • o * * * • • - I II l

.................................... _. <

112

Page 122: N7 4- 33789

APPENDIX D

A

"o

0(J

>

XXLU.--I

rn

I-

n-

O

I-0rr

I

iii(J<LL

rr

O'J

(DZ

E:

l-_J

LL

Z

z0

uJ

l-

z

aIX::

00(J_J

0LL

E:

A

{D

v

E::3

A

U

E

01

E:

Lu

(=

(._

N

A

G,)

E:

m

5

O0 00000000

_:_00 OOeOODO00 ODO00 O00DO C) O00 000 0000 gO0 000 °

• e * * . o o

• I I I

_°o__ ....0ooo_'_ooooooo_£__

°o° _OO4

• • • uJ Ifl U a

.................... .

I I I I

I u I I i I u I

W W b_d_ W_C_

ZZ ZZ

&nO

bJ,_

................................... _,___ o_.._.=_

--0- :TO OCI 0,0

o°°==_°°o°_oooooo ooooo°°° oo°0°°ooooo

gggg{gggggggg°°{gggggggggggg_gXggg°o _,_:_:_,_-o

00000 0000 0000 O0 00001_000 O0 O0 O00_0 O0 I_0 _ ul_

113

Page 123: N7 4- 33789

APPENDI X D

A

t-Oov

>

XXLU._1nm

I-

n.-

OI-Orr"

I0_LU

LLrr

O9

(.9Z

rf"

I--O<LL

Z

ZO0OI.LII-

Z

r_n-OOO

_1

O

rr-

v

e-

in

Ur-

e" >.

5

N

Ur"

5

oooooooooooooooom m • • m II • II

:_ - _ ==i,- l.-uJWzz

I I I i

=oIv

== _._

®:o,-_

m m m i m m • •

zzzzzz_:

....... .... .....

_=r oooo=r

888 88_°=_8_ - =°_8°_°°8_oooooooo_oooooo oo • • • • • • • •

.... _ ...... = _,_ _ _ _ ............g gg gg gg gggg gx gg gg ggg gg gOOoooo°°oo°°gg g gg

I It !

____-'_

• II U • • m m im

5 ................. _ ....... g

| u _, , _zzz_z

........ ": ...... -: ........ . . J _ ., ._ __. i,,.i N _,- _i_ _iI: _ _

114

Page 124: N7 4- 33789

APPENDIX D

A

-oE:O

>XXLU.-IEl<I:I-

rr

0I--0n--

I

ILl_J

LL

Z

I-

<u_

Z

Zo

uJI-

Z

at'_o0

_J

oLI-

A

v

C'-

A

U¢-

v

_L

0_

u-i

a,)

v0--O-

N

A

O,) m

UE

N

_ - .;__-____ :___

_ooo=o_=OoO====_o======o=0%0=00===o =%0_ 00000==0?,==0%===I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I

I I I I

................ _ 0.0._.0. .............

,._ IN Url

_,_-_ ....OO Ol"

I I i

I i i i I = = I

° ........... ,,,.... ,,............ _ _,_?=o = ,.,,,= ,,,=,,, z == ,.,,.,= ,.,,,,=-oooooooo.................................. _,_ _ g_, °I l

, 0 ======_

.;.. ........ _........ . ..... ;... ......... =o o_ _ ,.=,.,.. =

¢1.._.,=®,_

;=. g _ "'; =.,°°...... ,,, =.,,,° .............. o ......... _;_,0= =%=o.0°-;; .... _;0° .......... ° ..=,. ,,,:, ?:;_0= ........oo o o o o o oo o o ooo o oooo oo o ooooo ooooo oooo oo oooooo oo

_G_O

W_d_

;.;..-:-.;., .;. .................... . .;.;. --- .....i = I I• i i i •

, 0 °, _,,_uu ....zz zz zz(_=

.;.. ................ . ....... _..._.. _° :-

115

Page 125: N7 4- 33789

APPENDIX D

A

EO

CDv

>xxIJJ._1nn<I-

v

'E

n"oI-0r_

I

< =u_

_ t- tO

rr U.l N

I-0<LL

Z<

Z

0 .-g,.if)

121 _"

0 N0 _

.J

0

e- m

< _-

C

LU uN

e e e . • • • •

_ ooo......o ooooogoooo_oo oooooo , .......O00 O0000

00 m_ m_ _ _ ,_ _----00 OO _ _

ggggggggg ooooggg °°g°o°gg°ggggg°°°gg.. oo.. • . . . . . . - • . . . ..°°° . . __ __ _ :_ mm -

I 8 l- ;-- _

000 0 0000 00 000°00_o0

_glo_oooo '_

000000 _

• I I I I II • •

O0 O0 O0 O0 C) O_........................................ T._

116

Page 126: N7 4- 33789

APPENDIX D

n-

OI-0n'-

IO9LLI(D,¢u_n-

o9

_Dz

,_, n-t-Oo I-

> ,¢

XX z

n_z

I- 0O9LLII-,¢Z

n-O00

._1

0u..n"

v°_

A

UC=

Iv

5o_

C:

N

A

CL_r

e"

°_L

I

e"

_ _ _ o_ _ _ _ _ _ _ o___o

g .......... OOoO .... ooo oooooooo oooo oooo oo oo

_oo_ oT_ooooooooooo __ _oo_

NO00000

• i un o I | i •

oo_, ___

• • • Je l, n i io

.... gg_ggg.ozz z zzz_:

o ooooooo oo ooooo oo oooooooooooooooooooooo oooooooooooo ooooooo

oo _o

• m | • • I | i

oo_ ......... : ---oooo....... _:oo ooooooo _o o oo oo _o o _ _k,a_

$ tI*.. i,- i¢, .:if:

oooooo..... ooo....... o...... oooooo o..... ..

I In • • in n

......................................_UN>-

117

Page 127: N7 4- 33789

APPENDIX D

A

t-o_)v

>

XxuJ_Jnn

O_

v

f-

£/)u

_N

n-

O

0n-

I "_O)

LU

u.n- c-

O0

uJ

mr

G)

ii

Z

Z

0 _

UJ 0_

Z .--

a _

0 _0

_J

0U. _

U _"

C a.

C

e o o o o o o • o o o o _ o _ o o o io • oo o o • o e _ o _ . o • • I I N I | I •

m m _____o_o°o°o oo°°o_oooooo _ _

.................................. ___ -_

==_==ooooo=_. - ..... .=

000000 O0

I |

O0 O0 fll (_ _1_ -- _1" _ _ _ '_ N_ _ _1_ _ _ ____ _[_,_ 0 -- _r N_'_O_ _ _ NI_

• Im | Im m I _ •

o_ ..........

ZZZZZ Z_,I_

_ oooooo0ooooOOOO...........ooooooo_o__o_o_o_o_oooooooOOoo_I I I I I I I I I I I I I I I I I I I I I I I I I I I _ I I I I I I

""° ...... ° .......... °"®"_'_':'-_-o°-o_-_-oo.oo,_._,-,,-, o._

I I e l l

ooo° ............oooo o_ ooo oo_oo__ __o oI l I, I l I l I I I I l l I I I I l l I I I I l I I I I I I l I I I

_0 _N_

O0 0_-

OO_oO_oo.... o._

• l l • l I I I

l I l N I N l I

..... __ _ _,='°

( u .,.I I*-

118

Page 128: N7 4- 33789

APPENDIX D

A

E0£D

v

>

XXiiii

I-

n-

OI-0rr

IOr)LU¢.)

u_n-

O0

CDZ

n'-

I-

LL

Z

Z0£/)LUI-,¢Z

r_n-O0£.)

_1

0LLn'-

A

Q,)

r"

I e I e o o o l o e e o o e • e o I o o e I e e . e e o I e e I e o

I I I I | I I I ! I

o___o::____::::__::.__ ::::__. ..................... ..::. ::.

o_

I I I i I I I I I I o I I I I I I o I I I I I _

v I I • • • I I II

f- 00000 0 O000o O0 O0 0000000000000 _ _j--

.................................. =g_==g-I I I I ! I I I I | _ eO

"_ ZZZZZZ_O£

. • o _ o e . o _ e e * o . • e o . e 6o o . e o . o o e e o e • • _ --I,.I 0_

mul

or,.

_o,_ o ooooo,--,0000

_ _" 00 0 00000 00 0000_ 00 00 000 00 000 000 0000

119

Page 129: N7 4- 33789

APPENDIX D

A

-or'-O

C)

_>XxI.IJ._1n_<_I--

n,-o

o0c

I

LIJO<_LLrrD

(3Z

0:

O

u_

Z

Zoo0LIJ

Z

g_0Coo(D.J

oLL0C

°=.9°.99999999°9°.999°.99°°99999°.9999 9

C

D

,_ gg°oggg°ggg_gg°ggggggggggggggggg_g gi I I I I I I

O0 0¢300 00000000 00----

N_

_- oooooooo oooo _- _,

-- _ n • II • • • •

00 o(_ 0 O0 O0 0(_0o O0 O0 O0 O0 O0 00000000 O0 0 WW w_ W_.I -- 0

.................................. __ -._ :ZZ ZZZZO_ ul <:)

. • • . . 0... ...• . . .. .....•.-•.. e-. °- • --_ _

_:_-_'_._

t"

......... 22222"'' ...................

120

Page 130: N7 4- 33789

APPENDIX D

"O

r"O

(Jv

>XXW.Jrn

I-

n-OI-Orr

ItDLUO<u..n.-

D

(.9Z

rrDI--(D<u_D

Z

ZO

LUI-

Z

an-

OO(D._1

5u_rr"

_®_

..... ......_o=o ....•- oo°ooo oooooooo oOoOo000 0000 O0 00

e a u e o o o o o e o • _ o • o . o o o o .o o o o _ e o o .o $ I • • • • • • • •

_ ooooo°°°°°xOOOooooooo.... _o oo _ _,_o.-- • • • . • • . e • • o • . e I • . • • o _ e. • • _ o _ . • .0 . _ ]E ]E]EI:_ _ ea:

(m O l O I O l 8 j I l O I l l m I I I j j I 8 l l l 8 l .... W _,1_0

A

r

A

t.J

w

_r_

._ _oNo o ooooo_000000

000 O0 000000000 0000 O0 0 O0000000 O0000

• •••••••••••gig °_°oooooooo° gg_Oooo .... _-_00000 0_0000000 000000 000 000 OOO _0 (DO0

. e . e e _ e • . . e • . • . e . • • e • • e . • . _ e . .................. I i i I _

0 O0 O0 O000 O0000 000000 (_ O0000 000 O0 _ _............................... .:.=- _o

.... =_:

.... WWQO

• _ • • _ • • • e _ . .-- • I o _ • e • • e • • • _ • • . _ • • . -- m

....ooooo°g g gggOOoo ......••••••••°°gig ......._ __

............................, ....... }_}). ........... ;,; == .

121

Page 131: N7 4- 33789

APPENDIX D

A

t-O

CDv

>xXLU,-Jrn,¢I-

rt-oI--Ort"

IOr)I.LI(D

LLG:D00

¢DZ

DI--(.D

LI_DZ

ZO¢DLLII-

Z

n.-

00

_J

o

e-

N

e-U

t--"

e- ).

LU

oo ........................... o_,_gg _,

! ! ! ! ! O g ! ! | ! I ! t 8 l I ! m i | 8 l.J_._u v _._J (:_zzzz zzol'_

i/1o

• ° • • . • e _ • e e • • . • e • • . • • • • • • • _ e . . _ (Z..l,.l

®®:r_r_

r_ _no :r N_

0- 0 dlo

o• ........ o oooo o_o_ooo°°° "......... o_..... _ " " ".0000 CJ 0000 0e _ °"g°° g gggoooOooOo go•e • o• o . • • • • • _ . • • • . e oe e.o•o _ • e • • • o • • to• • • • • •

v O000C) O 000 0000C30000C_ _

000000 O_JO 000c3000000 WwW 1/11/I_ g gg og• -- | | 8 | | _ J | 8 | | | | | m | J 8 | m ii 8 8 it O $ .... Lt_Ji6.1 _r 0

("- i_1..111.1[

0000 _

A

(-- • e • •e 0 • e • _ e e • • • • * O e e e • • • * _ • • e O • • e •

-_ ...... o.... o.... oooooo .... ooooooooo __-oI l l I l I I I l l I I l I I l l I l I O I l t l I l,j l,J _J l,.J t,,,_l=_ II:_ZZZZZZO_

122

Page 132: N7 4- 33789

APPENDIX D

A

"O

O(Jv

XXuJ._1

I-

n-OI-0n-

IoOILl

LLn-

O0

Z

n-

I-C_

LL

Z

Z

000ILlI-

z

r_n-

O0rj

_1

0LLn-

e _ o°_ oo°° oo°°o oo_ooooo o%Oo0oo° °o. o _ . . . . . o . . .....o o......., e . . . . o . .

e-

N

_ O0000

I I ! I I I I i I I I I | I e .... I_lld 000

............. o._._._.o._................ _}_ +.,.._

®,.._

--._ ooN_

: oo°°_o_ ........_ _++_+_oo -_ ............ oo _oOoOOOOOo ....... oooo000 00000 00000

.--(- I I ! I I I I I I I I I I I I I ! .... _I_,I (_0

,o

N O0 DO0000 O0 00000 000000 00000 0000 .... 00_ _ _ <=:

123

Page 133: N7 4- 33789

APPENDIX D

>XXmmm

0I-

I-O0

IGOLUrj

U_EEDO9

Z

E:

I-o

u_

Z

Z

00")W

I-

xI

r_n-

O

00

._I

0I.I..rrI

ii iI II ii II _I II II

..... "" n_ _ ..... = '", c• 4 4 4 .4 &(J , lJ

• i • e • ! I e • i • • • • • • • • I ° m e • • I I • * • • • m e I _E_I_ _

0m _)'1 ,'1 ,4H _,1''_

Q: (JN >- _ _I: X

q_

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • = • • • •

_-- l I I I

,4_ u_ CJ 0 Cl r'_

• • • • • • • ,

II II I) II II II ,l II

(m c'l 111 t, cz c_

_- n_

--_ LJ_

,_gX .....

c_ _4 _ cn cn

I

ii ii ii ii ii ii ii II

I_I 0 -- •

_ 1 tl _1 _1 _)_/,I 4,4 4 4_1l'1_4'_ lClllrl(4 rlCl'lJ"l'_el_ '4rt 4_1_1 I 11 'l _Jrl _)JlJ )I I

I / I I t>(JlJ_u_.) *_

......... . ....... ..r_'_ l.J N '),- 01: I_I: X (__

124

Page 134: N7 4- 33789

APPENDIX D

A

4,a

t-O

(Jv

>xXiiii_n

T--

n,O

Io0LU(D

U_rrD

(DZ

rrDI--(D

u_DZ

Zo

LU

Z

oo

_J

oii

A >-

v Q.>.

e-

D

N

A

U

C

"E _.D

5

e-

e-

D

cnr- >.

e-

O'1

E

II,o,,,i

II II II tl II II II II

.... q_

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

i-- p- (.4 "_

i i i i i I ! I I I ! I i I i i i I i I i I i i ! i I i I i I t ! !i I I I

.... . . • • . ._._j_._,_._._._j._

il II II II tl II II II

_;..... .d

L) UU

ff'lO_

(_ U N )- E QE X(.._

I I I I

125

Page 135: N7 4- 33789

APPENDIX D

A

"O,I--i

t-O

o

>XXi,,..J

nm

,¢F-

C£:

0I-

I-0')

IO0iii{J

iirr

cO

z

rY-

I-(J

ii

z

z0

iiiI-

z

an-

O0(J._1

0LLrr

¢.

l:: c_

LU N

(D

v

o_

E

f-

LU

ii II il II ii $I iI II

OO{3 NI_ ,._

ZZ _ZZO

,-+ ,++,_ ,.+,_ ,.+ ,-+,_+,_ ,_+,-+ ,-+,-+ ,-+" ,.+t_ _'__:ElJ(J J_-- IiI

t J l.llJ IJ,+l _,_

Z_ _ZZ _"

o _

126

Page 136: N7 4- 33789

APPENDIX D

A

O

v

>XXmmm-J

r_

<I--

n-

O

I-<I-

I

u.J

<LJ_rrZ)O0

Z

rr

I--

<u_

Z

<

Z0Or)U.JI-<Z

00

.J

g

A L1

a)

v

I--

£)N

A

I--Iv

.-)

r" _

_ N

0--C

e- >_

"E _

III N

OO Q ,-,4 N

00000_ N_NNNNN _M _NNNNN_O Oo

II i I

ooooo o oooaooaooooooooooo_o_o_oo

_1 _N _.._ _ _J o w_NO00 O0 _• • , • • • , •

ii LI II II II ii tl II

W td L_I _CI"

IE _ _ fig _ £1: _

_'3n Cl _ IJ

Cl 0 hJ tJ '_ _

iI ii II II II ,I II ii

...... : J

in

H _ .J X:

vI Ld U,J ,_Z

I I i • • •

tl II 11 _I II II iI ]I

('1 _ (_1 txl t/)t4 ZI._I

_ 0 1/I ¢/I U._ _ u "_ ._1 _-_

127

Page 137: N7 4- 33789

APPENDIX D

A

.--o¢.-O

(.3

>XXmmm._I

en

n"

oI-

1-03

IrJ3u.i¢J

LLnr"

Or)

Zi

rr

0

LL

Z<

ZoU3ILlI-<ZI

an-

o0

._1

6u_

0

"E

¢-m

e" >.

5

c _

L,1

A _

v _.I

E

N

A

(J

e"u

e-

W uN

O000000_O0000000_O00000000QO00_

ii 01

O00000000oO000_oOOO00000000

/

OO ooO_ _N NNN NNNN NN N N NN NN _ _ O_O O _N_

II II II fl II II It II

Z ZZ ZZZe E

m o H_N_m_m m omm

............ _a__._ _N _===_X_

O00_O_O_O0_O00_O0000'_OOOOO_o0_O

• ml•••• _ ==========================

I I II

r_

,-4 ,._ =- L30_0

eqo (.3 (3 _r

II II I# II II 11 It II

.... ";'%

I--- I,- o-, I,-- _ _=p

o 1,1 ,,1 lJ IJ

128

Page 138: N7 4- 33789

APPENDIX D

A

"0

E0

>XXLU.Jnn

OS

O

O3

Io0uJ(_)

IJ-

n"

00

(9Z

12:

I--(_)

IJ..

z

Z

Oo0i,i

Z

r_rr

OO()

-I

OI.I.n

• Qlmlilie•olll Iol,ioo,_,,l,_ll,_,

O0 0 _H_H NNNNN NNNNNNN_ _ O_OOQ

II I I

O000OOOOOOOOOOOO_OOOOOOOOOOOOOOOOO

p. 00N

000000

• * • * * * , *

II II II II II II II II

.... q.

bJ _J Ld _ (nvl

_----_ bJbl O

_-- i-. I_ :£

.. II II II II II II II FI

--J

I I • " • • • " * I I ooO

• I. • • • • • H_.j.J...... . . j__. • . • • j__ _o__ =

A

e-

S

r"

LLI

N _" m 0 m ,-4 ,-.t

*I II II II iI II rl II

_- o_ ,-I _j ,') N CON co _ N _- N u_ _- ¢0 _ _o u_ _'_ _0 m. _0

I I " • l* I

• 0

Z;_Z " ol

129

Page 139: N7 4- 33789

APPENDIX [

A

"10

E0o

>XXLU

_n

n-

OI-,<I-oO

IoOu.I0

inn,-

oO

Z

n-

I-o

LL

Z,<

Z

0O0uJI-<7

n--

00o_1

0nln-"

<

v

ED

A

E

D

I

f-

f-

L_

N

O)

E

.n N

tn _- _. ooo

Ln_e_ L-J CO _

! °°;°oo._ c_ooooooo __'_'m_*_mNNH°°°oooooooooooooooooooo .......000

o.o.o. o.oo.oooooo ....... ooooo ...... oooo* • • • • • • * • • • • • • • • • • • • • • • • • • • • • II II H II II II I II

OOOOOOOOOOOOOOOOO 0o

00o0° o_o ooooo ...... o_ o_ o* * * . * * ,* * * * * • * • • • * * . * * * • • * * * * • • * * * • ,_

bJ bJ t_l _--n-

_ Ld bJ v_ tn =C C_

uJi _

O_J-J O_

:£ u (J .J I,--

_ON

OOOOO_HNNNNN_NNNNNNN__O_OOO _N_

II II II II II II II II

II II () 0

N _X_

OO O O _.-I ,_4 _"@ N N N N N N N N N N N N "4 H _-_ "-_ {3) O I0

O {30 O L-_OQJ O 13 _1} _..} O O £30 _3 O Q U r.j O O o I--

Q* • • • • . * , , • • • * , • • • • • . • • * • * * • • * • • • • IE

I I I *

_oo_ oooooO_oooooooooOoOo oooooooo

q.

_ -..,.-.' _

130

Page 140: N7 4- 33789

APPENDIX D

A

'1o

¢-O¢.)

>XX

LU

m

<

n-

O

<

oO

IO0IJJ0<I.Lrr

O3

(.9ZI

rr

rO<LL

Z

Z0O3ILl

<ZI

rmnr00

._1I

0I.I-n'-i

1--

@

C"Iv

'E

5o--I

1-

oo N ,-i rj ,_I

II II II II +I II II II

"I c,,l--I m .:I"o_

, • ..... , , ----_==_ -

LJC) ,.-_m_rm in i_u) w LU l_l_lul ..-l-;:r r-_ ,-I,-I(,.30 , • . • . • , .

i I I I i I i I t I i I ! I I I I ! ! I I I ! i I I I I I I I I I ! II II II II II II II ii

13l

Page 141: N7 4- 33789

APPENDIX D

A

"10"+.,c:O

O

>XXLU.J

03

rr

0I-

I-rJ3

IO014.10

LLrr"

O0

ZI

rr

I.-0

LL

Z

Z000LLII-<_ZI

an-O00

_1

0LL

(.1

>.,A

v _

.I

e"

N

e"

o_

¢,-

)-

P

v _

._

e-

N

A

.lI

OQO_0000 O0 0 Q_O00 O0 00000o

oooo_ooo_........ ..... _ ._._._ ....

I,leoo,_i*,lloll)lQoli,_,o,,_e,,,i

II I I

..... o .................. 55555_ ....O00000 (._(__ 000 _ 0000 O0 O0 C) 0 _0 00(0_

::::::::::::::::::::::::::::::::::

• ) I • • ) = • • • • • • • • • ) ) ) = • • • • • • • • • • • • •

I I I I

_ul N

_1 II )l II II II II II

w_

H 0¢: "J _

N (_h Nl] I'_)

(__ .at U_ ),_ _'- r'-- .:)"

_0 N ,') • ao

.4 ,=4

II II il II II )l iI II

_l )j t,l ,l ij )4 _b'_

_ ....

H @1: ..j _J _z:

_ O ,-i e-_ N ),_) U) s._ _0 r'- f,,-r -- r'-

O00 [_ 0 _.,) _-( _4 N N N N I_1 _)'lI'_ NON i_ N N N )--I_'-I )-,I_--I E] 1.1 {.I

l i )

• • • • • . • • • • • . • • • • * • • • • • • • • • • • • • • • . •

r_ ,_

• • , • • • • ,

II )I l) II II II II II

bl _J LLJ _ _

wwv_ LILJ

i. k,l _

Q o_ _") ,4 r,. f-.- cn

• • , • • • • • • • • • • • • • • • • • • • • • • • • • • o • • • • , ,--i

li ii ii II II iI ii II

, ' ,I 4,4 -4 ¢ 4 -4 +_I 4 ,-I _4 ,4 -¢ _ 3

.............. ,'', _,o,_===55_.4 ,4 _ . . .

...... ........ , ....... _= t J d r.4 ,._4 _l e= .......................... J _ @_[¢

132

Page 142: N7 4- 33789

APPENDIX D

A

"O

c:Oov

>XXLU.J

_n

<

n-

O

I--

I-O3

IO3LLIO<I.Ln"

00

zI

n--

o,<LL

Z

ZOG0ILlI-

Zi

an,-

OO¢O

_1i

O1.1_r_

v

o--

I

09

c-o

C

"E

w

A _

v

0--

I-

DI

A

@= _.0

e"

v

D

C

"_N

LO N ,'_ N

N N N N R M _ _ R _ Pl P'@ R M _') R (_ _ N N N _ _-_ O O _ Ooooo._.. ............................ _,., • "" "j

• I, • , • • , , , , • , e • , • , • • * , • • • , e • e • . • . • , I_DE:ZI

>= 0_ (z: X ¢__

Ln Q

II II II II II II *l II

,, , , 555555 F_

H

133

Page 143: N7 4- 33789

APPENDIX D

u

>XX

Jnn

oq

n-

OI-On,-

I¢.DLLIO

LLn-

00

¢DZ

tr"

l-eD,¢LL

Z

ZO(./3UJI-,<Z

E3n'-OOo_1

OLLnr"

e-

N

A

e- _"

t"

v

.__ Q-

A _

e-

t_ _-.I 0 0 o QO

I.'_ N t_ l. m N {D

I I

• _._

• el=eeee

I_N _01 UIO _ U_ iE N (D r.j

o,_ o.o _o _ ooo,:,o• o,o .......I !

¢:,ooo (:,o o o =_oo=• • • • • = • • • • •

oN us0s_ _ o =. ,... =. =l = o_ --N .;,;_oo, . , - .... 3": ........... _'=_ e • e • • e e • e • • e • ee e • • = • •

-.,; . ~N3 ; .....O

=;,=.= ,.;.; .... ,=,= ,. ,.. _= =,,,/

_NNNO0

IIIilll

II II II II II II II II

_N le_

-20 oII II II II II II II II

H i_l a H I..._ N

oo ==5 , =-,

-,_ w

¢-

¢-

LLI uN

• e0=06 elel =0

• • • eeel= 0=e

II

• • • • • • II II II II II II II li

, • , • , • , • , ._ ,_ _

,,=eeeee • el

: ....... _=_

e • l • • e l • l el el le e • e_

• _ ....... _ . . ._

II

.= .... =-,,, =g

N W In a_ l.O

j-. ...... =

II II II II II II II II

UUU_UU e_:_

134

Page 144: N7 4- 33789

APPENDIX D

A

"O-+.,c-O

¢O

>XXuJ..J

nn.

<_F-

CN

n-

OI-0n.-

I(./3ILl¢0,<LLn"

rJ3

Z

I--

,<LL:DZ,<

Z

0

uJI-,<Z

0o(.)

_J

0ii

A

= = ° 0,., _ =o=,,, ,-,,- = = _,° ° = ,-,o °

_;__ ,,,,,,,,,,,,,,,,

OooOoOo _e

N

II

°_ _

_ _a _O_a_

....................-.--- -- _ ZZ

mNN N

.....=.==......_ _'....° _ ....... _-I1 I| II II II II I| II

__,_ _===== _U_UUU i0

Z_ZZZ_

¢,

vO.

N

_==o_==.... =_==-:.._=. ..... ==:=--°-.-_

It

U

C"

r _

_._-==. =,,°-= .......• I • _ e _ e • o • o o

I I

=,=. 9

I I

N a NN a N N _ R I_'_ I$'1

_ON

11 II II II II II II 11

N

II II II II II II II II

W WW _ #_l W v'_ 0

_ ¢._ 0 ¢.t U t.t $0

_m •

135

Page 145: N7 4- 33789

APPENDIX D

A

-oc-O

CO

>XX,,i_Jnn

F-

rr

oI-on,-

IoO

,<

n--

oo

z

I--

:DZ

ZoO3LUI-<_ZI

a

rr

oo0

._I

6u_

r-

N

U

u.I

A

v _

e-

A

e- _.

ue"

.m

c _W

O_

..... .

$IeieI • iiiei eeee

N_

_1 II It ,I II li I, II

I I e

N

.................... _4__4_= _="= _I _ 00_

Illlll_ll IIlI II IIIIII

-- i

99_99 °°°°°° ielIeesl $1elil _WI_

• = • • i • • = • • • • •

II tl II II II II II II

. , , _=o_I UU OU

4J4JZJ •.................... J Z_d_d_ _=_a

136

Page 146: N7 4- 33789

APPENDIX D

A

-O

t-O

Ov

xXw,_Io0<_I-

c_

n-OI-0rr

Iu_LU0<_LLrf"

O0

ZI

n-

I-0<I.L

Z<

Z000LLJI-.<ZI

an-

o00

_.1

0LLrrI

<_

_ ul *..,m N m Jr

_oar P_5 I,D C._ o

(..1un

.°9. . . ....°°°°9°.999°.9°.99°.9.... .... 9_.9 ..... ,,,,,,,,,,,

°.9 °° _° 999 °°°0_°°_Z: C.) N _ .j @,,- ]< t_

U_ U_

-.- , _;',',", . 9_, _. _-"I

v II II II Ii l# lI II II

.............. 9 _ _:_.":._. ._-.ooooo w,.,• • • • • • t" =C-r'_ :K:2[: w

t I I I U_UU t¢_

ONN0_

• , • , • , o oI I t O • • • • III I I I I Ii

e • • e t • • • t e • • • • i • • • • • •

.................... • 9 .9 . _. _ o°0_75_: U N )- ,J I'; X (.-_

_9 o .... - o. _ . _ ......, • • r_

v II II II II II II It II

....... .: ,_ ,,_,_ _,_,_N~ _

,I

INN01 o

_J_

.................... _4__ _'_'_,_._n._ ::c f.J ¢-_ w w I

137

Page 147: N7 4- 33789

APPENDIX D

A

(.-o

0

m

>XXLU.-Inn

I-

(_1tr0I-0rr"

I

ILl(.)

Itrr

0')

Z

rr"

I--0

LL

Z

ZOu_ILlI-<Z

a

oo0.-I

0LL.rr

<

A

:Ev

r"

Ng °°°° N_N °° °° °°°°°°"°

t.,- t-, _ _:6JW _L_

O_ N 1,-- ,.I _,- X ¢-_

D N I_I O_ mO

OIN'I a} Oh I_lllwIBIli,,ll,0 i_ |l,,, .... U) ll)O_l NI"- Nlfl ......

-- II II il II II II 1l it

;,' .............................. .. ; g_=====o.,...o-

,,,....................._.__._.___-__--_ ----_. =_.o_.._L) N _ _1 _-'-

e"

NI,_ m

m w CJ c_ o f-l_

9°9999. 999999 °9 °o0 .. • . .99 oo.. • .°. ,.....,,,.......

........... 99 _. 9 a° ""=:,-_ ,o:_,.. _-- 69 "-mr

m._J W _

..... 9 9 _. _ ,<OC u N ),- ..J I-, X f_

° o999.-::::-::_.:.;:°:_:°.:--._=.., . . . . ... 9 _......f-

:::) , , ..................... 9 _"

: i .....= B 8 °_;- ®.o .... . ........'" "_': ' " _": ........... ,¢_,_',,:_,.:,¢_'_,X,,:*_=o_'_

+I II

lO

Mm

138

Page 148: N7 4- 33789

APPENDIX D

A

"o

(-o

¢J

>XXLU.--I03<I-

E:OI-Orr

i(/)LU¢J

iirr

(./3

C..9Z

E:

I-(J

LL

Z,¢

ZO09iiiI-.¢ZI

a

n--

OO(D

._I

0LL

n"I

A

¢:

¢--

U

n

¢--

E

LLI

V_

v =>

C:

uN

m _ m¢n cn {n er_ ol In a) _ _

• • • • o • • i i • • u o • o • • • • • • • •

uo-_ o = = " " _,_ ,,,,,,°'= ...... =,,.._ .... _g_....=o oo

_._==°°°°_._=_°°°°°°°_°°_..oooo.... .. ooooooo......... o=..I I

..... _._ ........

A

0,)

_J

¢-.

_3

¢-uJ

.... : ._,=o====:=,=,,_NO C_I_I O_ _Wa NN NI_I mm_ mm _=_ m_l I_m N NN _ _0 O0

• • • • • = _l e • • • • • el • = • • • • i • • • • • • • • • = • •

_ : ; _; ;_ ;,8 o=_°"=; ='==.='" _,: g=_ "_- _=-3 ,.,,:, =" " = ; --_" _=_=

==.__::;o=_=.=o......o.oo-_-.-...........--_-:___""--.....-.:.._o.oo....;.;.__I I

.................... -- N= _ ¢_ _1 _ N I_l ¢_ _ _ _ _ _11_ I

....°.......°......"i_,_ ooooo_,ooo_,:,o _ro. O':'OO• • • • • • • • • • • • • = • • • • • •

I I I I

_ m r_ _I_U_ m _lr _ C_ NU1U__m _0 m

N

.............. -. . _._..-: _.

_==,=_=,.,=_,,,_'.=..._o=_-_==_',,,,. ",-;=_

o I o t

_a

o=o==

I ,I I II I II I II

II It II II II II II II

ZZ_ZZ

r,_M H HHH

N_N_NN_U

..... g_;_: .....

II II II II II II II II

u_ _U U_ o_ZZZZZe_

_H_HH_O

N_X_

139

Page 149: N7 4- 33789

APPENDIX D

A

"1o

r"O

¢Jv

>xxuJ.Jnn

F-

n-

O

I-0n.-

I

uJ¢J

I.Ln'-

Z

n_

I--(.),<LL

Z

Zo

uJI-

Z

E3rro00

_1

5LL

::) = _ .,,== ;000000_ 000 00_0000 00000

.................................. Ig_-_,.J

A _

e"

¢-

Ue"

e"

r

U.I

o°o0ooo _ _ o=o_oNN N

.... _g

.. i======.U

OoOo=eee==e==_ oOoO.... _ ...... _ ,_. .=oo_

...__.,..._---_o_.... .

II I

• • • • • • • • • • • • • I • • • • • • • • • • • • • e • • • • • •

eo 01 uf) u_ N _ O _

II II II II II II II II

"r :3: _: _: :Z: :_:uU UU U_.) l_

_ZZZZZ

====_'=,.=,_ =.,.,,.,,=_ U N _,- ..d I-- )¢ ¢.3

140

Page 150: N7 4- 33789

APPENDIX D

A

-oc-O

O

I

>xxInn._Irrt

I--

rr

0I-on..-

I00LU

LLn"

O0

L9Z

U,.

Z,<

Z

o0'3ILlI-<_Z

an"

o0

._1I

0u_rr"I

A

E

|11

• • • I i • • • • • I i • • • e

_J{_ N NN N wl

W_J WW _1_

.c ,- o. o. oo. • • .-- _. ......... oooO0 ey_

I tu II

===== ..... -==go ..... o= _=,,,= g_ =° _-,"=_ :

I I I U_

HM

........... "'" ...... Z4Z_'ZZ44_ _4444 "=_g

• • • I 0 •

II II II II II li

t4 _p3 _VI Z WWI._ WW 1"40

_-r "n" z ,_

UU UU i_

8-41,4 _0

=,.....I I,,,, ='¢ (._

A u_

_Ev

o_

r"

uN

t- W

(-.

('- ,,_

r"

w_

_QWNNN N

• • • • • • • • • • • • • • • • • • e II II II II II II II II

.... _gm

_N=O°O00o=O0=O O00OO= N_ _._----=.

i _ _ _ _'_ =_ •_

........ =.....-......... =..... o =_nrw

oooo- ........ __._._. _._...-_;-,o o.=o :,,,_II II II II II II II II

O0000_00000000000000000 O0 O000000 O0 I_._ W _.1 t_l W W H O

I' iI II ............................ ,' II / __ --

NNN _ &nl_

'_UUW

141

Page 151: N7 4- 33789

APPENDIX D

A

EO

(Jv

I

>XxLU.J

rn

n-

OE-

0rr

Io_uJ(D

LL

rr

D_O

(DZ

E-D

(J

ii

Z

Z

o0OuJF-

<i

ru

n-

O

0(J

_J

0ii

rr

<

e-

• • .... _._._._._._. .... . ._. . _._.°_°o....I I I I I I I t I I

_ _N NN N NN NN

II II II II II II II II

=J_ :ZW

H H HN H H _ 0

m

I I I I

_

E

i I i I

_ _=_°....... .........

........ . ........., _'_,'_

llil_lltll_llli_Qoliiilll

IIIII

NN _N N N N_ ! I

II II II II

II II II II II II II II

...... -d

142

Page 152: N7 4- 33789

APPENDIX D

A

.-'ot-O

O

>XXIJJ.Jm

h-

CN

n-

OI-0n-.

I

ILl(J<u.n'-

Or)

(.9Z

n-

O<u_

Z

<

Z

0oOILlI-<Z

n-O00

J

0LI.tr

<

Q_

_99999999A

NN_QQ _

ooooooo_9_999_IIIII

C

I

NN NN I$l I$11_1 lel 141R _:1

999999_.999. 99

99_9 _ _'_;

000000U

IIIIt

IM

O

.................... ' Z_ 4_ Z

OO

9°9°9_..9.•

oooooo

N i_ N N O

• 1N m m, e0 e0 _'I

II II II II II #I II II

_9 ; :; g==,:==,.,,.,,.,_,.

A

999999999

_ 0_0000_0

me ime•

• -- I ! I IE

A

_ o ......

°_ N _ _

°I

N 00_

• e • • • • $

9999_99999999999

oooooooooo _8°9

eeI ••mice •

0000_00000

e_eo_

5 55 ..... :°9=9"°"_1 c'] f.3l O O

°. 9 9 ¢_e _ 9 9 9 9 II ..... ; II .... 11

U N _,,..J I.-, _

II II II II II II II II

" ..................... ,'t,,', 5==,_g_, = -• 0

........ -----'---.4Z4_'Z4444444"4 _o=N_:,_I',mr "t'u uww i 9(

143

Page 153: N7 4- 33789

APPENDIX D

A

4--1

i-O

(Jv

i

xxLU

nn

('N

n-

OI--oI:E

I

LU(J.¢iirr

Or)

(.9Z

F-0

ii

Z

Zo

I---

Z

II00

_J

0u.

A _

e-

_ uN

A

U

¢-

.l

W

I-

N

A

U

E

e-

o oooooIilill iil_li • iI

o°ooI I I I I I I I I I I I

°°°° _ R ..

Iiiii !111 Iiiii

• ....

..................., _" _'4

°o°o°°.........'ii:i_ooo_gN_...., • ......... ,,,

II II II II II II II II

• e • • e • • :E:E_:E:E:EI I I L_UUOU° iO

01: ° N 1,- .1

00_

N_m

.. _. ..._ . ....... _ ....... __ . . ,.,,,,,,

000 00 00000_00

i i ! I i i I I i i ! i i i i ! i I i I I i I _ _ _ E _ _ ! _

IIllllI III --_--e_eO

0 o _N _

00_0 000000000 0000

O_N i_ _°O--NN_NN

_o_oooo ...........I I I i i i i i i I i -- i i I i I

fill•If

_0

IIIltl

_N O_ N_,_I,fl N _'1 ii _

_Oo

_M

0000 _*'_ N

II II II II II II II II

_N_._

_ W W I,-,I 0

, ,, _=====.._H H _-_ H _1 0

144

Page 154: N7 4- 33789

APPENDIX D

A

"o

c-O

v

XXI1.1._1

,<I--

n-OI-0¢v-

IO0uJL)

LLrv"

¢./3

ZI

n'-

L)<CLL

i

<C

Z

0O3LUI--

Z

an-

Oo

_J

oLLnr

<C

r-

nOrtOn ---- ml N N NN N N N _ °'1_

• e • • • • o e • • e • * • • e • • • • • • • o • • • • • • •

_ _.....ooo.... =_, ....... °- -. °.-.°oo°°°OON;;;; ;N _ °°°°°°°°°°_0 _g oo°o°°°o

0000 0 0000000000000

?_ ,_._._,=._._.7_°.=._,=.._._.=._.=.=.='_._'=._'_,, , , , , ,

# - ,.._ ; _=.== ..... ,,,_ _ =.,"000000• R 99 9_,_,_.9_ ...... . 9 9_.9_ ,0

N N =r _n_ m• N_ UlU_ _I _

99°,908

00000 ¢_0 000

o. 0000000000000

I° I l I I I I I I I I I• I,I

E

_ '_ ° '_ _'o. =,..0000.... 9 _,

°.99 .........._.9 °.9 9_.9

NN_ _ _ N N I,"1 I"_ N N0000Oo; _ - o -,,, ,,,0 00000 _)0 _)0 000

000000 00000000 0000 000

99oo, _oo9ooooo9o9oo o_oI I I I I I I I

='=_;=0==;_==_=;;"°"=="-"999 ° oooo00 .- oo°....... 9°.9 . . •

r- _n

I

oIf- 0.

==

=.®,,,; ..,_ = ==_ - _ ,, ,,,_o-_ .... ====.-OoOoOO

-!!"!;ii!!'";; o°; ,', ,,"

.,= =.=_"_• • • • i • • • = •,,.ee • •

•.-- =,', ,,,"-,=° = = o.,=.;_-._._.. ____.__._._._._._..

0000000 O0 0_-=_

000 O0ooooooo0o0°_ o°°°°°0.,.., ........... ;,.;

°°§_.9,

II II II II II II II II

II II li II II II II II

_J_

0 I eli

......II II II II II II II II

t._.l0 6g W I-,,_

I.- i,=, f=- i., _ _ W _

6J I,=1 _ U

; ==_-

II II II II II It il II

...... _d

_° _

145

Page 155: N7 4- 33789

APPENDIX D

A

"0

c0

(Jv

I

>XXuJ

nn

((

_y

n-

OI-0rr"

IoOLLI

LI_

O0

CoZI

I-¢.)<LL

Z

Z0

LLII.-

Z

00

.JI

O

e-

_ uN

A

e"I

c _

C U

ILl N

a.

e"

N

e"i

0I

,i

iii

°.99o.°.°°°°9°....

OO OOOOOO

i I i 0 • • i i

IIIIIIIIIII

OOO

°°°_ff_ff_ff...

I ? I I

_N

NN _,_ _.l

o

9 ° _. _. _.9 9 9 _.9 _.9 _.9 ° ° _.° ° ° _ _ ° ,.....• • • • • • • iJ II li _1 il

_ _J--OOOOOOO _.-P= p-

_J_J bJ_Jo0 9 o o o o o o o o o 9 o.o.o.o.o.o._.}9 o" _o• • • • • • • • • • • • IC2E IE2E_ i_:

LaW _

:.-o .... ==_V• 00000

_: U N >_ ._I I--

II II II Jl IJ II II II

- O0 O0

_.o.o. . .o.o. .... o.a .o..o. _ = .

• ,_t ]I: (J t._ w W

_ (J N >- ..I _-

.....

........ .....o °_ooooooo. o ooooo _.9 _.,'.,';,',,'.,', ;,;;,',',':-'" ----:;.'. ;

us_ l.

j.- .... ;

II II II II II II II II

_

_-4M

0 bJ_l

HO_=J..J

146

Page 156: N7 4- 33789

APPENDIX D

A

"o

EO

¢Jv

>XXLU--In't<

CN

n-OI--On,-

IO3U.IO<I.I-rr"D00

Z

n'-DI-¢.)<I.I,.

Z<

ZOo0u.II-<Z

an-

OO¢.)

.,_1

01.1,.

<

A

°--

A

U

E

E

0'_ U

E N

UJ

_-- - _ -_ _.,.,_ _ =; ." =,,, =====,,.;__ ,., ~ _ "_".,N _._

.... ....I I I I I

DO=0=EiOD_•• • • • • • llllllllll

mNOm _ ElU =J= • •

II Jl II II il II II II

147

Page 157: N7 4- 33789

APPENDIX D

>XX

LIJ.--IO3<I-

tx"0I-<I-

IU3iii

<ii

D

Z

DI-"tJ<ii

.--e,-

D

t""U

,t-

t,-

D

LLI

Z<

ZO(./'jiiiI-<Z

tm

oo(..)._1

Oii

<

i ++ "++iC) O000, O 0¢_0 O000, C)

ooooo++++.... +++++°o++_++°°°++• • • **

i

_oo ......• . ___I

_,+,.'.,+oo+++r+,+l,,l ,_I.N ua

.+o,.i...o+..+.,+, ooi .*""m N.-'*.-+..'*O_O_ * • • o_ •

0100, OC) O_(_O00g• • • • • • • • • • II II II II II

I I I + + + + l,.ul I._i

o_moO m_ _0 -- + U.J ,,,C

0"I ._IP co ,-¢ N

I'_ _I N tel I"I

';;;;

I

...... + +.+:+.,,,,,--¢,L'I,,"400 • • • •

......... "+_ =.o=o.o g,4• • • • • • • • • • • • • • • * • •

II il II II II II II II

m_._'+,++',+..._++_-N+-+'+'.... °mm+mmm+'m+m+',_m,..• • . .......... • . • . • .... .._=:-,. =:= -

..+ i..+ +,_ _.._i .+,¢ _,i

A

U

e"

D

,II

,,, ,_

_+.+.+.o-.-'--_..+o.............. _. ....II II II II II II II II

_ r,4 It+l O'_ m ,-¢ I"'1 _ ,m" I_ O _,10'1 I_ .11' O'1 ,,-I p.,, LO m N

8°_ 0° ,_ +-4N N (qN

,.:.......................::...• I I I I

o+.+.o__.+.o_...:._..,.,,,+.... .,+2_2._2+,o+,+,+,+,• • . . . • . .... • ...... • _[+-4 .-4 ,'_ ,-4 ,-4,-4,-4,-4,'4,-4

' _ _ _ _. ,_F," ,.<+

148

Page 158: N7 4- 33789

APPENDIX D

A

"o

¢-O

O

>xxLU-J

nn

F-

CN

rr

0I-

I-oO

I

ILl0

i,n"

O0

Z

r,-

I-

Ll-

Z

ZooOILlI-

Z

¢-r

oO

_J

0u_

OOOOOO

.--el=e=e =e* lee • • elee

I I l I I I l I I

==_==_;=#_®=;=;=

• • • • • • o e • • • o • e • = • •

I

A

• • e • =

_ N_ OOOONN

,_

oeeeeee_o

I I I I

I

=e l= eeeeee= • _ee=

_N _ _ N _

000000000_00 O_ °°°°o_o_

_ _N m N_ _

00000

_ 00000 N

, _;_ • .5

0000_ O_

................. Ie !" i= i_ "

;==_=,_,_","='°o®

II II II II II II II Jl

_ N_X_

=;=_°O="eee=eeee

II II II JJ II II II lJ

...... =g

_ _Y

N_X

II II II II II II I1 II

01/I 69UJW

_ _ O CJ ..I t,--_,_,..==" _

0_ u} OO

II II II II II IJ It tl

¢,..) f,_ •

zz=

]49

Page 159: N7 4- 33789

APPENDIX D

A

"o

{.-O¢Jv

Ii

>XXLU

nn

<,

c'q

rr

0I-

I-(/)

I(/)uJ(J.¢iirr

09

(DZI

rr

t-(J

ii

Z<

:70{nUJI-

ZI

r_n-O0(J

_1

6i1rr

°°°°°.........°°°°°° :i:i'i::

g 8 o°°°°'''' _==':'''_ ==_ ....... "-00000.......................... =,,,,_

,-_ _ N ,.11"O _...I o'_ ul ,-* ul,,, _==.=.,===;g .... =_;;_ ..... =,., ,.,O0 O1 ¢0 _¢

¢: ...... --,,, ,, ......II II II II II II I| II

I I I UUUU

.-- _11_ I,.,l H i._ H I_l O

O _ N i,n G' _ *-_ ,l.

000 N lit

• • • • • • e • o ° • e • • • •

{J N ).- _

A

(-

N_O

OOO

_g, . . _ . _.. _._ ,,,,,,,,,,,,,,,,

_0000 _

m°OOO

-- ,.,0=.,-.. =_; .... o_===_=,-.=_.,N...... :_=',., =mmw

NNm_N°OO O°

• l • • • • • l • l • • * • * • • • ,'4

E II II II II il II II It

=to _to _ _¢ _ olr- N r4 ul r.-

_.- ('-)(2 0 0 0 ,:l 0 (_ ,_ ,:) ,; .... .-I .-4., .-_ (I0 ,I_0 W,=bJ+4 _, I ' , II ...... Ie II I Ie UUU °(._ °=

= .... 0't "4 NN =U') ..... NN; _cn .--.

L_

.... ..............

150

Page 160: N7 4- 33789

APPENDIX D

"IO

EO¢.)v

>XX

uJ..J

nn

<p-

£N

rr

0I.-<I-03

I03I.)J

<U-rr

o0

z

n"

I-tO<u_

Z<

Z

O03uJI--<Z

n-

OO£..>

_,.I

Oiin-

<

CO

r

A

CO _A¢" >,.t.)

E

"E

03

C,,, _,

CO

).

t"

"_ [Yl

t..,1

C_

v

C

=_.

IJJ

OO D _1

9_.9 _. _.

,.,o o 8 8°.9 .=, _._.

I I I I I t

OQ Iv )

O00Q_

!

00 t-t ,,4 _

• ;;,'; ;,.

._,_I

o

_0000

OLEO00 0

I I I l I I

9•.•.goo•.•.. • _oooo_o.......o.o..o.o. ,,,,,.....,,,,,,

• ..°._.°_°°°..........._ 0.o.,.9,,'," ----_.,_'_'_=_'._)-= I-- VI

W bJ £.)..... _ .... =...

0 ,-I 00 I_

0 • • • • • •

II II II II II II II II

.................... I I¢ / I¢ ' g "v':3: 3: "v" :z:L)(_ L) t_(J ._::_"

O0 0 O0 _ _-.I

0000000

0000000

!

.... _.-o_ ..... o_._ , .9999_u_ _ _l" N _"_ _,=l _"'l 00 •

oo.o. o. .. 9 o. . ,,,,,,.....,,,,,

t/1

"11" Iin '_li N I1 I11 N O_ III Ii I'-'l I'll _li

0_0100 0000 000_ 00 0 00_ 0 OOC_O O0

,Y:e-y

N ,',,I 00

II II li II iI II li II

• lOll;g; ................... le i• te le • g(_g_ rmljcj ,L_--

o• o o o o.,_,,,_. ®,...N ,,.... ® ®_,.._,.,. _=: _'(• • • • • • • e • • • I • • • • • I • • • • • • • • * • I-4

151

Page 161: N7 4- 33789

APPENDIX D

A

"1o-+.,EO

v

>xXLU

nn

n-

O

I

(D

LL01ZDO3

Z

01Z

I--(D<

Dg<

ZOO3

Z

a

OC

o0CJ

.J

ou_

E

C

E

w

o--

E

A

t-

Oi

v

C

LU

o000

0o000_ 00o0o000000_000_0000 0O0

? o...... _ _._ .......I I I I I ! I I I

0_00 _OQO0 _NNN

00000 00000

I

mm_

o_o_ _ ...........• • _ _ _ _• . ._ .. __

0_ _2000

li / illl IIII

.... . ..............._._._._

00_00_0_00 _ _0_00000°00_0_000 _ _O_O_O000

I I I I I I I I t I

NN=_ _ _

......... _ .......I

O0

_eee*ellee_leeleeele_lleeeeeeel

O0 0 O_O00H t==l N _I'-N_

';, _', ,'; ..... _.._....... o...; ;; ;.

_O

°ooo_=_=.=;g ;;:=;g;=3_=_=====•. ............. "_a=_=_=_:_I

RO0 O0 N

a_00 _,i 00 N

II II II II II II II II

I,_J L_I L,J L_I t_ LJ

¢._ ¢,,J, t,,) ¢,,_ ¢,,,) ¢=,t e_:_

_===_o =_ ,..,,.,

_ N,..N 3a= .-_ .=r

II II II II II II II II

_ ::I_U U ,.1 I--

jj ..... j

II II II II II II II II

(.._ U U U L) (J) iI::_

152

Page 162: N7 4- 33789

APPENDIX D

A

0r_v

>Xxmmmm

e_

rr

0I--,<I-

I

uJ0,<LLI:E

Z

rr

I--(J

ii

Z,<

Z0

iiiI--,<Z

arro0_J

._1

Bii

,<

A _

e-

A

U _

¢-D

°_

e-

N

P

v _°_

r-

A

e-mV

5

dNR_R_ORORNeNN_R_Ne_Rd_RRNNd

OO

0_000_

I

OO_OOO_OOO_NNNNNNNN_OOO_OO_Oeeee=eeeeelleI=eeeelle=le=eeIee

...... • ,...,...,__=__I

i I i|l I

= ==.===:_;#_#

I

. ...... .

; ; ; .....................,,,

• • el I I t i _ • I I i I • = • • I to • • • • •

,i,i,i,i,i,i,i,i

__,_

eeeoelee

II I# II II II li II II

UUU e_

_Z_ZZ_H

e0egN

_ ¢_ M'_ ¢_ _"_ t,,_ _,,,,,_ N

":',9o. 9999 9

II II II II II II II II

IA t/_ 1.4 _/I

_ Qg egg

II II II II II II II II

-gI_& _4 LJ tJ _

I

153

Page 163: N7 4- 33789

APPENDIX D

A

c-O

>XXuJ_Jrn

<_

c'q

rr

0I-

I-

I

LU

LLn**

Or)

Z

I-0<LI_

Z

Z000ILlI-

Z

r_

00(P

_1

0iinr*

A

°_

r-" _.U

•-- a.

ILl N

A

C

A

U

w

O0000000_O_N__Nd_OgOOOO_OO

_ __ __°°°°,..,•oooo__....... ooooooooooooooooooo___oooo....... •._.. ,,,,._ _

I

0

00000 0 ,_ _ L_ O_ _ f_ _r Ln U_ er _D O 0

c..1 _ _i _L.i E] _.l 0 ,:_ L1 _ ¢] ,-.4 _-,I -4 ,-4 _'¢ ,-.t .-4 .-¢ c"J ¢..,10 ¢;) ,2 =] C3 =:_ ,..1 _'J L11

':)';')', .................... ;;;,.'

===_=;;8_= ....._===;=-;;=; .... .=;=_=

!

• **eee*=* • • •

_ .... ooo_ooooooo_o_o_oooooooooooo___ _ oooo• , ,°, °,,,, ..... °°_I I I I I I I I I

I

eeeeoole=eoe=eoioeooeeeooeelloe

_0

• ._ ,. ............ _.I

l'-u_<:,..,_0; =,;= o=; _ _ ='=° ; __,.. =,.. = ..,,,,,.,...... = _=;_ ;; <_=_

"_"=_>""" 2.12

N__N

_t0eeei_

II II II II II II II II

II II il II tl II II il

tdtd _ Id t_ _

===55_,°

O00N

II II II II II II II II

¢1: I.I

N =_l_i ' " N

II II II II II II II II

i/_ I/I I/I vI I'+1 b*l _L_J L_I IJ LJ II l_l ,.

ZZZZZZ

.( ;i; U Ll ,.11,.- I =l

154

Page 164: N7 4- 33789

APPENDIX D

"0

E0C)

m

>xxILlJrn

t_

n-

OI-<I--0"3

Io'3ILl(.3

LLrr"

U')

coZI

n_

C)

u_

Z<

Zo03LUI-

Z

n-

ooC)

...1I

ou.n-I

<

C"

Em

D

m

uJ

a)

0_e-

I

A

¢-

u

e-

,II

w

...........Iiiii I I

!

• ;:;[[ .................... [[[[.

• • • • e I e

ooo°;; ''='_'_'==o= ..... _....=oo0o;; °'_o===° °o=o _=o=o=o=00_°=o=

°o=o;; ..............

I

o .... _;_; .... = ==.===o.=

:=.=.=._.o.=._.

II II II II II II II II

_g

_NO0

Ioieoeel

II II II II II II II II

_N_

II II It II li II I! II

01 r_ _. O_ 0 00_ P_

=.=.= _.= =,_,_.

II li II II II II II II

H g= ..i ..,I _1_

155

Page 165: N7 4- 33789

APPENDIX D

A

00

>xXuJ.J

nn

<

g_ooo000 000000_ _ O0

eeee6e •

gSooo0_000

_, ° == ° =e = • =, ° • ,° =

_ _OO_NN_eee=eeee6eeee_eee

c

_ '_t_ ...........

_ c g _oooo _== ...... =• • • • • • • 0 • • oo

0

. ooo°O°O°g _

o _ °°°°°_ _ _I

lille • leoee

_ s

"_i; ...........

e • mime el oil emil elJ

oO

.... oo _oooo0 0000

I I I

= ; _Z ==

__N_O0

_NN_O000000000

On

.........., _"

00000_

I I l l

m

¢,Dl_,r,.r.,.i,-i,.r..

0000000

• • • e • • • • • • •

I I II II II II I II

= == =_,=,-=0i.. i,.= t/i "r"

b.I -- (J

'_=_'-'=x

II II II II II II II II

...... ";jtd IJ t_J L_ t,J LJ __

_o .,Yoot/I

64l ._o _0

0 r'- e_J

•0.i:.i •II II II I I II I II

_,n oo

II II *I Jl II II II II

Id I.I td W H

_5_ ,7,

_0 l,dgl

156

Page 166: N7 4- 33789

APPENDIX E

APPENDIX E

TWO-RING ACOUSTIC INLET AERODYNAMIC AND ACOUSTIC DESIGN

An acoustic inlet design was studied in addition to the translating center-body finally cho-

seri. A schematic of this additional design, a two-ring configuration, is shown in Figure 71.

Mach number distributions are included on the O.D. wall and splitter surfaces. Although

the inlet flow is not choked, the blockage of the rings was estimated to be about 3 percent

of the area. Boundary layer shape factors on all surfaces were well below the separationcriterion of 2.2 to 2.5.

For acoustic purposes, the rings, the extended centerbody, and the inner and outer walls

were all treated with various combinations of honeycomb and facing sheet. These acoustic

treatment parameters are listed in Table XXVIII. An effective-treatment-length to passage-

height of about six was achieved for the two outer passages and about four for the inner

passage. Treatment was tuned to the predicted inlet fan noise spectrum to maximize the

PNL reduction at approach. The inlet attenuation target and predicted treatment attenua-

tion are shown in Figure 72. The attenuation target represents a PNL reduction of 15PNdB at the peak inlet noise angle.

TABLE XXVlll

TWO-RING ACOUSTIC INLET TREATMENT PARAMETERS

TREATMENT BACKING

LENGTH DEPTH

METERS (INCHES) METERS (INCHES)FACING SHEET

% OPEN AREA

HONEYCOMB

CELL SIZE

METERS (INCHES)

Outer Wall 0.61 (24) o.o13 (0.5) 12 0.0095 (3/8)

Outer Ring 0.43 (17) 0.006/0.006 (0.25/0.25) 12/9 0.0095 (3/8)

Inner Ring 0.38 (15) 0.006/0.006 (0.25/0.25) 9/6 0.0095 (3/8)

Centerbody 0.30 (12) o.o13 (0.5) 0.0095 (3/8)

157

Page 167: N7 4- 33789

APPENDIX E

NOIIV007 ¢,_3903 _)NIOV37

1OOEI 3NO EIOIOH

I

OCO

I Id

I I

A

0._JLL

I Id d03

S3HONII ICO ¢D

SH3131N'H313WVlEI

I

d

I IO

O

o,"

7

d

00

o,"

E

r,/3

.2

o

<

6

°,..i

158

Page 168: N7 4- 33789

APPENDI X E

26

A(N=E_J

00I,LIZ>-

NOOo.o

iJiJQ:

o3"o

oI--

ZuJI--I-<,-Iw

ul.J

uln,-

w

aZ

0

241

22

20

18

16

14

12

10

8

6

0

4

APPROACH TARGET, APNL = 15d8

','----- PREDICTED ATTENUATION

IIIII

II

!P

I

/I

/I

III!

p

/l

/%

I

%\

/

, FREQUENCY HZ I i200 460 ' l800 1600 3200 6400

!

8 10 12 14 16 18 20 22

ONE-THIRD OCTAVE BAND NUMBER

\

%

24

Figure 72 Two-Ring Acoustic Inlet Predicted Attenuation

159

Page 169: N7 4- 33789

REFERENCES

. Brines, G. L.: "Studies for Determining the Optimum Propulsion System Characteris-

tics for Use in a Long Range Transport Aircraft," NASA CR-120950, PWA-4449, July1972

2, Keenan, M. J. and Burdsall, E. A.: "High-Loading Low-Speed Fan Study - V Final

Report," NASA CR-121148, PWA-4517, April 1973

, Rugged, R. S. and Benser, W. A.: "Performance of a Highly Loaded Two-Stage Axial

Flow Fan," NASA Technical Note (to be published)

4. Messenger, H. E. and Kennedy, E. E.: "Two-Stage Fan - I Aerodynamic and Mech-

anical Design," NASA CR-120859, PWA-4148, January 1972

o Harley, K. G.; Odegard, P.A.; and Burdsall, E. A.: "High-Loading Low-Speed Fan Study -

IV Data and Performance with Redesign Stator and Including a Rotor Tip Casing Treat-

ment," NASA CR-120866, PWA-4326, July 1972

6. Monsarrat, N. T., Keenan, M. J.; and Tramm, P. C.: "High-Loading Low-Speed FanStudy - I Design," NASA CR-72536, PWA-3535, July 1969

7. Keenan, M. H. and Bartok, J. A: "Experimental Evaluation of Transonic Stators -

Final Report," NASA CR-72298, PWA-3470, 1969

8. Tyler, J. M. and Sofrin, T.G.: "Axial Flow Compressor Noise Studies," SAE Trans.Vol. 70, pp. 309 - 322, 1962

9. Rice, E.J.: "Performance of Suppressors for a Full Scale Fan for Turbofan Engines,"

NASA TMX-52941, 1971

161

Page 170: N7 4- 33789
Page 171: N7 4- 33789

DISTRIBUTION LIST

lo NASA-Lewis Research Center

21OOO Brookpark Road

Cleveland 3 Ohio 44135Attention:

Report Control OfficeTechnical Utilization Office

Library

Fluid System Components Div.Compressor Branch

Director of AeronauticsR. S. RuggeriM. J. Hartmann

W. A. Benser

D. M. Sandercock

L. J. HerrigT. F. Gelder

C. L. Ball

L. Reid

L. W. SchopenC. L.Meyer

MS 5-5

MS 3-19

MS 60-3

MS 5-3

MS 5-9

MS 3-5MS 5-9

MS 5-9

MS 5-9

MS 5-9MS 501-4MS 5-9

MS 5-9

MS 5-9MS 500-206

MS 60-4

i!2i5I111i!11111

W. L. Beede MS 5-30, W, Drier MS 21-4

E. E. Bailey MS 5-9

N. T. Musial MS 500-311

o NASA Scientific and Technical Information FacilityP. O. Box 33

College Park_ Maryland 20740

Attention: Acquisitions Branch IO

o NASA Headquarters

Washington_ D. C. 20546

Attention: N. F. Rekos (RLC)

163

Page 172: N7 4- 33789

DISTRIBUTION LIST (Cont'd)

o U. S. Army Aviation Material Laboratory

Fort Eustis_ Virginia 23604

Attention: John White

e Headquarters

Wright-Patterson AFB_ Ohio 45433Attention: A. J. Wennerstrom ARL/LF

S. Kobelak_ AFAPL/TBP

R. P. Carmichael_ASD/XRHP

o Department of the Navy

Naval Air Systems Command

Propulsion Division_ AIR 536

Washington_ Do C. 20360

D Department of Navy

Bureau of Ships

Washington_ D. C. 20360

Attention: G. L. Graves

Q NASA-Langley Research Center

Technical Library

Hampton_ Virginia 23365

Attention! Mark R. Nichols

John V. Becker

1 The Boeing Company

Commercial Airplane Group

P. O. Box 3707

Seattlej Washington 98124

Attention: G. J. Schott_ G-84103 MS 73-24

164

Page 173: N7 4- 33789

DISTRIBUTION LIST (Cont'd)

10. Douglas Aircraft Company

3855 Lakewood Boulevard

Long Beach_ California 90801Attention: J. E. Merriman

Technical Information Ctr. CI-250

II. Pratt & Whitney Aircraft

Florida Research & Development Center

P. O. Box 2691

West Palm Beach_ Florida 33402

Attention: J. Brent

H. D. Stetson

W. R. AlleyR. E. Davis

R. W. Rockenbach

B. A. Jones

J. A. Fl igg

12. Pratt & Whitney Aircraft

400 Main Street

East Hartford_ ConnecticutAttention: R. E. Palatine

T. G. Slaiby

H. V. Marman

M. J. Keenan

B. B. Smyth

A. A. Mikolajczak

Library (UARL)

W. M. Foley (UARL)

06108

13. Allison Division_ GMC

Department 8894_ Plant 8

P. O. Box 894

Indianapolis_ indiana 46206

Attention: J. N. Barney U-26

G. E. Holbrook T-22

J. A. Korn T-26

R. F. Alverson U-28

Library S-5A. MedlOck U-28

P. Tramm U-23

165

Page 174: N7 4- 33789

DISTRIBUTION LIST (Cont'd)

14. Northern Research and Engineering

219 Vassar Street

Cambridge, Massachusetts 02139Attention: K. GInwa la

15. General Electric Company

Flight Propulsion Division

Cincinnati 3 Ohio 45215Attention: D. Prince H-79

J. F. Klapproth H-42J. W. McBride H-44

L. H. Smith H-50

J. B. Taylor J-168Technical Information CTR. N-32

Marlen Miller H-50

C. C. Koch H-79

16. General Electric CompanylO00 Western Avenue

Lynn, Massachusetts Ol910Attention: D. P. Edkins- Bldg. 2-40

F. F. Ehrich- Bldg. 2-40

L. H. King -Bldg. 2-40

R. E. Neitzel-Bldg. 2-40

Dr. C. W. Smith- Library

Bldg. 2-40M

17. Curtiss-Wright Corporation

Wright Aeronautical

Wood-Ridge_ New Jersey 07075Attention: S. Lombardo

G. Provenzale

166

Page 175: N7 4- 33789

DISTRIBUTION LIST (Cont'd)

18. AiResearch Manufacturing Company

402 South 36th Street

Phoenixj Arizona 85034

Attention: Robert O. Bullock

W. F. WatermanJack Erwin

Don SeylerJack Switzer

G. L. Perrone

19.

20.

AiResearch Manufacturing Company

2525 West 190th Street

Torrance_ California 90509Attention: _.. Kobayashi

Bob Ca rmody

LibraryR. Jackson

Union Carbide Corporation

Nuclear Division

Oak Ridge Gaseous Diffusion PlantP. O. Box "P"

Oak Ridge_ Tennessee 37830

Attention: R. G. Jordan

D. W. Burton_ K-1001j K-25

21. Avco Corporation

Lycoming Division

550 South Main Street

Stratford_ Connecticut 06497

Attention: Clause W. Bolton

22. Teledyne CAE

1330 Laskey Road

Toledo_ Ohio 43601

Attention: Eli H. Benstein

Howard C. Walch

167

Page 176: N7 4- 33789

DISTRIBUTION LIST (Cont'd)

23. Solar

San Diego_ CaliforniaAttention: P. A. Pitt

J. Watkins

92112

24. Goodyear Atomic CorporationBox 628Piketon, Ohio 45661Attention: C. 0. Langebrake 2

25. Iowa State University of Science & Tech.

Ames_ Iowa 50010Attention: Professor George K. Serovy

Dept. of Mechanical Engineering

26. Hamilton Standard Division of United

Aircraft Corporation

Windsor Locks_ Connecticut 06096Attention: Mr. Carl Rohrbach

Head of Aerodynamics and

Hydrodynamics

27. Westinghouse Electric CorporationSmall Steam and Gas Turbine Engineering B-4

Lester Branch

P. O. Box 9175

Philadelphia_ Pennsylvania 19113Attention: Mr. S. M. DeCorso

28. Williams Research Corporation

P. O. Box 95

Walled Lake_ Michigan 48088

Attention: J. Richard Joy

Supervisor_ Analytical Section

168

Page 177: N7 4- 33789

DISTRIBUTION LIST (Cont'd)

29. Lockheed Missile and Space CompanyP. O. Box 879

Mountain View_ California 94040

Attention: Technical Library

30. Eaton Research Center

26201 Northwestern Highway

Southfield_ Michigan 48076ATTN: Librarian

31. Chrysler CorporationResearch Office

Dept. 9000P. O. Box Ill8

Detroit_ Michigan 48231

Attention: James Furlong (4]8-19-40)

Ronald Pampreen (418-38-31)

32. Elliott Company

Jeannette_ Pennsylvania 15644

Attention: J. Rodger Schields

Director-Engineering

33. California Institute of Technology

Pasadena_ California 91109ATTN: Prof. Duncan Rannie

169

Page 178: N7 4- 33789

DISTRIBUTION LIST (Cont'd)

34. Massachusetts Institute of Technology

Cambridg% Massachusetts 02139Attention: Dr. J. L. Kerrebrock

35. Caterpillar Tractor Company

Peoria_ Illinois 61601

Attention: J. Wiggins

36. Penn State University

Department of Aerospace Engineering

233 Hammond Building

University Park_ Pennsylvania 16802

Attention: Prof. B. Lakshminarayana

37. Texas A&M University

Department of Mechanical Engineering

College Station_ Texas 77843

Attention: Dr. Meherwan P. Boyce P.E.

170