53
27301 MicrostructureProper-es Tensors and Anisotropy, Part 2 Profs. A. D. Rolle<, M. De Graef Microstructure Properties Processing Performance Last modified: 15 th Nov. ‘15

Microstructure*Proper-es.pajarito.materials.cmu.edu/rollett/27301/L9-Tensor-Aniso-Props-part_… · obtained’justas’for’any’rotaon’matrix.’’Physically,’rotang’the’crystal,’or’permuDng’the’labels’applied’to’its’axes’

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Microstructure*Proper-es.pajarito.materials.cmu.edu/rollett/27301/L9-Tensor-Aniso-Props-part_… · obtained’justas’for’any’rotaon’matrix.’’Physically,’rotang’the’crystal,’or’permuDng’the’labels’applied’to’its’axes’

27-­‐301  Microstructure-­‐Proper-es  

Tensors  and  Anisotropy,  Part  2  Profs.  A.  D.  Rolle<,  M.  De  Graef  

Microstructure Properties

Processing Performance

Last modified: 15th Nov. ‘15

Page 2: Microstructure*Proper-es.pajarito.materials.cmu.edu/rollett/27301/L9-Tensor-Aniso-Props-part_… · obtained’justas’for’any’rotaon’matrix.’’Physically,’rotang’the’crystal,’or’permuDng’the’labels’applied’to’its’axes’

2

Objective

•  The  objecDve  of  this  lecture  is  to  explain  the  meaning  of  analy%cal  material  proper%es  and  how  to  describe  their  anisotropy.  

• We  show  how  to  account  for  the  effect  of  crystal  symmetry  on  (tensor)  material  properDes.  

• We  moDvate  the  study  of  anisotropic  properDes  with  examples  of  applicaDons.  

Please acknowledge Carnegie Mellon in any public use of these slides

Page 3: Microstructure*Proper-es.pajarito.materials.cmu.edu/rollett/27301/L9-Tensor-Aniso-Props-part_… · obtained’justas’for’any’rotaon’matrix.’’Physically,’rotang’the’crystal,’or’permuDng’the’labels’applied’to’its’axes’

Questions & Answers 1.  What  is  the  definiDon  of  the  piezoelectric  effect?    What  is  an  example  of  a  piezoelectric  device?    Why  does  the  

existence  of  the  piezoelectric  effect  depend  on  having  ionic  bonding?    How  is  the  piezoelectric  effect  related  to  an  absence  of  a  center  of  symmetry  in  the  crystal?  Piezoelectric  effect  is  defined  by  the  relaDonship  between  strain  and  the  electric  field.  Example  =  ultrasonic  transducer.  Ionic  bonding  required  in  the  sense  that  the  atoms  must  have  net  charge.    Moving  one  (charged)  atom  with  respect  to  others  so  that  there  is  a  net  electric  displacement  (and  associated  strain)  breaks  any  possible  center  of  symmetry  for  the  crystal.  

2.  What  is  Neumann’s  Principle?    What  does  a  crystal  symmetry  operator  do,  mathemaDcally?  How  do  we  write  a  symmetry  operator  as  a  transformaDon  matrix?    In  other  words,  why  is  it  that  the  new  (transformed)  version  of  a  property  matrix  must  be  the  same  as  the  untransformed  version?  Neumann’s  Principle  states  that  the  symmetry  elements  of  any  physical  property  of  a  crystal  must  include  the  symmetry  elements  of  the  point  group  of  the  crystal.  A  symmetry  operator,  in  effect,  permutes  the  labeling  of  the  crystal  axes.    The  transformaDon  matrix  can  be  obtained  just  as  for  any  rotaDon  matrix.    Physically,  rotaDng  the  crystal,  or  permuDng  the  labels  applied  to  its  axes  (via  a  symmetry  operator)  does  change  its  properDes.    AlternaDvely,  applying  a  symmetry  operator  means  that  you  cannot  tell  that  anything  changed  if  you  did  not  know  that  the  rotaDon  or  re-­‐lableing  had  been  applied.  

3.  How  do  we  demonstrate  that  cubic  crystal  symmetry  reduces  the  number  of  independent  coefficients  of  a  2nd  rank  tensor  to  just  one  value?  By  equaDng  the  transformed  property  tensor  to  the  untransformed  tensor,  element  by  element.  

4.  What  is  the  difference  between  an  “equilibrium  property”  and  a  “transport  property”?  In  the  Worked  Example,  how  do  we  set  up  the  problem?    What  is  the  relaDonship  between  the  sample  frame  and  the  crystal  frame?    What  is  the  transformaDon  matrix?  Equilibrium  properDes  apply  to  cases  where  the  fields  are  staDc;  transport  properDes  apply  to  cases  where  something  (heat,  electrons  etc.)  is  moving.    As  in  almost  all  such  problems,  we  have  to  idenDfy  the  geometrical  relaDonship  between  the  crystal  and  sample  frames,  set  up  a  transformaDon  matrix  and  apply  it.    See  the  notes  for  the  definiDon  of  a  transformaDon  matrix  in  terms  of  direcDon  cosines  between  old  and  new  axes.  

3

Please acknowledge Carnegie Mellon in any public use of these slides

Page 4: Microstructure*Proper-es.pajarito.materials.cmu.edu/rollett/27301/L9-Tensor-Aniso-Props-part_… · obtained’justas’for’any’rotaon’matrix.’’Physically,’rotang’the’crystal,’or’permuDng’the’labels’applied’to’its’axes’

Questions & Answers – contd. 5.  ConDnuing,  what  quesDon  are  we  trying  to  answer?  Which  quanDty  do  we  know,  and  which  one  do  we  need  

to  compute?    How  do  transform  the  property?  Generally  speaking,  we  know  the  property  in  the  crystal  frame  but  we  know  the  sDmulus  in  a  sample  frame  and  want  to  calculate  the  response  also  in  the  sample  frame.  Thus  transforming  the  property  into  the  sample  frame  is  a  key  step.  

6.  ConDnuing,  How  do  we  obtain  the  heat  flux  in  the  desired  direcDon?  See  the  notes.  7.  ConDnuing  with  the  Worked  Example,  what  is  the  second  quesDon  about?    How  do  we  obtain  ∆T?    8.  What  is  the  difference  between  properDes  that  are  “Principal  Effects”  and  other  properDes?    Give  examples.    

Why  do  we  see  different  numbers  of  entries  of  non-­‐zero  coefficients  in  the  general  tables  for  different  crystal  symmetry  point  groups?  One  can  think  of  Principal  Effects  as  properDes  that  are  directly  measurable.    Crystal  symmetry  results  in  different  numbers  of  relaDonships  between  transformed  and  untransformed  versions  of  the  property  tensor;  higher  symmetry  crystals  have  more  operators  and  therefore  more  coefficients  disappear.  

9.  What  is  a  magneDzaDon  or  B-­‐H  curve  for  a  ferromagneDc  material?    What  does  it  mean  to  say  (from  an  energy  point  of  view)  that  it  exhibits  “hysteresis”  over  a  complete  cycle?    If  we  write  a  Taylor  expansion  of  the  magneDzaDon  curve  based  on  the  starDng  point,  how  do  we  linearize  the  response  to  obtain  the  permeability?    How  does  the  permeability  vary  along  the  full  magneDzaDon  curve?  The  B-­‐H  curve  quanDfies  the  relaDonship  between  the  applied  field  and  the  resulDng  magneDzaDon.    Hysteresis  means  that  that  magneDzaDon  and  applied  field  do  not  follow  a  one-­‐to-­‐one  relaDonship  and  that,  e.g.,  bringing  the  field  back  to  zero  does  not  completely  eliminate  the  magneDzaDon.  Linearizing  to  get  permeability  just  means  that  we  keep  only  the  first,  linear  term  of  the  Taylor  expansion,  starDng  at  zero  field.    The  permeability  effecDvely  decreases  as  the  field  increases  because  the  slope  of  the  B-­‐H  curve  decreases.  

4

Please acknowledge Carnegie Mellon in any public use of these slides

Page 5: Microstructure*Proper-es.pajarito.materials.cmu.edu/rollett/27301/L9-Tensor-Aniso-Props-part_… · obtained’justas’for’any’rotaon’matrix.’’Physically,’rotang’the’crystal,’or’permuDng’the’labels’applied’to’its’axes’

5

Notation F        SDmulus  (field)  R        Response  P        Property  j        electric  current    E        electric  field  D        electric  polarizaDon  ε  Strain  σ  Stress  (or  conducDvity)  ρ  ResisDvity  d      piezoelectric  tensor  

C        elasDc  sDffness  S        elasDc  compliance  a        rotaDon  matrix  W        work  done  (energy)  I        idenDty  matrix  O        symmetry  operator  (matrix)  

Y        Young’s  modulus  δ     Kronecker  delta  e        axis  (unit)  vector  T        tensor  

Please acknowledge Carnegie Mellon in any public use of these slides

Page 6: Microstructure*Proper-es.pajarito.materials.cmu.edu/rollett/27301/L9-Tensor-Aniso-Props-part_… · obtained’justas’for’any’rotaon’matrix.’’Physically,’rotang’the’crystal,’or’permuDng’the’labels’applied’to’its’axes’

Piezoelectric Devices 6

[Newnham]

•  The property of piezoelectricity relates strain to electric field, or polarization to stress (inverse piezoelectric effect). εij = dijkEk •  PZT, lead zirconium titanate PbZr1-xTixO3, is another commonly used piezoelectric material.

Note: Newnham consistently uses vector-matrix notation, rather than tensor notation. We will explain how this works later on.

Examinable

Please acknowledge Carnegie Mellon in any public use of these slides

Page 7: Microstructure*Proper-es.pajarito.materials.cmu.edu/rollett/27301/L9-Tensor-Aniso-Props-part_… · obtained’justas’for’any’rotaon’matrix.’’Physically,’rotang’the’crystal,’or’permuDng’the’labels’applied’to’its’axes’

Piezoelectric Crystals •  How  is  it  that  crystals  can  be  piezoelectric?  •  The  answer  is  that  the  bonding  must  be  ionic  to  some  

degree  (i.e.  there  is  a  net  charge  on  the  different  elements)  and  the  arrangement  of  the  atoms  must  be  non-­‐centrosymmetric.  

•  PZT  is  a  standard  piezoelectric  material.    It  has  Pb  atoms  at  the  cell  corners  (a~4Å),  O  on  face  centers,  and  a  Ti  or  Zr  atom  near  the  body  center.    Below  a  certain  temperature  (Curie  T),  the  cell  transforms  from  cubic  (high  T)  to  tetragonal  (low  T).    Applying  stress  distorts  the  cell,  which  changes  the  electric  displacement  in  different  ways  (see  figure).  

•  Although  we  can  understand  the  effect  at  the  single  crystal  level,  real  devices  (e.g.  sonar  transducers)  are  polycrystalline.    The  operaDon  is  much  complicated  than  discussed  here,  and  involves  “poling”  to  maximize  the  response,  which  in  turns  involves  moDon  of  domain  walls.  See  Chapter  12  in  Newnham’s  book.  

7

[Newnham]

Examinable

Please acknowledge Carnegie Mellon in any public use of these slides

Page 8: Microstructure*Proper-es.pajarito.materials.cmu.edu/rollett/27301/L9-Tensor-Aniso-Props-part_… · obtained’justas’for’any’rotaon’matrix.’’Physically,’rotang’the’crystal,’or’permuDng’the’labels’applied’to’its’axes’

8

Thermodynamics •  One  can  also  express  the  energy  content  of  a  material  in  terms  of  the  

externally  applied  field(s).  Thermodynamics  then  provides  the  means  and  rules  to  determine  how  the  energy  of  a  solid/liquid/  gas  changes  when  the  external  condiDons  change.  Thermodynamics  onen  assumes  that  a  material  system  is  homogeneous  and  isotropic  and  then  makes  quite  general  statements  about  its  behavior  in  various  external  fields.  

•  Symmetry  becomes  important  whenever  a  thermodynamic  funcDon  depends  on  the  gradient  of  a  property;  in  such  cases,  symmetry  theory  can  determine  the  possible  mathemaDcal  expressions  that  will  correctly  describe  this  property.  There  is  thus  an  inDmate  relaDon  between  the  symmetry  of  a  material  and  its  thermodynamic  properDes.  Whereas  symmetry  theory  determines  which  elements  of  the  property  matrix  are  zero,  thermodynamics  can  be  used  to  derive  addiDonal  restricDons  on  the  non-­‐zero  elements  (e.g.,  some  elements  can  only  be  posiDve,  or  certain  elements  must  always  be  smaller  than  others,  etc.).  

•  See  Chapter  6  in  Newnham’s  book.  •  In  this  lecture  series,  we  will  deal  only  with  crystal  symmetry  and  sample  

symmetry  in  order  to  take  advantage  of  how  they  simplify  the  property  tensors.  

Please acknowledge Carnegie Mellon in any public use of these slides

Page 9: Microstructure*Proper-es.pajarito.materials.cmu.edu/rollett/27301/L9-Tensor-Aniso-Props-part_… · obtained’justas’for’any’rotaon’matrix.’’Physically,’rotang’the’crystal,’or’permuDng’the’labels’applied’to’its’axes’

9

Neumann's Principle •  A  fundamental  natural  law:  Neumann's  Principle:  the  symmetry  

elements  of  any  physical  property  of  a  crystal  must  include  the  symmetry  elements  of  the  point  group  of  the  crystal.    The  property  may  have  addiDonal  symmetry  elements  to  those  of  the  crystal  (point  group)  symmetry.    There  are  32  crystal  classes  for  the  point  group  symmetry.  

•  Franz  Neumann  (1795-­‐1898)'s  principle  was  first  stated  in  his  course  at  the  university  of  Königsberg  (1973/1974)  and  was  published  in  the  printed  version  of  his  lecture  notes  (Neumann  F.E.,  1885,  Vorlesungen  über  die  Theorie  der  ElasDzität  der  festen  Körper  und  des  Lichtäthers,  edited  by  O.  E.  Meyer.  Leipzig,  B.  G.  Teubner-­‐Verlag.  [h<p://reference.iucr.org/dicDonary/Neumann%27s_principle]  

•  Curie  further  developed  the  concepts  of  how  crystal  symmetry  affects  materials  properDes.  

Examinable

Please acknowledge Carnegie Mellon in any public use of these slides

Page 10: Microstructure*Proper-es.pajarito.materials.cmu.edu/rollett/27301/L9-Tensor-Aniso-Props-part_… · obtained’justas’for’any’rotaon’matrix.’’Physically,’rotang’the’crystal,’or’permuDng’the’labels’applied’to’its’axes’

10

Neumann, extended

If  a  crystal  has  a  defect  structure  such  as  a  dislocaDon  network  that  is  arranged  in  a  non-­‐uniform  way  then  the  symmetry  of  certain  properDes  may  be  reduced  from  the  crystal  symmetry.    In  principle,  a  finite  elasDc  strain  in  one  direcDon  decreases  the  symmetry  of  a  cubic  crystal  to  tetragonal  or  less.    Therefore  the  modified  version  of  Neumann's  Principle:  the  symmetry  elements  of  any  physical  property  of  a  crystal  must  include  the  symmetry  elements  that  are  common  to  the  point  group  of  the  crystal  and  the  defect  structure  contained  within  the  crystal.  

Examinable

Please acknowledge Carnegie Mellon in any public use of these slides

Page 11: Microstructure*Proper-es.pajarito.materials.cmu.edu/rollett/27301/L9-Tensor-Aniso-Props-part_… · obtained’justas’for’any’rotaon’matrix.’’Physically,’rotang’the’crystal,’or’permuDng’the’labels’applied’to’its’axes’

11

Centro-symmetry •  Many  properDes  are  centrosymmetric  in  nature.    Any  second-­‐rank  tensor  property  is  

centrosymmetric  as  can  be  seen  by  inspecDon.    Reverse  the  direcDon  of  field  and  response  and  the  result  must  be  the  same.    That  is,  in  Ri = PijFj  ,  if  one  reverses  the  signs  of  R  and  F,  the  same  values  of  P  sDll  saDsfy  the  equaDon.    Second  rank  tensor  properDes  are  also  symmetric.    This  has  to  be  proved  by  applicaDon  of  thermodynamics  (q.v.  in  Nye’s  book).  Therefore  Pij = Pji.      

•  Also,  any  property  that  is  a  derivaDve  of  a  potenDal  such  as  elasDc  properDes  (sDffness,  compliance)  are  also  symmetric  because  mixed  second  derivaDves  must  be  equal.    This  la<er  point  is  an  example  of  the  applicaDon  of  thermodynamic  principles.  In  simpler  terms,  the  product  of  stress  and  (elasDc)  strain  is  equal  to  the  elasDc  energy  density  (EED  or  U).    The  (tensor)  stress  is  the  derivaDve  of  U  with  respect  to  (tensor)  strain.    However,  it  is  also  true  that  (tensor)  strain  is  the  derivaDve  of  U  with  respect  to  (tensor)  stress.    By  definiDon,  the  sDffness  tensor  (C)  is  the    is  the  derivaDve  of  (tensor)  stress  with  respect  to  (tensor)  strain.  

Examinable

Cijkl =@�ij

@✏kl�ij =

@U

@✏ij✏ij =

@U

@�ij

We  then  combine  the  two  relaDonships  for  stress  and  strain  and  note  that  the  order  of  differenDaDon  does  not  ma<er,  which  demonstrates  the  interchangeability  of  the  indices.  

Cijkl =@2U

@✏ij@✏kl=

@2U

@✏kl@✏ij= Cklij

Remarks about symmetric nature of 2nd rank tensors updated 22 x ‘13.

Please acknowledge Carnegie Mellon in any public use of these slides

Page 12: Microstructure*Proper-es.pajarito.materials.cmu.edu/rollett/27301/L9-Tensor-Aniso-Props-part_… · obtained’justas’for’any’rotaon’matrix.’’Physically,’rotang’the’crystal,’or’permuDng’the’labels’applied’to’its’axes’

12

Effect of crystal symmetry •  Consider  an  acDve  rotaDon  of  the  crystal,  where  O  is  the  

symmetry  operator.    Since  the  crystal  is  indisDnguishable  (looks  the  same)  aner  applying  the  symmetry  operator,  the  result  before,  R(1),  and  the  result  aner,  R(2),  must  be  idenDcal:              The  two  results  are  indisDnguishable  and  therefore  equal.  It  is  essenDal,  however,  to  express  the  property  and  the  operator  in  the  same  (crystal)  reference  frame.  

R(1) = PFR(2) = OPOT FR(1) =

← → # R(2)

$

% & &

' & &

Examinable

Please acknowledge Carnegie Mellon in any public use of these slides

Page 13: Microstructure*Proper-es.pajarito.materials.cmu.edu/rollett/27301/L9-Tensor-Aniso-Props-part_… · obtained’justas’for’any’rotaon’matrix.’’Physically,’rotang’the’crystal,’or’permuDng’the’labels’applied’to’its’axes’

13

Rotations: definitions •  RotaDonal  symmetry  elements  exist  whenever  you  can  

rotate  a  physical  object  and  result  is  indisDnguishable  from  what  you  started  out  with.  

•  RotaDons  can  be  expressed  in  a  simple  mathemaDcal  form  as  unimodular  matrices,  onen  with  elements  that  are  either  one  or  zero  (but  not  always!).  

•  When  represented  as  matrices,  the  inverse  of  a  rotaDon  is  equal  to  the  transpose  of  the  matrix.  

•  RotaDons  are  transformaDons  of  the  first  kind;  determinant  =  +1.  

•  ReflecDons  (not  needed  here)  are  transformaDons  of  the  second  kind;  determinant  =  -­‐1.  

•  Crystal  symmetry  also  can  involve  translaDons  but  these  are  not  included  in  this  treatment.  

Please acknowledge Carnegie Mellon in any public use of these slides

Page 14: Microstructure*Proper-es.pajarito.materials.cmu.edu/rollett/27301/L9-Tensor-Aniso-Props-part_… · obtained’justas’for’any’rotaon’matrix.’’Physically,’rotang’the’crystal,’or’permuDng’the’labels’applied’to’its’axes’

14

Rotation Matrix from Axis-Angle Pair

gij = δij cosθ + rirj 1− cosθ( )+ εijkrk sinθ

k=1,3∑

=

cosθ + u2 1− cosθ( ) uv 1− cosθ( ) + w sinθ uw 1− cosθ( ) − v sinθuv 1− cosθ( ) − w sinθ cosθ + v 2 1− cosθ( ) vw 1− cosθ( ) + usinθuw 1− cosθ( ) + v sinθ vw 1− cosθ( ) − usinθ cosθ + w2 1− cosθ( )

'

(

) ) )

*

+

, , ,

Wri<en  out  as  a  complete  3x3  matrix:  

Please acknowledge Carnegie Mellon in any public use of these slides

Page 15: Microstructure*Proper-es.pajarito.materials.cmu.edu/rollett/27301/L9-Tensor-Aniso-Props-part_… · obtained’justas’for’any’rotaon’matrix.’’Physically,’rotang’the’crystal,’or’permuDng’the’labels’applied’to’its’axes’

15

Rotation Matrix: 2D Transformation

Using the double angle trigonometric identities, we obtain this.

These are the formulae used in Mohr’s Circle. Please acknowledge Carnegie Mellon in any public use of these slides

Page 16: Microstructure*Proper-es.pajarito.materials.cmu.edu/rollett/27301/L9-Tensor-Aniso-Props-part_… · obtained’justas’for’any’rotaon’matrix.’’Physically,’rotang’the’crystal,’or’permuDng’the’labels’applied’to’its’axes’

16

Symmetry Operator examples •  Diad  on  z: [uvw] = [001], θ = 180° ; subsDtute  the  values  of  uvw and  angle  into  the  formula������

•  4-­‐fold  rotaDon  about  x:��� [uvw] = [100]���θ = 90°

gij =

cos180 + 02 1− cos180( ) 0*0 1− cos180( ) +1*sin180 0*1 1− cos180( ) − 0sin1800*0 1− cos180( ) − w sin180 cos180 + 02 1− cos180( ) 0*1 1− cos180( ) + 0sin1800*1 1− cos180( ) + 0sin180 0*1 1− cos180( ) − 0sin180 cos180 +12 1− cos180( )

#

$

% % %

&

'

( ( (

=

−1 0 00 −1 00 0 1

#

$

% % %

&

'

( ( (

gij =

cos90 +12 1− cos90( ) 1*0 1− cos90( ) + w sin90 0*1 1− cos90( ) − 0sin900*1 1− cos90( ) − 0sin90 cos90 + 02 1− cos90( ) 1*0 1− cos90( ) +1sin900*1 1− cos90( ) + 0sin90 0*0 1− cos90( ) −1sin90 cos90 + 02 1− cos90( )

#

$

% % %

&

'

( ( (

=

1 0 00 0 10 −1 0

#

$

% % %

&

'

( ( (

Please acknowledge Carnegie Mellon in any public use of these slides

Page 17: Microstructure*Proper-es.pajarito.materials.cmu.edu/rollett/27301/L9-Tensor-Aniso-Props-part_… · obtained’justas’for’any’rotaon’matrix.’’Physically,’rotang’the’crystal,’or’permuDng’the’labels’applied’to’its’axes’

17

Symmetry, properties, contd. •  Expressed  mathemaDcally,  we  can  rotate,  e.g.  a  second  rank  property  tensor  thus:  

   P' = OPOT = P  ,  or,  in  coefficient  notaDon,                        P’ij = OikOilPkl    where  O  is  a  symmetry  operator.    Note  that  the  second  version,  in  tensor  index  notaDon  is  always  correct  for  any  rank  of  tensor.    The  first  version  in  matrix  notaDon  only  works  for  2nd  rank  tensors.  

•  Since  the  transformed/rotated  (property)  tensor,  P’,  must  be  the  same  as  the  original  tensor,  P,  then  we  can  equate  coefficients:  

     P’ij = Pij

•  If  we  find,  for  example,  that  P’21 = -P21,then  the  only  value  of  P21  that  saDsfies  this  equality  is  P21 = 0.  

•  Remember  that  you  must  express  the  property  with  respect  to  a  parDcular  set  of  axes  in  order  to  use  the  coefficient  form.    In  everything  related  to  single  crystals,  always  use  the  crystal  axes  as  the  reference  frame!  

•  Useful  exercise:  draw  a  picture  to  convince  yourself  of  the  truth  of  the  statements  above.  

•  Self-­‐study  quesDon:  based  on  cubic  crystal  symmetry,  work  out  why  a  second  rank  tensor  property  can  only  have  one  independent  coefficient.  

Examinable

Please acknowledge Carnegie Mellon in any public use of these slides

Page 18: Microstructure*Proper-es.pajarito.materials.cmu.edu/rollett/27301/L9-Tensor-Aniso-Props-part_… · obtained’justas’for’any’rotaon’matrix.’’Physically,’rotang’the’crystal,’or’permuDng’the’labels’applied’to’its’axes’

Symbolic Math in Matlab •  Matlab  allows  you  to  perform  symbolic  mathemaDcs,  in  a  similar  way  to  MathemaDca  

Please acknowledge Carnegie Mellon in any public use of these slides

18

•  This  is  accomplished  in  a  special  GUI  (=graphical  user  interface)  called  “MuPAD”.    You  can  access  this  by  typing  “mupad”  at  the  regular  prompt  in  Matlab,  which  will  open  up  a  new  window.  

Page 19: Microstructure*Proper-es.pajarito.materials.cmu.edu/rollett/27301/L9-Tensor-Aniso-Props-part_… · obtained’justas’for’any’rotaon’matrix.’’Physically,’rotang’the’crystal,’or’permuDng’the’labels’applied’to’its’axes’

More about MuPAD •  One  very  important  point  is  that  you  have  to  define  quanDDes  in  

mupad  in  order  to  use  them:  this  is  accomplished  with  “:=“  instead  of  the  ordinary  “=“  symbol.  

•  For  example,  to  define  an  arbitrary  2nd  rank  tensor,  we  can  write:  prop:=matrix([[s11,s12,s13],[s21,s22,s23],[s31,s32,s33]])!

•  To  define  an  operator  that  corresponds  to  a  90°  rotaDon  about  the  x-­‐axis,  we  can  write:  symm:=matrix([[1,0,0],[0,0,1],[0,-1,0]])!

•  We  need  the  inverse  of  the  operator,  but  fortunately  Matlab  allows  us  to  calculate  the  inverse  of  a  square  matrix:  symmT:=1/symm!

•  Now  we  can  compute  the  transformed  version  of  the  property  symbolically:  result=symm*prop*symmT!

Please acknowledge Carnegie Mellon in any public use of these slides

19

Page 20: Microstructure*Proper-es.pajarito.materials.cmu.edu/rollett/27301/L9-Tensor-Aniso-Props-part_… · obtained’justas’for’any’rotaon’matrix.’’Physically,’rotang’the’crystal,’or’permuDng’the’labels’applied’to’its’axes’

Analyze the Results •  Now  what  we  have  to  do  is  to  examine  the  un-­‐transformed  

property  and  the  transformed  property  coefficient  by  coefficient  and  determine  the  result.  

•  The  first  term  on  the  leading  diagonal,  s11,  is  unaffected.  •  The  2nd  and  3rd  terms  on  the  leading  diagonal,  are  equal  to  

each  other,  which  permits  a  simplificaDon:  s22  =  s33.  •  The  last  term  on  the  2nd  row  is  minus  the  2nd  term  on  the  3rd  

row,  thus  s32  =  -­‐s23;  and  vice  versa,  s23  =  -­‐s32.  •  The  other  4  off-­‐diagonal  terms  are  zero  because  we  find  that    

s13  =  -­‐s12  and  s12  =  s13  ;  similarly,  s31  =  -­‐s21  and  s21  =  s31.  

Please acknowledge Carnegie Mellon in any public use of these slides

20

prop:=matrix([[s11,s12,s13],[s21,s22,s23],[s31,s32,s33]])! s11 s12 s13s21 s22 s23s31 s32 s33

"

symm:=matrix([[1,0,0],[0,0,1],[0,-1,0]])#1 0 00 0 10 − 1 0

$

symmT:=1/symm#1 0 00 0 − 10 1 0

$

result=symm*prop*symmT

result =

⎛⎜⎝s11 s13 − s12s31 s33 − s32− s21 − s23 s22

⎞⎟⎠

linalg::eigenvalues(symm){1, − i, i}

solve(result=prop){[result = z, s11 = z, s12 = 0, s13 = 0, s21 = 0, s22 = z, s23 = 0, s31 = 0, s32 = 0, s33 = z]}

propReduced:=matrix([[s11,0,0],[0,s22,s23],[0,-s23,s22]])#s11 0 00 s22 s230 − s23 s22

$

Page 21: Microstructure*Proper-es.pajarito.materials.cmu.edu/rollett/27301/L9-Tensor-Aniso-Props-part_… · obtained’justas’for’any’rotaon’matrix.’’Physically,’rotang’the’crystal,’or’permuDng’the’labels’applied’to’its’axes’

21

Examples: Materials Properties as Tensors •  Table  1  shows  a  series  of  tensors  that  are  of  importance  for  

material  science.  The  tensors  are  grouped  by  rank,  and  are  also  labeled  (in  the  last  column)  by  E  (equilibrium  property)  or  T  (transport  property).  The  number  following  this  le<er  indicates  the  maximum  number  of  independent,  nonzero  elements  in  the  tensor,  taking  into  account  symmetries  imposed  by  thermodynamics.    

•  The  Field  and  Response  columns  contain  the  following  symbols:    ∆T  =  temperature  difference,    ∆S  =  entropy  change,    Ei  =  electric  field  components,    Hi  =  magneDc  field  components,    εij  =  mechanical  strain,    Di  =  electric  displacement,    Bi  =  magneDc  inducDon,    σij  =  mechanical  stress,    ∆βij  =  change  of  the  impermeability    tensor,      

ji = electrical current density, ���∇jT = temperature gradient���hi = heat flux ���∇jc = concentration gradient���mi = mass flux���ρa

i = anti-symmetric part of resistivity tensor ���ρs

i = symmetric part of resistivity tensor���∆ρij = change in the component ij of the resistivity tensor, ���li = direction cosines of wave direction in crystal G = gyration constant,

Examinable

Please acknowledge Carnegie Mellon in any public use of these slides

Page 22: Microstructure*Proper-es.pajarito.materials.cmu.edu/rollett/27301/L9-Tensor-Aniso-Props-part_… · obtained’justas’for’any’rotaon’matrix.’’Physically,’rotang’the’crystal,’or’permuDng’the’labels’applied’to’its’axes’

22

Please acknowledge Carnegie Mellon in any public use of these slides

Page 23: Microstructure*Proper-es.pajarito.materials.cmu.edu/rollett/27301/L9-Tensor-Aniso-Props-part_… · obtained’justas’for’any’rotaon’matrix.’’Physically,’rotang’the’crystal,’or’permuDng’the’labels’applied’to’its’axes’

23

Please acknowledge Carnegie Mellon in any public use of these slides

Page 24: Microstructure*Proper-es.pajarito.materials.cmu.edu/rollett/27301/L9-Tensor-Aniso-Props-part_… · obtained’justas’for’any’rotaon’matrix.’’Physically,’rotang’the’crystal,’or’permuDng’the’labels’applied’to’its’axes’

24

Anisotropic Heat Flow Example Examinable

/

Corrected to read c=a/√2, 22 x ‘13. Please acknowledge Carnegie Mellon in any public use of these slides

Page 25: Microstructure*Proper-es.pajarito.materials.cmu.edu/rollett/27301/L9-Tensor-Aniso-Props-part_… · obtained’justas’for’any’rotaon’matrix.’’Physically,’rotang’the’crystal,’or’permuDng’the’labels’applied’to’its’axes’

25

Heat Flow example: 1

1.  To  begin,  set  up  Cartesian  axes  aligned  with  the  crystal;  then  a  set  of  (new,  primed)  axes  aligned  with  the  sample.  

2.  Then  we  need  to  calculate  the  direcDon  perpendicular  to  the  (101)  faces  of  the  crystal;  the  easiest  way  to  start  is  to  diagram  the  cut-­‐offs  on  the  crystal  axes  based  on  the  Miller  indices  (i.e.  a/h,  b/k,  c/l).    Then  we  re-­‐express  the  coordinates  in  Cartesian  values  in  the  unprimed  Cartesian  frame  for  the  crystal.    Thus  sin(φ)=√(2/3),  where  (90-­‐φ) is  the  angle  between  ez and  e’x  and  (φ=54.7°)  is  the  angle  between  ex and  e’x.  

3.  The  transformaDon  matrix  between  the  unprimed  (crystal)  and  primed  (sample)  systems  is  given,  as  before,  by  the  standard  analysis  (next  page).  

e’x

e’z

ex

ez

e’y =ey

c/l=a/√2

a/h=a

(101) // e’x

90-φ

Examinable

φ

90-φ φ

Please acknowledge Carnegie Mellon in any public use of these slides

Page 26: Microstructure*Proper-es.pajarito.materials.cmu.edu/rollett/27301/L9-Tensor-Aniso-Props-part_… · obtained’justas’for’any’rotaon’matrix.’’Physically,’rotang’the’crystal,’or’permuDng’the’labels’applied’to’its’axes’

26

Heat Flow example: 2

3.  Just  as  in  the  previous  example,  we  can  calculate  the  heat  flow,  h,  from  the  temperature  gradient,  K∆T/∆x.      

4.  First,  we  have  to  transform  the  conducDvity  into  the  sample  coordinates  using  the  “a”  matrix  (above)*.    We  only  need  the  conducDvity  in  the  (sample)  x-­‐direcDon,  which  means  that  we  only  need  the  K’xx  value,  which  then  limits  the  first  index  of  the  “a”  entries  to  x  (or  1).  Then  we  recognize  that  all  the  off-­‐diagonal  coefficients  of  the  conducDvity  tensor  are  zero  and  can  therefore  be  dropped,  leaving  us  with  only  the  Kxx,  Kyy,  and  Kzz  terms  to  include.  Finally  the  rotaDon/transformaDon  is  about  the  y-­‐axis  so  axy=0,  so  the  term  in  a2xyKyy  also  vanishes.  

aij = !ei ⋅ej ≡ eisample ⋅ej

crystal =

cos φ( ) 0 sin φ( )0 1 0

−sin φ( ) 0 cos φ( )

%

&

''''

(

)

****

=1/ 3 0 2 / 30 1 0

− 2 / 3 0 1/ 3

%

&

''''

(

)

****

!Kxx = axiaxjKij = axiaxiK ii = axi2Kii = axx

2 Kxx + axz2 Kzz

= cos2φKxx + sin2φKzz =

13⋅15+ 2

3⋅10 =11.66W.m−1.K −1

Examinable

Please acknowledge Carnegie Mellon in any public use of these slides

*Of course, there is nothing stopping us from computing the full tensor. This is shown to make the point that one can often obtain the physical result of practical interest without needing the complete transformation.

Page 27: Microstructure*Proper-es.pajarito.materials.cmu.edu/rollett/27301/L9-Tensor-Aniso-Props-part_… · obtained’justas’for’any’rotaon’matrix.’’Physically,’rotang’the’crystal,’or’permuDng’the’labels’applied’to’its’axes’

27

Heat Flow example: 3

6.  Finally  the  heat  flow  is  the  flux  mulDplied  by  the  area:  Q = hx A = 583.33 * 10 * 10-4 = 0.58 W  

7.  The  second  quesDon  simply  requires  us  to,  in  effect,  integrate  the  temperature  gradient  over  the  thickness  of  the  sample.  

hx = − "Kxx∂T∂x

= −11.67×50 = −583.33W.m−2

ΔT = ∂T∂x

Δx = hxKxx

Δx = QAKxx

Δx = 110−4 ×11.67

0.1= 86 °C

Examinable

5.  Then  we  can  compute  the  heat  flux  itself  along  the  (primed)  x-­‐direcDon,  which  gives  this:  

Please acknowledge Carnegie Mellon in any public use of these slides

Page 28: Microstructure*Proper-es.pajarito.materials.cmu.edu/rollett/27301/L9-Tensor-Aniso-Props-part_… · obtained’justas’for’any’rotaon’matrix.’’Physically,’rotang’the’crystal,’or’permuDng’the’labels’applied’to’its’axes’

General Approach 1.  Figure  out  how  to  convert  direcDons  in  Miller  indices  to  Cartesian  coordinates,  or  

plane  normals  (be  careful  about  a/h,b/k,c/l),  all  in  the  crystal  frame.  2.  Figure  out  what  the  entries  in  the  transformaDon  matrix  are,  based  on  the  

relaDonships  between  the  Cartesian  crystal  and  sample  frames.    Generally  you  want  the  transformaDon  from  crystal  to  sample  frames  in  order  to  transform  the  property  from  where  you  know  the  values  (because  you  can  look  them  up)  to  the  specific  frame  where  you  happen  to  need  them.  

3.  IdenDfy  which  component  of  the  property  you  actually  need  in  the  sample  frame  (rarely  need  the  whole  tensor).  

4.  Write  out  the  tensor  transformaDon  equaDon  for  that  specific  property  component/coefficient.  

5.  Figure  out  which  property  entries  give  you  zeros  so  that  you  can  eliminate  terms.  6.  Figure  out  which  (if  any)  of  the  transformaDon  matrix  entries  are  zero  and  thus  

eliminate  more  terms.  7.  Once  you  have  reduced  the  transformaDon  matrix  to  the  minimum  number  of  

terms,  plug  in  the  numerical  values  and  compute  the  desired  property.  

28

Please acknowledge Carnegie Mellon in any public use of these slides

Page 29: Microstructure*Proper-es.pajarito.materials.cmu.edu/rollett/27301/L9-Tensor-Aniso-Props-part_… · obtained’justas’for’any’rotaon’matrix.’’Physically,’rotang’the’crystal,’or’permuDng’the’labels’applied’to’its’axes’

29

Principal Effects Electrocaloric = pyroelectric Magnetocaloric = pyromagnetic Thermal expansion = piezocaloric Magnetoelectric and converse magnetoelectric Piezoelectric and converse piezoelectric Piezomagnetic and converse piezomagnetic

Please acknowledge Carnegie Mellon in any public use of these slides

Page 30: Microstructure*Proper-es.pajarito.materials.cmu.edu/rollett/27301/L9-Tensor-Aniso-Props-part_… · obtained’justas’for’any’rotaon’matrix.’’Physically,’rotang’the’crystal,’or’permuDng’the’labels’applied’to’its’axes’

30

Principal Effects

1st rank cross effects

2nd rank cross effects

3rd rank cross effects

Examinable

What  you  need  to  remember  and  understand  is  the  idea  that  “Principal  Effects”  are  properDes  that  connect  directly  related  fields,  e.g.  stress  and  strain  

Please acknowledge Carnegie Mellon in any public use of these slides

Page 31: Microstructure*Proper-es.pajarito.materials.cmu.edu/rollett/27301/L9-Tensor-Aniso-Props-part_… · obtained’justas’for’any’rotaon’matrix.’’Physically,’rotang’the’crystal,’or’permuDng’the’labels’applied’to’its’axes’

31

General crystal symmetry shown above. In the following lecture, we will discuss how to apply crystal symmetry to reduce the number of independent coefficients needed to describe anisotropic properties, with particular reference to elasticity.

Please acknowledge Carnegie Mellon in any public use of these slides

Page 32: Microstructure*Proper-es.pajarito.materials.cmu.edu/rollett/27301/L9-Tensor-Aniso-Props-part_… · obtained’justas’for’any’rotaon’matrix.’’Physically,’rotang’the’crystal,’or’permuDng’the’labels’applied’to’its’axes’

32

Point group 4

Please acknowledge Carnegie Mellon in any public use of these slides

Page 33: Microstructure*Proper-es.pajarito.materials.cmu.edu/rollett/27301/L9-Tensor-Aniso-Props-part_… · obtained’justas’for’any’rotaon’matrix.’’Physically,’rotang’the’crystal,’or’permuDng’the’labels’applied’to’its’axes’

33

Point group m3m

Note  how  many  fewer  independent  coefficients  there  are!  Note  how  the  center  of  symmetry  eliminates  many  of  the  properDes,  such  as  pyroelectricity  

Please acknowledge Carnegie Mellon in any public use of these slides

Page 34: Microstructure*Proper-es.pajarito.materials.cmu.edu/rollett/27301/L9-Tensor-Aniso-Props-part_… · obtained’justas’for’any’rotaon’matrix.’’Physically,’rotang’the’crystal,’or’permuDng’the’labels’applied’to’its’axes’

34

Constitutive Laws/Relations •  If  the  response  to  an  applied  field  leads  to  a  material  

property  that  can  be  described  by  a  (well  behaved)  mathemaDcal  funcDon  of  some  kind,  then  we  onen  describe  the  property,  P,  as  a  cons%tu%ve  law  or  cons%tu%ve  rela%on:    

     R = P(F)���

•  If  the  property  is  a  linear  one,  such  as  elasDc  modulus,  then  the  cons%tu%ve  rela%on  is  just  a  constant.      

•  If,  however,  the  relaDonship  is  more  complex,  as  we  see  in  plasDc  deformaDon,  then  the  funcDon  may  have  to  be  a  power  law  relaDon,  for  example:    

                                     σ  =  K  εn

Examinable

Please acknowledge Carnegie Mellon in any public use of these slides

Page 35: Microstructure*Proper-es.pajarito.materials.cmu.edu/rollett/27301/L9-Tensor-Aniso-Props-part_… · obtained’justas’for’any’rotaon’matrix.’’Physically,’rotang’the’crystal,’or’permuDng’the’labels’applied’to’its’axes’

35

Scalar, non-linear properties •  Clearly  not  all  properDes  are  linear!  •  What  do  we  do  about  this?    In  many  cases,  it  useful  to  

expand  about  a  known  point  (Taylor  series).            

•  The  response  funcDon  (property)  is  expanded  about  the  zero  field  value,  assuming  that  it  is  a  smooth  funcDon  and  therefore  differenDable  according  to  the  rules  of  calculus.  

R = P F( ) = P0 +11!∂R∂F F= 0

F +12!∂ 2R∂F 2

F= 0

F 2 +…1n!∂ nR∂Fn

F= 0

F n

Examinable

Please acknowledge Carnegie Mellon in any public use of these slides

Page 36: Microstructure*Proper-es.pajarito.materials.cmu.edu/rollett/27301/L9-Tensor-Aniso-Props-part_… · obtained’justas’for’any’rotaon’matrix.’’Physically,’rotang’the’crystal,’or’permuDng’the’labels’applied’to’its’axes’

36

Scalar, non-linear properties, contd. •  In  the  previous  expression,  

the  state  of  the  material  at  zero  field  is  defined  by  R0  which  is  someDmes  zero  (e.g.  elasDc  strain  in  the  absence  of  applied  stress)  and  someDmes  non-­‐zero  (e.g.  in  ferromagneDc  materials  in  the  absence  of  an  external  magneDc  field).    

•  Example:  magneDzaDon  of  iron-­‐3%Si  alloy,  used  for  transformers  [Chen].  

Please acknowledge Carnegie Mellon in any public use of these slides

Page 37: Microstructure*Proper-es.pajarito.materials.cmu.edu/rollett/27301/L9-Tensor-Aniso-Props-part_… · obtained’justas’for’any’rotaon’matrix.’’Physically,’rotang’the’crystal,’or’permuDng’the’labels’applied’to’its’axes’

37

Example: magnetization •  MagneDzaDon,  or  B-­‐H  curve,  in  a  ferromagneDc  material  measures  the  extent  to  which  the  atomic  scale  magneDc  moments  (atomic  magnets,  if  you  like)  are  aligned.  

•  The  sDmulus  is  the  applied  magneDc  field,  H,  measured  in  Oersteds  (Oe).    The  response  is  the  InducDon,  B,  measured  in  kilo-­‐Gauss  (kG).  

•  As  shown  in  the  plot,  the  magneDzaDon  is  a  non-­‐linear  funcDon  of  the  applied  field.    Even  more  interesDng  is  the  hysteresis  that  occurs  when  you  reverse  the  sDmulus.    For  alternaDng  direcDons  of  field,  this  means  that  energy  is  dissipated  in  the  material  during  each  cycle.  

Please acknowledge Carnegie Mellon in any public use of these slides

Page 38: Microstructure*Proper-es.pajarito.materials.cmu.edu/rollett/27301/L9-Tensor-Aniso-Props-part_… · obtained’justas’for’any’rotaon’matrix.’’Physically,’rotang’the’crystal,’or’permuDng’the’labels’applied’to’its’axes’

38

Example: magnetization: linearization •  An  important  feature  of  this  example  is  the  possibility  of  

lineariza%on.  •  How?    Take  a  porDon  of  the  property  curve  and  fit  a  straight  

line  to  it.    Around  H=0,  this  is  the  magne%c  permeability.  

B

H

Slope ≡ µ ≡ permeability

R = P F( ) = P0 +F1!∂R∂F F= 0

+F 2

2!∂ 2R∂F 2

F= 0

+…F n

n!∂ nR∂Fn

F= 0

B = µ H( ) = B0 +H1!∂B∂H H= 0

+H 2

2!∂ 2B∂H 2

H= 0

+…Hn

n!∂ nB∂Hn

H= 0

Examinable

Please acknowledge Carnegie Mellon in any public use of these slides

Page 39: Microstructure*Proper-es.pajarito.materials.cmu.edu/rollett/27301/L9-Tensor-Aniso-Props-part_… · obtained’justas’for’any’rotaon’matrix.’’Physically,’rotang’the’crystal,’or’permuDng’the’labels’applied’to’its’axes’

39

Non-linear anisotropic properties

•  Non-­‐linear  anisotropic  properDes  are  wri<en  thus:        

   Ri = PijFj +P'iklFkFl +… ���  

•  For  a  property  relaDng  vector  quanDDes,  the  rank  of  each  property  tensor  increases  by  one  for  each  term.    For  a  property  relaDng  second-­‐rank  tensors,  the  rank  of  the  property  tensor  increases  by  two  for  each  term.  

•  In  27-­‐301,  we  will  not  deal  with  properDes  that  are  both  non-­‐linear  and  anisotropic.  

R = P F( ) = P0 +F1!∂R∂F F= 0

+F 2

2!∂ 2R∂F 2

F= 0

+…F n

n!∂ nR∂Fn

F= 0

Please acknowledge Carnegie Mellon in any public use of these slides

Page 40: Microstructure*Proper-es.pajarito.materials.cmu.edu/rollett/27301/L9-Tensor-Aniso-Props-part_… · obtained’justas’for’any’rotaon’matrix.’’Physically,’rotang’the’crystal,’or’permuDng’the’labels’applied’to’its’axes’

40

Summary •  Crystal  symmetry  limits  the  number  of  independent  

coefficients  in  a  property  tensor.  •  The  method  that  we  use  to  reduce  the  number  of  

coefficients  is  by  noDng  that,  if  we  apply  crystal  symmetry,  we  cannot  tell  that  anything  is  different  about  the  crystal.    This  means  that  the  properDes  of  the  crystal  must  be  unchanged.    This  in  turn  means  that  each  entry  in  the  property  tensor  must  be  the  same.  

•  Therefore  we  can  equate  the  property  tensor  before  and  aner  applicaDon  of  a  symmetry  element.  

•  Lists  of  anisotropic  properDes  are  given.  •  An  example  is  given  of  how  the  list  of  coefficients  is  reduced,  

someDmes  drasDcally,  by  crystal  symmetry.  •  Non-­‐linear  effects  are  briefly  menDoned.  

Please acknowledge Carnegie Mellon in any public use of these slides

Page 41: Microstructure*Proper-es.pajarito.materials.cmu.edu/rollett/27301/L9-Tensor-Aniso-Props-part_… · obtained’justas’for’any’rotaon’matrix.’’Physically,’rotang’the’crystal,’or’permuDng’the’labels’applied’to’its’axes’

41

Supplemental Slides

Please acknowledge Carnegie Mellon in any public use of these slides

Page 42: Microstructure*Proper-es.pajarito.materials.cmu.edu/rollett/27301/L9-Tensor-Aniso-Props-part_… · obtained’justas’for’any’rotaon’matrix.’’Physically,’rotang’the’crystal,’or’permuDng’the’labels’applied’to’its’axes’

42

Notebook Input for Example StylePrint[" Example of application of symmetry elements to properties",

"Section"]!StylePrint[" Lecture 2 of 27-301, Fall 2004", "Subsubtitle"]!StylePrint[" A.D. Rollett, Aug. 2004", "Text"]!StylePrint[" Example of a second rank tensor property:", "Text"]!resistivity = {{\[Sigma]11, \[Sigma]12, \[Sigma]13}, {\[Sigma]21, \

[Sigma]22, \[Sigma]23}, {\[Sigma]31, \[Sigma]32, \[Sigma]33}};!MatrixForm[resistivity]!StylePrint[" Example of a symmetry operator representing a 90° rotation

about the x-axis:", "Text"]!Oz = {{1, 0, 0}, {0, 0, 1}, {0, -1, 0}};!RotatedRes = Oz.resistivity.Transpose[Oz]!StylePrint[" And the rotated property = ", "Text"]!MatrixForm[RotatedRes]!StylePrint[" However, the property and its rotated version, O.P.OT, must

be identical:", "Text"]!StylePrint[" Therefore we can equate coefficients and find that:", "Text"]!StylePrint[" \[Sigma]12 = \[Sigma]13 and \[Sigma]13 = -\[Sigma]12, so both

must be zero, etc.", "Text"]!StylePrint[" such that we can write a new version of the property:",

"Text"]!SymmRes = {{\[Sigma]11, 0, 0}, {0, \[Sigma]22, \[Sigma]23}, {0, -\

[Sigma]23, \[Sigma]22}};!MatrixForm[SymmRes]!

Please acknowledge Carnegie Mellon in any public use of these slides

Page 43: Microstructure*Proper-es.pajarito.materials.cmu.edu/rollett/27301/L9-Tensor-Aniso-Props-part_… · obtained’justas’for’any’rotaon’matrix.’’Physically,’rotang’the’crystal,’or’permuDng’the’labels’applied’to’its’axes’

43

Examinable

Please acknowledge Carnegie Mellon in any public use of these slides

Page 44: Microstructure*Proper-es.pajarito.materials.cmu.edu/rollett/27301/L9-Tensor-Aniso-Props-part_… · obtained’justas’for’any’rotaon’matrix.’’Physically,’rotang’the’crystal,’or’permuDng’the’labels’applied’to’its’axes’

44

•  The  two  systems  are  related  by  the  nine  direc%on  cosines,  aij,    which  fix  the  cosine  of  the  angle  between  the ith  primed  and  the  jth  unprimed  base  vectors:      Equivalently,  aij represent  the  components    of  êi  in  êj  according  to  the  expression  

aij = ˆ " e i ⋅ ˆ e j

ˆ " e i = aij ˆ e j

Direction Cosines: definition

Please acknowledge Carnegie Mellon in any public use of these slides

Page 45: Microstructure*Proper-es.pajarito.materials.cmu.edu/rollett/27301/L9-Tensor-Aniso-Props-part_… · obtained’justas’for’any’rotaon’matrix.’’Physically,’rotang’the’crystal,’or’permuDng’the’labels’applied’to’its’axes’

45

Rotation Matrices

aij = Since an orthogonal matrix merely rotates a vector but does not change its length, the determinant is one, det(a)=1. €

a11 a12 a13a21 a22 a23a31 a32 a33

"

#

$ $ $

%

&

' ' '

Please acknowledge Carnegie Mellon in any public use of these slides

Page 46: Microstructure*Proper-es.pajarito.materials.cmu.edu/rollett/27301/L9-Tensor-Aniso-Props-part_… · obtained’justas’for’any’rotaon’matrix.’’Physically,’rotang’the’crystal,’or’permuDng’the’labels’applied’to’its’axes’

46

Matrix Multiplication •  Take  each  row  of  the  LH  matrix  in  turn  and  mulDply  it  into  each  column  of  the  RH  matrix.  

•  In  suffix  notaDon,  aij  =  bikckj  

aα + bδ + cλ aβ + bε + cµ aγ + bφ + cνdα + eδ + f λ dβ + eε + fµ dγ + eφ + fνlα +mδ + nλ lβ +mε + nµ lγ +mφ + nν

!

"

###

$

%

&&&

=a b cd e fl m n

!

"

###

$

%

&&&×

α β γ

δ ε φ

λ µ ν

!

"

###

$

%

&&&

Please acknowledge Carnegie Mellon in any public use of these slides

Page 47: Microstructure*Proper-es.pajarito.materials.cmu.edu/rollett/27301/L9-Tensor-Aniso-Props-part_… · obtained’justas’for’any’rotaon’matrix.’’Physically,’rotang’the’crystal,’or’permuDng’the’labels’applied’to’its’axes’

47

Properties of Rotation Matrix •  The  rotaDon  matrix  is  an  orthogonal  matrix,  meaning  that  

any  row  is  orthogonal  to  any  other  row  (the  dot  products  are  zero).    In  physical  terms,  each  row  represents  a  unit  vector  that  is  the  posiDon  of  the  corresponding  (new)  old  axis  in  terms  of  the  (old)  new  axes.  

•  It  means  that  there  are  only  3  independent  parameters  in  the  matrix  (9  coefficients,  constrained  by  6  equaDons).  

•  The  same  applies  to  columns:  in  suffix  notaDon  -­‐            aijakj  =  δik,  ajiajk  =  δik    

a b cd e fl m n

!

"

# # #

$

%

& & &

ad+be+cf = 0

bc+ef+mn = 0 Please acknowledge Carnegie Mellon in any public use of these slides

Page 48: Microstructure*Proper-es.pajarito.materials.cmu.edu/rollett/27301/L9-Tensor-Aniso-Props-part_… · obtained’justas’for’any’rotaon’matrix.’’Physically,’rotang’the’crystal,’or’permuDng’the’labels’applied’to’its’axes’

48

•  That  the  set  of  direcDon  cosines  are  not  independent  is  evident  from  the  following  construcDon:      Thus,  there  are  six  relaDonships  (i  takes  values  from  1  to  3,  and  j  takes  values  from  1  to  3)  between  the  nine  direcDon  cosines,  and  therefore,  as  stated  above,  only  three  are  independent,  exactly  as  expected  for  a  rotaDon.  

•  Another  way  to  look  at  a  rotaDon:  combine  an  axis  (described  by  a  unit  vector  with  two  parameters)  and  a  rotaDon  angle  (one  more  parameter,  for  a  total  of  3).  

ˆ " e i ⋅ ˆ " e j = aika jl ˆ e k ⋅ ˆ e l = aika jlδkl = aika jk = δij

Direction Cosines, contd.

Please acknowledge Carnegie Mellon in any public use of these slides

Page 49: Microstructure*Proper-es.pajarito.materials.cmu.edu/rollett/27301/L9-Tensor-Aniso-Props-part_… · obtained’justas’for’any’rotaon’matrix.’’Physically,’rotang’the’crystal,’or’permuDng’the’labels’applied’to’its’axes’

49

•  Note  that  the  direcDon  cosines  can  be  arranged  into  a  3x3  matrix,    Λ,  and  therefore  the  relaDon  above  is  equivalent  to  the  expression      where  Λ  T  denotes  the  transpose  of  Λ.    This  relaDonship  idenDfies  Λ  as  an  orthogonal  matrix,  which  has  the  properDes      

ΛΛT = I

Λ−1 = ΛT det Λ = ±1

Orthogonal Matrices

Please acknowledge Carnegie Mellon in any public use of these slides

Page 50: Microstructure*Proper-es.pajarito.materials.cmu.edu/rollett/27301/L9-Tensor-Aniso-Props-part_… · obtained’justas’for’any’rotaon’matrix.’’Physically,’rotang’the’crystal,’or’permuDng’the’labels’applied’to’its’axes’

50

•  When  both  coordinate  systems  are  right-­‐handed,  det(Λ)=+1  and  Λ    is  a  proper  orthogonal  matrix.    The  orthogonality  of  Λ  also  insures  that,  in  addiDon  to  the  relaDon  above,  the  following  holds:      Combining  these  relaDons  leads  to  the  following  inter-­‐relaDonships  between  components  of  vectors  in  the  two  coordinate  systems:  

ˆ e j = aij ˆ " e i

vi = a ji " v j , " v j = a jivi

Relationships

Please acknowledge Carnegie Mellon in any public use of these slides

Page 51: Microstructure*Proper-es.pajarito.materials.cmu.edu/rollett/27301/L9-Tensor-Aniso-Props-part_… · obtained’justas’for’any’rotaon’matrix.’’Physically,’rotang’the’crystal,’or’permuDng’the’labels’applied’to’its’axes’

51

•  These  relaDons  are  called  the  laws  of  transforma%on  for  the  components  of  vectors.    They  are  a  consequence  of,  and  equivalent  to,  the  parallelogram  law  for  addiDon  of  vectors.    That  such  is  the  case  is  evident  when  one  considers  the  scalar  product    expressed  in  two  coordinate  systems:  

u ⋅ v = uivi = a ji # u jaki # v k =

δ jk # u j # v k = # u j # v j = # u i # v i

Transformation Law

Please acknowledge Carnegie Mellon in any public use of these slides

Page 52: Microstructure*Proper-es.pajarito.materials.cmu.edu/rollett/27301/L9-Tensor-Aniso-Props-part_… · obtained’justas’for’any’rotaon’matrix.’’Physically,’rotang’the’crystal,’or’permuDng’the’labels’applied’to’its’axes’

52

Thus,  the  transformaDon  law  as  expressed  preserves  the  lengths  and  the  angles  between  vectors.    Any  funcDon  of  the  components  of  vectors  which  remains  unchanged  upon  changing  the  coordinate  system  is  called  an  invariant  of  the  vectors  from  which  the  components  are  obtained.    The  derivaDons  illustrate  the  fact  that  the  scalar  product                        is  an  invariant    of                and            .    Other  examples  of  invariants  include  the  vector  product  of  two  vectors  and  the  triple  scalar  product  of  three  vectors.    The  reader  should  note  that  the  transformaDon  law  for  vectors  also  applies  to  the  components  of  points  when  they  are  referred  to  a  common  origin.  

u ⋅ v

u

v

Invariants

Please acknowledge Carnegie Mellon in any public use of these slides

Page 53: Microstructure*Proper-es.pajarito.materials.cmu.edu/rollett/27301/L9-Tensor-Aniso-Props-part_… · obtained’justas’for’any’rotaon’matrix.’’Physically,’rotang’the’crystal,’or’permuDng’the’labels’applied’to’its’axes’

53

•  A  rotaDon  matrix,  Λ,  is  an  orthogonal  matrix,  however,  because  each  row  is  mutually  orthogonal  to  the  other  two.      

•  Equally,  each  column  is  orthogonal  to  the  other  two,  which  is  apparent  from  the  fact  that  each  row/column  contains  the  direcDon  cosines  of  the  new/old  axes  in  terms  of  the  old/new  axes  and  we  are  working  with  [mutually  perpendicular]  Cartesian  axes.    

akiakj = δij , aika jk = δij

Orthogonality

Please acknowledge Carnegie Mellon in any public use of these slides