Microorganisms and Microbiology Chapter 1. Chapter outline 1.1 What is a microbe? 1.2 The importance of Microbiology 1.3 Microbes in our lives 1.4 The.

  • Published on
    20-Dec-2015

  • View
    213

  • Download
    1

Embed Size (px)

Transcript

<ul><li> Slide 1 </li> <li> Microorganisms and Microbiology Chapter 1 </li> <li> Slide 2 </li> <li> Chapter outline 1.1 What is a microbe? 1.2 The importance of Microbiology 1.3 Microbes in our lives 1.4 The history of microbiology 1.5 Important events in the development of microbiology </li> <li> Slide 3 </li> <li> Concepts Microorganisms are responsible for many of the changes observed in organic and inorganic matter (e.g., fermentation and the carbon, nitrogen and sulfur cycles that occurred in nature. The development of microbiology as a scientific discipline has depended on the availability of the microscope and the ability to isolate and grow pure cultures of microorganisms. Microbiology is a large discipline, which has a great impact on other areas of biology and general human welfare </li> <li> Slide 4 </li> <li> The word microbe (microorganism) is used to describe an organism that is so small that can not be seen without the use of a microscope. Viruses, bacteria, fungi, protozoa and some algae are all included in this category. 1.1 What is a microbe? </li> <li> Slide 5 </li> <li> Our world is populated by invisible creatures too small to be seen with the unaided eye. These life forms, the microbes or microorganisms, may be seen only by magnifying their image with a microscope. </li> <li> Slide 6 </li> <li> Microbial world Organisms (living) Infectious agents (non-living) Prokaryotes (unicellular) eukaryotesvirusesviroidsprions EubacteriaArchaeaAlgae (unicellular or multicellular) Fungi (unicellular or multicellular) Protozoa (unicellular) Other (multicellular organisms) </li> <li> Slide 7 </li> <li> Most of the bacteria, protozoa, and fungi are single-celled microorganisms, and even the multicelled microbes do not have a great range of cell types. Viruses are not even cells, just genetic material surrounded by a protein coat and incapable of independent existence. The size and cell type of microbes </li> <li> Slide 8 </li> <li> MicrobeApproximate range of sizes Cell type Viruses 0.01-0.25m Acellular Bacteria 0.1-10m Prokaryote Fungi 2m-&gt;1m Eukaryote Protozoa 2-1000m Eukaryote Algae 1m-several meters Eukaryote The size and cell type of microbes </li> <li> Slide 9 </li> <li> Microbes impinge on all aspects of life, just a few of these are listed below: The environmentMedicine Food Biotechnology Research 1.2 The importance of microbiology </li> <li> Slide 10 </li> <li> The environment Medicine Food Biotechnology Research Press here to continue </li> <li> Slide 11 </li> <li> Microbes are responsible for the geochemical cycles. They are found in association with plants in symbiotic relationships. Some microbes are devastating plant pathogens, but others may act as biological control agents against diseases. </li> <li> Slide 12 </li> <li> The disease-causing ability of some microbes is well known. However, microorganisms have also provided us with the means of their control in the form of antibiotics and other medically important drugs. </li> <li> Slide 13 </li> <li> Microbes have been used to produce food, from brewing and wine making, through cheese production and bread making, to the manufacture of soy sauce. But microbes are also responsible for food spoilage. </li> <li> Slide 14 </li> <li> Traditionally microbes have been used to synthesize important chemicals. The advent of genetic engineering techniques has led to the cloning of polypeptides into microbes. </li> <li> Slide 15 </li> <li> Microbes have been used as model organisms for the investigation of biochemical and genetical processes. Millions of copies of the same single cell can be produced very quickly and give plenty of homogeneous experimental material. Most people have no ethical objections to experiments with these microorganisms. </li> <li> Slide 16 </li> <li> 1.3 Microbes in our lives Microorganisms as Disease Agents Microorganisms and Agriculture Microorganisms and the Food Industry Microorganisms, Energy, and the Environment Microorganisms and the Future </li> <li> Slide 17 </li> <li> Branches of Microbiology Bacteriology Protozoology Parasitology Microbial Morphology Mycology Virology Phycology or Algology Microbial physiology Microbial taxonomy Microbial genetics Molecular biology Microbial ecology </li> <li> Slide 18 </li> <li> The future of microbiology is bright Microbiology is one of the most rewarding of professions, because it gives its practitioners the opportunity to be in contact with all the other natural science and thus to contribute in many different ways to the betterment of human life. </li> <li> Slide 19 </li> <li> 1.4 The history of microbiology In the field of observation, chance favors only prepared minds. ------ Louis Pasteur In the field of observation, chance favors only prepared minds. ------ Louis Pasteur </li> <li> Slide 20 </li> <li> The discovery of microorganisms The spontaneous generation conflict The recognition of microbial role in disease The discovery of microbial effects on organic and inorganic matter The development of microbiology in this century </li> <li> Slide 21 </li> <li> The discovery of microorganisms The first person to accurately observe and describe microorganisms Antony van Leeuwenhock (1632-1723) </li> <li> Slide 22 </li> <li> The first person to observe and describe microorganisms was the amateur microscopist Antony van leeuwenhoek of Delft, Holland. Leeuwenhock made his simple, single-lens microscope which could amplify the object being viewed 50 300 times. Between 1673- 1723, he wrote a series of letters to the Royal Society of London describing the microbes he observed from the samples of rainwater, and humam mouth. </li> <li> Slide 23 </li> <li> Leeuwenhoeks drawings of bacteria from the human mouth. A drawing of one of the microscopes showing the lens a; mounting pin b; and focusing screws c and d. lens Object being viewed adjusting screws </li> <li> Slide 24 </li> <li> Pasteurs contributions: Louis Pasteur working in his laboratory Louis Pasteur (1822 1895) Pasteur (1857) demonstrated that lactic acid fermentation is due to the activity of micro- organisms Pasteur (1861) conflict over spontaneous generation birth of microbiology as a science Pasteur (1881) developed anthrax vaccine Pasteurization </li> <li> Slide 25 </li> <li> Spontaneous generation that living organisms could develop from nonliving or decomposing matter. The spontaneous generation conflict </li> <li> Slide 26 </li> <li> Pasteurs swan neck flasks used in his experiments on the spontaneous generation of microorganisms </li> <li> Slide 27 </li> <li> Conclusion: Microorganisms are not spontaneously generated from inanimate matter, but are produced by other microorganisms </li> <li> Slide 28 </li> <li> Robert Koch in his laboratory The recognition of microbial role in disease Robert Koch (1843 1910) </li> <li> Slide 29 </li> <li> Kochs demonstration of special organisms cause special diseases </li> <li> Slide 30 </li> <li> Kochs postulates The microorganisms must be present in every case of the disease but absent from healthy organisms. The suspected microorganisms must be isolated and grown in a pure culture. The disease must result when the isolated microorganisms is inoculated into a healthy host. The same microorganisms must be isolated again from the diseased host </li> <li> Slide 31 </li> <li> The Golden age of microbiology Koch and pure cultures Fermentation and Pasteurization Germ theory of disease Vaccination </li> <li> Slide 32 </li> <li> The discovery of microbial effects on organic and inorganic matter The Russian microbiologist Winograsky discovered that soil bacteria could oxidize iron, sulfur and ammonia to obtain energy, and also isolated nitrogenfixing bacteria. Beijerinck made fundamental contributions to microbial ecology. He isolated Azotobacter and Rhizobium. </li> <li> Slide 33 </li> <li> Alexander Fleming (1881-1955 ) Sir Alexander Fleming discovered the antibiotic penicillin. He had the insight to recognize the significance of the inhibition of bacterial growth in the vicinity of a fungal contaminant. </li> <li> Slide 34 </li> <li> Date Microbiological History 1676 Leeuwenhoek discovers "animalcules" 1857 Pasteur shows that lactic acid fermentation is due to a microorganism 1861 Pasteur shows that microorganisms do not arise by spontaneous generation 1867 Lister publishes his work on antiseptic surgery 1869 Miescher discovers nucleic acids 1876-1877 Koch demonstrates that anthrax is caused by Bacillus anthracis 1880 Laveran discovers Plasmodium, the cause of malaria 1881 Koch cultures bacteria on gelatin Pasteur develops anthrax vaccine 1.5 Important events in the development of microbiology </li> <li> Slide 35 </li> <li> 1884 Koch's postulates first published Metchnikoff describes phagocytosis Gram stain developed 1887 Petri dish (plate) developed by Richard Petri 1889 Beijerinck isolates root nodule bacteria 1899 Beijerinck proves that a virus particle causes the tobacco mosaic disease 1921 Fleming discovers lysozyme 1923 First edition of Bergey's Manual 1928 Griffith discovers bacterial transformation 1929 Fleming discovers penicillin 1933 Ruska develops first transmission electron microscope 1935 Stanley crystallizes the tobacco mosaic virus </li> <li> Slide 36 </li> <li> 1944 Avery shows that DNA carries information during transformation Waksman discovers streptomycin Watson and Crick propose the double helix structure for DNA 1961-1966 Cohen et al use plasmid vectors to clone genes in bacteria 1980 Development of the scanning tunneling microscope 1983-1984 The polymerase chain reaction developed by Mullis 1990 First human gene-therapy testing begun 1997 Discovery of Thiomargarita namibiensis, the largest known bacterium Escherichia coli genome sequenced 2000 Discovery that Vibrio cholerae has two separate chromosomes </li> <li> Slide 37 </li> <li> 1.How did Pasteur's famous experiment defeat the theory of spontaneous generation? 2.How can Koch's postulates prove cause and effect in a disease? 3.Who was the first person to use solid culture media in microbiology? What advantages do solid media offer for the culture of microorganisms? REVIEW QUESTIONS: </li> <li> Slide 38 </li> <li> 4.What is the enrichment culture technique and why was it a useful new method in microbiology? 5.When and how Alexander Fleming discovered antibiotics? </li> <li> Slide 39 </li> <li> 1. Pasteur's experiments on spontaneous generation were of enormous importance for the advance of microbiology, having an impact on the methodology of microbiology, ideas on (he origin of life, and the preservation of food,to name just a few. Explain briefly how the impact of his experiments was felt on each of the topics listed. APPLICATION QUESTIONS: </li> <li> Slide 40 </li> <li> 2. Describe the various lines of proof Robert Koch used to definitively associate the bacterium Mycobacterium tuberculosis with the disease tuberculosis. How would his proof have been flawed if any of the tools he developed for studying bacterial diseases had not been available for his study of tuberculosis? </li> <li> Slide 41 </li> <li> Ronald M.Atlas Clifford Renk Principles of Microbiology. 1999. J 2002. . 2000 . 2002 Johnson.case. Laboratory Experiments in Microbiology. John P.Harley Lansing M.Prescott Microbiology 3th Edition. Lansing, M. Prescott ;John, P. Harley; and Donald, A. Klein. 2002. Microbiology, 5th ed. McGraw- Hill. Gerard J. Tortora ; Bardell R. Funke ; Christine L. 1998. Case. Microbiology An Introduction, 6th. Benjamin/Cummings. Michael, T. Madigan; John, M. Martinko; and Jack, Parker. 2003. Brock Biology of Microorganisms, 10th. Prentice-Hall. References: </li> </ul>

Recommended

View more >