147
7/21/2019 Lecture note - XFEM and Meshfree_2.pdf http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 1/147

Lecture note - XFEM and Meshfree_2.pdf

Embed Size (px)

Citation preview

Page 1: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 1/147

Page 2: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 2/147

Page 3: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 3/147

Page 4: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 4/147

Page 5: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 5/147

Page 6: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 6/147

Page 7: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 7/147

f i

f ij

giI

I

f i = f f ij = f (·)

f igi = r = f ·g f ijklgkl = rij f : g = r

⊗ f igj = rij f ⊗ g = r

× f × g = ǫijk f i gk ǫijk

gi = (g1, g2, g3, g12, g13, g23) gij

Ω Γ Ω0 Γ0

x = φ(X, t),

x X

u(X, t) = x − X = φ(X, t) − x,

v(X, t) = ∂ u(X, t)

∂t = u

a(X, t) = ∂ 2u(X, t)

∂t2 = u

u v a

0

Page 8: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 8/147

a(X, t) = ∂ v(X, t)

∂t +

∂ vi(x, t)

∂xj

∂xi(X, t)

∂t

a(X, t) = ∂ v(X, t)

∂t +

∂ vi(x, t)

∂xjv

F = ∂ x∂ X

ǫ = ∂ u

X = I − F

D = 0.5

L + LT

L = vi,j = F · F−1

E = 0.5 F

T

F − I

σ E

Page 9: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 9/147

[[(·)]]

∂D(·)∂t , (·)

∂ (·)∂ X , ∇, (·),i

S

h

u

t

c

P

L

AL

std

enr

blnd

lin

(e)

0

max

min

ext

int

Q

a, b

diag

kin

E

G

K I , K II

x, x

X, X

u, u

d

Page 10: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 10/147

v, v

a, a

t, t

n

b

p, p

m, m

M, M

w

W

V

A

h

R

f

F

r

P, P

K

N, N

B

C

I

J

e

r, s

S

H

S

λ,λ

Λ, Λ

Π

β

β

κ

K

ǫijk

ǫ, ǫ

σ,σ

σθθ

Page 11: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 11/147

ψ

Ψ

φ

Φ

δ,δ

ξ, η

Ω

Γ

Page 12: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 12/147

Page 13: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 13/147

Page 14: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 14/147

global

local

Page 15: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 15/147

Page 16: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 16/147

Page 17: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 17/147

X

ΦJ (X) p(X) uJ = p(XJ )

ΦJ (X) uJ = ΦJ (X) p(XJ ) = p(X)

completeness

reproducing conditions

J

ΦJ (X) = 1

J

ΦJ (X) X J = X J

ΦJ (X) Y J = Y

J

ΦJ (X) X Ji = X i

Page 18: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 18/147

J

ΦJ,X(X) = 0J

ΦJ,Y (X) = 0

J

ΦJ,X(X) X J = 1J

ΦJ,Y (X) X J = 0 J

ΦJ,X(X) Y J = 0J

ΦJ,Y (X) Y J = 1

J

ΦJ,i(X) = 0 J

ΦJ,i(X) X Jj = δ ij

ΦJ (x)

uJ = 1

J

ΦJ (x) = 1

partition of unities

D

Dt

I ∈S

mI vI

=

I ∈SmI vI = 0

mI v

mI vI = −J ∈S

∇ΦI (XJ ) · σ(XJ ) wJ

ΦI (XJ )

wJ

I ∈S

mI vI = −I ∈S

J ∈S

∇ΦI (XJ )·σ(XJ ) wJ = −J ∈S

I ∈S

∇ΦI (XJ )·σ(XJ ) wJ = 0

Page 19: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 19/147

I ∈S

∇ΦI (XJ ) = 0

D

Dt I mI

vI ×

XI = I m

I vI ×

XI

+ vI ×

vI

=0 = 0

×

D

Dt

I

mI vI × XI

=I

ǫijk

J

ΦI,m(XJ ) σmj(XJ )wJ

X Ik

ǫijk X Ik k − th

I

ǫijkJ I ΦI,m(XJ )X Ik δmk

σmj(XJ )wJ = ǫijkδ mkJ σmj(XJ )wJ

=J

ǫijmσmj(XJ ) =0

wJ = 0

k

k > 0

max i

|u(X i) − ui| ≤ Chk

C

h

Cn

n

h

Page 20: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 20/147

I

K

Support size of particle I

R_KR_I

lim h0→0

W (XI − XJ , h0) = δ (XI − XJ )

Ω0

W (XI − XJ , h0)dΩ0 = 1

W (XI − XJ , h0) = 0 ∀ XI − XJ ≥ R

δ h0

R

h0

h0

x x

h0

Page 21: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 21/147

h0

x

x

W (XI − XJ , h0) = W (XJ − XI , h0)

∇0W (XI − XJ , h0) = −∇0W (XJ − XI , h0)

W (X) = W 1D(X),

W (X) = W 1D(|X 1|) W 1D(|X 2|) W 1D(|X 3|)

X = (X 1, X 2, X 3) X =

X 21 + X 22 + X 23

=

C hD1 − 1.5z2 + 0.75z3 0 ≤ z < 1

C 4 hD

(2 − z)3

1 ≤ z ≤ 20 z > 2

D

z = r/h0

C

=

2/3 D = 1

10/(7 π) D = 21/π D = 3

h0

z

z = ||XI − XJ ||

∂W

∂X iJ =

∂W

∂ z

∂ z

∂X iJ

∂W ∂ z

=

3C hD+1

−z + 0.75z2

0 ≤ z < 1−3C

4 hD+1 (2 − z)2

1 ≤ z ≤ 20 z > 2

Page 22: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 22/147

−3 −2 −1 0 1 2 30

0.2

0.4

0.6

0.8

1

1.2

1.4

h/x = 1

−1 −0.5 0 0.5 1−0.2

0

0.2

0.4

0.6

0.8

1

1.2

u(x)u

rho(x)

h/x = 1

−3 −2 −1 0 1 2 30

0.1

0.2

0.3

0.4

0.5

0.6

0.7

h/x = 2

−1 −0.5 0 0.5 1−0.2

0

0.2

0.4

0.6

0.8

1

1.2

u(x)u

rho(x)

h/x = 2

−3 −2 −1 0 1 2 30

0.05

0.1

0.15

0.2

0.25

0.3

0.35

h/x = 4

−1 −0.5 0 0.5 1−0.2

0

0.2

0.4

0.6

0.8

1

1.2

u(x)u

rho(x)

h/x41

u(x) = 1 − x2

x = 0.5

ωi = x

h/x = 1, 2, 4

Page 23: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 23/147

=

1 − 6z2 + 8z3 − 3z4 0 ≤ z < 1

0 1 ≤ z

=

x − xI ≡ r linear

z2 log z thin plate spline

e−z2/c2 Gaussian

z2 + R2q

multipolar

c R q

W J (x) = W (x − xJ (t), h(x, t))

h

h

ht+∆t = ht + h ∆t

h = 1/3

∇ · v

Page 24: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 24/147

v

h

F

h = h0 F

h

h0

h

W J (X) = W (X − XJ , h0)

xJ (t)

v(x, t) =I ∈S

W (x − xI (t)) vI (t),

a =I ∈S

W (x − xI (t)) vI + ∇W (x − xI (t)) xI · vI .

uh(X, t) =J ∈S

uJ (t) ΦJ (X)

uJ ΦJ (X)

S

ΦJ (X) = 0

Page 25: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 25/147

uh(xI ) = uI

ΦI (XJ ) = δ IJ δ IJ

H1

uh(X, t) =

Ω0

u(Y, t) W (X − Y, h0(Y)) dY

Ω0

Ω0

W (X − Y, h0(Y)) 1 d Y = 1

Ω0

W (X − Y, h0(Y)) Y dY = X

Ω0

W (X − Y, h0(Y)) X dY = X

Ω0

W (X − Y, h0(Y)) (X − Y ) d Y = 0

uh(X, t)

∇0uh(X, t) =

Ω0

∇0u(Y, t) W (X − Y, h0(Y)) dY

Page 26: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 26/147

∇0uh(X, t) =

Ω0

∇0 [u(Y, t) W (X − Y, h0(Y))] dY

Ω0

∇0u(Y, t) W (X − Y, h0(Y)) dY

∇0uh(X, t) = Γ0

u(Y, t) W (X − Y, h0(Y)) n0 dΓ0

Ω0

∇0u(Y, t) W (X − Y, h0(Y)) dY

∇0uh(X, t) = −

Ω0

∇0u(Y, t) W (X − Y, h0(Y)) dY

ΦJ (X) = W (X − XJ , h0) V 0J

V 0J

J

∇0uh(X) = −J ∈S

uJ ∇0ΦJ (X) with ∇0ΦJ = ∇0W (X − XJ , h0) V 0J

V 0J

Page 27: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 27/147

J ∈S

∇0W (X − XJ , h0) V 0J

uI ≡ 0

∇0uh(X) =

J ∈S(uJ − uI ) ∇0W (XI − XJ , h0) V 0

J

Page 28: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 28/147

∇0uh(X, t) =I ∈S

GI (X) uI (t)

uh,i(X, t) =I ∈S

GiI (X) uI (t)

GI

W S I (X) = W I (X)I ∈S

W I (X)

GI

GI (X) = a(X) · ∇0W S I (X) = aij(X)W S jI (X)

a(X)

I ∈S

GI (X) ⊗ XI = δ ij

A

a

A aT = I

I

= W S I,X X I W S I,Y X I

W S I,X Y I W S I,Y Y I

=

aXX aXY aYX aY Y

∇0uh(X, t) =I ∈S

a(X) · ∇0W S I (X) uI (t)

Page 29: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 29/147

ΦI = (a11(X) + a12(X) + a13(X)) W S I (X)

GXI = (a21(X) + a22(X) + a23(X)) W S I (X)

GY I = (a31(X) + a32(X) + a33(X)) W S I (X)

X

a A

=I

W S I (X) 1 X I − X Y I − Y

X I − X (X I − X )2 (X I − X )(Y I − Y )Y I − Y (X I − X )(Y I − Y ) (Y I − Y )2

3 × 3

ΦI = a11(X)W S I,X (X) + a12(X)W S I,Y (X) + a13(X)W S I (X)

GXI = a21(X)W S I,X (X) + a22(X)W S I,Y (X) + a23(X)W S I (X)

GY I = a31(X)W S

I,X (X) + a32(X)W S

I,Y (X) + a33(X)W S

I (X)

a

Φ

X a

=I

W S I,X (X) W S I,Y (X) W S I (X)W S I,X (X) X I W S I,Y (X) X I W S I (X) X I W S I,X (X) Y I W S I,Y (X) Y I W S I (X) Y I

O(h)

u(X)

X

u(XI ) = u(X) + u,X(X) (X I − X )

+ u,Y (X) (Y I − Y ) + 0.5u,XX (X) (X I − X )2

+ u,XY (X) (X I − X ) (Y I − Y )

+ 0.5u,Y Y (X) (Y I − Y )2 + O(h3)

Page 30: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 30/147

uh,X(X) − u,X

uh,X(X) − u,X =I

GXI (X) uI − u,X

=I

GXI (X) u(XI ) − u,X

uh,X(X) − u,X = u(X)I

GXI (X) + u,X(X)I

GXI (X)(X I − X ) − 1+ u,Y (X)

I

GXI (X) (Y I − Y )

+ 0.5 u ,XX (X)I

GXI (X)(X I − X )2

+ u,XY (X)I

GXI (X)(X I − X ) (Y I − Y )

+ 0.5 u ,Y Y (X)I

GXI (X)(Y I − Y )2

I GXI = 0 I GXI (X I

−X ) = 1

I

GXI (Y I − Y ) = 0

uh,X(X) − u,X = 0.5 u ,XX (X)I

GXI (X)(X I − X )2

+ u,XY (X)I

GXI (X)(X I − X ) (Y I − Y )

+ 0.5 u ,Y Y (X)I

GXI (X)(Y I − Y )2

|uh,X(X) − u,X | ≤ 0.5 |u,XX (X)| |I

GXI (X)(X I − X )2|

+ |u,XY (X)| |I

GXI (X)(X I − X ) (Y I − Y )|

+ 0.5 |u,Y Y (X)| |I

GXI (X)(Y I − Y )2|

d

X = (X Y )

|X I − X | ≤ d, |Y I − Y | ≤ d

Page 31: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 31/147

|uh,X(X) − u,X | ≤ (0.5 |u,XX (X)| + |u,XY (X)| + 0.5|u,Y Y (X)|) d2

|I

GXI (X)|

GXI

|GXI | ≤ C 1h0

h0 d = dh0

|uh,X(X) − u,X | ≤ C

(0.5 |u,XX (X)| + |u,XY (X)| + 0.5|u,Y Y (X)|) h0

h

Y

u B

∇0uh(X, t) =

−J ∈S

(uJ (t) − uI (t)) ∇0W (XJ − X, h0) V 0J

· B(X)

B(X) =

−J ∈S

(XJ − X) ⊗ ∇0W (XJ − X, h0) V 0J

−1

W (X − XJ , h) V 0J

B

B(X) = −J ∈SXJ ⊗ ∇0W

S

(XJ − X, h0)−1

B

u

∇0uh(X, t) =

−J ∈S

uJ (t) ∇0W S (XJ − X, h0) V 0J

· B(X)

Page 32: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 32/147

C (X, Y)

uh(X) =

ΩY

C (X, Y)W (X − Y)u(Y)dΩY

K (X, Y) = C (X, Y)W (X

−Y)

C (X, Y)

n

u(X) = pT(X)a

p(X)u(X) = p(X)pT(X)a

ΩY

p(Y)W (X − Y)u(Y)dΩY =

ΩY

p(Y)pT(Y)W (X − Y)dΩYa

a

uh(X) = pT(X)a

uh(X) = pT(X)

ΩY

p(Y)pT(Y)W (X−Y)dΩY

−1 ΩY

p(Y)w(X−Y)u(Y)dΩY

C (X, Y) = pT(X)

ΩY

p(Y)pT(Y)W (X − Y)dΩY

−1

p(Y)

= pT(X)[M(X)]−1p(Y)

uh(X) =

ΩY

C (X, Y)W (X − Y)u(Y)dΩY

=I ∈S

C (X, XI )w(X − YI )uI V 0I

= pT(X)[M(X)]−1I ∈S

p(XI )W (X − XI )uI V 0I

Page 33: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 33/147

M(X)

M(X) =

ΩY

p(Y)pT(Y)W (X − Y)dΩY

=I ∈S

p(XI )pT(XI )W (X − XI )V 0I

uh(x)

(xI , uI )

uI = u(xI )

uh(x)

m

u

h

(x) = a0 + a1x + a2x

2

+ ... + amx

m

uh(x) = pT(x)a

0

xi

Y

X

ui

xi

uh(xi)

uh(x)

a

uI

uh(xI )

J =nI =1

[uh(xI ) − uI ]2 =

nI =1

[pT(xI )a − uI ]2

Page 34: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 34/147

a

nI =1

p(xI )pT(xI )a =nI =1

p(xI )uI

a

uh(x)

xI

uI

pT(x) = [1 x] aT = [a0 a1]

3I =1

1 xI xI x2

I

a =

3I =1

1xI

uI

3 66 14

a =

6.516

a0 = −5/6 a1 = 1.5

uh(x) = −5

6 +

3

2x

a

X X

p

p(X) =

1 X Y ∀ X ∈ ℜ2

uh(X, t) =M I =1

pI (X) aI (X, t) = pT (X i) a(X i)

M a

Page 35: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 35/147

J(a(X i)) =N J =1

W (X − XJ , h0)

M I =1

pI (XJ )T aI (X, t) − u(XJ )

2

=

P(X) a(X) − u(X)T

W(X)

P(X) a(X) − u(X)

N W (X) = 0

uT

(ˆX) = u(

ˆX1) u(

ˆX2) ... u(

ˆXN )

P(X) =

p1(X1) p2(X1) ... pM (X1)

p1(X2) p2(X2) ... pM (X2)

p1(XN ) p2(XN ) ... pM (XN )

=

W (X − X1) 0 ... 0

0 W (X − X2) ... 0

0

0 0 ... W (X−

XN

)

a

∂ J(a(X i))

∂ a(X i) = −2PT (X) W(X) u(X)

+ 2PT (X) W(X) P(X) a(X) = 0

PT (X) W(X) u(X) = PT (X) W(X) P(X) a(X)

a

a(x) = PT (X) W(X) PT (X) =A∈RM ×M

PT (X) W(X) =B∈RM ×N

u(X)

uh(X, t) = pT (X) A−1(X) B(X) u(X)

uh(X, t) =M J =1

M K =1

N I =1

pJ (X) A−1JK (X) BKI (X) uI (X)

Page 36: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 36/147

ΦI (X)

ΦI (X, t) =M J =1

M K =1

pJ (X) A−1JK (X) BKI (X)

V 0I

A(X) =

P 11 ... P 1N

P M 1 ... P MN

W 1 ... 0

0 ... W N

P 11 ... P M 1

P 1N ... P MN

M = 1 p(X ) = 1

A(X) =

1 ... 1 W 1 ... 0

0 ... W N

1

1

A

p(x) = 1

ΦI (X) = W I (X)I ∈S

W I (X)

M = 3 p(X) = [1 X Y ]T

A

A(X) =

1 ... 1x1 ... xN y1 ... yN

W 1 ... 0

0 ... W N

1 x1 y1

1 xN yN

A 3 × 3

A

A

W(X) A

P A

N M

p(X) = [1 X Y ]

Page 37: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 37/147

a) b)

A A

A

A

κ = λmaxλmin

κ

κ → ∞

A

A

∂ Φ(X)

∂X i=

∂ pT (X)

∂X iA−1 B + pT (X)

∂ A−1(X)

∂X iB

+ pT (X) A−1(X)∂ B(X)

∂X i

∂ B(X)

∂X i= P(X)

∂ W(X)

∂X i

Page 38: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 38/147

A−1(X)

I = A−1(X) A(X)

0 = ∂ A−1(X)

∂X iA(X) + A−1(X)

∂ A(X)

∂X i

∂ A−

1(X)

∂X i = −A−1(X)∂ A(X)

∂X i A−1(X)

= A−1(X) P(X)∂ W(X)

∂X iPT (X) A−1(X)

∂ 2Φ(X)

∂X i∂X j=

∂ 2pT (X)

∂X i∂X jA−1(X) B(X)

+ 2∂ pT (X)

∂X i

∂ A−1(X)

∂X jB(X) + A−1(X)

∂ B(X)

∂X i

+ pT (X)

∂ 2A−1(X)

∂X i∂X jB(X) + A−1(X)

∂ 2B(X)

∂X i∂X j+

∂ A−1(X)

∂X i

∂ B(X)

∂X j + pT (X)

∂ A−1(X)

∂X j

∂ B(X)

∂X i

ΦJ

ΦJ (X) = γ (X) · p(XJ ) W (X − XJ , h0)

A(X) · γ (X) = p(XJ )

γ

A

∇0A(X) · γ (X) + A(X) · ∇0γ (X) = ∇0p(XJ )

∇0γ (X)

XI

Page 39: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 39/147

h0

ΦI (X) = W (XI , X) PT

XI − X

h0

γ (X),

W (Y, X) = W ((Y − X)/h0)

P(0) = I ∈S

ΦI (X) PXI − Xh0

γ (X)

A(X) γ (X) = P(0)

A(X) =J ∈S

W (XJ , X) PT

XJ − X

h0

P

XJ − X

h0

h0I h0I XI

W (XI , X) = W

XI − X

h0I

h0 P

h0 h0J

P

< f,g >X=J ∈S

W (XJ , X) f XJ − X

h0

gXJ − X

h0

X Z X

u

u(Z) ≃ uh(Z, X) = PT

Z − X

h0

c(X)

c

Page 40: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 40/147

F (X, Y ) = X 2 + Y 2

(R = 0.8) (R = 0.3) R

uh(X) =J ∈S

ΦJ (X)

uJ +

LK =1

pK (X) aJK

aJK

uh(X) =J ∈S

ΦJ (X) uJ +J ∈S

ΦJ (X)

LK =1

pK (X) aJK

global

Page 41: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 41/147

F (X, Y ) =X 2 + Y 2

(R = 0.8)

(R = 0.3) R

F (X, Y ) = X 2 + Y 2

25 × 25

R

R = 0.6

R = 1.6

R = 0.6

A

0.05%

X

Y

F x F ,X = 2X

0.005%

0.2%

Page 42: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 42/147

F (X, Y ) = sin

X 2 + Y 2

F 0 ≤ X ≤ π2

0 ≤ Y ≤ π2

F

x

π/300 R

x

V = d2

d

h

d < h <√

2d

x

u,X(X) = −N J =1

V J W J,X(X)uJ

u,X(X(5)) = −V J

W

(25),X u2 + W

(45),X u4 + W

(55),X u5 + W

(65),X u6 + W

(85),X u8

x

W (25),X = W (55)

,X =

W (85),X = 0

W IJ

u,X(X(5)) = V J

W (54),X u4 + W

(56),X u6

f (X ) = aX 2 + bX + c Y

y

F ,X = 2X cos`X 2 + Y 2

´

Page 43: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 43/147

F (X, Y ) = sin X 2

+ Y 2

F (X, Y ) = sin

X 2 + Y 2

(R = 0.6)

F (X, Y ) = sin

X 2 + Y 2

(R = 1.6)

F (X, Y ) = sin

X 2 + Y 2

(R = 1.6)

Page 44: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 44/147

f (X ) = aX 2 + bX + c

Page 45: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 45/147

f

x

w

w

f ,X(X(5)) = V J

W (54),X f 4 + W

(56),X f 6

= V J

−w

a (x(4))2 + bx(4) + c

+ w

a (x(6))2 + bx(6) + c

= V J w a(x

(5)

+ d)2

− (x(5)

− d)2+ b(x

(5)

+ d) − (x(5)

− d)= V J w

4 a d x(5) + 2 b d

= 2 V J w d

2 a x(5) + b

V J = d2

f

f ,X(X(I )) = 2 w d3

2 a x(I ) + b

a

b

f

d

h

d

h

x(I

)

errabs(d,h,x(I )) = 2 a x(I ) + b − 2 w(d, h) d3

2 a x(I ) + b

=

2 a x(I ) + b

1 − 2 w(d, h)d3

errrel(d,h,x(I )) =

2 a x(I ) + b

1 − 2 w(d, h)d3

2 a x(I ) + b

= 1 − 2 w(d, h)d3

1 − 2 w(d, h)d3 ≡ 0 ⇔ w(d, h) d3 = 0.5

(d, h)

d/h =√

2

35%

0.2%

w

d

h

Page 46: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 46/147

Page 47: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 47/147

F (X, Y ) =X 2 + Y 2

(R = 1.6)

5%

10%

10%

25 × 25 = 625

V J = d2

21%

V new,J = (1.1d)2 = 1.21 V old,J

70%

∇0u(X(407))

V I ≡ −

J ∈S

∇0W (407)J (X) uJ

Page 48: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 48/147

10%

∇0W (407)J (X) uJ

K ∈S∇0W

(407)K (X) uK

∂W (407)J (X)∂X uJ = 0

10%

5% 10%

Page 49: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 49/147

F (X, Y ) =X 2 + Y 2

(R = 1.6)

F (X, Y ) =X 2 + Y 2

(R = 0.6)

Page 50: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 50/147

∇0 · P − b = ∅ ∀X ∈ Ω0

P P

b X

∇0

Ω0

u(X, t) = u(X, t) on Γu0

n0 · P(X, t) = t0(X, t) on Γt0

u

t0

Γu0

Γt0 = Γ0 , (Γu0

Γt0) = ∅

J = 0 J 0

u = 1

0∇0 · P + b on Ω0

e = 1

0F : PT

J

J 0

u

0 P

b

e

F = ∇u+I I

u(X, t) = u(X, t)

Γu0

n0 · P(X, t) = t0(X, t) Γt0

u

t0 n0

Γu0 ∪ Γt0 = Γ0 (Γu0 ∩ Γt0) = ∅

Page 51: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 51/147

C0

δ uh(X) =J ∈S

ΦJ (X) δ uJ

uh(X) =J ∈S

ΨJ (X) uJ

V = u(·, t)|u(·, t) ∈ H1, u(·, t) = u(t) on Γu0 ,V0 =

δ u|δ u ∈ H1, δ u = 0 on Γu0 ,

Ω0

∇0 · P · δ u dΩ0 +

Ω0

0 (b − u) · δ u dΩ0 = 0

Ω0 ∇0

·P

·δ u dΩ0 = Ω0 ∇

0

·(P

·δ u) dΩ0

− Ω0

(

∇0

⊗δ u)

T : P dΩ0

Ω0

∇0 · (P · δ u) dΩ0 =

Γt0

n0 · P · δ u dΓ0

t = n0 · P Ω0

∇0 · (P · δ u) dΩ0 =

Γt0

t · δ u dΓ0

Ω0

(∇0 ⊗ δ u)T : P dΩ0 − Ω0

0 b · δ u dΩ0 +

Γt0

t0 · δ u dΓ0

+

Ω0

0 δ u · u dΩ0 = 0

Page 52: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 52/147

J

mIJ uJ = f extI − f intI ,

f extI f intI

f extI =

Ω0

0 ΦI b dΩ0 +

Γt0

ΦI t dΓ0

f intI = Ω0

∇0ΦI · P dΩ0

mIJ =I ∈S

Ω0

0 ΨI (X) ΦJ (X) dΩ0.

ΦJ (X) = δ (X − XI )

ΨJ (X) = ΦJ (X)

ΨJ (X) = ΦJ (X)

Ω0

f (X) dΩ0 =J ∈S

f (XJ ) V 0J

V 0J J

f intI =J ∈S

V 0J ∇0ΦI (XJ ) · PJ

mI

Page 53: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 53/147

mI

V 0J

mI

mIJ

mIJ

mI =J ∈S

mIJ =J ∈S

Ω0

0 ΦI (X) ΨJ (X) dΩ0

= Ω0

0 ΦI (X)J ∈S

ΨJ (X) dΩ0

mI =

Ω0

0 ΦI (X) dΩ0

mI =

J ∈S J ΦI (X) V 0

J

M

N totI =1

mI =

N totI =1

J ∈S

J ΦI (X) V 0J =

J ∈S

J

N totI =1

ΦI (X)

V 0J =

J ∈S

J V 0J = M

Page 54: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 54/147

a) b)

Ω0

∇ΦI (X) dΩ0 =

Γ0

n0ΦI (X) dΓ0

ǫ XM

ǫ(XM ) =

Ω0

ǫ Ψ(X − XM ) dΩ0

ǫ ǫ = 0.5(ui,j + uj,i)

Ω0

Ψ(X − XM )

Ψ(X − XM ) ≥ 0 Ω0

Ψ(X − XM ) dΩ0 = 1

Page 55: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 55/147

stress point

stress point

stress point

particle particle particle particle

particleparticleparticleparticle

Ψ(X − XM ) = 1

AM ∀XM ∈ Ω0, otherwise Ψ(X − XM ) = 0

AM

ǫ(XM ) = 12AM

Ω0

(ui,j + uj,i) dΩ0

= 1

2AM

Γ0

(ui nj + uj ni) dΓ0

Ω0

f (X) dΩ0 =J ∈NP

f P J V 0P J +J ∈NS

f S J V 0S J

Page 56: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 56/147

master partic les

slave parti cles

N P

N S

XP I

uS I = J ∈S

ΦJ (XS I ) uP J , vS I =

J ∈SΦJ (XS

I ) vP J

S P

ΦJ (XS I ) J XS I

f intI =J ∈NP

V 0P J ∇0ΦI (XP J ) · PP J +J ∈NS

V 0S J ∇0ΦI (XS J ) · PS J

V 0P J V 0S J

V 0 = J ∈NP

V 0P J + J ∈NS

V 0S J

2nQ−1

Page 57: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 57/147

nQ

nQ

nQ =√

m + 2

m

Ω0

f (X) dΩ0 =

+1 −1

+1 −1

f (ξ, η) det Jξ(ξ, η) dξdη =mJ =1

wJ f (ξJ ) det Jξ(ξJ )

ξ = (ξ, η) m

wJ = w(ξ J ) w(ηJ )

ξ

η

det Jξ

Jξ = ∂ X

∂ ξ

f int =

mJ =1

wJ detJξ(ξJ ) ∇0Φ(X(ξJ ) − XP ) P(ξJ )

P

u ∈ V

δW = δW int − δW ext = 0 ∀δ u ∈ H1

δW int =

Ω0

(∇ ⊗ δ u)T

: P dΩ0

nQ = 2

nQ = 3

Page 58: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 58/147

a) b)

δW ext =

Ω0

0 δ u · b dΩ0 +

Γt0

δ u · t0 dΓ0

V = u(·, t)|u(·, t) ∈H1, u(·, t) = u(t) on Γu0 ,V0 =

δ u|δ u ∈ H1, δ u = 0 on Γu0 ,

K u = f ext

K

KIJ =

Ω0

BI CtBJ dΩ0

B

BI = ΦI,X 0

0 ΦI,Y ΦI,Y ΦI,X

f extI =

Γt0

ΦI (X) t0 dΓ0 +

Ω0

ΦI (X) b dΩ0

H1

Page 59: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 59/147

u ∈ V

δW = δW int − δW ext − δW u = 0 ∀δ u ∈ H1

δW int = Ω0\Γc0

(∇ ⊗ δ u)T : P dΩ0

δW ext =

Ω0\Γc0

0 δ u · b dΩ0 +

Γt0

δ u · t0 dΓ0

V =

u(·, t)|u(·, t) ∈ H1, u(·, t) = u(t) on Γu0 ,

V0 =

δ u|δ u ∈ H1, δ u = 0 on Γu0 ,

δW u

δW u

δW u = Γ0u

δ λ · (u − u) dΓ0 + Γ0

δ uλ dΓ0

λ

λ =J ∈S

ΦLJ (X) λJ

ΦLJ (X)

K GG 0 uλ = f

ext

q

K = KIJ

GIK = −

Γu

ΦI (X) ΦLK (X) S dΓ

qK = −

Γu

ΦLK (X) S u dΓ

S 2 × 2 S ij j = i

Page 60: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 60/147

• K

u λ

u

inf − sup

Π

Π = 2a21 − 2a1a2 + a2

2 + 18a1 + 6a2

a1 = a2

λ

Π = Π + λ(a1 − a2)

= 2a21 − 2a1a2 + a2

2 + 18a1 + 6a2 + λ(a1 − a2)

ai λ

∂ Π

∂a1= 0

∂ Π

∂a2= 0

∂ Π

∂λ = 0

a1 a2 λ

a1 = a2 = −12 λ = 6

δW u

δW u = 0.5 p

Γ0u

u − u2dΓ0

p

Page 61: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 61/147

uh(x) =N I =1

ΦI (xJ )uI

uh(x) xJ

uI

N

N

u = Du

D

N × N

u

u = D−1u

uh(x) =

nI =1

ΦI (x)D−1IJ uI

N ×N

Γu

N Ω

Γu N Γu

uh(x) =

N ΩI =1

ΦI (xJ ) uI Ω +

N ΓuI =1

ΦI (xJ ) uI Γu

Γu

u(xJ ) = g(xJ ), J = 1,...,N Γu

DΩuΩ (N Γu×N Ω)(N Ω×1)

+ DΓu uΓu (N Γu×N Γu )(N Γu×1)

= g

(N Γu×1)

Page 62: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 62/147

uΓu

uΓu =

DΓu−1

(g − DΩuΩ)

uh(x) =

N ΩI =1

ΦI (xJ ) uI Ω +

N ΓuI =1

ΦI (xJ )

[DΓu

IJ ]−1(gI − DΩ

IJ uΩJ )

uh(x) =

N Ωi=I

ΦI (x) − ΦI (x)[DΓu

IJ ]−1DΩ

IJ

uI +

N ΓuI =1

ΦI (x)[DΓu

IJ ]−1gJ

FE node

particle

particle boundaryparticle domain

blending region

element domain

element boundary

ΩP

ΩFE

ΓP

ΓFE

ΩB

ΩB ΩP ΩFE

ΓFE ΓP

uh = uFE (X) + R(X)

uP (X) − uFE (X)

, X ∈ ΩB

Page 63: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 63/147

uFE uP u

R(X)

R(X) = 1, X ∈ ΓP

R(X) = 0, X ∈ ΓFE

R(X) = 3 r 2(X) − 2 r3(X)

r(X) =J ∈S ΓP

N J (X)

S ΓP ΓP

uh(X) =I

N I (X)uI , XI ∈ ΩB

N I (X) = (1 − R(X)) N I (ξ (X)) + R(X) N I (X) X ∈ ΩB

˜N I (

X) = R(

X) N I (

X)

X /∈ Ω

B

ΓP

ΓFE

N I (X) = N I (X) X ∈ ΩB on ΓFE

N I (X) = 0 X /∈ ΩB on ΓFE

N I (X) = N (X) X /∈ ΩB on ΓP

R(X) = 1 ΓP R(X) = 0 ΓFE

W = W int − W ext + λT g

W int W ext

λ

Page 64: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 64/147

ΓFE 0

ΓP 0

Γ∗

0

ΩFE 0 Ω

P 0

g = uFE − uP

gh =

N J =1

N FE J (X, t) uFE J −J ∈S

N P J (X, t) uP J

δ λ

δ λP h (X, t) =N J =1

N FE J (X, t) δ ΛJ (t)

XL

XL = ΦI (ξ)XI

ξ

δ uh(X, t) =

N J =1

N FE J (X, t) δ uFE J (t) +J ∈S

N P J (X, t) δ uP J (t)

uh(X, t) =

N J =1

N FE J (X, t) uFE J (t) +J ∈S

N P J (X, t) uP J (t)

N FE (X, t) = 0 ∀ X ∈ ΩP 0

N P (X, t) = 0 ∀ X ∈ ΩFE 0

S

u λ

∂W

∂ u =

∂W int

∂ u − ∂ W ext

∂ u + λ

∂ g

∂ u = f int − f ext + λ

∂ g

∂ u = 0

∂W

∂ λ = g = 0

Page 65: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 65/147

W int

W ext u

f int =

ΩP 0 ∪ΩFE

0

(∇0 ⊗ δ u)T : P dΩ0

f ext =

ΩP 0 ∪ΩFE

0

δ u · b dΩ0 +

ΓP,t0 ∪ΓFE,t0

δ u · t0 dΓ0

λ ∂ g∂ u

0 = f int − f ext + λ∂ g

∂ u +

∂ f int

∂ u ∆u − ∂ f ext

∂ u ∆u +

∂ g

∂ u ∆λ + λ

∂ 2g

∂ u∂ u ∆u

0 = u + ∂ g

∂ u ∆u

KFE + λ ∂ 2g

∂ u∂ u 0

KFE −FE T

0 KP + λ ∂ 2g

∂ u∂ u

KFE −P T

KFE −FE KFE −P T 0

· ∆uFE J

∆uP J ∆Λ

=

f ext,FE − f int,FE − λT KFE −FE

f ext,P − f int,P − λT KFE −P

−g

KFE −FE KFE −P

g u

uFE uP KFE

KP u

b

t u

KFE −FE =

Γ∗0

NFE

T · NFE dΓ0

KFE −P = −

Γ∗0

NFE

T · NP dΓ0

KP =

ΩP 0

BP

T C BP dΩ0

KFE =

ΩFE0

BFE

T C BFE dΩ0

Page 66: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 66/147

f ext,FE =

ΩFE0

NFE

T b dΩ0 +

ΓFE,t0

NFE

T t0 dΓ0

f ext,P =

ΩP 0

NP

T b dΩ0 +

ΓP,t0

NP

T t0 dΓ0

f int,FE =

ΩFE0

BFE

T · P dΩ0

f

int,P

= ΩP 0B

P T · P dΩ0

K

∆u = u

∆λ = λ

∂ 2g∂ u∂ u

KFE 0

KFE −FE T 0 KP

KFE −P T

KFE −FE KFE −P T 0

· uFE J

uP J Λ

= f ext,FE

f ext,P

−g

Ω0

Γ0 Γ0 Γt0

Γu0

ΩFE 0 ΩP 0

Ωint0 Ωint

Ωint

Γα

0

α

α

α = l(X)l0

l(X) X

Γα0

α

Ωint0

Ωint0

W int =

ΩFE0

β FE FT · PdΩFE 0 +

ΩP 0

β P FT · PdΩP 0

Page 67: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 67/147

Γ 0

αΩ0

FE

Ω0

P

Ω0

int

α=1α=0

finite element node

particle

β

β FE (X) =

0 in ΩP 0

1 − α in Ωint0

1 in ΩFE 0 − Ωint0

β P (X) = 0 in Ω

FE

0α in Ωint0

1 in ΩP 0 − Ωint0

W ext =

ΩFE0

β FE ρ0b · udΩFE 0 +

ΩP 0

β P ρ0b · udΩP 0

+

ΓFE0

β FE t · udΓFE 0 +

ΓP 0

β P t · udΓP 0

Ωint0

N I (X)

wI (X)

uFE (X, t) =I

N I (X)uFE I (t)

uP (X, t) =I

wI (X)uP I (t)

Ωint0

gI = giI =

uFE iI − uP iI

=

J

N JI uFE iJ −

K

wKI uP iK

Page 68: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 68/147

ΛI (X)

λi(X, t) =I

ΛI (X)λiI (t)

ΛI (X)

N I (X) wI (X)

λi

λiI

W AL = W int − W ext + λT g + 1

2 pgT g

p

p = 0

W AL

uI

λI

∂W AL∂uFE iI = (F intiI − F extiI ) +

L

K

ΛKLλK N IL+ p

L

K

N KLuFE iK −K

wKLuP iK

N IL

= 0

∂W AL∂uP iI

= (f intiI − f extiI ) −L

K

ΛKLλK

wIL

− pL

K

N KLuFE iK −K

wKLuP iK

wIL

= 0

∂W AL

∂λiI = L ΛIL K N KLuFE iK

−K wKLuP iK = 0

N KI = N K (XI ) ΛKI = ΛK (XI )

Fint Fext

ΩFE 0

FintiI =

ΩFE0

β FE N I,j (X)Pji(X)dΩFE 0

FextiI =

ΩFE0

β FE N I (X)ρ0bidΩFE 0 +

Γt0

β FE N I (X)tidΓt0

Page 69: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 69/147

f int f ext

ΩP 0

f intiI =

ΩP 0

β P wI,j (X)Pji(X)dΩP 0

f extiI =

ΩP 0

β P wI (X)ρ0bidΩP 0 +

Γt0

β P wI (X)tidΓt0

d u

∆FintI =J

KFE IJ ∆uFE J or ∆Fint = KFE ∆dFE

∆f intI =J

KP IJ ∆uP J or ∆f int = KP ∆dP

KFE KP

KFE = KFE

11 KFE 12

KFE

21 KFE

22

KFE nn

KFE IJ = ∂ FintI

∂ uFE J

KP =

KP

11 KP 12

KP 21 KP

22

KP mm

KP IJ =

∂ f intI ∂ uP J

d

FE

=

dFE 1

dFE 2

dFE n

d

FE

I = uFE xI

uFE yI d

P

=

dP 1

dP 2

dP m

d

P

I = uP xI uP yI

A11 A12 LFE T

A21 A22 LP T

LFE LP 0

∆dFE

∆dP

∆λ

=

−rFE

−rP

−g

di ukP dj ulQ

Page 70: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 70/147

rFE = Fint − Fext + λT GFE + pgT GFE

rP = f int − f ext + λT GP + pgT GP

g = giI =

K

ΛIK giK

A11 = KFE + pGFE T GFE

A12 = pGFE T GP

A21 = pGP T GFE

A22 = KP + pGP T GP

λiI =K

ΛK (XI )λiK

KFE =

∂ Fint

∂ dFE

=

∂F intiI ∂uFE lQ

=

ΩFE0

β FE N I,jC jilkN Q,kdΩFE 0

KP =

∂ f int

∂ dP

=

∂f intiI ∂uP lQ

=

ΩP 0

β P wI,jC jilkwQ,kdΩP 0

LFE =

L

ΛIL∂ gL

∂dFE i

=

L

ΛIL∂gjL∂dFE i

=

L

ΛIL∂gL

∂uFE kP

=

L

ΛILN PI δ jk

LP =

L

ΛIL∂ gL∂dP i

=

L

ΛIL∂gjL∂dP i

=

L

ΛIL∂gL

∂uP kP

=

−L

ΛILwPI δ jk

GFE =

∂ gI ∂dFE i

=

∂gjI ∂uFE kP

= [N PI δ jk ]

GP =

∂ gI ∂dP i

=

∂ gjI ∂uP kP

= [−wPI δ jk ]

Page 71: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 71/147

c

u(x, t) = ˙u + H S [[ ˙u]](x, t)

u

∇ x r

s H S

δ S S

ǫ(x, t) = ∇S u = ∇S ˙u + H S ∇S [[ ˙u]] + δ S

[[ ˙u]] ⊗ n

S

weak

Ω

S

Ω+

Ω−

u(x, t) = ˙u + H Ωh(r, t)[[ ˙u]](s, t)

Page 72: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 72/147

Page 73: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 73/147

H Ωh

H Ωh =

0 x ∈ Ω− \ Ωh

1 x ∈ Ω+ \ Ωh

s−s−s+−s− x ∈ Ωh

ǫ(x, t) = ∇S u = ∇S ˙u + H Ωh∇S [[ ˙u]] + ∇H Ωh [[ ˙u]]

s

H Ωh

∇H Ωh = n

h(r)

h(r) n

h = s+−s−

a 1 X ∈ Ωh 0

ǫ(x, t) = ∇S u = ∇S ˙u + H Ωh∇S [[ ˙u]] + a

h

[[ ˙u]] ⊗ n

S

Page 74: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 74/147

Page 75: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 75/147

undesired

hI 0

Page 76: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 76/147

CRACK

CRACK

CRACK

Visibility criterion

Diffraction criterion

Transparency criterion

Crack line

Crack line

Crack line

Page 77: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 77/147

crack

interdiscontinuities

I

crack

Domain of influence

I

crack crack

s0(x)

s2(x)

x

xI

xc

s1

Page 78: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 78/147

h0

undesired

hI 0

hI 0(X) =

s1 + s2(X)

s0(X)

λs0(X)

s0(X) = X − XI s1 = Xc − XI

s2(X) = X − Xc

λ

hI 0

∂W

∂X i=

∂W

∂h0I

∂h0I

∂X i

∂h0I

∂X i= λ

s1 + s2(X)

s0(X)

λ−1∂s2

∂X i+ (1 − λ)

s1 + s2(X)

s0(X)

λ∂s0

∂X i

∂s2

∂ X =

X − Xc

s2(X)

∂s0

∂ X =

X − XI

s0(X)

Page 79: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 79/147

I

crack

Page 80: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 80/147

X XI

h0I

h0I = s0(X) + hmI

sc(X)

sc

λ, λ ≥ 2

s0(X)

hmI

SI

sc(X)

sc = κh

κ

h

∂h0I

∂ X =

∂s0

X + λhmI

sλ−1c

sλc

∂sc∂ X

∂s0

∂ X =

X − XI

s0(X)

∂sc∂X 1

= −cos(θ) = X b − X c

sc(X)

∂sc∂X 2

= −sin(θ) = Y b − Y c

s2(X)

θ

Page 81: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 81/147

na

nB

ω

nA · nB ≤ β

nA · nB ≤ β β = 0o

β = 0o

ω = 90o

enrichment

Page 82: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 82/147

r θ

crack

u1 = 1

G

r

2G

K I Q

1I (θ) + K II Q

1II (θ)

u2 =

1

G

r

2G

K I Q

2I (θ) + K II Q

2II (θ)

G r θ

Q1I (θ) = κ − cos θ2 + sinθ sin θ2

Q2I (θ) = κ + sin

θ

2 + sinθ cos

θ

2

Q1II (θ) = κ + sin

θ

2 + sinθ cos

θ

2

Q2II (θ) = κ − cos

θ

2 − sinθ sin

θ

2

K I K II

κ = (3 − ν )/(1 + ν )

κ = (3 − 4ν )

Page 83: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 83/147

pT (X) =√

r sin(θ/2),√

r cos(θ/2),√

r sin(θ/2)sin(θ),√

r cos(θ/2)sin(θ)

p = [B1, B2, B3, B4]

02

46

810

0

5

10−3

−2

−1

0

1

2

3

B1 function

B1

02

46

810

0

5

100

0.5

1

1.5

2

2.5

B2 function

B2

02

46

810

0

5

10−3

−2

−1

0

1

2

3

B3 function

B3

02

46

810

0

5

10−1

0

1

2

3

B4 function

B4

p

p

pT (X) =

1, X , Y ,

√ r sin

θ

2,√

r cosθ

2,√

r sinθ

2sin(θ),

√ r cos

θ

2sin(θ)

Page 84: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 84/147

r

θ

ΦJ (X) = p(X)T · A(X)−1 · pJ (X) W (X − XJ , h)

A(X) =

J ∈S pJ (X) pT J (X) W (X − XJ , h)

A

A

A

uh(X) = R uenr(X) + (1 − R) ulin(X)

uenr

(X)

u

R

R

R = 1 − ξ R = 1 − 10ξ 3 + 15ξ 4 − 6ξ 5 ξ = (r − r1)(r2 − r1)

uh(X, t) =J ∈S

uJ (t) ΦJ (X)

ΦJ (X) = R ΦenrJ (X) + (1 − R)ΦlinJ (X)

ΦenrJ (X) ΦlinJ (X)

R = 1 − ξ

uh(X, t) =J ∈S

p(XJ )T a(X, t) +

ncK =1

kK I QK

I (XI ) + kK II QK II (XI )

Page 85: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 85/147

crack

Enriched

Transition

Linear

r1

r2

Page 86: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 86/147

nc uh u

p

n − th

kI

kII

kI

kII

J

a

L2

J = J ∈S

1

2 p(XJ )T a(X, t) +

ncK =1

kK I QK I + kK II QK II − uJ (t)2

W (X−XJ , h0)

J

A(X)a(X) =J ∈S

PJ (X)

uJ −

ncK =1

kK I QK I + kK II Q

K II

A(X) =J ∈S

p(XJ ) pT (XJ ) W (X − XJ , h0)

PJ (X) = [W (X − X1, h0)p(X1),...,W (X − Xn, h0)p(Xn)]

n a

a(X) =J ∈S

A−1(X)PJ (X)

uJ −

ncK =1

kK I QK I + kK II Q

K II

uh(X) =

J ∈SpT (X)A−1(X)PJ (X)

uJ −

nc

K =1 kK I QK

I + kK II QK II

+ncK =1

kK I QK I + kK II Q

K II

ΦJ (X) = pT (X)A−1(X)PJ (X)

uh(X) =J ∈S

ΦJ (X) uJ +

ncK =1

kK I QK I + kK II Q

K II

Page 87: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 87/147

uJ = uJ −ncK =1

kK I QK I + kK II Q

K II

kI

kII

uh(X) =I ∈S

ΦI (X)

uI +

J ∈Sc

bIJ pJ (X)

bIJ

Sc

local

Page 88: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 88/147

Page 89: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 89/147

local

global

Page 90: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 90/147

Ω

ΩA

ΩB

Γ

ΩB

Ω = ΩA ∪ ΩB

ΩA∩

ΩB = ∅

Γ :

ΩA

ΩB

φ > 0

ΩA

φ < 0

φ = 0

Γ

n

φ(x)

φ(x) > 0 ∀ x ∈ ΩA

φ(x) < 0 ∀ x ∈ ΩB

φ(x) = 0 ∀ x ∈ Γ

Γ

φ(x)

φ(x, t)

n

Γ x ∈ Γ

n = ∇φ ∇φ

∇φ = 1 n = ∇φ n ΩB ΩA ΩB

φ ΩA φ

Γ x ∈ Γ

K = ni,i

∇φ = 1

K = ni,i = φ,ii

Page 91: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 91/147

Ω

f (x) Ω

ΩA ΩB Ω

f (x) =

ΩA

f (x) +

ΩB

f (x)

H (ξ )

H (ξ ) =

1 ∀ξ > 00 ∀ξ < 0

ΩA

ΩB

ΩA = x ∈ Ω/H (φ(x)) = 1

ΩB = x ∈ Ω/H (−φ(x)) = 1

Ω f (x

) = Ω f (x

)H (φ(x

)) + Ω f (x

)H (−φ(x

))

ΩA

ΩA ΩA

f ,i(x) =

Ω

f ,i(x)H (φ(x))

ΩA f ,i(x) = ∂ ΩA f (x)ni

ni ΩA

ΩA

f ,i(x) =

Ω

(f (x)H (φ(x))),i − f (x) (H (φ(x))),i

H (φ(x) H (φ(x))

,i

= φ,i(x)H ,i(φ(x)) = φ,i(x)δ (φ(x))

Page 92: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 92/147

Case 3:Case 2:Case 1:

ΩAΩAΩA ΩB

ΩBΩBΓΓΓ

∂ intΩA = Γ

∂ extΩA = ∂ Ω∂ extΩA = ∂ Ω

∂ ΩA = ∂ extΩA

∪∂ intΩA ∂ ΩA = Γ ∂ ΩA = ∂ extΩA

∂ Ω

δ (η)

φ φ,i(x) nB→A

H (φ(x))

,i

= nB→Ai on Γ

= 0 otherwise.

Ω

f ,i(x)H (φ(x)) =

Ω

f (x)H (φ(x))

,i

− Ω

f (x)

H (φ(x)),i

=

∂ Ω

f (x)H (φ(x))ni −

Γ

f (x)nB→Ai

=

∂ Ω

f (x)H (φ(x))ni +

Γ

f (x)nA→Bi

Ω

f ,i(x)H (φ(x)) =

∂ Ω =∂ extΩA

f (x) H (φ(x))

=1

ni +

Γ =∂ intΩA

f (x)nA→Bi

=

∂ ΩA

f (x)ni

Ω

f ,i(x)H (φ(x)) =

∂ Ω

f (x) H (φ(x)) =0

ni +

Γ

=∂ ΩA

f (x)nA→Bi

=

∂ ΩA

f (x)ni

Page 93: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 93/147

Ω

f ,i(x)H (φ(x)) =

∂ Ω

f (x) H (φ(x)) =1 onlyif x∈ΩA

ni +

Γ

f (x)nA→Bi

=

∂ ΩA

f (x)ni

H (φ) =

0 for φ < −ǫ12 + φ

2ǫ + 12π sin πφǫ for − ǫ < φ < ǫ

1 for ǫ < φ

H (φ) =

0 for φ < −ǫ12

+ 18

9φǫ − 5(φ

ǫ)3

for − ǫ < φ < ǫ

1 for ǫ < φ

ǫ

δ (φ) = 0 for φ < −ǫ

12ǫ

+ 12ǫ

sin πφǫ for − ǫ < φ < ǫ0 for ǫ < φ

d x

Γ

d = x − xΓ

xΓ x

Γ

φ(x)

φ(x) = d ΩA

φ(x) = −d

ΩB

φ(x) = min x∈Γ

x − x sign

n · (x − x)

∇φ = 1

Page 94: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 94/147

n

x

φ = 0

d

Γ

φ < 0 φ > 0

N I (x)

I

S

φ(x) =I ∈S

N I (x)φI

φI

I

φ(x),i =I ∈S

N I,i(x)φI

φ

φ,i φ,i = 0

Page 95: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 95/147

φ

Dφ(x, t)

Dt = 0

v

∂φ(x, t)∂t + ∇φ(x, t) · v(x, t) = 0

φ + φ,ivi = 0

φn+1 − φn

∆t = −φn,iv

ni

φn+1 = φn − ∆t φn,ivni

∆t

φ vi

φ φ

|∇φ| = 1

Ω0

Γ0

• φ(X) = 0

φ(X) > 0

Page 96: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 96/147

f(X)=0 f X =0f(X)<0

voxels (background mesh) f(X)>0

activparticl

ΩCD

φ(X)

• φ(X) ≥ 0

XI

• I ∋ N act φ(XI ) ≥ 0 φ(XI ) = 0 XI

XI I

nsp

XI I

nip

φ(X) = 0

φ(X)

φ(X)

N I (X)

φ(X) =I ∈S

N I (X) XI

Page 97: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 97/147

B X

φ(X) > 0

ΩCD

φ(XI ) ≤ α h p

h p

α

uh(X) = J ∈S

N J (X) uJ + K ∈E

J ∈Sc

N K J (X) ψK (X) aK J

S

Sc

N J

N J

ψ(X)

aJ

E

K

N J (X ) = N J (X )

ψ S

S (ξ ) =

1 ∀ξ > 0−1 ∀ξ < 0

ψ(X)

Page 98: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 98/147

4321 crack

Shifting

crack

φ=0φ>0φ<0

N 2(X) N 3(X)

N 2(X)H (f (X))

N 3(X)H (f (X))

N 2(X) (H (f (X)) − H (f (X2)))

N 3(X) (H (f (X)) − H (f (X3)))

uh(X ) =J ∈S

N J (X ) uJ +J ∈Sc

N J (X ) S (φ(X )) aJ

N 1 = 0.5(1 − r) N 2 = 0.5(1 + r)

r

N 2(X ) N 3(X )

X c

φ(X c) = 0 X c

φ(X ) < 0 X < X c φ(X ) > 0 X > X c

X 2 < X c S (φ(X 2)) = −1

S (φ(X 3)) = 1

X 3 > X c N J (X ) S (X )

u(X ) K ∈ Sc

u(X K ) = uK + S (φ(X K )) aJ

uK

Page 99: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 99/147

uh(X ) =J ∈S

N J (X ) uJ +J ∈Sc

N J (X ) (S (φ(X )) − S (φ(X J ))) aJ

u(X K ) = uK

[[uh

(X )]] = u(X +

) − u(X −)=

J ∈S

N J (X +) uJ +J ∈Sc

N J (X +)

S (φ(X +))

aJ

−J ∈S

N J (X −) uJ +J ∈Sc

N J (X −)

S (φ(X −))

aJ

=J ∈Sc

N J (X )

S (φ(X +)) − S (φ(X −))

aJ

= 2J ∈Sc

N J (X ) aJ

N J (X −) = N J (X

+

)

[[uh(X )]] =J ∈Sc

N J (X )

H (φ(X +)) − H (φ(X −))

aJ

=J ∈Sc

N J (X ) aJ

J ∈Sc

N J (X ) aJ 2 J ∈Sc

N J (X ) aJ

ψ

φ

ψJ (x, t) = |φ(x, t)| − |φ(xJ , t)|

vh(x) =J ∈S

N J (x) vJ (t) +J ∈Sc

N J (x) ψJ (φ(x), t) aJ (t)

Page 100: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 100/147

4321

φ=0φ>0φ<0

interface

1 2 3 4

N 2(X) N 3(X)

Ψ2(X) Ψ3(X)

N 2(X) (H (f (X)) − H (f (X2))) N 3(X) (H (f (X)) − H (f (X3)))

∇Ψ2(X)

Page 101: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 101/147

Sc

v

u

ψ

ψ

N 2(x, t) ψ2(x, t) N 3(x, t) ψ3(x, t)

∇vh(x) =J ∈S

∇N J (x)vJ (t)

+J ∈Sc

(∇N J (x) ψJ (φ(x), t) + N J (x) ∇ψJ (φ(x), t)) aJ (t)

∇ψJ (x, t) = sign(φ) ∇φ = sign(φ)nint

nint

∇ψJ (x, t)

[[∇vh(X )]] = 2J ∈Sc

N J (X ) aJ nint

[[∇vh(X )nint]] = 2J ∈Sc

N J (X ) aJ

−1 1

uh(X ) =2I =1

N I (X ) [uI + aI (H (X − X c) − H (X I − X c))]

= u1 N 1 + u2 N 2 + a1 N 1 H (X − X c)

+ a2 N 2 [H (X − X c) − 1]

Page 102: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 102/147

H

N I = N I H (X −X c)+N I (1 − H (X − X c))

I = 1, 2

uh(X ) = (u1 + a1) N 1 H (X − X c) + u1 N 1 (1 − H (X − X c))

+ (u2 − a2) N 2 (1 − H (X − X c)) + u2 N 2 H (X − X c)

element1

u1

1 = u1

u12 = u2 − a2

element2

u2

1 = u1 + a1

u22 = u2

uh(X ) = u11 N 1 (1 − H (X − X c)) + u1

2N 2 (1 − H (X − X c))

+ u21 N 1 H (X − X c) + u2

2 N 2 H (X − X c)

X < X c

(1 − H (X − X c))

X > X c

H (X −X c)

[[uh(X )]]X=Xc = lim ǫ→0

[u(X + ǫ) − u(X − ǫ)]X=Xc

= N 1(X c)

u21 − u1

1

+ N 2(X c)

u2

2 − u12

= a1 N 1(X c) + a2 N 2(X c)

u12

u21

Ω

uhi (x) =4I =1

N I (x)uIi +3J =1

N J (x)ψ(x)aJi

Page 103: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 103/147

XC

φ<0 φ>0

1 4XC

φ<0

23

23

1 2

crack

crack

φ>0

1

4

2

3

1 4

N 2(X )

N 1(X )

N 1(X )

N 4(X )

u+ u+

u− u−

I

N I uI I

N I uI

[[u]] [[u]]

N 1(X ) (H (X − X c) − H (X 1 − X c))

N 2(X ) (H (X − X c) − H (X 2 − X c))

ψ(x)

uIi = 0

aJi = 1

(N 1, N 2, N 3)

3J =1

N J (x) = 1.

I ∈N

N I (x) = 1

Ψ(x)

I ∈N

N I (x)Ψ(x) = Ψ(x)

Page 104: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 104/147

000000111111

000000111111000000111111000000111111000000111111000000111111000000111111000000111111000000111111000000111111000000111111000000111111000000111111000000111111000000111111000000111111000000111111000000111111000000111111000000111111000000111111000000111111

00

00

00

11

11

11

00

00

00

11

11

11

00

00

00

11

11

11

0000

00

1111

11

0000

00

1111

11

0000

00

1111

11

0000

00

1111

11

0000

00

1111

11

0000

00

1111

11

0000

00

1111

11

0000

00

1111

11

0000

00

1111

11

00

00

00

11

11

11000000111111000000111111 000000111111000000111111000000111111000000111111000000111111000000111111000000111111000000111111000000111111000000111111000000111111000000111111000000111111000000111111000000111111000000111111

Ω

Senr

Ω p.e.

N I (x) f i(x) ψ(x) f i(x)×ψ(x)

st

st

st

st

st

st

st

st

Ψ N I Ψ

Ωstd

Page 105: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 105/147

Ωenr

Ωblnd

000000000111111111000000000000111111111111000000000000111111111111 000000000111111111000000000000111111111111000000000000111111111111000000000000111111111111000000000111111111000000000000111111111111

Ωenr

Ωblnd

Ωstd

Ωenr

Ωblnd Ωstd

uI = 0 aJ = 1

uh(x) =

J ∈N enr

N J (x)Ψ(x) = Ψ(x) ∀x ∈ ΩenrN J (x)Ψ(x) = Ψ(x) ∀x ∈ Ωblnd

N J (x)Ψ(x) = 0 ∀x ∈ Ωstd

Ωenr

Ωstd

N J Ψ

Ψ(x) = xH (x)

Page 106: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 106/147

H

x = 0

uh(x) =2I =1

N I (x) + N 1(x)(xH (x) − x1H (x1))a1

uh(ξ ) = u1(1 − ξ ) + u2ξ + a1ξh(1 − ξ )

ξ = x − x1

h

h

uh

e

e ≡ u − uint

x

e,x|x ≡ d

dxe(x) = 0

Page 107: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 107/147

x

e(x) = e(x) + e,x|x(x − x) + 1

2e,xx|x(x − x)2 + O(h3)

e(x) = e(x) + 1

2e,xx|x(x − x)2

x = x1 e(x1) = 0 uh

uh(xI ) = u(xI )

e(x) = −1

2e,xx|x(x − x)2

e(x) = u,xx + 2a1

h

1

2(x − x1)2 ≤ 1

8h2

e(x) ≤ 1

8 h2

max(u,xx +

2a1

h )

2a1/h

h2 h

n ξ n n > 1

e(x)

≤ 1

8

h2max(u,xx + 2a1

hn

)

Page 108: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 108/147

r

s

r

y

x

(1, 1)

(1,−1)

(−1, 1)

(−1,−1)

s = 1

r = 1r = −1

s = −1

s

1 : (x1, y1)

2 : (x2, y2)

3 : (x3, y3)

4 : (x4, y4)

N I , I = 1...4

N 1(r, s) = 1

4(1 − r)(1 − s)

N 2(r, s) = 1

4(1 + r)(1 − s)

N 3(r, s) = 1

4(1 + r)(1 + s)

N 4(r, s) = 1

4(1 − r)(1 + s)

r s

ue(M ) =

» uxuy

– =

» N 1 N 2 N 3 N 4 0 0 0 0

0 0 0 0 N 1 N 2 N 3 N 4

266666666664

ux1ux2ux3ux4uy1uy2uy3uy4

377777777775

= Nestd(M ) qe

Page 109: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 109/147

ue(M ) =

» uxuy

– =

» N 1 N 2 N 3 N 4 0 0 0 0

0 0 0 0 N 1 N 2 N 3 N 4. . .

. . . N 1ψ1 N 2ψ2 N 3ψ3 N 4ψ4 0 0 0 0

0 0 0 0 N 1ψ1 N 2ψ2 N 3ψ3 N 4ψ4

2666666666666666666666666664

ux1ux2ux3ux4uy1uy2uy3uy4ax1ax2ax3ax4ay1ay2ay3ay4

3777777777777777777777777775

ue(M ) = [ Nestd(M ) Ne

enr(M ) ] qe

ue(M ) = Ne(M ) qe

Ne(M ) = [Nestd(M ) Ne

enr(M )]

ψ(x)

ψI

ψI (x) = ψ(x) − ψ(xI )

ǫ =

ǫxxǫyy

2ǫxy

= Due(M )

D =

∂x 0

0 ∂

∂y∂

∂y

∂x

ue(M )

ǫ = DNe(M ) qe = Be(M ) qe

Page 110: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 110/147

Be(M )

Be(M ) = [Bestd(M ) Beenr(M )]

Bestd(M )

Bestd =

N 1,x N 2,x N 3,x N 4,x 0 0 0 00 0 0 0 N 1,y N 2,y N 3,y N 4,y

N 1,y N 2,y N 3,y N 4,y N 1,x N 2,x N 3,x N 4,x

Be

enr(M )

Beenr =

24 (N 1ψ1),x (N 2ψ2),x (N 3ψ3),x (N 4ψ4),x 0 0 0 0

0 0 0 0 (N 1ψ1),y (N 2ψ2),y (N 3ψ3),y (N 4ψ4),y(N 1ψ1),y (N 2ψ2),y (N 3ψ3),y (N 4ψ4),y (N 1ψ1),x (N 2ψ2),x (N 3ψ3),x (N 4ψ4),x

35

uhi,j =I ∈S

N J,i(x) ujJ +I ∈S

(N J (x)H (φ(x))),i ajJ

=I ∈S

N J,i(x) ujJ +I ∈S

(N J,i(x)H (φ(x)) + N J (x)H ,i(φ(x))) ajJ

H ,i(φ(x)) = δ

H ,i = 1 H ,i = 0

Beenr =

24 N 1,xψ1 N 2,xψ2 N 3,xψ3 N 4,xψ4 0 0 0 0

0 0 0 0 N 1,yψ1 N 2,yψ2 N 3,yψ3 N 4,yψ4

N 1,xψ1 N 2,xψ2 N 3,xψ3 N 4,xψ4 N 1,yψ1 N 2,yψ2 N 3,yψ3 N 4,yψ4

35

ψ(x) = |φ(x)|

ψ(x)

ψ(x),i

= sign(φ(x)) φ,i(x)

φ(x)

φ(x) = [ N 1 N 2 N 3 N 4 ]

φ1

φ2

φ3

φ4

x

φ(x),x = [ N 1,x N 2,x N 3,x N 4,x ]

φ1

φ2

φ3

φ4

Page 111: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 111/147

y

φ(x),y = [ N 1,y N 2,y N 3,y N 4,y ]

φ1

φ2

φ3

φ4

∂N I ∂x

= ∂N I

∂r

∂r

∂x +

∂N I ∂s

∂s

∂x∂N I ∂y

= ∂N I

∂r

∂r

∂y +

∂ N I ∂s

∂s

∂y

N I

N ,x N ,y = N ,r N ,s

∂r

∂x

∂r

∂y

∂s∂x

∂s∂y

= J−1

J N I (r, s)

r s

N 1,r = −1

4(1 − s) N 1,s = −1

4(1 − r)

N 2,r = 1

4(1 − s) N 2,s = −1

4(1 + r)

N 3,r = 1

4

(1 + s) N 3,s = 1

4

(1 + r)

N 4,r = −1

4(1 + s) N 4,s =

1

4(1 − r)

J =

∂x

∂r

∂x

∂s

∂y

∂r

∂y

∂s

Page 112: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 112/147

x =4I =1

N I xI , ∂x

∂r =

4I =1

∂N I ∂r

xI , ∂x

∂s =

4I =1

∂N I ∂s

xI

∂x

∂r =

N 1,r N 2,r N 3,r N 4,r

x1

x2

x3

x4

∂x

∂s =

N 1,s N 2,s N 3,s N 4,s

x1

x2

x3

x4

y =4I =1

N I yI , ∂y

∂r =

4I =1

∂N I ∂r

yI , ∂y

∂s =

4I =1

∂N I ∂s

yI

∂y

∂r =

N 1,r N 2,r N 3,r N 4,r y1

y2

y3

y4

∂y

∂s =

N 1,s N 2,s N 3,s N 4,s

y1

y2

y3

y4

Ke = Ωe

BeT

(M ) Ce Be(M ) dΩ = 1

−1 1

−1

BeT

(r, s) Ce Be(r, s) det J dr ds

Ce

8 × 8

Kel =

Ωe

BeT

std(M )CeBestd(M )

Ωe

BeT

std(M )CeBeenr(M )

Ωe

BeT

enr(M )CeBestd(M )

Ωe

BeT

enr(M )CeBeenr(M )

16 × 16

Page 113: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 113/147

crack

background cell

1

2

3

4

5

6

7

8

9

1011

crack

5

9

6

7

8

1

2

3

4

background cellCrack path produced

by level set Crack path recognized by the code

φ

F

F =

Ω−

F (X)dΩ +

Ω+

F (X)dΩ

=

Ω−

F (X(ξ)) detJ−(ξ)dΩ +

Ω+

F (X(ξ)) detJ+(ξ) dΩ

Page 114: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 114/147

Page 115: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 115/147

Voronoi cells

Delaunay triangulation

Crack

Gauss point

Node

A2A1 A3

A4 A5 A6

A8A7 A9

A−i

A+i

Page 116: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 116/147

enriched nodes

not enriched nodes

crack crack tip crack

crack tip

∇ (F jψi)· ∇

(F lψk) dx

r−0.5

∇F i

G :

xy

x yy

ξ w

ξ = G(ξ ) , w = w det(

∇G)

∇0 · P − b = ∅ ∀X ∈ Ω0 \ Γc0

u(X, t) = u(X, t) on Γu0

Page 117: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 117/147

n0 · P(X, t) = t0(X, t) on Γt0

n0 · P(X, t) = 0 on Γc0

u

t0

Γc0

Γu0

Γt0

Γc0 = Γ0 , (Γu0

Γt0)

(Γt0

Γc0)

(Γu0

Γc0) =∅

u ∈ V

δW = δW int − δW ext = 0 ∀δ u

δW int =

Ω0

(∇ ⊗ δ u)T : P dΩ0

δW ext =

Ω0

δ u · b dΩ0 +

Γt0

δ u · t0 dΓ0

V =

u(·, t)|u(·, t) ∈ H1, u(·, t) = u(t) on Γu0 , u discontinuous on Γc0

V0 =

δ u|δ u ∈ H1, δ u = 0 on Γu0 , δ u discontinuous on Γc0

Space of Bounded Deformations

Page 118: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 118/147

23

12

12

13

23

udisc = ξ∗3 Ψ3(ξ∗) a3

ξ∗ = [ξ ∗1 ξ ∗2 ξ ∗3 ] 23P

ξ ∗3 = 1 − ξ ∗1 − ξ ∗2 Ψ3(ξ∗) = sign(φ(ξ∗)) − sign(φ3) ξ∗ ξ

Page 119: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 119/147

2

3 1P13

2

P

N 3(ξ) = 1 − ξ 1 − ξ 2

N 1(ξ) = ξ 1

N 2(ξ) = ξ 2

ξ 1ξ 1

ξ 2ξ 2

ξ ∗1 = ξ 1ξ 1P

, ξ ∗2 = ξ 2

ξ 1P

P

31

udisc = ξ∗2 Ψ2(ξ∗) a2

ξ ∗1 = ξ 1 − ξ 1P ξ 2P

ξ 2, ξ ∗2 = ξ 2ξ 2P

Ψ2(ξ∗) = sign (φ(ξ∗)) − sign(φ2) a3 = aP = 0

udisc = I ξ∗I ΨI (ξ

∗) aI

aI

udisc

Ωenr Ωenr

Ωenr

Ωenr

B

Page 120: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 120/147

crack tip enrichment

Heaviside enrichment

B = [B1 B2 B3 B4]

=

√ r sin

θ

2,√

r cosθ

2,√

r sinθ

2sin(θ),

√ r cos

θ

2sin(θ)

B

r = 0

uh(X) =I ∈S

N I (X) uI +

I ∈Sc(X)

N I (X) H (f I (X)) aI

+

I ∈St(X)

N I (X)K

BK (X) bKI

St

B

a b c d

a

p

Page 121: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 121/147

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 0

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 11 1 1 1 1 11 1 1 1 1 11 1 1 1 1 11 1 1 1 1 1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 0

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 11 1 1 1 1 11 1 1 1 1 11 1 1 1 1 11 1 1 1 1 1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

aa

crack

b

cd

A+

A−

r+ r−

r+ = A+

A+ + A− , r− = A−

A+ + A−

a b c d a b

KuuIJ Kua

IJ KubIJK

KauIJ Kaa

IJ KabIJK

KbuIJK Kba

IJK KbbIJK

uJ aJ

bJK

=

f extI f extI f extIK

K d = f ext

K d = u a bT

f ext =

f u f a f bT

f b =

f b1 f b2 f b3 f b4

f uI =

Ω

N I b dΩ +

Γt

N I t dΓ

f aI =

Ω

N I (H (φ(X)) − H (φ(XI ))) b dΩ+

Γt

N I (H (φ(X)) − H (φ(XI ))) t dΓ

Page 122: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 122/147

f blI =

Ω

N I

BlI (X) − BlI (XI )

b dΩ+

Γt

N I

BlI (X) − BlI (XI )

t dΓ

K =

Ω

BT C B dΩ

B

BuI = N I,X 0

0 N I,Y

N I,Y N I,X

BaI =

N I,X (H (φ(X)) − H (φ(XI ))) 00 N I,Y (H (φ(X)) − H (φ(XI )))

N I,Y (H (φ(X)) − H (φ(XI ))) N I,X (H (φ(X)) − H (φ(XI )))

BblI |l=1,2,3,4 =

N I

BlK (X) − BlK (XI ),X

0

0

N I

BlK (X) − BlK (XI ),Y

N I

BlK (X) − BlK (XI )

,Y

N I

BlK (X) − BlK (XI )

,X

N I BlK (X)

,i

= N I,i BlK (X) + N I BlK (X),i

α

Bl,i = B l,r r,i + Bl,θ θ,i

θ

r

, i

Bl

,r

Bl

B1,r =

sin(θ/2)

2√

2B1,θ =

√ 2cos(θ/2)

2

B2,r =

cos(θ/2)

2√

2B2,θ = −

√ 2sin(θ/2)

2

B3,r =

sin(θ/2) sin(θ)

2√

2B3,θ =

√ r

cos(θ/2) sin(θ)

2 + sin(θ/2) cos(θ)

B4,r =

cos(θ/2) sin(θ)

2√

2B4,θ =

√ r

sin(θ/2) sin(θ)

2 + cos(θ/2) cos(θ)

Page 123: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 123/147

X

Y

α

X

Y

r

θ

r, X = cos(θ) θ, X = −sin/r

r,Y = sin(θ) θ,Y = cos/r

B1, X =

sin(θ/2)

2√

2B1,Y =

cos(θ/2)

2√

2

B2, X =

cos(θ/2)

2√

2B2,Y =

sin(θ/2)

2√

2

B3, X =

−sin(3θ/2) sin(θ)

2√ 2B3,Y =

sin(θ/2) + sin(3θ/2) cos(θ)

2√ 2B4, X = −cos(3θ/2) sin(θ)

2√

2B4,Y =

cos(θ/2) + cos(3θ/2) cos(θ)

2√

2

B,X = B, X cos(α) + B,Y sin(α)

B,Y = B, X sin(α) + B,Y cos(α)

α

Page 124: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 124/147

Branching discontinuityIntersecting discontinuity

φ1(x) = 0φ1(x) = 0

φ2(x) = 0φ2(x) = 0

S1c

φ1(X) = 0

S2c φ2(X) = 0

S3c = S1

c

S2c

S1t

S2t

uh(X) =I ∈S(X)

N I (X) uI +

I ∈S1c(X)

N I (X) H (φ1(X)) a(1)I

+

I ∈S2c(X)

N I (X) H (φ2(X)) a(2)I

+ I ∈S3c(X)

N I (X) H (φ1(X)) H (φ2(X)) a

(3)

I

+

I ∈S1t (X)

N I (X)K

B(1)K (X) b

(1)KI

+

I ∈S2t (X)

N I (X)K

B(2)K (X) b

(2)KI

Page 125: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 125/147

(φ1 < 0, φ2 < 0)

(φ1 >0, φ2 > 0)

(φ1 > 0, φ2 < 0)

(φ1 > 0, φ2 < 0)

(φ1 > 0, φ2 >0) (φ1 < 0, φ2 < 0) 1 X

φ1(X) =

φ0

1(X),

φ02(X1) φ0

2(X) > 0φ0

2(X),

φ02(X1) φ0

2(X) < 0

0

uh(X) =I ∈S(X)

N I (X) uI +

ncn=1

I ∈Sc(X)

N I (X) H (φ(n)I (X)) a

(n)I

+

mtm=1

I ∈St(X)

N I (X)K

B(m)K (X) b

(m)KI

nc mt

Page 126: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 126/147

∇0 · P − b = ∅ ∀X ∈ Ω0 \ Γc0

u(X, t) = u(X, t) on Γu0

n0 · P(X, t) = t0(X, t) on Γt0

n0 · P(X, t) = 0 on Γc0 if not in contact

t+0t = t−0t = 0, t+

0N = −t−0N on Γc0 if in contact

[[uN ]] ≤ 0 on Γc0

[[n · P]] = 0 on Γc0

t0N = n · P · n

t0t

[[uN ]] = u+ · n+ = u− · n− ≤ 0

n+ = n−

Ω0

(∇ ⊗ δ u)T

: P dΩ0 −

Ω0

δ u · b dΩ0 −

Γt0

δ u · t0 dΓ0 + δ

Γc0

λ [[uN ]] dΓ0 ≥ 0

C−1

C0

Page 127: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 127/147

K II

K II

θc

σθθ

vc

σθθ = K I √

2πrf I h(θ, vc) +

K II √ 2πr

f II h (θ, vc)

f I h f II h

vc

σcθθ

σcθθ

σcθθ = K cI √

2πr

K cI

K I sinθc + K II (3cosθc − 1) = 0

Page 128: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 128/147

θc = 2arctan

K I −

K 2I + 8K 2II

4K II

mdiag = m

nnodes

1

mes(Ωel)

Ωel

ψ2 dΩel

Ωel m mes(Ω)el

nnodes Ω ψ

M

lumped

II = J M

consistent

IJ , or

MlumpedII = m

MconsistentII

J

MconsistentIJ

∆t ≤ ∆tc = 2/ωmax

uh(X) = N 1 u1 + N 1 φ1 a1 + N 2 u2 + N 2 φ2a2

lumped =

m1 0 0 00 m2 0 00 0 m3 00 0 0 m4

ωmax det(K− ω M) K

M

Page 129: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 129/147

mi

E hkin = 0.5uT Mlumped u

E kin = 0.5

Ωel v2 dΩ

¯u

a

E hkin = 0.5

m1 u21 + m2 u2

2

= 0.5 ˙u

2(m1 + m2)

E kin = 0.5 m ˙u2

= E hkin m1 = m2 = 0.5 m m

˙u = aφ1(x)

u

E h

kin = 0.5 m3 a2

1 + m4 a2

2 = 0.5 a2

(m3 + m4)

E kin = 0.5

a2

Ωel

ψ21 dΩel

m3 m4

m3 = m4 = m

2 mes(Ω)el

Ωel

ψ21 dΩel

l

N 1(x) = 1 − x

l

N 2(x) = x

l

FE = A l

1/3 1/61/6 1/3

,

FE = E A

l

1 −1−1 1

E

A

∆tc,FE = 2

ωmax= l

3E

lumpedFE =

A l

1/2 0

0 1/2

∆tlumpedc,FE = l

E

=√

3∆tc,FE

Page 130: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 130/147

s

s

uh(x) = N 1(x) u1 + N 1(x) S (x − s) a1

+ N 2(x) u2 + N 2(x) S (x − s)a2

XFEM = A l 1/3 1/6

1/6 1/32s2 − 2s + 1/3 − 2/3s3 1/6 − s2 + 2/3s3

1/6 − s2 + 2/3s3 1/3 − 21

. . .

. . .

2s2 − 2s + 1/3 − 2/3s3 1/6 − s2 + 2/3s3

1/6 − s2 + 2/3s3 1/3 − 2/3s3

1/3 1/61 − 2s 2s − 1

1/6 1/3

XFEM = E A

l

1 −1 1 − 2s 2s − 1−1 1 2s − 1 1 − 2s

1−

2s 2s−

1 1 −

12s − 1 1 − 2s −1 1

lumpedXFEM = 0.5

A l

1 0 0 00 1 0 00 0 1 00 0 0 1

s

x = 0 x = l

0

l

x = 0

x = l

∆tlumpedc,XFEM = 1√ 2

∆tlumpedc,FE

Page 131: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 131/147

crack crack

crack

effective crack length

a) b)

c) d)

1 1 2

34

Page 132: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 132/147

Sc

√ 2sin(θ/2)

Sc

a b

a · n0 = b · n0 = 0

n0

a b

Page 133: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 133/147

crack

T (X)

a · ∇0T = ∇0T · a = 0 in Ω0

b· ∇0

T = ∇0

T ·

b = 0 in Ω0

∂φ

∂t + v · ∇φ = 0

Page 134: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 134/147

r = φ2 + ψ2 ψ φ

θ = arctan(φ/ψ)

θ

θ = ±π

φ = 0

Page 135: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 135/147

Page 136: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 136/147

Page 137: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 137/147

P

ΦI

Φ∗J (X) = pT (X) · A∗(X)−1 · D∗(XJ )

A∗(X) =J

p(XJ ) pT (XJ ) W (r∗J ; h∗)

D∗(XJ ) =J

p(XJ ) W (r∗J ; h∗)

h∗

3

Page 138: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 138/147

Γc,ext

Γc,ext

strong embedded elements

Page 139: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 139/147

Page 140: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 140/147

Γc,ext

P

a) b) c)

Page 141: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 141/147

a) b)

uh(X) =I ∈S

N I (X) uJ +M(e)s (X) [[u

(e)I (X )]]

u

u

(e)

M(e)s

M(e)s (X) =

0 ∀(e) /∈ S

H (e)s − ρ(e) ∀(e) ∈ S

ρ(e) =N +e

I =1

N +I (X)

H s

S

N +e

(e)

Ω+0

ǫh(X) =I ∈S

(∇0N I (X) ⊗ uI )S −∇ρ(e) ⊗ [[u

(e)I (X )]]

S +

η(e)s

k

[[u

(e)I (X )]] ⊗ n

S

S η(e)s /k

Page 142: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 142/147

η(e)s

η(e)s =

1 ∀X ∈ S ke0 ∀X /∈ S ke

k

K

(e)uu K

(e)uu

K(e)

uu K

(e)

uu u(e)

[[u(e)

I ]] =

FextI 0

K(e)uu =

Ω0

BT C B dΩ0

K(e)uu =

Ω0

BT C B dΩ0

K(e)uu =

Ω0

BT ∗ C B dΩ0

K(e)uu =

Ω0

BT ∗ C B dΩ0

C

B

∇ρ(e) =

∂ρ(e)

∂x 0

0 ∂ρ(e)

∂y∂ρ(e)

∂y∂ρ(e)

∂x

n(e) =

nx 00 ny

ny nx

B

B∗ = B

B∗ = B

[[u(e)I ]]

[[u(e)I ]] = −

K

(e)uu

−1

K(e)uu u(e)

[[u(e)I ]]

K u = f

K = Kuu − Kuu K−1uu Kuu

Page 143: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 143/147

S

Ω− Ω+

S

interelement − separation methods

Page 144: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 144/147

Page 145: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 145/147

Page 146: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 146/147

Page 147: Lecture note - XFEM and Meshfree_2.pdf

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 147/147