Lecture 9 Fall 2011v1

Embed Size (px)

Citation preview

  • 8/3/2019 Lecture 9 Fall 2011v1

    1/29

    The Last of Carbon Nanotubes andMore on 1D Systems: Synthesis,

    Characterization, Electronics and Optics of

    Semiconductor NanowiresLecture #9 ESE and MSE 525

  • 8/3/2019 Lecture 9 Fall 2011v1

    2/29

    Separation is identified by opticalabsorbance spectra

    SWNTs of decreasing diameter areincreasingly more buoyant

    Observed variations in buoyant densityare believed to be a direct result ofdifference in diameter

    Non destructive and scalable Most effective for separating SWNTs

    of smaller diameter (< 1 nm)

    M. S. Arnold et al. Nano Lett., 5 (2005), 713Green, Hersam, Materials Today 10, (2007), 59

    Carbon Nanotube Separation

    Density Gradient Centrifugation

  • 8/3/2019 Lecture 9 Fall 2011v1

    3/29

    Flow and Electric Field alignment

    S. Huang et al, JACS, 2003 (125), 5636, NanoLett. 2004 (4) 1025

    Control gas flow during NT growth

    C. Bower, APL 2000 77, 830

    H. Dai, APL 2001 79, 3351

    Electric field during growth

    Plasma during growth

  • 8/3/2019 Lecture 9 Fall 2011v1

    4/29

    Hydrophobic monolayerpreventsCNT adhesion

    Trimethylsiyl (TMS) monolayer

    Hydrophyllic (amine-terminated) monolayer promotesadhesion

    aminopropyltriethoxysilane (APTS)

    Well-known surface chemistry for SiO2

    Images from: Liu et al, Chem. Phys.

    Lett. 303 (1999) 125.CNT aligned to a narrow APTS line

    Using Molecular Self-Assembly toControl CNT Placement: Example 1

  • 8/3/2019 Lecture 9 Fall 2011v1

    5/29

    Exploit hydrophyllic/hydrophobic interactions Solvent wets RED, CNTs adhere to RED (COOH- terminated SAM)

    Wang et al, PNAS 103 (2006) 2026.

    Using Molecular Self-Assembly toControl CNT Placement: Example 2

  • 8/3/2019 Lecture 9 Fall 2011v1

    6/29

    Carbon Nanotube Placement and Alignment

    G. S. Tulevski et. al. in press

  • 8/3/2019 Lecture 9 Fall 2011v1

    7/29

    Application of Selective Placement to CNT Transistors

  • 8/3/2019 Lecture 9 Fall 2011v1

    8/29

    Substrate

    Gate

    Insulator

    Source Drain

    VDS

    (V)

    -100-80-60-40-200

    ID(

    A)

    -500

    -400

    -300

    -200

    -100

    0

    VDS

    (V)

    -100-80-60-40-200

    ID(

    A)

    -500

    -400

    -300

    -200

    -100

    0

    VDS

    (V)

    -100-80-60-40-200

    ID(

    A)

    -500

    -400

    -300

    -200

    -100

    0

    VDS

    (V)

    -100-80-60-40-200

    ID(

    A)

    -500

    -400

    -300

    -200

    -100

    0

    VDS

    (V)

    -100-80-60-40-200

    ID(

    A)

    -500

    -400

    -300

    -200

    -100

    0

    VDS

    (V)

    -100-80-60-40-200

    ID(

    A)

    -500

    -400

    -300

    -200

    -100

    0

    +

    -

    +

    -

    +

    -

    +

    -

    +

    -

    +

    -

    +

    -

    +

    -

    +

    -

    +

    -

    Electrical Probes of Charge Transport:Two and Three Terminal Structures

    Accumulation

    -100 VG

    -80 VG

    -60 VG

    -40 VG

    -20 VG

    0 VG

    carrier mobility current modulation (ION/IOFF) threshold voltage subthreshold slope

    curve shape

    inter- and intra- molecular chargetransport

    interfacial charge transport doping

    traps

    All the

    Action isat the interface

    ~ 1 cm2/V-sec

    ION/IOFF ~ 107

    VG

    (V)

    -100 -50 0 50 100

    -ID(

    A)

    10-11

    10-10

    10-9

    10-8

    10-7

    10-6

    10-5

    10-4

    10-3

    -(-ID

    )1/2

    (A1/2)

    -0.025

    -0.020

    -0.015

    -0.010

    -0.005

    0.000

    VDS=-100V

    OFF

    ON

  • 8/3/2019 Lecture 9 Fall 2011v1

    9/29

    Carbon Nanotube Transistors

    drain

    Yu-Ming Lin, IBM

    Ti Ti

    nanotube

    10-5

    10-4

    10-3

    10-2

    10-1

    100

    101

    Id[A]

    2.01.51.00.50.0-0.5-1.0

    Vgs[V]

    Vd

    -0.9 V

    -0.5 V

    -0.1 V

    Output Characteristics

    10

    8

    6

    4

    2

    0

    Id[A]

    -1.2 -0.8 -0.4 0.0

    Vds [V]

    Vgs = 0.4 to -1.6 V

    Step -0.4V120 mV/dec

    Transfer Characteristics

  • 8/3/2019 Lecture 9 Fall 2011v1

    10/29

    Different nanotube diameters Different metal contacts

    Contacts

    How do we make contact between dissimilar materials?This problem is the same in nanostructured and molecular materialsas it has been in new electronic materials for decades

  • 8/3/2019 Lecture 9 Fall 2011v1

    11/29

    Schottky Barrier Contacts

    Chen, Z., et al., Nano

    Lett. (2005)

  • 8/3/2019 Lecture 9 Fall 2011v1

    12/29

    CNT Transistors

    20

    15

    10

    5

    0

    Id[A]

    -1.2 -0.8 -0.4 0.0

    Vds[V]

    +0.4 V

    -0.4 V

    -0.8 V

    -1.2 V

    -1.6 V Pd contactL ~ 600 nmdt ~ 1.8 nm

    gm ~ 11 S

    Vgs

    to be published

    3.5 S11 S26 Sgm

    260 nm300 nm50 nmL

    8-nm HfO2

    1.7 nm

    15-nm SiO210-nm SiO2gate oxide

    1.4 nm1.8 nmtch

    Javey et al. Lin et al. Wind et al.

  • 8/3/2019 Lecture 9 Fall 2011v1

    13/29

    transconductance

    threshold voltage

    channel length

    gate oxide thickness

    p-MOSFET a) p-CNFET

    50nm

    1.5nm ~15nm

    2300mS/mm650mS/mm

    -0.2V -0.5V

    subthreshold slope 70mV/dec 130mV/dec

    IOn

    /IOff

    ~106106 - 107

    260nm

    drive current 2100mA/mm650mA/mm(Vg-Vt=-1.0V)

    a)R. Chau et al. Proceedings of IEDM 2001, p.621

    Comparison between Si and CNT Transistors

    P. Solomon, IBM

  • 8/3/2019 Lecture 9 Fall 2011v1

    14/29Phillip Kim, columbia

  • 8/3/2019 Lecture 9 Fall 2011v1

    15/29

    Semiconductor Nanowires

    Samuelson group

    L. Lahoun

  • 8/3/2019 Lecture 9 Fall 2011v1

    16/29

    Growth of Whiskers

  • 8/3/2019 Lecture 9 Fall 2011v1

    17/29

    Semiconductor NW Growth

    L. Lahoun

  • 8/3/2019 Lecture 9 Fall 2011v1

    18/29

    Vapor-Liquid-Solid Growth

    Growth typically at 850-950 oC

    C. Lieber group

    catalyst particle that forms a

    liquid alloy with material ofinterest choose a composition andtemperature for synthesis wherethe liquid alloy and nanowire solidcoexist as long as catalyst remains aliquid, its preferentially absorbsreactant (versus solid nearby) andprovides site for 1D nucleation

    Nanowire size proportional tocatalyst size

  • 8/3/2019 Lecture 9 Fall 2011v1

    19/29

    http://www.youtube.com/watch?v=cFgGtTGUR2o&NR=1

    Links to Semiconductor Nanowire Growth Videos

    http://www.youtube.com/watch?v=iQBw8TP6fFE

    http://www.youtube.com/watch?v=5uzUMEUcF-s

  • 8/3/2019 Lecture 9 Fall 2011v1

    20/29

    In-Situ TEM Observation of VLS Growth

  • 8/3/2019 Lecture 9 Fall 2011v1

    21/29

    Examples of NW Materials

  • 8/3/2019 Lecture 9 Fall 2011v1

    22/29

    Building Complexity Into NWs

    C. Lieber

  • 8/3/2019 Lecture 9 Fall 2011v1

    23/29

    Nanowire Heterostructures

    L. J. Lauhon, M. S. Gudiksen, C. M. Lieber, Phil Trans. R. Soc. Lond. A 362, 1247 (2004)

  • 8/3/2019 Lecture 9 Fall 2011v1

    24/29

    Axial Heterostructure Growth and Characterization

  • 8/3/2019 Lecture 9 Fall 2011v1

    25/29

    Semiconductor Bandgap vs Lattice Constant

  • 8/3/2019 Lecture 9 Fall 2011v1

    26/29

    Type I and Type II Heterostructures

    lowest energy forelectron and hole are inthe same region

    lowest energy forelectron and hole are in

    different regions

  • 8/3/2019 Lecture 9 Fall 2011v1

    27/29

    Examples of III-V and IV heterostructures

    Samuelson Group Lieber Group

  • 8/3/2019 Lecture 9 Fall 2011v1

    28/29

    Interfaces and Dopants in NWs

  • 8/3/2019 Lecture 9 Fall 2011v1

    29/29

    Branched NW Growth