18
LCLS Linac Coherent Light Source Linac Coherent Light Source Update Update John N. Galayda John N. Galayda LCLS Project Director LCLS Project Director Coherent Synchrotron Radiation Workshop Coherent Synchrotron Radiation Workshop 14 January 2002 14 January 2002

LCLS Linac Coherent Light Source Update John N. Galayda LCLS Project Director Coherent Synchrotron Radiation Workshop 14 January 2002

Embed Size (px)

Citation preview

Page 1: LCLS Linac Coherent Light Source Update John N. Galayda LCLS Project Director Coherent Synchrotron Radiation Workshop 14 January 2002

LCLS

Linac Coherent Light SourceLinac Coherent Light SourceUpdateUpdate

John N. GalaydaJohn N. GalaydaLCLS Project DirectorLCLS Project Director

Coherent Synchrotron Radiation WorkshopCoherent Synchrotron Radiation Workshop14 January 200214 January 2002

Page 2: LCLS Linac Coherent Light Source Update John N. Galayda LCLS Project Director Coherent Synchrotron Radiation Workshop 14 January 2002

LCLS

LLINACINAC C COHERENTOHERENT L LIGHTIGHT S SOURCEOURCE

I-280I-280

Sand Hill RdSand Hill Rd

Page 3: LCLS Linac Coherent Light Source Update John N. Galayda LCLS Project Director Coherent Synchrotron Radiation Workshop 14 January 2002

LCLS

Conceptual View of LCLS at SLAC

Page 4: LCLS Linac Coherent Light Source Update John N. Galayda LCLS Project Director Coherent Synchrotron Radiation Workshop 14 January 2002

LCLS

(12/01/01)(12/01/01)

SLAC linac tunnelSLAC linac tunnel undulator hallundulator hall

Linac-0Linac-0Linac-1Linac-1

Linac-2Linac-2 Linac-3Linac-3

BC-1BC-1 BC-2BC-2

DL-2DL-2DL-1DL-1

undulatorundulator

7 MeV7 MeV 150 MeV150 MeV 250 MeV250 MeV 4.54 GeV4.54 GeV 14.35 GeV14.35 GeV

...existing linac...existing linac

newnew

rfrfgungun

25-1a25-1a30-8c30-8c

21-1b21-1b21-1d21-1d XX

Linac-Linac-XX

21-3b21-3b24-6d24-6d

SC-wigglerSC-wigglersingle-chicanessingle-chicanes

Page 5: LCLS Linac Coherent Light Source Update John N. Galayda LCLS Project Director Coherent Synchrotron Radiation Workshop 14 January 2002

LCLS

Parameters & Performance

FEL Radiation Wavelength 1.5 0.15 nmElectron Beam Energy 4.54 14.35 GeVRepetition Rate (1-bunch) 120 120 HzSingle Bunch Charge 1 1 nCNormalized rms Emittance 2.0 1.5 mm-mradPeak Current 3.4 3.4 kACoherent rms Energy Spread <2 <1 103

Incoherent rms Energy Spread <0.6 <0.2 103

Undulator Length 100 100 mPeak Coherent Power 11 9.3 GWPeak Spontaneous Power 8.1 81 GWPeak Brightness * 1.2 12 1032

Bunch Length 230 230 fsec

* photons/sec/mm2/mrad2/0.1%-BW

Page 6: LCLS Linac Coherent Light Source Update John N. Galayda LCLS Project Director Coherent Synchrotron Radiation Workshop 14 January 2002

LCLS

UCLA

LCLS R&D is a collaboration of…

Page 7: LCLS Linac Coherent Light Source Update John N. Galayda LCLS Project Director Coherent Synchrotron Radiation Workshop 14 January 2002

LCLS

MOD1

KLY-1

GTFLASERROOM

GTFRF GUN

SSRL BOOSTER RING

MOD2

KLY-2MOD3

KLY-3

GTFCONTROLROOM

8 m LaserTransport System

SSRL Injector Vault

R&D Progress – Gun

Excellent interaction between simulation effort and experiment

Excellent interaction between SSRL and TD

Computer simulations: Cecile Limborg; SSRL

E. Colby, V. Ivanov, P. Krejcik; TD

Gun Test Facility program: Jim Clendenin TD, John Schmerge SSRL,

Paul Bolton, Steve Gierman, Brendan Murphy; TD

Page 8: LCLS Linac Coherent Light Source Update John N. Galayda LCLS Project Director Coherent Synchrotron Radiation Workshop 14 January 2002

LCLS

Simulations for GTF

Comparison to experimental results: vs. Q for 2ps-4ps pulses

 

•PARMELA computer code comparison to data

•Agreement is reasonable at target current of 100A

•SLAC is upgrading GTF to cover wider parameter range

Parameters

110MV/m

gun = 40

r = 1mm

Bsolenoid = 2kG

Linac 8.55 MV/m at 90 cm

Page 9: LCLS Linac Coherent Light Source Update John N. Galayda LCLS Project Director Coherent Synchrotron Radiation Workshop 14 January 2002

LCLS

Why 2ps is lower than 4ps:

• 4ps core emittance lower than 2ps

• Matching of slices better for 2ps at standard booster gradient

• Matching is improved with lower gradient for both 4ps and 2ps

• With better matching

4ps < 2ps

  γβ2ααβγ2

1ooo

Mismatch parameter

Page 10: LCLS Linac Coherent Light Source Update John N. Galayda LCLS Project Director Coherent Synchrotron Radiation Workshop 14 January 2002

LCLS

R&D Progress – Prototype Undulator

•Titanium strongback mounted in eccentric cam movers

•Magnet material 100% delivered

•Poles >90% delivered

•Assembly underway

Page 11: LCLS Linac Coherent Light Source Update John N. Galayda LCLS Project Director Coherent Synchrotron Radiation Workshop 14 January 2002

LCLS

Helmholtz Coil – magnet block measurement Translation stages for undulator segment

Poletip alignment fixture Magnet block clamping fixtures

Page 12: LCLS Linac Coherent Light Source Update John N. Galayda LCLS Project Director Coherent Synchrotron Radiation Workshop 14 January 2002

LCLS

Planned beam diagnostics in undulator include pop-in C(111) screenTo extract and observe x-ray beam, and its superposition on e-beam

Page 13: LCLS Linac Coherent Light Source Update John N. Galayda LCLS Project Director Coherent Synchrotron Radiation Workshop 14 January 2002

LCLS

Calculated spatial distribution of the undulator radiation from a three-undulator cell with a missteering qmis = 4 µrad, an electron beam emittance of 0.05 nm·rad, and a photon energy of

8.29 keV, at 60 m from the undulators.

-1.0mm

-0.5

0.0

0.5

1.0

Verti

cal P

ositi

on

-1.0mm -0.5 0.0 0.5 1.0Horizontal Position

10x106

8

6

4

2

Page 14: LCLS Linac Coherent Light Source Update John N. Galayda LCLS Project Director Coherent Synchrotron Radiation Workshop 14 January 2002

LCLS

R&D Progress – Undulator diagnostics•P. Krejcik, W. K. Lee, E. Gluskin•Exposure of diamond wafer to electron beam in FFTB-•Same electric fields as in LCLS•No mechanical damage to diamond•Tests of crystal structure completed, crystal structure intact

Before After

Page 15: LCLS Linac Coherent Light Source Update John N. Galayda LCLS Project Director Coherent Synchrotron Radiation Workshop 14 January 2002

LCLS

X-ray reflectivity shows no damage from exposure to electron beam

Page 16: LCLS Linac Coherent Light Source Update John N. Galayda LCLS Project Director Coherent Synchrotron Radiation Workshop 14 January 2002

LCLS

R&D Progress – X-ray optics

•LLNL tests of damage to silicon crystal•Exposure to high- power laser with similar energy deposition•Threshold for melting 0.16 J/cm2, as predicted in model

•Fabrication/test of refractive Fresnel lens•Made of aluminum instead of carbon•Machined with a diamond point•Measurements from SPEAR presently under analysis

•Significant effort to estimate costs of experiments!

Page 17: LCLS Linac Coherent Light Source Update John N. Galayda LCLS Project Director Coherent Synchrotron Radiation Workshop 14 January 2002

LCLS

Two-Stage Chirped-Beam SASE-FEL for High Power Femtosecond X-Ray Pulse GenerationC. Schroeder*, J. Arthur^, P. Emma^, S. Reiche*, and C. Pellegrini*

^ Stanford Linear Accelerator Center*UCLA

Strong possibility for shorter-pulse operation

UCLA

Page 18: LCLS Linac Coherent Light Source Update John N. Galayda LCLS Project Director Coherent Synchrotron Radiation Workshop 14 January 2002

LCLS

Two-stage Two-stage undulator for undulator for shorter pulseshorter pulse

52 m52 m43 m43 m

ee

30 m30 m

SASE gain (SASE gain (PPsatsat/10/1033)) SASE Saturation (23 GW)SASE Saturation (23 GW)

SiSi monochromator monochromator((TT = 40%) = 40%)

timetime

Ene

rgy

Ene

rgy

timetime

Ene

rgy

Ene

rgy

EEFWFW//EE = 1.0% = 1.0%

timetime

ttFWFW = 230 fsec = 230 fsec

x-ray pulsex-ray pulse

1.01.0101044

timetime

ttFWFW < 10 fsec < 10 fsecMitigates Mitigates ee energy energy jitter and jitter and undulator undulator wakeswakes

Mitigates Mitigates ee energy energy jitter and jitter and undulator undulator wakeswakes

Also a Also a DESYDESY scheme which emphasizes line-width reduction (B. Faatz) scheme which emphasizes line-width reduction (B. Faatz)

UCLUCLAA