59
LCLS-II Capabilities & Overview LCLS-II Science Opportunities Workshop Tor Raubenheimer February 9 th , 2015

LCLS-II Capabilities & Overview - Stanford University · 2015. 2. 9. · LCLS-II Science Opportunities Workshop, February 9-13, 2015 LCLS-II baseline will deliver same beam parameters

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: LCLS-II Capabilities & Overview - Stanford University · 2015. 2. 9. · LCLS-II Science Opportunities Workshop, February 9-13, 2015 LCLS-II baseline will deliver same beam parameters

LCLS-II Capabilities & Overview LCLS-II Science Opportunities Workshop

Tor Raubenheimer

February 9th, 2015

Page 2: LCLS-II Capabilities & Overview - Stanford University · 2015. 2. 9. · LCLS-II Science Opportunities Workshop, February 9-13, 2015 LCLS-II baseline will deliver same beam parameters

Outline

LCLS-II Science Opportunities Workshop, February 9-13, 2015

1. Overall machine goals and layout

2. Primary parameters

• Nominal X-ray wavelength and pulse energy curves

• X-ray power

• Bunch charge versus X-ray length

• Timing and energy stability

3. Simulations of performance

4. Future enhancements

Talk largely consists of slides extracted from recent LCLS-II

reviews and much more information can be found there.

2

Page 3: LCLS-II Capabilities & Overview - Stanford University · 2015. 2. 9. · LCLS-II Science Opportunities Workshop, February 9-13, 2015 LCLS-II baseline will deliver same beam parameters

LCLS-II Concept CW linac based on SCRF technology to complement LCLS CuRF

LCLS-II Science Opportunities Workshop, February 9-13, 2015

SCRF offers advantages in

terms of X-ray power,

stability, and repetition rate

Challenge is cost for high

energy CW accelerator and achieving comparable peak

brighness

LCLS-II will benefit from best of both CuRF and SCRF

• Use CuRF for high peak brightness at short wavelengths

• Use SCRF for very high average brightness with stable beam

and uniform bunch spacing

3

Page 4: LCLS-II Capabilities & Overview - Stanford University · 2015. 2. 9. · LCLS-II Science Opportunities Workshop, February 9-13, 2015 LCLS-II baseline will deliver same beam parameters

LCLS-II 1.3 GHz Cryomodule Similar to EuFEL but modified for CW operation

Total length ~12.2 m Nearly the final LCLS-II cryomodule design

LCLS-II Science Opportunities Workshop, February 9-13, 2015

Cryomodules will be similar to EuXFEL with modifications for

CW operation; cavities will be processed for high Q0 operation

Baseline 16 MV/m with Q0 = 2.7x1010

CM allows 150 Watts max cooling

20 MV/m max gradient @ 2.7x1010

or 16 MV/m @ 1.8x1010

4

Page 5: LCLS-II Capabilities & Overview - Stanford University · 2015. 2. 9. · LCLS-II Science Opportunities Workshop, February 9-13, 2015 LCLS-II baseline will deliver same beam parameters

LCLS-II Concept Use 1st km of SLAC linac for CW SCRF linac

5 LCLS-II Science Opportunities Workshop, February 9-13, 2015

with space for 7 GeV

Page 6: LCLS-II Capabilities & Overview - Stanford University · 2015. 2. 9. · LCLS-II Science Opportunities Workshop, February 9-13, 2015 LCLS-II baseline will deliver same beam parameters

Revised LCLS-II (Phase II) Baseline Deliverables

Self seeding between 1.2-4 keV

requires x-ray optics development

Self seeding at high rep rate above

4keV will require ~4.5 GeV electron

beam, not a baseline deliverable

today

Cu Self Seeded

High Rep Rate SASE

Self Seeded (Grating)

Cu SASE

Photon Energy (keV)

0 5 10 15 20 25

SC Linac High Rep Rate

Cu Linac

Legend

4.0 GeV

LCLS-II Science Opportunities Workshop, February 9-13, 2015 6

Page 7: LCLS-II Capabilities & Overview - Stanford University · 2015. 2. 9. · LCLS-II Science Opportunities Workshop, February 9-13, 2015 LCLS-II baseline will deliver same beam parameters

LCLS-II Accelerator Layout New Superconducting Linac LCLS Undulator Hall

LCLS-II Science Opportunities Workshop, February 9-13, 2015

• Two sources: high rate SCRF linac and 120 Hz Cu LCLS-I linac

• North and South undulators can operate simultaneously in any mode

Undulator SC Linac (up to 1 MHz) Cu Linac (up to 120Hz)

North

0.20 - 1.3 keV

South

1.0 - 5.0 keV

up to 25 keV

higher peak power pulses

• Concurrent operation of 1-5 keV and 5-25 keV is not possible

HXU

SXU Sec. 21-30 Sec. 11-20

0.2-1.3 keV (0 -1 MHz)

SCRF

4 GeV 1-25 keV (120 Hz) 1-5 keV (0 -1 MHz)

LCLS-I Linac 2.5-15 GeV

proposed FACET-II LCLS-II Linac

7

Page 8: LCLS-II Capabilities & Overview - Stanford University · 2015. 2. 9. · LCLS-II Science Opportunities Workshop, February 9-13, 2015 LCLS-II baseline will deliver same beam parameters

FEL X-ray Performance

LCLS-II FAC Review, February 5-6, 2015

SCRF linac can deliver ~1 MHz beam to either undulator

• Undulators limited to 120 kW electron beam power

• 100 pC at 300 kHz and 4 GeV or 33 pC at 900 kHz and 4 GeV

• Goal is to provide >20 Watts in SASE over wavelength range

of 0.2 to 5 keV to experiments with good mirror figure

- X-ray Transport is designed to handle up to 200 Watts

- Maximum X-ray pulse energy is function of X-ray wavelength,

e.g. 0.9 mJ at 200 eV; 1 mJ at 1 keV; 20 uJ at 5 keV

• Soft X-ray self-seeding will provide narrower bandwidth with

pulses a few times transform-limit

CuRF linac will deliver LCLS-like bunches and mJ-scale

SASE X-ray pulses to >25 keV

8

Page 9: LCLS-II Capabilities & Overview - Stanford University · 2015. 2. 9. · LCLS-II Science Opportunities Workshop, February 9-13, 2015 LCLS-II baseline will deliver same beam parameters

9

Possible Operating Modes Very flexible operation

Configuration Linac Parameters SXR HXR

High rate to SXR and

HXR

SCRF: 4 GeV, 0.929 MHz; 60 pC

CuRF: off

50-200 W at 1 keV

(120-450 uJ at 460 kHz) 20 W at 3 keV

(43 uJ at 460 kHz)

High rate to SXR and

medium pulse energy

at HXR

SCRF: 4 GeV, 0.240 MHz; 100 pC

CuRF: off

80-200 W at 250 eV

(350-900 uJ at 210 kHz) 20 W at 1.5 keV (1 mJ at 20 kHz)

Medium rate and

pulse energy at SXR

and HXR

SCRF: 4 GeV, 0.080 MHz; 100 pC

CuRF: off

20 W at 500 eV

(1 mJ at 20 kHz) 20 W at 4 keV

(0.4 mJ at 50 kHz)

High rate to SXR and

high pulse energy at

HXR

SCRF: 4 GeV, 0.410 MHz; 100 pC

CuRF: 15 GeV, 120 Hz, 130 pC

200 W at 250 eV

(500 uJ at 400 kHz) 0.5 W at 3 keV

(4 mJ at 120 Hz)

High rate to SXR and

short wavelength at

HXR

SCRF: 4 GeV, 0.929 MHz; 30 pC

CuRF: 15 GeV, 120 Hz, 130 pC

50 - 200 W at 1.2 keV

(50-200 uJ at 920 kHz) 0.1 W at 25 keV

(500 uJ at 120 Hz)

LCLS-II Science Opportunities Workshop, February 9-13, 2015

Page 10: LCLS-II Capabilities & Overview - Stanford University · 2015. 2. 9. · LCLS-II Science Opportunities Workshop, February 9-13, 2015 LCLS-II baseline will deliver same beam parameters

CuRF Linac Driven X-ray Pulse Energy

LCLS-II Science Opportunities Workshop, February 9-13, 2015 H-D Nuhn 10

Page 11: LCLS-II Capabilities & Overview - Stanford University · 2015. 2. 9. · LCLS-II Science Opportunities Workshop, February 9-13, 2015 LCLS-II baseline will deliver same beam parameters

X-ray Pulse Energy from SXR and HXR driven by SCRF Analytic estimates vs. simulation results

LCLS-II Science Opportunities Workshop, February 9-13, 2015 G. Marcus

SC linac + SXR 100 pC, ~50 fs FWHM

300 kHz, 4 GeV SC linac + HXR

100 pC, ~50 fs FWHM

300 kHz, 4 GeV

SXR 3w (approximate)

HXR 3w (approximate)

103 104

10-5

10-4

10-3

Photon Energy (eV)

Ener

gy/p

uls

e (J

)

102

20 pC e-beam

20 fs FWHM

11

Page 12: LCLS-II Capabilities & Overview - Stanford University · 2015. 2. 9. · LCLS-II Science Opportunities Workshop, February 9-13, 2015 LCLS-II baseline will deliver same beam parameters

12

Example: 100 pC IMPACT, HXR SASE, Eγ = 2 keV

0 20 40 60 80 100 120 14010

-4

10-2

100

102

104

2 keV, energy [J]

z [m]

E [

J]

0 10 20 30 40 50 60 700

10

20

30

40

s [m]

P [

GW

]

0 10 20 30 40 50 60 700

1

2

3

4

I [k

A]Emax ~ 655 μJ

Pavg ~ 10 GW

Δt = 58 fs

Page 13: LCLS-II Capabilities & Overview - Stanford University · 2015. 2. 9. · LCLS-II Science Opportunities Workshop, February 9-13, 2015 LCLS-II baseline will deliver same beam parameters

Example: 20 pC IMPACT, HXR SASE, Eγ = 5 keV

LCLS-II Science Opportunities Workshop, February 9-13, 2015

0 50 100 15010

-4

10-3

10-2

10-1

100

101

102

z [m]

E [

J]

No taper

Taper

0 5 10 15 200

0.5

1

1.5

2

s [m]

P [

GW

]

0 5 10 15 200

0.2

0.4

0.6

0.8

I [k

A]

4975 4980 4985 4990 4995 50000

2

4

6

8

10

12x 10

11

E [eV]

P(w

) [a

.u.]

ENT ~ 8 μJ

ET ~ 25 μJ

Δt ~ 18 fs

ΔEγ,FWHM ~ 2.1 eV

ΔEγ,FWHM/E0 ~ 4.2 x 10-4

13

Page 14: LCLS-II Capabilities & Overview - Stanford University · 2015. 2. 9. · LCLS-II Science Opportunities Workshop, February 9-13, 2015 LCLS-II baseline will deliver same beam parameters

Example: 100 pC IMPACT, SXR SS, Eγ = 500 eV,

LCLS-II Science Opportunities Workshop, February 9-13, 2015

0 20 40 60 8010

-4

10-2

100

102

z [m]

E [

J]

E ~ 113 μJ after 9

downstream undulator

sections

0 10 20 30 40 50 600

2

4

6

8

10

s [m]

P [

GW

]

Δtmean ~ 20 fs

490 495 500 5050

1

2

3

4

5

6x 10

12

E [eV]

#/

eV

ΔEγ,FWHM ~ 0.22 eV

ΔEγ,FWHM/E0 ~ 4.4 x 10-4

14

5 more undulator segments for

post-saturation taper if desired

Working to

understand

pedestal

Page 15: LCLS-II Capabilities & Overview - Stanford University · 2015. 2. 9. · LCLS-II Science Opportunities Workshop, February 9-13, 2015 LCLS-II baseline will deliver same beam parameters

Bunch Charge and Pulse Length Charge and rate determined by 120 kW limit

LCLS-II Science Opportunities Workshop, February 9-13, 2015

LCLS-II baseline will deliver same beam parameters to both

undulators

- Specified to operate with 10 – 300 pC bunch charge @ <120 kW

- 100 pC with 60 fs FWHM; 20 pC with 20 fs FWHM

Baseline is 100 pC per bunch with roughly 60 fs FWHM X-ray

pulse length (1 kA) at 300 kHz (120 kW)

- Working on techniques to shorten X-ray pulse without changing

charge or chirp etc – how rapidly are changes desired?

- Pulse energy simply proportional to pulse length

Low charge options include 10 and 20 pC at up to 929 kHz

- Better performance (pulse energy/bunch charge)

15

Page 16: LCLS-II Capabilities & Overview - Stanford University · 2015. 2. 9. · LCLS-II Science Opportunities Workshop, February 9-13, 2015 LCLS-II baseline will deliver same beam parameters

Nonlinear Harmonic Generation and Harmonic Lasing

LCLS-II Science Opportunities Workshop, February 9-13, 2015

• Nonlinear harmonic generation produces third harmonic

radiation at ~1% of the fundamental when K>1.5

• Harmonic lasing can produce significant radiation with a

narrow spectrum when the fundamental is suppressed

- Investigating options for harmonic lasing

- Should be reasonable to upgrade HXR undulator if needed

Fundamental 2 keV 3 keV

Bunch charge 100 pC 20 pC

3rd harmonic 6 keV 9 keV

Efficiency 1% 0.75%

Energy/pulse 1 uJ 0.14 uJ

16

Page 17: LCLS-II Capabilities & Overview - Stanford University · 2015. 2. 9. · LCLS-II Science Opportunities Workshop, February 9-13, 2015 LCLS-II baseline will deliver same beam parameters

Stability Goals

LCLS-II Science Opportunities Workshop, February 9-13, 2015

• LCLS-II SCRF FEL will be more stable than LCLS

• Baseline specs for electron beam:

- DE/E < 0.01% rms

- DI/I < 4% rms

- Dt < 20 fs rms

- DX/sX, DY/sY < 15% rms

• LLRF has been specified to provide stability in ‘worst’ case

of correlated errors

• X-ray pulse has added intensity jitter from SASE and optics

• MHz beam rate should allow further stabilization with

addition of fast feedback systems

17

Page 18: LCLS-II Capabilities & Overview - Stanford University · 2015. 2. 9. · LCLS-II Science Opportunities Workshop, February 9-13, 2015 LCLS-II baseline will deliver same beam parameters

Longer-Term Goals Can Provide Exceptional Stability

LCLS-II Science Opportunities Workshop, February 9-13, 2015

ENERGY

PEAK

CURRENT

ARRIVAL

TIME

Now simulate the best case:

0.01% and 0.01 deg rms jitter

and all uncorrelated Energy stable to 0.003% rms

Peak current stable to 1.8%

Timing stable to 5 fs

* The gun timing error is compressed by 3.85 from gun to 100 MeV, due

to velocity compression.

Best Case Jitter Simulations in LiTrack

See PRD: LCLSII-2.4-PR-0041

P. Emma 18

Page 19: LCLS-II Capabilities & Overview - Stanford University · 2015. 2. 9. · LCLS-II Science Opportunities Workshop, February 9-13, 2015 LCLS-II baseline will deliver same beam parameters

Parameter Range for: Timing

Parameter Name

(Unit)

Ready for First

Light

Possible within

the first year or

two of operation

It could happen –

don’t laugh

Short term laser

vs X-ray jitter

<100 fs RMS* <50 fs RMS

10 fs RMS

probably the limit

X-ray vs laser 1-

day drift

1 ps 100 fs 10 fs with pulsed

fiber locking

X-ray / optical

cross correlator**

Probably not

ready

10-50 fs 10 fs

LCLS_I to

LCLS_II jitter

200 fs RMS 100 fs RMS 100 fs RMS

*Assuming full performance LLRF system for the accelerator

** if applicable for beam operating conditions

J. Frisch, July 31, LCLS-II Parameters Review

LCLS-II Science Opportunities Workshop, February 9-13, 2015 19

Page 20: LCLS-II Capabilities & Overview - Stanford University · 2015. 2. 9. · LCLS-II Science Opportunities Workshop, February 9-13, 2015 LCLS-II baseline will deliver same beam parameters

LCLS-II Planned Undulator Layout Replace Existing LCLS Undulator with HXR and add SXR

32 HXU Segments

Existing Diamond Crystal

Self-Seeding System

New SXR Self-Seeding

System for High Power Loads

21 SXU Segments

Space for future upgrades? Space for polarization

upgrade?

Considering vertical polarization of X-rays from HXR line

LCLS-II Science Opportunities Workshop, February 9-13, 2015

Page 21: LCLS-II Capabilities & Overview - Stanford University · 2015. 2. 9. · LCLS-II Science Opportunities Workshop, February 9-13, 2015 LCLS-II baseline will deliver same beam parameters

Enhanced Modes of operation (G. Marcus, July 31, LCLS-II Parameters Review)

• High rep-rate HXR SS

• External seeding

• HGHG

• EEHG

• ?SASE

• iSASE

• pSASE

• Harmonic Lasing

• Two-Color

• Split undulator and gain modulation

• Two-bunches

• FWM via selective amplification

• Short pulses

• low charge, beam spoiling, laser modulation, self-seeding / chirp

• Timing control

• Defined by laser

• Easy to adjust pulse duration

• Improved stability in photon energy and #

• Possibly near transform limited pulses

• Increase cooperation length

• Narrow spectrum

• Extend tuning range of FEL beamline

• X-ray pump & probe

• Four-wave mixing

LCLS-II Science Opportunities Workshop, February 9-13, 2015

Page 22: LCLS-II Capabilities & Overview - Stanford University · 2015. 2. 9. · LCLS-II Science Opportunities Workshop, February 9-13, 2015 LCLS-II baseline will deliver same beam parameters

Option for complete HXR self-seeding monochromator Possible layout options not fully explored

• Two-stage diamond wake-field monochromator seeding sections and a grating

monochromator seeding section

• Seeding below 3 keV • Both diamond systems are retracted

• Seeding above 3 keV • Grating system is retracted

• Between 3 – 5 keV • Both diamond monochromators in use using (111) crystals

• Above 5 keV with CuRF linac • Only 2nd diamond mono. in use with (400) crystal

LCLS-II Science Opportunities Workshop, February 9-13, 2015 22

Page 23: LCLS-II Capabilities & Overview - Stanford University · 2015. 2. 9. · LCLS-II Science Opportunities Workshop, February 9-13, 2015 LCLS-II baseline will deliver same beam parameters

Summary

LCLS-II Science Opportunities Workshop, February 9-13, 2015

• Broad capability

- High rate beam from 0.20 – 5 keV with >20 W X-ray power

- High intensity pulses with LCLS charactistics to >25 keV

• SCRF linac will provide >10x better stability than CuRF

- How best to take advantage of benefits?

- What else is needed?

• Variable gap udulators allow flexible operation

- Broad bandwidth coverage; Strong tapering; Rapid wavelength scans

• Broad spectrum of upgrade options

- LCLS is pioneering many techniques that may be implemented in LCLS-II

• Please suggest your X-ray goals

- Opportunity to modify development plans but need strong science case

23

Page 24: LCLS-II Capabilities & Overview - Stanford University · 2015. 2. 9. · LCLS-II Science Opportunities Workshop, February 9-13, 2015 LCLS-II baseline will deliver same beam parameters

BACKUP

LCLS-II Science Opportunities Workshop, February 9-13, 2015

Page 25: LCLS-II Capabilities & Overview - Stanford University · 2015. 2. 9. · LCLS-II Science Opportunities Workshop, February 9-13, 2015 LCLS-II baseline will deliver same beam parameters

Must Use Gas Based Techniques for SXR

• Design concept similar to LCLS-I gas attenuator, but

- Using Ar gas, 5 m long volume, up to 10 torr

- Differential pumping w/ 1st variable (impedance) apertures to reduce

conductance (beam size ~ 10 mm at 200 eV at location)

LCLS-II Science Opportunities Workshop, February 9-13, 2015

Page 26: LCLS-II Capabilities & Overview - Stanford University · 2015. 2. 9. · LCLS-II Science Opportunities Workshop, February 9-13, 2015 LCLS-II baseline will deliver same beam parameters

Impact of Intensity Fluctuations on Gas Attenuator Beam drills hole through gas

Intensity fluctuation induced inaccuracy in attenuation ~ 10%

T (

K)

Att

n A

ch

ieve

d

Intensity fluctuation induced baseline temperature variation ~ 200 °K

Operating pressure ~ 2.5 torr, effective attenuation 5x10-4 ~ absorbed 200 W into gas detector

Y. Feng LCLS-II Science Opportunities Workshop, February 9-13, 2015

Page 27: LCLS-II Capabilities & Overview - Stanford University · 2015. 2. 9. · LCLS-II Science Opportunities Workshop, February 9-13, 2015 LCLS-II baseline will deliver same beam parameters

LCLS-II (SCRF) Baseline Parameters

Parameter symbol nominal range units

Electron Energy Ef 4.0 2.0 - 4.14 GeV

Bunch Charge Qb 100 10 - 300 pC

Bunch Repetition Rate in Linac fb 0.62 0 - 0.93 MHz

Average e- current in linac Iavg 0.062 0.0 - 0.3 mA

Avg. e- beam power at linac end Pav 0.25 0 - 1.2 MW

Norm. rms slice emittance at undulator e-s 0.45 0.2 - 0.7 m

Final peak current (at undulator) Ipk 1000 500 - 1500 A

Final slice E-spread (rms, w/heater) sEs 500 125 - 1500 keV

Final bunch length (rms) tb 8.5 3 - 50 m

Avg. CW RF gradient (powered cavities) Eacc 16 - MV/m

Photon pulse length (FWHM) txray 70 10 - 350 fs

Photon energy range of SXR (SCRF) Ephot - 0.2 - 1.3 keV

Photon energy range of HXR (SCRF) Ephot - 1 - 5 keV

Photon energy range of HXR (Cu-RF) Ephot - 1 - 25 keV

See LCLSII-1.1-PR-0133

Page 28: LCLS-II Capabilities & Overview - Stanford University · 2015. 2. 9. · LCLS-II Science Opportunities Workshop, February 9-13, 2015 LCLS-II baseline will deliver same beam parameters

External seeding modes

UV

seeds

radiator mod1

mod2

UV

seed

fresh

bunch

delay

mod1 rad1 mod2 rad2

EEHG

HGHG

9 fs rms

0.22 eV rms

16 fs rms 0.12 eV rms

~ 2 x transform limit

• Allows long coherent pulses

• Highly sensitive to laser quality, less so to electron bunch

• Highly sensitive to electron

bunch parameters

• Consistently poor spectrum

• QHG (with reviewers) relax

conditions on harmonic jumps

LCLS-II Science Opportunities Workshop, February 9-13, 2015

Page 29: LCLS-II Capabilities & Overview - Stanford University · 2015. 2. 9. · LCLS-II Science Opportunities Workshop, February 9-13, 2015 LCLS-II baseline will deliver same beam parameters

External seeding performance and requirements

LCLS-II Science Opportunities Workshop, February 9-13, 2015

• EEHG

• Performance

- Long, coherent pulses

- Near Fourier transform limit (~ 2x FTL @ 1nm)

• Requirements

- Stable (amplitude and phase) laser @ 260 nm

- 2 chicanes and 2 modulators

• HGHG

• Performance

- Best for short pulses

- Hard to control spectrum

- Below 2 nm is pushing limits

• Requirements

- 3 chicanes (one for fresh bunch), 2 modulators, intermediate radiator

- 260 nm laser

Page 30: LCLS-II Capabilities & Overview - Stanford University · 2015. 2. 9. · LCLS-II Science Opportunities Workshop, February 9-13, 2015 LCLS-II baseline will deliver same beam parameters

Harmonic lasing using 100 pC, 1 kA e-beam slice

properties

0 50 100 15010

2

104

106

108

1010

z [m]

P [

W]

Ideal beam comparison

5 keV @ fund.

5 keV @ 3rd

harm.

Additional phase shifters needed

0 50 100 15010

2

103

104

105

106

107

108

z [m]

P [

W]

7 keV

6-7 keV photons become possible

with attenuators

• Tune first undulators such that 3rd

harmonic at desired wavelength

• Tune second undulators such that 5th

harmonic is at desired wavelength and

equal to 3rd upstream

0 20 40 60 80 100 12010

0

102

104

106

108

1010

z [m]

P [

W]

E,f

~ 4.1 keV

1.38 keV

4.1 keV

0.83 keV

2.5 keV

4.1 keV

Pavg ~ 200 MW

HXR

SXR

LCLS-II Science Opportunities Workshop, February 9-13, 2015

Page 31: LCLS-II Capabilities & Overview - Stanford University · 2015. 2. 9. · LCLS-II Science Opportunities Workshop, February 9-13, 2015 LCLS-II baseline will deliver same beam parameters

Two-color generation: Some recent LCLS results

• Split undulator scheme

• Gain modulation

l1,2 = lw1+K1,2

2

2g 2

LCLS-II Science Opportunities Workshop, February 9-13, 2015

Page 32: LCLS-II Capabilities & Overview - Stanford University · 2015. 2. 9. · LCLS-II Science Opportunities Workshop, February 9-13, 2015 LCLS-II baseline will deliver same beam parameters

Two-color generation: Two-bunch xFEL demonstrated

at LCLS

Photocathode Laser Pulse

Adjustable delay stage

Double Pulse

Electron Gun

Linac

Few ps delay

Bunch Compressor 1

Bunch Compressor 2

Few fs delay

~1% energy separation

UNDULATOR

time time

Energ

y

Energ

y

2-color

X-Rays

Splitter

l1,2 = lw1+K 2

2g 2

1,2

LCLS-II Science Opportunities Workshop, February 9-13, 2015

Page 33: LCLS-II Capabilities & Overview - Stanford University · 2015. 2. 9. · LCLS-II Science Opportunities Workshop, February 9-13, 2015 LCLS-II baseline will deliver same beam parameters

FEL for FWM

LCLS-II Science Opportunities Workshop, February 9-13, 2015

• Control of

• Timing

• Color

• Angle of incidence

• Large bandwidth, coherent short (~1-2

fs) pulses

• Can be further compressed (~0.5

fs)

• Many additional components and

significant R&D required

• Easily fits in SXR tunnel

Page 34: LCLS-II Capabilities & Overview - Stanford University · 2015. 2. 9. · LCLS-II Science Opportunities Workshop, February 9-13, 2015 LCLS-II baseline will deliver same beam parameters

Ferrite Loaded Transmission Line Kicker Hardware testing has begun

• Loaded sections of ferrite and discrete capacitors

simulate a transmission line.

• 𝑓𝑖𝑙𝑙 𝑡𝑖𝑚𝑒 =𝐿𝑡𝑜𝑡𝑎𝑙×𝐼

𝑉 where we will have 3

separate kickers for 1/3 fill time ~100ns.

Recent measurements (7 out of 23)

Individual magnets

Integrated kick

T. Beukers

Test Pulser Schematic of 1m kicker

LCLS-II Science Opportunities Workshop, February 9-13, 2015

Page 35: LCLS-II Capabilities & Overview - Stanford University · 2015. 2. 9. · LCLS-II Science Opportunities Workshop, February 9-13, 2015 LCLS-II baseline will deliver same beam parameters

Two-color performance and requirements

LCLS-II Science Opportunities Workshop, February 9-13, 2015

• Split undulator/gain modulation

• Performance - Peak power 5-10 x lower for both colors

- Different source points

- Only up to ~ 2.5 keV on HXR due to long saturation lengths

• Requirements - Chicane (SXR)

• Two bunch

• Performance - Both colors achieve saturation

- Smaller photon tunability due to chromatic effects in transport, on order of 1-2%

• Requirements - Beam splitter for photocathode laser

• FEL for FWM

• Performance - Short pulses

- Large bandwidth

- Flexibility in timing, photon energy, angle of incidence

• Requirements - Two modulators, four small chicanes, single-cycle mid IR laser, beam splitter, delay stages

Page 36: LCLS-II Capabilities & Overview - Stanford University · 2015. 2. 9. · LCLS-II Science Opportunities Workshop, February 9-13, 2015 LCLS-II baseline will deliver same beam parameters

Parameter Sensitivities

SXR is robust at 1.25 keV; HXR is limited at 5 keV

LCLS-II Science Opportunities Workshop, February 9-13, 2015 H-D Nuhn

Page 37: LCLS-II Capabilities & Overview - Stanford University · 2015. 2. 9. · LCLS-II Science Opportunities Workshop, February 9-13, 2015 LCLS-II baseline will deliver same beam parameters

Using LCLS to Benchmark IMPACT S-2-E Simulations uBI effects will be important

LCLS microbunching studies: 4GeV, 180pC, 1kA

Measured final t-p phase space vs laser heater preliminary analysis of bunching factor

D. Ratner, Y. Ding, et al. LCLS-II Science Opportunities Workshop, February 9-13, 2015

Page 38: LCLS-II Capabilities & Overview - Stanford University · 2015. 2. 9. · LCLS-II Science Opportunities Workshop, February 9-13, 2015 LCLS-II baseline will deliver same beam parameters

LCLS-II Layout (P. Emma, LCLS-II FAC Review)

L2-Linac L3-Linac

HXU

SXU

Sec. 21-30

LH BC1 BC2

BC3

D2

D10

-wall

0.65 m 0.93 m

2.50 m

L1

kicker LTUH

LTUS

“glowing” sections indicate these are not in the vertical plane of either linac

LCLS-I

Linac

See PRD: LCLSII-2.5-PR-0134

(plan view - not to scale) N

ew

SC

RF

Lin

ac (

4 G

eV

)

Byp

ass

Lin

e

1s

t D

og

Leg

LT

U

Tra

nsp

ort

un

du

lato

rs

Beam

Sp

read

er

LCLS-II Science Opportunities Workshop, February

9-13, 2015

Page 39: LCLS-II Capabilities & Overview - Stanford University · 2015. 2. 9. · LCLS-II Science Opportunities Workshop, February 9-13, 2015 LCLS-II baseline will deliver same beam parameters

Solid-State Amplifiers Simplify LLRF and offer better performance

LCLS-II Science Opportunities Workshop, February 9-13, 2015

• Installing

3.8 kW SSA

• Need 2.6 kW

with no f offset

or overhead

• Need 3.8 kW

with 10 Hz

-phonic offsets,

6% overhead for losses and 10 % tuning overhead

- Same power allows operation at ~ 50% duty with 60 uA at 23

MV/m with 3 Hz max detuning, QL = 6e7 and the same overheads

Linac

Sec.

V0

(MV)

j

(deg)

Acc.

Grad.*

(MV/m)

No.

Cryo

Mod’s

No.

Avail.

Cav’s

Spare

Cav’s

Cav’s

per

Amp.

L0 100 varies 16.3 1 8 1 1

L1 211 -12.7 13.6 2 16 1 1

HL -64.7 -150 12.5 2 16 1 1

L2 1446 -21.0 15.5 12 96 6 1

L3 2206 0 15.7 18 144 9 1

Lf 202 ±34 15.7 2 16 1 1

HXU

SXU Sec. 21-30 Sec. 11-20

0.2-1.3 keV (0.1-1 MHz)

SCRF

4 GeV 1-25 keV (120 Hz) 1-5 keV (0.1-1 MHz)

LCLS-I Linac 2.5-15 GeV

proposed FACET-II LCLS-II Linac

Page 40: LCLS-II Capabilities & Overview - Stanford University · 2015. 2. 9. · LCLS-II Science Opportunities Workshop, February 9-13, 2015 LCLS-II baseline will deliver same beam parameters

High Level Photon Parameters Table 2 from Bill Schlotter’s LCLS-II Introduction document

LCLS-II Science Opportunities Workshop, February 9-13, 2015

Undulator Uni

ts SXR HXR

Linac SC SC Cu

Photon Energy ke

V 0.25-1.25 1-5 >5 1-25

Max Repetition

Rate kH

z 1000 1000 .12

Max Pulse Energy mJ 1.9-1.6 2.3-1.9 2.3-0.1 0.2 4.2-1.4 10-3.3

Max Power in

FEE W 200 200 1.2-0.4

Max Power to

End Station W 20 20 0.4

FWHM Pulse

Duration fs 70 fs

@100 pC 10 fs

@10 pC 70 fs

@100 pC 10 fs

@ 10 pC 25 fs

@100 pC

Page 41: LCLS-II Capabilities & Overview - Stanford University · 2015. 2. 9. · LCLS-II Science Opportunities Workshop, February 9-13, 2015 LCLS-II baseline will deliver same beam parameters

Tracking a 100, 300, and 20 pC Bunch Charge (with CSR, long. wakes, and separate injector runs – ASTRA & Elegant)

LCLS-II Science Opportunities Workshop, February 9-13, 2015

Q = 100 pC ex=0.350.42 m (20%)

heater = 5.5 keV rms

jL1 = -12.7 deg

V3.9 = 64.7 MV

j3.9 = -150 deg

R56-BC2 = -37.0 mm

Q = 300 pC ex=0.610.77 m (26%)

heater = 11 keV rms

jL1 = -14.0 deg

V3.9 = 58.0 MV

j3.9 = -150 deg

R56-BC2 = -36.7 mm

Q = 20 pC ex=0.090.13 m (44%)

heater = 2.0 keV rms

jL1 = -21.0 deg

V3.9 = 55 MV

j3.9 = -165 deg

R56-BC2 = -62 mm

0.6 kA L. Wang

Page 42: LCLS-II Capabilities & Overview - Stanford University · 2015. 2. 9. · LCLS-II Science Opportunities Workshop, February 9-13, 2015 LCLS-II baseline will deliver same beam parameters

HXR Components

LCLS-II Science Opportunities Workshop, February 9-13, 2015

SXR Device Symbol HXR

Count Notes

Adjustable Aperture type 1 1 New Design

Adjustable Aperture type 2 (mirror Slits) 1 Similar to LUSI

Attenuators (Gas and Solid) 1 Modifications to the existing Gas attenuator

New solid attenuator Design based on LUSI

Flat Mirror 2

No upgrades to the existing HOMS mirrors

New HOMS mirrors to cover SC energy range

Gas Energy Monitor 2 Repurposed with upgrades

High Resolution Imager 3 New design based on LUSI

In line Spectrometer 1 Repurpose existing

Mono 1 Repurpose existing

Rapid Turnaround Diagnostics Station 1 Repurpose existing

Stopper 1 New design SB

SB

PH

OT

ON

BE

AM

ST

OP

PE

R

M2H

(N

)

MIR

RO

R

IMA

GE

R

HO

MS

1 (

E)

MIR

RO

R

IMA

GE

R

AD

J

AP

ER

GA

S

MO

NIT

OR

GA

S

MO

NIT

OR

AD

J

AP

ER

RA

PID

DIA

GN

OS

TIC

CH

AM

BE

R

SP

EC

TR

OM

ET

ER

UN

DU

LA

TO

R

CE

NT

ER S

HA

DO

W

WA

LL

(E

)

K-M

ON

O

SO

LID

AT

TE

N

IMA

GE

R

GA

S A

TT

EN

M1

H (

N)

MIR

RO

R

HO

MS

2 (

E)

MIR

RO

R

XR

T &

FE

H

DU

MP

WA

LL

NE

H W

AL

L

TH

ER

MA

L B

AR

RIE

R

WA

LL

DU

MP

AR

EA

FE

E

AR

EA

NE

H

AR

EA

FE

E W

AL

L

HU

TC

H 1

AR

EA

Beam Direction

Page 43: LCLS-II Capabilities & Overview - Stanford University · 2015. 2. 9. · LCLS-II Science Opportunities Workshop, February 9-13, 2015 LCLS-II baseline will deliver same beam parameters

SXR Components

LCLS-II Science Opportunities Workshop, February 9-13, 2015

SXR Device Symbol SXR count Notes

Adjustable Aperture type 1 1 New Design

Adjustable Aperture type 2 (mirror Slits) 1 Similar to LUSI

Attenuator (Gas) 1 New Gas attenuator, design similar to LCLS-I

Flat Mirror 2 New System: very low figure error, water cooled

Gas Energy Monitors 2 One repurposed system with upgrades, one new

system with similar design to LCLS-I system

High Resolution Imager 4 New System, design borrows elements from LUSI

K-B mirrors 1 New System: Bender design leveraged on CXI

system

Rapid Turnaround Diagnostics Station 1 New System, use LCLS-I design

Stopper 1 New Design SB

SBA

DJ

AP

ER

TU

RE

1G

AS

AT

TE

NU

AT

OR

RA

PID

DIA

GN

OS

TIC

IMA

GE

R

AD

J

AP

ER

TU

RE

2

IMA

GE

R

M1S

1 M

IRR

OR

SH

IELD

ING

WA

LL

M2S

1 M

IRR

OR

DU

MP

AR

EA

FE

E A

RE

A

BE

AM

ST

OP

PE

R

GA

S E

NE

RG

Y M

ON

ITO

R

IMA

GE

R AR

RIV

AL

TIM

E

WA

VE

FR

ON

T

GA

S M

ON

ITO

R

CE

NT

ER

UN

DU

LAT

OR

DU

MP

WA

LL

IMA

GE

R

FE

E W

ALL

KB

M1

HO

RIZ

ON

TA

L

KB

MIR

RO

R

EN

D S

TA

TIO

N 1

KB

M1-

VE

RT

ICA

L

KB

MIR

RO

R

TH

ER

MA

L W

ALL

NE

H

HU

TC

H-1

LCLS

Operations

Page 44: LCLS-II Capabilities & Overview - Stanford University · 2015. 2. 9. · LCLS-II Science Opportunities Workshop, February 9-13, 2015 LCLS-II baseline will deliver same beam parameters

Verify RF Stability Tolerances by Tracking (P. Emma, LCLS-II FAC Review)

* The gun timing error is compressed by 3.85 from gun to 100 MeV, due to velocity compression.

PEAK

CURRENT

(<4%)

ARRIVAL

TIME

(<20 fs)

ENERGY

(<0.01%)

Jitter Simulations in LiTrack

(DE/E0)rms =

0.008%

Dtrms =

20 fs

(DIpk/Ipk)rms =

3.8%

Now verify by tracking 1000 times with random jitter

Jitter may be correlated or uncorrelated (cav. to cav.)

Include bunch charge, gun laser, & chicane supplies

uncorrelated rms

jitter tols per cavity

if jitter is correlated

(cavity to cavity)

OK

OK

OK

LCLS-II Science Opportunities Workshop, February 9-13, 2015

Page 45: LCLS-II Capabilities & Overview - Stanford University · 2015. 2. 9. · LCLS-II Science Opportunities Workshop, February 9-13, 2015 LCLS-II baseline will deliver same beam parameters

200 W Requirement on Photon Beamlines Will have impact but looks achievable

LCLS-II Science Opportunities Workshop, February 9-13, 2015

• Photon beamlines have been speced to operate at 20 W

with good figure performance and 200 W

• The FEL’s can deliver >200W over much of photon range

• The 200 W requirement is to provide headroom in

operations and to allow for harmonics, …

• 200 W requirement impacts stoppers, attenuators, and

photon diagnostics

• Most issues have been resolved with small impact

• Some new challenges have been uncovered

Page 46: LCLS-II Capabilities & Overview - Stanford University · 2015. 2. 9. · LCLS-II Science Opportunities Workshop, February 9-13, 2015 LCLS-II baseline will deliver same beam parameters

100 pC, 1 kA: SXR SS simulation results @ Eγ = 1.24

keV – typical run

LCLS-II Science Opportunities Workshop, February 9-13, 2015

0 20 40 60 8010

-4

10-2

100

102

104

z [m]

E [

J]

Energy gain curve

E ~ 1.5 μJ

0 10 20 30 40 50 60 700

0.05

0.1

0.15

0.2Power (blue), Current (green)

s [m]

P [

GW

]

0 10 20 30 40 50 60 700

0.5

1

1.5

2

I [k

A]

1230 1235 1240 1245 12500

2

4

6

8x 10

9

E [eV]

#

/eV

[N

]

Spectrum (blue), Filter (red)

1230 1235 1240 1245 12500

0.005

0.01

0.015

0.02

E ~ 200 μJ

0 10 20 30 40 50 60 700

0.5

1

1.5

2x 10

5 Power (blue), Current (green)

s [m]

P [

W]

0 10 20 30 40 50 60 700

0.5

1

1.5

2

I [k

A]

1238 1239 1240 1241 12420

2

4

6

8

10x 10

7 Spectrum

E [eV]

#

/eV

[N

]

0 10 20 30 40 50 60 700

5

10

15

20Power (blue), Current (green)

s [m]

P [

GW

]

0 10 20 30 40 50 60 700

0.5

1

1.5

2

I [k

A]

1238 1239 1240 1241 12420

1

2

3

4

5

6x 10

12 Spectrum

E [eV]

#

/eV

[N

]

ΔEFWHM ~ 64 meV

ΔEFWHM/E0 ~ 5.1 x 10-5

TBP ~ 4.3 eV-fs = 2.4 FTL

Saturation after 16 out of

21 undulators

G. Marcus

FWHM ~ 65 fs

Page 47: LCLS-II Capabilities & Overview - Stanford University · 2015. 2. 9. · LCLS-II Science Opportunities Workshop, February 9-13, 2015 LCLS-II baseline will deliver same beam parameters

20 pC, 500 A: HXR SASE simulation results @ Eγ = 5.0

keV

LCLS-II Science Opportunities Workshop, February 9-13, 2015

0 20 40 60 80 100

10-4

10-2

100

102

z [m]

E [

J]

Energy gain curve

0 5 10 15 20 250

1

2

3

4

5

6

7Power (blue), Current (green)

s [m]

P [

GW

]

0 5 10 15 20 250

0.2

0.4

0.6

0.8

1

1.2

1.4

I [k

A]

5000 5005 5010 5015 5020 5025 50300

0.5

1

1.5

2

2.5

3

3.5x 10

11 Spectrum

E [eV]

P(w

) [a

.u.]

ΔEFWHM ~ 3.5 eV

ΔEFWHM/E0 ~ 7.0 x 10-4

E ~ 27.4 μJ

Saturation after 24 out of 32 undulators

G. Marcus

FWHM ~ 20 fs

Page 48: LCLS-II Capabilities & Overview - Stanford University · 2015. 2. 9. · LCLS-II Science Opportunities Workshop, February 9-13, 2015 LCLS-II baseline will deliver same beam parameters

100 pC IMPACT e-beam slice properties, HXR

LCLS-II Science Opportunities Workshop, February 9-13, 2015

s [m]

E [

GeV

]

0 10 20 30 40 50

3.98

3.99

4

4.01

4.02

0 10 20 30 40 50-40

-20

0

20

40

60

s [m]

- 0

0 10 20 30 40 500

1

2

3

4

5

I [k

A]

0 10 20 30 40 500

0.5

1

s [m]

e n [m

m-m

rad

]

0 10 20 30 40 500

1

2

3

4

5

I [A

]

0 10 20 30 40 500

1

2

s [m]

sE [

MeV

]

0 10 20 30 40 500

1

2

3

4

5

I [A

]

head I ~ 720 A

ϵn,x ~ 0.35 mm-mrad

ϵn,y ~ 0.42 mm-mrad σE ~ 450 keV

SXR shows larger fluctuations here,

but otherwise is comparable

Page 49: LCLS-II Capabilities & Overview - Stanford University · 2015. 2. 9. · LCLS-II Science Opportunities Workshop, February 9-13, 2015 LCLS-II baseline will deliver same beam parameters

SXR self-seeded geometry (LCLS)

LCLS-II Science Opportunities Workshop, February 9-13, 2015

1239 1239.5 1240 1240.5-0.2

0

0.2

E [eV]

Am

p

1239 1239.5 1240 1240.5-0.1

0

0.1

Ph

ase

• λu = 39 mm

• Lu = 3.4 (87 per.)

• Lbr = 1.0 (25 per.)

• 7 undulator sections

• U8 removed

• R = 5,000 (FWHM)

• Aiming for R = 10,000

• Gaussian filter

• 2% efficiency

• Will implement optical

propagation that includes

relevant spatio-temporal

couplings

• Full 3D seed

• λu = 39 mm

• Lu = 3.4 (87 per.)

• Lbr = 1.0 (25 per.)

• 14 undulator sections

Page 50: LCLS-II Capabilities & Overview - Stanford University · 2015. 2. 9. · LCLS-II Science Opportunities Workshop, February 9-13, 2015 LCLS-II baseline will deliver same beam parameters

SS experience with LCLS, measurement and simulation

LCLS-II Science Opportunities Workshop, February 9-13, 2015

• S2E simulations

• ASTRA/ELEGANT/GENESIS

• Phenomenological and wave

optics simulation of mono.

• Shows excellent overall

agreement both in energy and in

spectrum D. Ratner, S. Serkez

Page 51: LCLS-II Capabilities & Overview - Stanford University · 2015. 2. 9. · LCLS-II Science Opportunities Workshop, February 9-13, 2015 LCLS-II baseline will deliver same beam parameters

20 pC IMPACT e-beam slice properties, HXR

LCLS-II Science Opportunities Workshop, February 9-13, 2015

s [m]

E [

GeV

]

0 10 20 30 40 50 60

3.995

4

4.005

4.01

4.015

0 10 20 30 40 50 60-10

-5

0

5

10

s [m]

- 0

0 10 20 30 40 50 600

0.1

0.2

0.3

0.4

0.5

0.6

0.7

I [k

A]

0 10 20 30 40 50 600

0.1

0.2

s [m]

e n [m

m-m

rad

]

0 10 20 30 40 50 600

0.1

0.2

0.3

0.4

0.5

0.6

0.7

I [A

]

0 10 20 30 40 50 600

1

2

s [m]

sE [

MeV

]

0 10 20 30 40 50 600

0.1

0.2

0.3

0.4

0.5

0.6

0.7

I [A

]

head I ~ 350 A

ϵn,x ~ 0.15 mm-mrad

σE ~ 450 keV

Page 52: LCLS-II Capabilities & Overview - Stanford University · 2015. 2. 9. · LCLS-II Science Opportunities Workshop, February 9-13, 2015 LCLS-II baseline will deliver same beam parameters

Time-dependent S2E parameter scan (very time

consuming), HXR Eγ = 2 keV

LCLS-II Science Opportunities Workshop, February 9-13, 2015

d

1.8 2 2.2 2.4 2.6

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Emax ~ 655 μJ

ξ = 0.03

d = 2.1

ETI ~ 470 μJ

ξ = 0.06

d = 2.15

30% difference in final energy

Page 53: LCLS-II Capabilities & Overview - Stanford University · 2015. 2. 9. · LCLS-II Science Opportunities Workshop, February 9-13, 2015 LCLS-II baseline will deliver same beam parameters

Pulse length control – emittance spoiling

LCLS-II Science Opportunities Workshop, February 9-13, 2015

• Calculations indicate an emittance spoiler foil can withstand the full beam at

high rep rate

• However, the increased load on the collimators might force operation at a

low(er) rep rate

Dispersed bunch

Y

X

• Energy chirped e-beam has

x-t correlation in region of

high dispersion

• Insert foil with triangular

width to continuously tune

the pulse duration

Page 54: LCLS-II Capabilities & Overview - Stanford University · 2015. 2. 9. · LCLS-II Science Opportunities Workshop, February 9-13, 2015 LCLS-II baseline will deliver same beam parameters

Emittance spoiling foil measurements at LCLS

LCLS-II Science Opportunities Workshop, February 9-13, 2015

~100 fs ~6 fs

Y. Ding

Page 55: LCLS-II Capabilities & Overview - Stanford University · 2015. 2. 9. · LCLS-II Science Opportunities Workshop, February 9-13, 2015 LCLS-II baseline will deliver same beam parameters

Measured foil scan movie at LCLS

LCLS-II Science Opportunities Workshop, February 9-13, 2015

Y. Ding

Page 56: LCLS-II Capabilities & Overview - Stanford University · 2015. 2. 9. · LCLS-II Science Opportunities Workshop, February 9-13, 2015 LCLS-II baseline will deliver same beam parameters

Pulse length control – differential heating

LCLS-II Science Opportunities Workshop, February 9-13, 2015

• It is fairly easy to put a notch in the laser heater profile

• Here we assume a 1 ps notch but you can get to a few 100 fs with no heroic

efforts…

unspoiled beam

@ heater spoiled beam

@ heater

A. Marinelli

Page 57: LCLS-II Capabilities & Overview - Stanford University · 2015. 2. 9. · LCLS-II Science Opportunities Workshop, February 9-13, 2015 LCLS-II baseline will deliver same beam parameters

After compression and acceleration (S2E with

ELEGANT, 100 pC)

LCLS-II Science Opportunities Workshop, February 9-13, 2015

few fs lasing

core

garbage

~6 fs

FWHM

A. Marinelli

LCLS MD shifts will be dedicated to this study in the near future

Page 58: LCLS-II Capabilities & Overview - Stanford University · 2015. 2. 9. · LCLS-II Science Opportunities Workshop, February 9-13, 2015 LCLS-II baseline will deliver same beam parameters

Self-seeding with a chirped e-beam for short pulses

LCLS-II Science Opportunities Workshop, February 9-13, 2015

• A chirped e-beam generates a SASE signal

• Monochromator selects a narrow bandwidth and helps to control the seed pulse

duration

• The seed is amplified only over a fraction of the bunch and dominates SASE

• Superradiance can possibly be used to further compress the pulse

SASE undulator Amplifier undulator

K0 K1

λ1 λ1

SXRSS

Y. Ding

chirp SASE BW Mono BW

Page 59: LCLS-II Capabilities & Overview - Stanford University · 2015. 2. 9. · LCLS-II Science Opportunities Workshop, February 9-13, 2015 LCLS-II baseline will deliver same beam parameters

SASE undulator Amplifier undulator

K0 K1

λ1 λ1

SXRSS

LCLS example

LCLS-II Science Opportunities Workshop, February 9-13, 2015

Power profile Power spectrum

0.14eV 13 fs ~7 fs 0.3eV