37
GENERALISED GLOBAL SYMMETRIES AND DISSIPATIVE MAGNETOHYDRODYNAMICS INSTITUUT-LORENTZ FOR THEORETICAL PHYSICS LEIDEN UNIVERSITY OXFORD, 14.7.2017 SA Š O GROZDANOV

INSTITUUT-LORENTZ FOR THEORETICAL PHYSICS ......HYDRODYNAMICS • diffusion and sound dispersion relations in CFT • loop corrections break analyticity of the gradient expansion (long-time

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

  • G E N E R A L I S E D G L O B A L S Y M M E T R I E S A N D D I S S I PAT I V E M A G N E T O H Y D R O DY N A M I C S

    I N S T I T U U T- L O R E N T Z F O R T H E O R E T I C A L P H Y S I C S L E I D E N U N I V E R S I T Y

    O X F O R D, 1 4 . 7 . 2 0 1 7

    S AŠO G R O Z D A N O V

  • O U T L I N E

    • hydrodynamics

    • generalised global symmetries and magnetohydrodynamics

    • plasma and holography

    • outlook

    2

  • 3

    with 
D. Hofman and N. Iqbal

    with 
N. Poovuttikul

    FRAGMENT I FRAGMENT II

  • H Y D R O DY N A M I C S

  • H Y D R O DY N A M I C S• QCD and quark-gluon plasma

    • low-energy limit of QFTs (effective field theory)

    • tensor structures (phenomenological gradient expansions) with transport coefficients (microscopic)

    Tµ⌫�u�, T, µ

    �= ("+ P )uµu⌫ + Pgµ⌫ � ⌘�µ⌫ � ⇣r · u�µ⌫ + . . .

    5

    rµJµ = 0rµTµ⌫ = 0

    Jµ(u�, T, µ) = nuµ � �T�µ⌫r⌫(µ/T ) + . . .

  • H Y D R O DY N A M I C S

    • conformal (Weyl-covariant) hydrodynamics

    • infinite-order asymptotic expansion

    • classification of tensors beyond Navier-Stokes

    first order: 2 (1 in CFT) - shear and bulk viscosities

    second order: 15 (5 in CFT) - relaxation time, … [Israel-Stewart and extensions]

    third order: 68 (20 in CFT) - [S. G., Kaplis, PRD 93 (2016) 6, 066012, arXiv:1507.02461] 


    Tµµ = 0

    gµ⌫

    ! e�2!(x)gµ⌫ Tµ⌫ ! e6!(x) Tµ⌫

    ! =OHX

    n=0

    ↵nkn+1Tµ⌫ =

    1X

    n=0

    Tµ⌫(n)

    6

  • H Y D R O DY N A M I C S• diffusion and sound dispersion relations in CFT

    • loop corrections break analyticity of the gradient expansion (long-time tails), but are 1/N suppressed [Kovtun, Yaffe (2003)]

    • entropy current, constraints on transport and new transport coefficients (anomalies, broken parity)

    • non-relativistic hydrodynamics

    • hydrodynamics from effective Schwinger-Keldysh field theory with dissipation [Nicolis, et. al.; S. G., Polonyi; Haehl, Loganayagam, Rangamani; de Boer, Heller, Pinzani-Fokeeva; Crossley, Glorioso, Liu]

    shear: ! = �i ⌘"+ P

    k2 � i"

    ⌘2⌧⇧

    ("+ P )2� 1

    2

    ✓1"+ P

    #k4 +O �k5�

    sound: ! = ±csk � i�ck2 ⌥ �c2cs

    ��c � 2c2s⌧⇧

    �k3 � i

    "8

    9

    ⌘2⌧⇧

    ("+ P )2� 1

    3

    ✓1 + ✓2"+ P

    #k4 +O �k5�

    7

  • M A G N E T O H Y D R O DY N A M I C S

  • S TAT E S O F M AT T E R

    • solids

    • liquids

    • gases

    • plasma

    9

  • P L A S M A A N D M H D

    • ionised gas, uncharged at large distances (screening)

    • the theory: magnetohydrodynamics (MHD)

    10

    @✏

    @t+r · (✏~v) = 0

    ✓@

    @t+ ~v ·r

    ◆~v = �rp+ ~J ⇥ ~B

    r⇥ ~E = �@~B

    @t

    r⇥ ~B = µ0 ~J

    r · ~B = 0

    r · ~E = 0

    continuity + Euler (or Navier-Stokes)

    Maxwell

    Equation of state✓

    @

    @t+ ~v ·r

    ◆⇣ p✏�

    ⌘= 0

    ~E + ~v ⇥ ~B = 0 , (� ! 1) Ohm’s law (ideal)

  • P L A N A N D W I S H E S• generalise MHD to bring it to the effective field theory level of (charged)

    relativistic hydrodynamics: symmetries and field content

    • is there a way to avoid assumptions of the matter content?

    • what if a plasma is strongly coupled, contains strong magnetic fields, 
 
its equation of state depends on magnetic properties and the matter sector is strongly coupled to the charged sector,

    • quantum effects: pair-creation (Euler-Heisenberg), Landau levels, …?

    • systematic derivative expansions: transport coefficients

    • look at an example of such a plasma and learn something new about real plasmas (fusion, magnetars, quark-gluon plasma, …)?

    11

    p(T,B)

    B/T 2 � 1

  • G E N E R A L I S E D G L O B A L S Y M M E T R I E S

    • symmetry based formulation of MHD 
[S. G., Hofman, Iqbal, PRD (2017) 9, 096003, arXiv:1610.07392]

    • gauge vs. global U(1) symmetry in electromagnetism

    • 0-form symmetry (1-form conserved current)

    • 1-form symmetry (2-form conserved current) 
[Gaiotto, Kapustin, Seiberg, Willet] 


    • matter-less electromagnetism has two U(1) 1-form symmetries

    • spontaneous breaking of the symmetry gives a photon

    12

    O(x) ! eiq⇤O(x)

    W (C) ! exp✓iq

    Z

    C⇤µdx

    ◆W (C)

    1

    g2rµFµ⌫ = j⌫el Jµ⌫ =

    1

    2✏µ⌫⇢�F⇢�

  • G E N E R A L I S E D G L O B A L S Y M M E T R I E S

    • such a symmetry can be source or gauged like any other symmetry

    • related to one-form current by a dualisation

    • our theory has the following conserved global symmetries: energy-momentum and a U(1) number of magnetic flux lines (in the presence of charged matter)

    13

    rµTµ⌫ = 0 rµJµ⌫ =1

    2rµ ("µ⌫⇢�F⇢�) = 0

    rµTµ⌫ = H⌫⇢�J⇢�

    S[b] ⌘ S0 +�S[b], �S[b] ⌘Z

    d

    4x

    p�g bµ⌫Jµ⌫

    �S[b] =

    Zd

    4

    x

    p�gA�j�

    ext

    , j

    �ext

    ⌘ ✏�⇢µ⌫@⇢bµ⌫

    external source

  • I D E A L M H D A N D W A V E S

    • construct a general hydrodynamic gradient expansion with fields: 


    • ideal MHD
(string hydro)

    • thermodynamics

    • Alfvén and (slow and fast) magnetosonic waves from

    14

    Tµ⌫(0) = ("+ p)uµu⌫ + p gµ⌫ � µ⇢hµh⌫

    Jµ⌫(0) = 2⇢u[µh⌫]

    v2M =1

    2

    ⇢�V2A + V20

    �cos

    2 ✓ + V2S sin2 ✓ ±q⇥

    (V2A � V20 ) cos2 ✓ + V2S sin2 ✓

    ⇤2+ 4V4 cos2 ✓ sin2 ✓

    v2A = V2A cos2 ✓

    ! = ±vAk ! = ±vMk

    uµ, T, hµ, µ u2 = �1, h2 = 1, hµuµ = 0

    "+ p = Ts+ µ⇢ dp = sdT + ⇢dµ

    rµTµ⌫ = 0rµJµ⌫ = 0

  • I D E A L M H D A N D W A V E S

    • Alfvén waves have been observed in solar corona [McIntosh, et. al (2011)]

    15

  • S P E E D S O F M H D W A V E S• assume weak field limit of the equation of state to reproduce all of standard

    MHD results (Alfvén and magnetosonic waves) [Hernandez, Kovtun]

    • strong field limit

    16

    pweak (µ, T ) =a

    4T 4 +

    g2

    2µ2 +

    4

    µ4

    T 4+ · · ·

    pstrong

    (µ, T ) =g02

    2µ2 +

    a0

    4T 4 +

    �0

    8

    T 8

    µ2+ · · ·T 2 ⌧ µ :

    µ ⌧ T 2 :

  • D I S S I PAT I O N• construct first-order (anisotropic) dissipative corrections

    • 7 terms consistent with positive entropy production and charge-conjugation invariant MHD (2 shear, 3 bulk viscosities, 2 resistivities); 11 in general MHD [Hernandez, Kovtun]

    17

    Sµ = s uµ � 1TTµ⌫(1)u⌫ �

    µ

    TJµ⌫(1)h⌫ , rµS

    µ � 0

    Tµ⌫(1) = �f �µ⌫ + �⌧ hµh⌫ + 2 `(µh⌫) + tµ⌫

    Jµ⌫(1) = 2m[µh⌫] + sµ⌫

    �f = �⇣?�µ⌫rµu⌫ � ⇣(1)⇥ hµh⌫rµu⌫�⌧ = �⇣(2)⇥ �µ⌫rµu⌫ � 2⇣khµh⌫rµu⌫`µ = �2⌘k�µ�h⌫r(�u⌫)

    tµ⌫ = �2⌘?✓�µ⇢�⌫� � 1

    2�µ⌫�⇢�

    ◆r(⇢u�)

    mµ = �2r?T�µ�h⌫r[�✓h⌫]µ

    T

    sµ⌫ = �2rkµ�µ⇢�⌫�r[⇢h�]

    ⌘? � 0 ⌘k � 0r? � 0 rk � 0⇣? � 0 ⇣?⇣k � ⇣2⇥

  • D I S S I PAT I O N• corrections to the dispersion relations of MHD waves

    • limits of small momentum and large angle do not commute

    • expand in small k, e.g. the Alfvén wave is

    • for non-infinitesimal k, there is a critical angle at which propagating modes (slow-MS and Alfvén) cease to exist and become diffusive
(weak/strong B)

    18

    ! = ±k cos ✓s

    1

    1 +

    Tsµ⇢

    � 12

    i

    ✓sin

    2 ✓

    Ts+ µ⇢⌘? +

    cos

    2 ✓

    Ts+ µ⇢⌘k +

    µ cos2 ✓

    ⇢r? +

    µ sin2 ✓

    ⇢rk

    ◆k2

    ✓c(k)

  • D I S S I PAT I O N• in the regime of a strong magnetic field, when anisotropic

    corrections become large, critical angle decreases from

    • Kubo formulae, e.g. resistivities

    • normally

    • now, new diagrams: e.g.

    19

    rk = lim!!0

    Gxy,xyJJ

    (!)

    �i! r? = lim!!0Gxz,xz

    JJ

    (!)

    �i!

    hEE(!)i ⇠ �(�i!)2 g2G��(!)

    1� hjeljel(!)i g2G��(!)r ⇠ (�i!) 1hjeljel(!)i

    ⇠ 1�

    +hjj(!)i

    + · · ·

    +g2G��(!)

    +hjj(!)i

    G�(!)

    + · · ·

    +

    r 6= 1�

  • M H D AT Z E R O T E M P E R AT U R E • take the limit of zero temperature

    • a sector of the theory without entropy production, and

    • symmetry breaking patterns

    • degrees of freedom s.t.

    • ideal hydrodynamics

    (no 1st order correction)

    • entropy conservation vs. closure of equations (reduces 8 (7) to 5)

    20

    �T = 0

    finite T : SO(3, 1) ! SO(2)zero T : SO(3, 1) ! SO(1, 1)⇥ SO(2)

    uµ⌫uµ⌫ = �2, uµ⌫u⌫⇢u⇢� = uµ�µ, uµ⌫

    Tµ⌫(0) = �"⌦µ⌫ + p⇧µ⌫

    Jµ⌫(0) = ⇢uµ⌫

    ⌦µ⌫ ⌘ uµ�u ⌫�

    (rµTµ⌫)⌦⌫� + µ (rµJµ⌫)u⌫� = 0

    ⇧µ⌫ ⌘ gµ⌫ � ⌦µ⌫

  • M H D AT Z E R O T E M P E R AT U R E • this theory has no slow MS waves due to vanishing fluctuation of the

    temperature

    • universal dispersion relation for Alfvén waves (to all orders)

    • fast MS waves receive corrections from 2nd order hydrodynamics and travel at the

    • in absence of any scales beyond B, speed of fast MS waves is the speed of light

    21

    ! = ±k cos ✓

    !M = ±�vMk + ↵Mk

    3 + · · ·�

    vM =

    ✓cos

    2 ✓ +⇢

    µ�sin

    2 ✓

    ◆1/2� =

    @⇢

  • H O L O G R A P H I C P L A S M A

  • H O L O G R A P H I C M H D• example of a strongly coupled plasma [S. G., Poovuttikul, arXiv:1707.04182]

    • fields at the boundary source dual conserved operators

    • generating functional

    • construct a theory of a metric and a two-form gauge field in 5D

    • naively, it is dual to the bulk Einstein-Maxwell theory with 
if we write :

    23

    W [gµ⌫ , bµ⌫ ] =

    ⌧exp

    i

    Zd

    4x

    p�g

    ✓1

    2

    T

    µ⌫gµ⌫ + J

    µ⌫bµ⌫

    ◆��

    S =1

    225

    Zd5x

    p�G

    ✓R+

    12

    L2� 1

    3e2HHabcH

    abc

    FabFab

    H = dB

    H = ?F F ^ ?F ! H ^ ?H

  • H O L O G R A P H I C M H D• the connection to Einstein-Maxwell theory is more subtle

    • dualise by writing the path integral over F

    24

    Z �Z

    DFab DBab exp⇢i

    N

    2c

    8⇡

    2

    Zd

    5x

    p�G

    �FabF

    ab+ e

    �1H Bab✏

    abcdercFde��

    hJµRi = �N2c2⇡2

    limu!0

    Fuµ = � N2c

    2⇡2eHlimu!0

    ✏µ⌫⇢�@⌫B⇢�

    • the gauge field on the boundary is dynamical (photons) [Hofman, Iqbal]

    Dirichlet BC 
(standard quantisation)

    von Neumann BC 
(alternative quantisation)

    gab , Bab gab , Aab

    Zd

    4xJ

    µ⌫�Bµ⌫

    Zd

    4xAµ�Jµ

  • H O L O G R A P H I C M H D• full holographic action

    • D’Hoker-Kraus black brane

    • on-shell action at a cut-off (FG coordinates)

    • source

    25

    S =N2c8⇡2

    "Zd5x

    p�G✓R+ 12� 1

    3e2HHabcH

    abc

    ◆+

    Z

    @Md4x

    p�g✓2 trK � 6 + 1

    e2HHµ⌫Hµ⌫ ln C

    ◆#

    Hµ⌫ = naHaµ⌫

    ds2 = Gabdxadxb = r2h

    ✓�F (u)dt2 + e

    2V(u)

    v(dx2 + dy2) +

    e2W(u)

    wdz2

    ◆+

    du2

    4u3F (u)

    H =Br2he

    �2V+W

    2u3/2pw

    dt ^ dz ^ du

    �S

    on�shell = �N2c

    4⇡2

    Zd

    4x

    p�gHµ⌫⇣�B

    (0)µ⌫ + �B

    (1)µ⌫ ln C2⇢⇤

    B(0)µ⌫ +B(1)µ⌫ ln C2⇢⇤ =

    4⇡2

    N2cbµ⌫

  • H O L O G R A P H I C M H D• expectation values of dual conserved operators

    26

    hTµ⌫i =� N2c

    4⇡2lim✏!0

    r2h✏

    ✓Kµ⌫ � �µ⌫K � 3�µ⌫ + 1

    2R[�]µ⌫ � 1

    4�µ⌫R[�]

    �✓Hµ�H �⌫ �

    1

    4�µ⌫H↵�H↵�

    ◆ln(C⇢)

    ◆����⇢=✏

    hJµ⌫i =� lim✏!0

    Hµ⌫��⇢=✏

    matter

    Maxwell

    • stress-energy tensor has two contributions, more precisely [Fuini, Yaffe]

    hTµ⌫i = lim✏!1/⇤2

    N2c2⇡2

    ✓g(2)µ⌫ � g(0)µ⌫ (g(2))�� +

    1

    2h̃µ⌫ + h̃µ⌫ ln

    �C2⇢�+O(⇢, @2)◆����

    ⇢=✏

    N2c⇡2

    h̃µ⌫ ln(⇤/C) =N2c⇡2

    h̃µ⌫ ln(⇤/M) + h̃µ⌫

    ✓2

    e2r� N

    2c

    ⇡2ln(⇤/M)

  • H O L O G R A P H I C M H D

    • trace anomaly and N=4 NSVZ beta function of U(1)R (from SU(4)R)

    27

    hTµ⌫i = hTmatterµ⌫ i+ hTEMµ⌫ i

    hTmatterµ⌫ i =N2c2⇡2

    ✓g(2)µ⌫ � g(0)µ⌫ (g(2))�� +

    1

    2h̃µ⌫

    ◆� N

    2c

    ⇡2h̃µ⌫ ln(⇤/M)

    hTEMµ⌫ i = �✓

    2

    e2r� N

    2c

    ⇡2ln (⇤/M)

    ◆h̃µ⌫

    SEM = �1

    4e(⇤/M)2

    Zd

    4x

    p�gFµ⌫Fµ⌫

    • electromagnetic term comes from the Maxwell action

    hTEMµ⌫ i =1

    e(⇤/M)2

    ✓hFµ↵F ↵⌫ i �

    1

    4⌘µ⌫hF↵�F↵�i

    ◆=

    1

    e(⇤/M)2

    ✓hFµ↵ihF ↵⌫ i �

    1

    4⌘µ⌫hF↵�ihF↵�i

    hTµµi = ��(e)

    e3B2 = �N

    2c

    4⇡2B2

    ��1/e2

    �= µ

    de�2

    dµ= �N

    2c

    2⇡2

    "1

    6

    4X

    ↵=1

    (q↵f )2 +

    1

    12

    3X

    a=1

    (qas )2

    #= �N

    2c

    2⇡2

  • H O L O G R A P H I C M H D• final renormalised expectation values

    • RG-condition-dependent electromagnetic coupling

    • Ward identities from MHD are satisfied

    • interpretation: not quite gauged N=4 SYM (gauge anomaly of U(1)R, no Chern-Simons term, B-term not in IIB supergravity)

    28

    hTµ⌫i =N2c2⇡2

    ✓g(2)µ⌫ � g(0)µ⌫ (g(2))�� +

    1

    2h̃µ⌫

    ◆� 2

    e2rh̃µ⌫

    hJµ⌫i = 2B(1)µ⌫

    ↵̄ =N2c2⇡2

    ↵ =N2c2⇡2

    e2r4⇡

    =1

    137

    rµTµ⌫ = H⌫⇢�J⇢� rµJµ⌫ = 0

  • T H E R M O DY N A M I C S29

  • T R A N S P O R T C O E F F I C I E N T S30

    • maximal resistivity

    • bulk viscosities

    ⇣?⇣k = ⇣2⇥

  • S P E E D S O F S O U N D31

    ! = ±vk � iDk2

  • S O U N D AT T E N U AT I O N32

    ! = ±vk � iDk2

  • T R A N S M U TAT I O N O F M O D E S33

    ✓c(k)

    transition from propagating to non-propagating modes (from sound to diffusion) at a k-dependent critical angle

  • E L E C T R I C C H A R G E• behaviour of waves (e.g. Alfvén) strongly dependent on the

    renormalisation condition for the boundary electric charge

    34

  • S U M M A R Y• new, symmetry-based formulation of MHD, with new transport

    coefficients which agrees with (complete) standard MHD at low magnetic field strength [Hernandez, Kovtun]

    • we claim this theory can be used for any plasma

    • MHD may survive the zero-T limit and become non-dissipative

    • the theory can be studied via a holographic toy model, which includes dynamical electromagnetism (other applications?)

    • MHD modes could be examined at any strength of B

    • transmutation of propagating to non-propagating modes, least-conductive plasma, saturation of bulk viscosity inequality at strong coupling

    35

  • O U T L O O K

    is any of this useful for realistic plasmas?

    36

  • T H A N K Y O U !