33
ternionic analyticity and SU(2) Landau Leve in 3D Yi Li (UCSD Princeton), Congjun Wu UCSD) Sept 17, 2014, Center of Mathematical Sciences and Applications, Harvard University Collaborators: K. Intriligator (UCSD), Yue Yu (ITP, CAS, Beijing), Shou-cheng Zhang (Stanford), Xiangfa Zhou (USTC, China). 1

Quaternionic analyticity and SU(2 ) Landau Levels in 3D

Embed Size (px)

DESCRIPTION

Quaternionic analyticity and SU(2 ) Landau Levels in 3D. Yi Li (UCSD  Princeton), Congjun Wu ( UCSD). Collaborators: K. Intriligator (UCSD), Yue Yu (ITP, CAS, Beijing ), Shou-cheng Zhang (Stanford ), Xiangfa Zhou (USTC, China). - PowerPoint PPT Presentation

Citation preview

Page 1: Quaternionic analyticity and SU(2 ) Landau  Levels  in  3D

Quaternionic analyticity and SU(2) Landau Levels in 3D

Yi Li (UCSD Princeton), Congjun Wu ( UCSD)

Sept 17, 2014, Center of Mathematical Sciences and Applications, Harvard University

Collaborators:K. Intriligator (UCSD), Yue Yu (ITP, CAS, Beijing),Shou-cheng Zhang (Stanford),Xiangfa Zhou (USTC, China).

1

Page 2: Quaternionic analyticity and SU(2 ) Landau  Levels  in  3D

2

Acknowledgements:

Jorge Hirsch (UCSD)

Xi Dai, Zhong Fang, Liang Fu, Kazuki Hasebe, F. D. M. Haldane, Jiang-ping Hu, Cenke Xu, Kun Yang, Fei Zhou

Ref.1.Yi Li, C. Wu, Phys. Rev. Lett. 110, 216802 (2013)

(arXiv:1103.5422).2.Yi Li, K. Intrilligator, Yue Yu, C. Wu, PRB 085132 (2012)

(arXiv:1108.5650). 3.Yi Li, S. C. Zhang, C. Wu, Phys. Rev. Lett. 111, 186803

(2013) (arXiv:1208.1562).4. Yi Li, X. F. Zhou, C. Wu, Phys. Rev. B. Phys. Rev. B 85, 125122

(2012).

Page 3: Quaternionic analyticity and SU(2 ) Landau  Levels  in  3D

Outline

• Introduction: complex number quaternion.

• Quaternionic analytic Landau levels in 3D/4D.

3

Analyticity : a useful rule to select wavefunctions for non-trivial topology.

Cauchy-Riemann-Fueter condition.

3D harmonic oscillator + SO coupling.

• 3D/4D Landau levels of Dirac fermions: complex quaternions.

An entire flat-band of half-fermion zero modes (anomaly?)

Page 4: Quaternionic analyticity and SU(2 ) Landau  Levels  in  3D

The birth of “i“ : not from

• Cardano formula for the cubic equation.

4

12 x

0

33

xx

,1

0,3

qp

3

0

3,2

1

x

x

32

32

pq

32

232

13,2211 ,ii

ececxccx

32,1 2

q

c

03 qpxx

discriminant:

• Start with real coefficients, and end up with three real roots, but no way to avoid “i”.

Page 5: Quaternionic analyticity and SU(2 ) Landau  Levels  in  3D

The beauty of “complex”

• Gauss plane: 2D rotation (angular momentum)

• Euler formula: (U(1) phase: optics, QM)

• Complex analyticity: (2D lowest Landau level)

• Algebra fundamental theorem; Riemann hypothesis – distributions of prime numbers, etc.

sincos iei

• Quan Mech: “i” appears for the first time in a wave equation.

Ht

i

5

0

yf

ixf )()(

121

00

zfzfdzzzi

Schroedinger Eq:

Page 6: Quaternionic analyticity and SU(2 ) Landau  Levels  in  3D

• Three imaginary units i, j, k.

ukzjyixq 1222 kji

• Division algebra:

jikkiikjjkkjiij ;;

• Quaternion-analyticity (Cauchy-Futer integral)

0

uf

kzf

j

yf

ixf

)(

)()(||

121

0

02

02

qf

qfDqqqqq

0,or,00 baab

Further extension: quaternion (Hamilton number)

• 3D rotation: non-commutative.

6

Page 7: Quaternionic analyticity and SU(2 ) Landau  Levels  in  3D

Quaternion plaque: Hamilton 10/16/1843

1222 ijkkjiBrougham bridge, Dublin

7

Page 8: Quaternionic analyticity and SU(2 ) Landau  Levels  in  3D

3D rotation as 1st Hopf map

• : imaginary unit:

rotation R unit quaternion q:

cossinsincossin)ˆ( kji

3

2sin)ˆ(

2cos Sq

• 3D rotation Hopf map S3 S2.

8

• 3D vector r imaginary quaternion.

zkyjxir

• Rotation axis , rotation angle: .

21 Sqkq 3Sq

1st Hopf map

1)(

ˆ

qkqrRr

kzr

Page 9: Quaternionic analyticity and SU(2 ) Landau  Levels  in  3D

Outline

• Introduction: complex number quaternion.

• Quaternionic analytic Landau levels in 3D/4D.

9

Analyticity : a useful rule to select wavefunctions for non-trivial topology.

Cauchy-Riemann-Fueter condition.

3D harmonic oscillator + SO coupling.

• 3D/4D Landau levels of Dirac fermions: complex quaternions.

An entire flat-band of half-fermion zero modes (anomaly?)

Page 10: Quaternionic analyticity and SU(2 ) Landau  Levels  in  3D

Review: 2D Landau level in the symmetric gauge

10

rzB

AAce

PM

H DLL

ˆ

2,)(

21 2

2

)(2

1)(

2

1yyxx ipyaipxa

symmetric gauge:

Lowest Landau level wavefunction:complex analyticity

0),(

,),(),(24

zzf

ezzfzz

z

l

zz

LLLB

)0(,...,,...,,,1)(

)(),(2

mzzzzf

zfzzfm

)(,0),()( iyxzzziaa LLLyx

Page 11: Quaternionic analyticity and SU(2 ) Landau  Levels  in  3D

Advantages of Landau levels (2D)

• Simple, explicit and elegant.

• Analytic properties facilitate the construction of Laughlin WF.

i B

i

l

z

jijinsym ezzzzz

2

2

4

||

321 )(),....,(

),( yx

• Complex analyticity selection of non-trivial WFs.

1. The 2D ordinary QM WF belongs to real analysis

2. Cauchy-Riemann condition complex analyticity (chirality).

3. Chirality is physically imposed by the B-field.

Page 12: Quaternionic analyticity and SU(2 ) Landau  Levels  in  3D

1212

• Particles couple to the SU(2) gauge field on the S4 sphere.

12

)()(,2 51

2

2

2

aabbbaabba

ab AixAixMR

H

• Second Hopf map. The spin value .

R4

3

7 SS

S uunx ii

a

a ,,

• Single particle LLLs

4D integer and fractional TIs with time reversal symmetry Dimension reduction to 3D and 2D TIs (Qi, Hughes, Zhang).

4321

43214321|, mmmm

ia mmmmnx

2RI

Science 294, 824 (2001).

Pioneering Work: LLs on 4D-sphere ---Zhang and Hu

Page 13: Quaternionic analyticity and SU(2 ) Landau  Levels  in  3D

Symmetric-like gauge (3D quantum top):Complex analyticity in a flexible-plane with chirality determined by S along thedirection.

Our recipe

1. 3D harmonic wavefunctions. 2. Selection criterion: quaternionic analyticity (physically imposed by SO coupling).

2e

1e

S

Landau-like gauge: spatial separation of 2D Dirac modes with opposite helicites.

Generalizable to higher dimensions.

Page 14: Quaternionic analyticity and SU(2 ) Landau  Levels  in  3D

2D LLs in the symmetric gauge

• 2D LL Hamiltonian = 2D harmonic oscillator (HO)+ orbital Zeeman coupling.

14

eBhc

l,Mc

e|B|ω,ωLrMω

Mp

H BzLLD 22

12

222

2

rzB

AAce

PM

H DLL

ˆ

2,)(

21 2

2

• has the same set of eigenstates as 2D HO.LLDH 2

Page 15: Quaternionic analyticity and SU(2 ) Landau  Levels  in  3D

1515

Organization non-trivial topology

m0

-3

-1 1

2-2

-1 1 3

0

)2/(|| 22Blzm

LLL ez

• If viewed horizontally, they are topologically trivial.

• If viewed along the diagonal line, they become LLs.

mEZeeman )/(

1||2)/(,2 mnE rHOD

rLLD nE 2)/(,2

m0 1 2 3

-1 0 1 2

Page 16: Quaternionic analyticity and SU(2 ) Landau  Levels  in  3D

1616

222

222

3

2)(

2

12

1

2

rM

Ac

eP

M

LrMM

PH D

LL

rgAD

2

1:3rzBAD

ˆ

2

1:2

• The SU(2) gauge potential:

• 3D LL Hamiltonian = 3D HO + spin-orbit coupling.

3D – Aharanov-Casher potential !!

.||

,2

||

eg

cl

Mc

egg

16

• The full 3D rotational symm. + time-reversal symm.

Page 17: Quaternionic analyticity and SU(2 ) Landau  Levels  in  3D

17

Constructing 3D Landau Levels

)/(,3 HODE

j

3/2+

3/2+

3/2-

5/2-

5/2+

7/2+

1/2+

1/2+

1/2-

1/2-

SOC : 2 helicity branches

.2

1 ljl

0

1

2

1 3

0

2

32)/(,3 lnE rHOD

jl

jlL

for)1(

for

)/(,3 LLDE

j½+ 3/2+ 5/2+ 7/2+

½+ 3/2+ 5/2+ 7/2+

Lrmm

pH D

LL

222

3

2

1

2

,

Page 18: Quaternionic analyticity and SU(2 ) Landau  Levels  in  3D

1818

The coherent state picture for 3D LLL WFs

321, ])ˆˆ[()( el

high

LLLj reier

• Coherent states: spin perpendicular to the orbital plane.

• The highest weight state . Both and are conserved.

jjz

22 4/,

0)( g

z

lrl

LLLjjj eiyxr

zL zS

• LLLs in N-dimensions: picking up any two axes and define a complex plane with a spin-orbit coupled helical structure.

3ˆ// eS

2e1e

Page 19: Quaternionic analyticity and SU(2 ) Landau  Levels  in  3D

Comparison of symm. gauge LLs in 2D and 3D

19

• 3D LLs: SU(2) group space quaternionic analytic polynomials.

2

2

3

2ˆ21, ])ˆˆ[(),( gl

r

el

high

LLLj ereier

• 2D LLs: complex analytic polynomials.

.0,)2/(|| 22

miy,xzez BlzmsymLLL Phase

Right-handed triad

• 1D harmonic levels: real polynomials.

3ˆ// eS

2e1e

Page 20: Quaternionic analyticity and SU(2 ) Landau  Levels  in  3D

Quaternionic analyticity

20

• Cauchy-Riemann condition and loop integral.

0

y

gi

x

g )()(1

2

10

0

zgzgdzzzi

• Fueter condition (left analyticity): f (x,y,z,u) quaternion-valued function of 4-real variables.

0

u

fk

z

fj

y

fi

x

f )()()(21

002qfqfDqqqK

222222 )(||

1)(

uzyx

ukzjyix

qqqK

dzdykdxdudyjdxdudzidxdudzdyqD )(

• Cauchy-Fueter integrals over closed 3-surface in 4D.

Page 21: Quaternionic analyticity and SU(2 ) Landau  Levels  in  3D

Mapping 2-component spinor to a single quaternion

21

zzz

G

z

z

z jjjjjjl

r

jj

jjLLLjj jzyxfer ,,2,,1,

4

,,2

,,1

, ),,()ˆ,(2

2

0

f(x,y,z)z

jy

ix

• Reduced Fueter condition in 3D:

• Fueter condition is invariant under rotation .If f satisfies Fueter condition, so does Rf.

• TR reversal: ; U(1) phase

SU(2) rotation:

fji y * ii fee

feefeefeeiijiki zyx 222222 ;;

rRrzyxfeeezyxRfiji 1222 ),,,(),,)((

),,( R

Page 22: Quaternionic analyticity and SU(2 ) Landau  Levels  in  3D

Quaternionic analyticity of 3D LLL

• The highest state jz=j is obviously analytic.

• All the coherent states can be obtained from the highest states through rotations, and thus are also analytic.

ljjj iyxf

z)(

• Completeness: Any quaternionic analytic polynomial corresponds to a LLL wavefunction.

0 02/1 02/1 2

1 )(l

l

mjmjj

j

l

mmjjmjj

j

j

jjjm

mjjqfjccfcff

zz

zz

• All the LLL states are quaternionic analytic. QED.

22

Page 23: Quaternionic analyticity and SU(2 ) Landau  Levels  in  3D

Helical surface states of 3D LLs

from bulk to surface

21

00 lj

0/ EE

j

• Each LL contributes to one helical Fermi surface.

• Odd fillings yield odd numbers of Dirac Fermi surfaces.

lMR

llH D

surface

2

22

2

)1(

LrMM

pH D

bulk

222

3

2

1

2

)(ˆ/)( 02

pevRllvH rfD

plane

)(ˆ peRLl r

yp

xpfk

Rlk f /0

R

23

Page 24: Quaternionic analyticity and SU(2 ) Landau  Levels  in  3D

Analyticity condition as Weyl equation (Euclidean)

24

2D complex analyticity

0

yf

ixf

0

yxt yx

0

xt

24)(),( Bl

zz

LLL ezfzz

)(),( txfxt

1D chiral edge mode

0

zf

jyf

ixf

3D: quaternionic analyticity

2D helical Dirac surface mode

0

uf

k

zf

jyf

ixf

3D Weyl boundary mode

0

zyxt zyx

4D: quaternionic analyticity

Page 25: Quaternionic analyticity and SU(2 ) Landau  Levels  in  3D

Outline

• Introduction: complex number quaternion.

• Quaternionic analytic Landau levels in 3D/4D.

25

Analyticity : a useful rule to select wavefunctions for non-trivial topology.

Cauchy-Riemann-Fueter condition.

3D harmonic oscillator + SO coupling.

• 3D/4D Landau levels of Dirac fermions: complex quaternions.

An entire flat-band of half-fermion zero modes (anomaly?)

Page 26: Quaternionic analyticity and SU(2 ) Landau  Levels  in  3D

Review: 2D LL Hamiltonian of Dirac Fermions

rzB

A

ˆ2

.,),(2

1yxip

li

l

xa i

B

B

ii

},)(){(2

yyyxxxF

D

LL Ac

epA

c

epvH

• Rewrite in terms of complex combinations of phonon operators.

,0)(

)(022

yx

yx

B

FDLL iaai

iaai

l

vH

• LL dispersions: nE n

E

0n

1n2n

1n2n

26.0

2

2

4

||

;0Bl

zm

LLm e

z

• Zero energy LL is a branch of half-fermion modes due to the chiral symmetry.

Page 27: Quaternionic analyticity and SU(2 ) Landau  Levels  in  3D

0

02

0

02

0

4

aia

aial

kajaiaa

kajaiaaH

u

u

zyxu

zyxuDiracDLL

27

3D/4D LL Hamiltonian of Dirac Fermions

2D harmonic oscillator },{ yx aa

},,,{ zyxu aaaa

},1{ i

),,,1(

},,,1{

zyx iii

kji

• 4D Dirac LL Hamiltonian:

4D harmonic oscillator

• “complex quaternion”: zyxu kajaiaa

Page 28: Quaternionic analyticity and SU(2 ) Landau  Levels  in  3D

3D LL Hamiltonian of Dirac Fermions

0)/(

)/(0

20

0

2 2

0

2

003

lrip

lripl

ai

aiH DiracD

LL

.],,[2

,)}({

000

0000

g

ii

ii

ii

gii

lx

Fi

Flv

viL

• This Lagrangian of non-minimal Pauli coupling.

• A related Hamiltonian was studied before under the name of Dirac oscillator, but its connection to LL and topological properties was not noticed.

Benitez, et al, PRL, 64, 1643 (1990)28

Page 29: Quaternionic analyticity and SU(2 ) Landau  Levels  in  3D

29

0

0

2

1

)1(2

1

)1(2

dimk

ii

kik

k

ii

kik

DLL

aia

aiaH

LL Hamiltonian of Dirac Fermions in Arbitrary Dimensions

0

0

2 )(

)(

dim

i

k

i

i

k

iD

LLai

aiH

• For odd dimensions (D=2k+1).

• For even dimensions (D=2k).

Page 30: Quaternionic analyticity and SU(2 ) Landau  Levels  in  3D

30

• The square of gives two copies of with opposite helicity eigenstates.

D ir a cDLL

erS ch r o ed in gDLL HH 3,3

)2

3(0

02

3

222/

)( 22223

L

Lr

M

M

pH DiracD

LL

DiracDLLH 3

)( 3DLLH

• LL solutions: dispersionless with respect to j. Eigen-states constructed based on non-relativistic LLs.

.2

1

,

,1,,1

,,,

,,;

zr

zr

zr

r

jljn

jljnLL

jljn

r

LL

n

i

nE

A square root problem:

The zeroth LL:

.0

,,

,,;0

LLL

jljLL

jlj

z

z

Page 31: Quaternionic analyticity and SU(2 ) Landau  Levels  in  3D

• For the 2D case, the vacuum charge density is , known as parity anomaly.

3131

Zeroth LLs as half-fermion modes

• The LL spectra are symmetric with respect to zero energy, thus each state of the zeroth LL contributes ½- fermion charge depending on the zeroth LL is filled or empty.

G. Semenoff, Phys. Rev. Lett., 53, 2449 (1984).

Bh

ej

2

0 2

1

• For our 3D case, the vacuum charge density is plus or minus of the half of the particle density of the non-relativistic LLLs.

E

0n

1n2n

1n2n

0

0

• What kind of anomaly?

Page 32: Quaternionic analyticity and SU(2 ) Landau  Levels  in  3D

Helical surface mode of 3D Dirac LL

D

LLH 3

,

R

DH 3

• The mass of the vacuum outside M

Mp

pMH D

3D

LL

D HH 33

• This is the square root problem of the open boundary problem of 3D non-relativistic LLs.

• Each surface mode for n>0 of the non-relativistic case splits a pair surface modes for the Dirac case.

• The surface mode of Dirac zeroth-LL of is singled out. Whether it is upturn or downturn depends on the sign of the vacuum mass.

E

j0n

1n2n

1n

2n32

Page 33: Quaternionic analyticity and SU(2 ) Landau  Levels  in  3D

33

Conclusions

• We hope the quaternionic analyticity can facilitate the construction of 3D Laughlin state.

• The non-relativistic N-dimensional LL problem is a N-dimensional harmonic oscillator + spin-orbit coupling.

• The relativistic version is a square-root problem corresponding to Dirac equation with non-minimal coupling.

• Open questions: interaction effects; experimental realizations; characterization of topo-properties with harmonic potentials