227
Codeware, Inc. Houston, TX, USA www.codeware.com COMPRESS Pressure Vessel Design Calculations Item: Split Stream Dearator Vessel No: V-1234 Customer: Magaladon Oil Venture Contract: C-45490-R56 Designer: John Doe Date: April 1, 2001 You can edit this page by selecting Cover Page settings... in the report menu.

HTRI-COMPRESS Kettle Calculations

  • Upload
    b363nk

  • View
    1.017

  • Download
    35

Embed Size (px)

Citation preview

Page 1: HTRI-COMPRESS Kettle Calculations

Codeware, Inc.

Houston, TX, USA

www.codeware.com

COMPRESS Pressure Vessel Design Calculations

Item: Split Stream DearatorVessel No: V-1234Customer: Magaladon Oil Venture

Contract: C-45490-R56Designer: John Doe

Date: April 1, 2001

You can edit this page by selecting Cover Page settings... in the report menu.

Page 2: HTRI-COMPRESS Kettle Calculations

1/226

Page 3: HTRI-COMPRESS Kettle Calculations

Deficiencies Summary

Deficiencies for Kettle reboilerTEMA RCB-3.13: The shell thickness is less than the required minimum thickness of 0.3125 in.TEMA RCB-4.52: The unsupported straight tube span exceeds 69 in.TEMA RCB-3.13: The front channel thickness is less than the required minimum thickness of 0.3125 in.TEMA RCB-3.2: The rear closure thickness is less than the required minimum thickness of 0.3125 in.TEMA RCB-3.2: The front channel closure thickness is less than the required minimum thickness of 0.3125 in.

Deficiencies for SaddleShell bending stress at the saddle is excessive.Circumferential stress at the wear plate horns is excessive.

Deficiencies for SS Inlet (N4)Nozzle MAWP (56.1229 psi) is less than the design pressure (60.3041 psi).The inner fillet weld (Leg41) is too small., MAP condition per UW-16

Deficiencies for SS Outlet (N3)The inner fillet weld (Leg41) is too small., MAP condition per UW-16

Deficiencies for SS Outlet 2 (N5)Nozzle MAWP (59.2441 psi) is less than the design pressure (60.3041 psi).The inner fillet weld (Leg41) is too small., MAP condition per UW-16

Deficiencies for TS Inlet (N1)Due to size or thickness limitations, SA-455 <= 3/8 is not acceptable.The inner fillet weld (Leg41) is too small., MAP condition per UW-16

Deficiencies for TS Outlet (N2)The inner fillet weld (Leg41) is too small., MAP condition per UW-16

Warnings Summary

Warnings for Kettle reboilerFront Tubesheet: UHX-12.4(c): The tubesheet corroded thickness (0.8908 in) is less than the tube diameter (1 in).The effect of the tubesheet deflection should be considered in the design. (warning)

Warnings for SaddleThe wear plate thickness should not exceed the shell thickness (Bednar Note #1, Section 6.4 (pg 171, 2nd Ed)(warning)

Warnings for Shell Side Flange (front)TEMA, Table D-5: Current bolt circle (19.25 in) does not provide sufficient wrench clearance, 19.5 in recommended.(warning)TEMA, Table D-5: Bolt washers will extend beyond the flange outer diameter. (warning)

Warnings for SS Inlet (N4)UCS-79: The extreme fiber elongation exceeds 5 percent. Heat treatment per UCS-56 may be required. SeeUCS-79(d)(4) or (5). (warning)

Warnings for SS Outlet (N3)Nozzle does not satisfy the specified minimum projection length of 6.0000" (warning)

Warnings for SS Outlet 2 (N5)UCS-79: The extreme fiber elongation exceeds 5 percent. Heat treatment per UCS-56 may be required. SeeUCS-79(d)(4) or (5). (warning)

2/226

Page 4: HTRI-COMPRESS Kettle Calculations

Warnings for TS Inlet (N1)UCS-79: The extreme fiber elongation exceeds 5 percent and the thickness exceeds 5/8 inch;. Heat treatment perUCS-56 is required if fabricated by cold forming. (warning)Appendix 1-10(d): Di / t = 17.375 / 0.125 = 139 > 100 and nozzle projection = 5.9375" < 3*(Rn*tn)2 =3*(7.0005*0.9995)1/2 = 7.9356". Strain redistribution may cause distortion (ovaling) of the nozzle neck and flange suchthat a proper seal at the bolted flange connection cannot be obtained or maintained. Division 2 Part 4.5 performed perU-2(g). Optionally, Appendix 1-7 may be used for radial nozzles by selecting the option in the Areas dialog. (warning)Nozzle thickness in excess of three times the vessel plus pad thickness (tn = 0.9995" > 3*t = 3*0.125 = 0") is notrecommended and may produce excessive secondary stresses in the welds. (warning)Nozzle thickness in excess of three times the vessel plus pad thickness (tn = 1.062" > 3*t = 3*0.1875 = 0") is notrecommended and may produce excessive secondary stresses in the welds. (warning)Nozzle does not satisfy the specified minimum projection length of 6.0000" (warning)

Warnings for Tube Side Flange (front)TEMA, Table D-5: Current bolt circle (19.25 in) does not provide sufficient wrench clearance, 19.5 in recommended.(warning)TEMA, Table D-5: Bolt washers will extend beyond the flange outer diameter. (warning)This body flange is being counted as a line of support for external pressure. (warning)

Warnings for VesselNo baffles specified. Vessel weight and weight distribution may not be correct. (warning)

ASME B16.5 / B16.47 Flange Warnings Summary

ASME B16.5 / 16.47 Flanges with Warnings

Flange Applicable Warnings

TS Inlet (N1) 1, 2

TS Outlet (N2) 1, 2

SS Outlet (N3) 1

SS Inlet (N4) 1

SS Outlet 2 (N5) 1

ASME B16.5 / 16.47 Flange Warnings

No. Warning

1 For Class 150 flanges, ASME B16.5 para. 5.4.3 recommends gaskets to be in accordance with Annex C, TableC1, Group No. I.

2 For Class 150 flanges when temperature exceeds 400°F, care should be taken to avoid imposing severeexternal loads and/or thermal gradients or leakage may develop.ASME B16.5 para. 2.5.2.

3/226

Page 5: HTRI-COMPRESS Kettle Calculations

Nozzle Schedule

Nozzlemark Service Size

Materials

Nozzle Impact Norm Fine Grain Pad Impact Norm Fine Grain Flange

N1 TS Inlet 13.88 IDx1.06 SA-455 <= 3/8 No No No N/A N/A N/A N/A WN A105 Class 150

N2 TS Outlet 8.07 IDx0.28 SA-455 <= 3/8 No No No N/A N/A N/A N/A WN A105 Class 150

N3 SS Outlet 8.00 IDx0.31 SA-455 <= 3/8 No No No N/A N/A N/A N/A WN A105 Class 150

N4 SS Inlet 4.00 IDx0.25 SA-455 <= 3/8 No No No N/A N/A N/A N/A WN A105 Class 150

N5 SS Outlet 2 7.63 IDx0.50 SA-455 ( 3/8 < t <= 0.58) No No No N/A N/A N/A N/A WN A105 Class 150

4/226

Page 6: HTRI-COMPRESS Kettle Calculations

Nozzle Summary

Nozzlemark

OD(in)

tn

(in)Req t

n(in)

A1? A2?Shell Reinforcement

Pad Corr(in)

Aa/A

r(%)

Nom t(in)

Design t(in)

User t(in)

Width(in)

tpad(in)

N1 16.00 1.0620 0.1481 Yes Yes 0.1875 0.1875 N/A N/A 0.0625 145.9

N2 8.63 0.2770 0.1329 Yes Yes 0.1875 0.1563 N/A N/A 0.0625 100.0

N3 8.63 0.3120 0.1250 Yes Yes 0.1250 0.0984 N/A N/A 0.0625 100.0

N4 4.50 0.2500 0.1250 Yes Yes 0.1250 0.0816 N/A N/A 0.0625 100.1

N5 8.63 0.5000 0.1250 Yes Yes 0.1250 0.1026 N/A N/A 0.0625 100.0

tn: Nozzle thicknessReq tn: Nozzle thickness required per UG-45/UG-16Nom t: Vessel wall thicknessDesign t: Required vessel wall thickness due to pressure + corrosion allowance per UG-37User t: Local vessel wall thickness (near opening)Aa: Area available per UG-37, governing conditionAr: Area required per UG-37, governing conditionCorr: Corrosion allowance on nozzle wall

5/226

Page 7: HTRI-COMPRESS Kettle Calculations

Pressure Summary

Pressure Summary for Tube side chamber

IdentifierP

Design( psi)

T

Design(°F)

MAWP( psi)

MAP( psi)

MAEP( psi)

Te

external(°F)

MDMT(°F)

MDMTExemption

Total Corrosion

Allowance(in)

ImpactTest

Front Head 0.0 414.5 144.58 289.44 27.86 414.5 -20.0 Note 1 0.063 No

Straight Flange on Front Head 0.0 414.5 284.73 429.18 60.54 414.5 -20.0 Note 2 0.063 No

Front Channel 0.0 414.5 284.73 429.18 60.54 414.5 -20.0 Note 2 0.063 No

Tubesheet 0.0 414.5 0.00 135.67 60.62 414.5 -20.0 Note 3 0.125 No

Tubes 0.0 414.5 2278.57 2279.14 1318.79 414.5 -155.0 Note 4 0.000 No

Tube Side Flange (front) 0.0 414.5 265.60 285.33 989.51 414.5 -26.9 Note 5 0.000 No

Tube Side Flange (front) - Flange Hub 0.0 414.5 286.78 287.36 61.21 414.5 -20.0 Note 6 0.000 No

TS Inlet (N1) 0.0 414.5 195.65 285.00 60.54 414.5 -20.0 Note 7 0.063 No

TS Outlet (N2) 0.0 414.5 160.75 248.71 29.83 414.5 -27.6 Note 8 0.063 No

Chamber design MDMT is -20.00°FChamber rated MDMT is -20.00°F @ 0.00 psi

Chamber MAWP hot & corroded is 0.00 psi @ 414.5°F

Chamber MAP cold & new is 135.67 psi @ 70.0°F

Chamber MAEP is 27.86 psi @ 414.5°FVacuum rings did not govern the external pressure rating.

Pressure Summary for Shell side chamber

IdentifierP

Design( psi)

T

Design(°F)

MAWP( psi)

MAP( psi)

MDMT(°F)

MDMTExemption

Total Corrosion

Allowance(in)

ImpactTest

Tubesheet 73.5 414.5 60.62 135.67 -20.0 Note 3 0.125 No

Port Cylinder (front) 60.3 307.6 142.34 287.36 -55.0 Note 9 0.063 No

Front Cone 60.3 307.6 88.71 179.96 -55.0 Note 10 0.063 No

Shell 60.3 307.6 91.47 185.47 -55.0 Note 11 0.063 No

Straight Flange on Rear Shell Head 60.3 307.6 91.47 185.47 -55.0 Note 11 0.063 No

Rear Shell Head 60.3 307.6 92.26 186.34 -55.0 Note 12 0.063 No

Tubes 0.0 414.5 1318.79 1318.79 N/A N/A 0.000 No

Shell Side Flange (front) 60.3 307.6 303.26 285.34 -55.0 Note 13 0.000 No

Shell Side Flange (front) - Flange Hub 60.3 307.6 286.43 287.36 -155.0 Note 14 0.000 No

Saddle 60.3 307.6 56.12 N/A N/A N/A N/A N/A

SS Outlet (N3) 60.3 307.6 62.50 129.16 -37.7 Note 15 0.063 No

SS Inlet (N4) 60.3 307.6 56.12 121.27 -20.3 Note 16 0.063 No

SS Outlet 2 (N5) 60.3 307.6 59.24 122.34 -21.2 Note 17 0.063 No

Chamber design MDMT is -20.00°FChamber rated MDMT is -20.00°F @ 56.12 psi

Chamber MAWP hot & corroded is 56.12 psi @ 307.6°F

6/226

Page 8: HTRI-COMPRESS Kettle Calculations

Chamber MAP cold & new is 121.27 psi @ 70.0°F

This pressure chamber is not designed for external pressure.

Notes for MDMT Rating:

Note # Exemption Details

1. Straight Flange governs MDMT

2. Material is impact test exempt per UG-20(f) UCS-66 governing thickness = 0.1875 in

3. Tubesheet is impact test exempt per UG-20(f) UCS-66 governing thickness = 0.254 in.

4. Material is impact test exempt per UCS-66(d) (NPS 4 or smaller pipe)

5.

UCS-66(b)(1)(b) has been applied.Flange impact test exemption temperature from Fig UCS-66 Curve B = -20 °FFig UCS-66.1 MDMT reduction = 6.9 °F, (coincident ratio = 0.9308646)UCS-66 governing thickness = 0.125 in

Bolts rated MDMT per Fig UCS-66 note (e) = -55 °F

6. Material is impact test exempt per UG-20(f) UCS-66 governing thickness = 0.125 in

7. Nozzle is impact test exempt per UG-20(f) UCS-66 governing thickness = 0.1875 in.

8. Nozzle impact test exemption temperature from Fig UCS-66 Curve A = 18 °FFig UCS-66.1 MDMT reduction = 45.6 °F, (coincident ratio = 0.56336) UCS-66 governing thickness = 0.1875 in.

9.Material impact test exemption temperature from Fig UCS-66 Curve B = -20 °FFig UCS-66.1 MDMT reduction = 105 °F, (coincident ratio = 0.3972073)Rated MDMT is governed by UCS-66(b)(2)

UCS-66 governing thickness = 0.125 in

10.Material impact test exemption temperature from Fig UCS-66 Curve B = -20 °FFig UCS-66.1 MDMT reduction = 36.4 °F, (coincident ratio = 0.6364939)Rated MDMT is governed by UCS-66(b)(2)

UCS-66 governing thickness = 0.125 in

11.Material impact test exemption temperature from Fig UCS-66 Curve B = -20 °FFig UCS-66.1 MDMT reduction = 38.3 °F, (coincident ratio = 0.6174237)Rated MDMT is governed by UCS-66(b)(2)

UCS-66 governing thickness = 0.125 in

12. Straight Flange governs MDMT

13. UCS-66(b)(1)(b) has been applied.Flange is impact test exempt to -155 °F per UCS-66(b)(3) (coincident ratio = 0.19669) Bolts rated MDMT per Fig UCS-66 note (e) = -55 °F

14. Material is impact test exempt to -155 °F per UCS-66(b)(3) (coincident ratio = 0.19717)

15. Nozzle impact test exemption temperature from Fig UCS-66 Curve A = 18 °FFig UCS-66.1 MDMT reduction = 55.7 °F, (coincident ratio = 0.516) UCS-66 governing thickness = 0.125 in.

16. Nozzle impact test exemption temperature from Fig UCS-66 Curve A = 18 °FFig UCS-66.1 MDMT reduction = 38.3 °F, (coincident ratio = 0.61744) UCS-66 governing thickness = 0.125 in.

17. Nozzle impact test exemption temperature from Fig UCS-66 Curve A = 18 °FFig UCS-66.1 MDMT reduction = 39.2 °F, (coincident ratio = 0.60784) UCS-66 governing thickness = 0.125 in.

Design notes are available on the Settings Summary page.

7/226

Page 9: HTRI-COMPRESS Kettle Calculations

Revision History

No. Date Operator Notes

0 11/25/2010 ß 363 nk � New vessel created Heat Exchanger. [Build 6258]

8/226

Page 10: HTRI-COMPRESS Kettle Calculations

Settings Summary

COMPRESS Build 6258

Units: U.S. Customary

Datum Line Location: 0.00" from right seam

Design

ASME Section VIII Division 1, 2007 Edition

Design or Rating: Get Thickness from PressureMinimum thickness: 1/16" per UG-16(b)Design for cold shut down only: NoDesign for lethal service (full radiography required): NoDesign nozzles for: Design P, find nozzle MAWP and MAPCorrosion weight loss: 100% of theoretical lossUG-23 Stress Increase: 1.20Skirt/legs stress increase: 1.0Minimum nozzle projection: 6.0000"Juncture calculations for α > 30 only: YesPreheat P-No 1 Materials > 1.25&#34 and <= 1.50" thick: NoButt welds are tapered per Figure UCS-66.3(a).

Hydro/Pneumatic Test

Shop Hydrotest Pressure: 1.3 times vesselMAWP

Test liquid specific gravity: 1.00Maximum stress during test: 90% of yield

Required Marking - UG-116

Shell SideUG-116 (e) Radiography: RT1UG-116 (f) Postweld heat treatment: None

Tube SideUG-116 (e) Radiography: RT1UG-116 (f) Postweld heat treatment: None

Code Cases\Interpretations

Use Code Case 2547: NoApply interpretation VIII-1-83-66: YesApply interpretation VIII-1-86-175: YesApply interpretation VIII-1-83-115: YesApply interpretation VIII-1-01-37: YesDisallow UG-20(f) exemptions: No

9/226

Page 11: HTRI-COMPRESS Kettle Calculations

UG-22 Loadings

UG-22 (a) Internal or External Design Pressure : YesUG-22 (b) Weight of the vessel and normal contents under operating or test conditions: YesUG-22 (c) Superimposed static reactions from weight of attached equipment (external loads): NoUG-22 (d)(2) Vessel supports such as lugs, rings, skirts, saddles and legs: YesUG-22 (f) Wind reactions: NoUG-22 (f) Seismic reactions: NoNote: UG-22 (b),(c) and (f) loads only considered when supports are present.

10/226

Page 12: HTRI-COMPRESS Kettle Calculations

Thickness Summary

ComponentIdentifier

Material Diameter(in)

Length(in)

Nominal t(in)

Design t(in)

JointE

Load

Front Head SA-516 70 17.25 ID 4.44 0.1250* 0.1056 1.0000 External

Straight Flange on Front Head SA-516 70 17.25 ID 2.00 0.1875 0.1307 1.0000 External

Front Channel SA-516 70 17.25 ID 23.25 0.1875 0.1307 1.0000 External

Tubesheet SA-516 70 17.63 OD 1.02 1.0158 1.0125 1.0000 Unknown

Tubes SA-179 Smls tube 1.0000 OD 72.00 0.0910 0.0151 1.0000 External

Port Cylinder (front) SA-516 70 17.25 ID 6.00 0.1250 0.0892 1.0000 Internal

Front Cone SA-516 70 17.25/26.81 ID 19.12 0.1250 0.1052 1.0000 Internal

Shell SA-516 70 26.81 ID 48.11 0.1250 0.1040 1.0000 Internal

Straight Flange on Rear Shell Head SA-516 70 26.81 ID 2.00 0.1250 0.1040 1.0000 Internal

Rear Shell Head SA-516 70 26.81 ID 6.83 0.1250* 0.1036 1.0000 Internal

Nominal t: Vessel wall nominal thickness

Design t: Required vessel thickness due to governing loading + corrosion

Joint E: Longitudinal seam joint efficiency

* Head minimum thickness after forming

Load

internal: Circumferential stress due to internal pressure governs

external: External pressure governs

Wind: Combined longitudinal stress of pressure + weight + wind governs

Seismic: Combined longitudinal stress of pressure + weight + seismic governs

11/226

Page 13: HTRI-COMPRESS Kettle Calculations

Weight Summary

ComponentWeight ( lb) Contributed by Vessel Elements

MetalNew*

Metal

Corroded*Insulation &

Supports Lining Piping+ Liquid

OperatingLiquid

TestLiquid

Front Head 18.16 10.12 0.00 0.00 0.00 28.96 41.13

Front Channel 53.82 36.04 0.00 0.00 0.00 158.69 230.26

Tubesheet 43.95 38.54 0.00 0.00 0.00 0.00 0.00

Port Cylinder (front) 11.59 5.81 0.00 0.00 0.00 70.11 91.58

Front Cone 46.46 23.30 0.00 0.00 0.00 253.29 324.97

Shell 141.36 70.85 0.00 0.00 0.00 641.41 612.29

Tubes 793.86 793.86 0.00 0.00 0.00 139.28 204.77

Rear Shell Head 35.61 17.90 0.00 0.00 0.00 123.31 131.79

Saddle 108.00 108.00 0.00 0.00 0.00 0.00 0.00

TOTAL: 1,252.80 1,104.42 0.00 0.00 0.00 1,415.03 1,636.78

* Shells with attached nozzles have weight reduced by material cut out for opening.

Component

Weight ( lb) Contributed by Attachments

Body Flanges Nozzles &Flanges Packed

BedsTrays &

SupportsRings &

ClipsVerticalLoads

New Corroded New Corroded

Front Head 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Front Channel 50.75 50.75 273.85 266.58 0.00 0.00 0.00 0.00

Tubesheet 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Port Cylinder (front) 50.75 50.75 0.00 0.00 0.00 0.00 0.00 0.00

Front Cone 0.00 0.00 46.39 44.83 0.00 0.00 0.00 0.00

Shell 0.00 0.00 67.35 65.15 0.00 0.00 0.00 0.00

Rear Shell Head 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

TOTAL: 101.49 101.49 387.59 376.57 0.00 0.00 0.00 0.00

Vessel operating weight, Corroded: 2,998 lbVessel operating weight, New: 3,157 lbVessel empty weight, Corroded: 1,582 lbVessel empty weight, New: 1,742 lbVessel test weight, New: 3,379 lb

Vessel center of gravity location - from datum - lift condition

Vessel Lift Weight, New: 1,742 lbCenter of Gravity: 46.44"

Vessel Capacity

Shell side Capacity** (New): 138 US galShell side Capacity** (Corroded): 140 US galTube side Capacity** (New): 56 US galTube side Capacity** (Corroded): 57 US gal**The shell and tube capacity does not include volume of nozzle, piping or other attachments.

12/226

Page 14: HTRI-COMPRESS Kettle Calculations

Hydrostatic Test

Shop test pressure determination for Tube side chamber based on MAWP per UG-99(b)

Shop hydrostatic test gauge pressure is 36.221 psi at 70 °F (the chamber MAEP = 27.863 psi). External pressuregoverns the test pressure per UG-99(f).

The shop test is performed with the vessel in the horizontal position.

IdentifierLocal testpressure

psi

Test liquidstatic head

psi

UG-99stressratio

UG-99pressure

factor

Stressduring test

psi

Allowabletest stress

psi

Stressexcessive?

Front Head (1) 37.065 0.844 1 1.30 2,302 34,200 No

Straight Flange on Front Head 37.065 0.844 1 1.30 1,723 34,200 No

Front Channel 37.065 0.844 1 1.30 1,723 34,200 No

Tubes 37.052 0.831 1 1.30 208 23,400 No

Tube Side Flange (front) 37.065 0.844 1 1.30 5,196 51,300 No

Tubesheet 37.238 1.016 1 1.30 See tubesheet report

TS Inlet (N1) 36.436 0.214 1.0047 1.30 1,870 51,300 No

TS Outlet (N2) 37.288 1.067 1.0047 1.30 5,180 51,300 No

Notes:(1) Front Head limits the UG-99 stress ratio.(2) PL stresses at nozzle openings have been estimated using the method described in PVP-Vol. 399, pages 77-82.(3) VIII-2, AD-151.1(b) used as the basis for nozzle allowable test stress.(4) The zero degree angular position is assumed to be up, and the test liquid height is assumed to the top-mostflange.

The field test condition has not been investigated for the Tube side chamber.

Shop test pressure determination for Shell side chamber based on MAWP per UG-99(b)

Shop hydrostatic test gauge pressure is 72.96 psi at 70 °F (the chamber MAWP = 56.123 psi)

The shop test is performed with the vessel in the horizontal position.

IdentifierLocal testpressure

psi

Test liquidstatic head

psi

UG-99stressratio

UG-99pressure

factor

Stressduring test

psi

Allowabletest stress

psi

Stressexcessive?

Port Cylinder (front) (1) 73.976 1.016 1 1.30 5,141 34,200 No

Front Cone 74.149 1.189 1 1.30 8,196 34,200 No

Shell 74.149 1.189 1 1.30 7,988 34,200 No

Straight Flange on Rear Shell Head 74.149 1.189 1 1.30 7,988 34,200 No

Rear Shell Head 74.149 1.189 1 1.30 7,156 34,200 No

Tubes 73.877 0.917 N/A 1.30 NI NI NI

Tubesheet 73.976 1.016 1 1.30 See tubesheet report

Shell Side Flange (front) 73.976 1.016 1 1.30 9,224 51,300 No

13/226

Page 15: HTRI-COMPRESS Kettle Calculations

SS Inlet (N4) 74.37 1.41 1 1.30 13,917 51,300 No

SS Outlet (N3) 73.262 0.303 1 1.30 16,035 51,300 No

SS Outlet 2 (N5) 73.176 0.217 1 1.30 9,555 49,950 No

Notes:(1) Port Cylinder (front) limits the UG-99 stress ratio.(2) NI indicates that test stress was not investigated.(3) PL stresses at nozzle openings have been estimated using the method described in PVP-Vol. 399, pages 77-82.(4) VIII-2, AD-151.1(b) used as the basis for nozzle allowable test stress.(5) The zero degree angular position is assumed to be up, and the test liquid height is assumed to the top-mostflange.

The field test condition has not been investigated for the Shell side chamber.

The test temperature of 70 °F is warmer than the minimum recommended temperature of 10 °F so the brittle fractureprovision of UG-99(h) has been met.

14/226

Page 16: HTRI-COMPRESS Kettle Calculations

Vacuum Summary

Component Line of SupportElevation

above Datum(in)

Length Le(in)

Front Head - 109.93 N/A

- 1/3 depth of Front Head 106.95 N/A

Straight Flange on Front Head Top - 105.49 29.71

Straight Flange on Front Head Bottom - 103.49 29.71

Front Channel Top - 103.49 29.71

Front Channel Bottom - 80.24 29.71

- Tube Side Flange (front) 77.24 N/A

Tubesheet - 77.24 N/A

- Shell Side Flange (front) 76.22 N/A

Port Cylinder (front) Top - 73.22 9.00

Port Cylinder (front) Bottom - 67.22 9.00

Front Cone Top - 67.22 N/A

- Front Cone Top 67.22 N/A

- Front Cone Bottom 48.11 N/A

Front Cone Bottom - 48.11 N/A

Shell Top - 48.11 52.36

Shell Bottom - 0.00 52.36

Straight Flange on Rear Shell Head Top - 0.00 52.36

Straight Flange on Rear Shell Head Bottom - -2.00 52.36

- 1/3 depth of Rear Shell Head -4.25 N/A

Rear Shell Head - -8.83 N/A

Note

For main components, the listed value of 'Le' is the largest unsupported length for the component.

15/226

Page 17: HTRI-COMPRESS Kettle Calculations

Front Channel

ASME Section VIII Division 1, 2007 Edition

Component: CylinderMaterial specification: SA-516 70 (II-D p. 18, ln. 22)Material is impact test exempt per UG-20(f)UCS-66 governing thickness = 0.1875 in

Internal design pressure: P = 0 psi @ 414.5°FExternal design pressure: Pe = 13.1759 psi @ 414.5°F

Static liquid head:

Ps =0.5754 psi (SG=0.6802, Hs=23.4375" Operating head)Pth =0.8438 psi (SG=1.0000, Hs=23.3750", Horizontal test head)

Corrosion allowance: Inner C = 0.0625" Outer C = 0.0000"

Design MDMT = -20.00°F No impact test performedRated MDMT = -20.00°F Material is not normalized

Material is not produced to Fine Grain PracticePWHT is not performed

Radiography: Longitudinal joint - Full UW-11(a) Type 1Left circumferential joint - Full UW-11(a) Type 1Right circumferential joint - Full UW-11(a) Type 1

Estimated weight: New = 67.5841 lb corr = 45.2176 lbCapacity: New = 23.5223 gal corr = 23.8644 galID = 17.2500"Length Lc = 23.2500"t = 0.1875"

Design thickness, (at 414.50°F) UG-27(c)(1)

t = P*R/(S*E - 0.60*P) + Corrosion= 0.58*8.6875/(20000*1.00 - 0.60*0.58) + 0.0625= 0.0628"

Maximum allowable working pressure, (at 414.50°F) UG-27(c)(1)

P = S*E*t/(R + 0.60*t) - Ps= 20000*1.00*0.1250 / (8.6875 + 0.60*0.1250) - 0.5754= 284.7313 psi

Maximum allowable pressure, (at 70.00°F) UG-27(c)(1)

P = S*E*t/(R + 0.60*t)= 20000*1.00*0.1875 / (8.6250 + 0.60*0.1875)= 429.1845 psi

External Pressure, (Corroded & at 414.50°F) UG-28(c)

L/Do = 29.7083/17.6250 = 1.6856Do/t = 17.6250/0.068219 = 258.3596

16/226

Page 18: HTRI-COMPRESS Kettle Calculations

From table G: A = 0.000187From table CS-2: B = 2553.0984 psi

Pa = 4*B/(3*(Do/t))= 4*2553.0984/(3*(17.6250/0.068219))= 13.1759 psi

Design thickness for external pressure Pa = 13.1759 psi

= t + Corrosion = 0.068219 + 0.0625 = 0.1307"

Maximum Allowable External Pressure, (Corroded & at 414.50°F) UG-28(c)

L/Do = 29.7083/17.6250 = 1.6856Do/t = 17.6250/0.1250 = 141.0000

From table G: A = 0.000466From table CS-2: B = 6402.5376 psi

Pa = 4*B/(3*(Do/t))= 4*6402.5376/(3*(17.6250/0.1250))= 60.5441 psi

% Extreme fiber elongation - UCS-79(d)

= (50 * t / Rf) * (1 - Rf / Ro)= (50 * 0.1875 / 8.7188) * (1 - 8.7188 / ∞)= 1.0753 %

Allowable Compressive Stress, Hot and Corroded- ScHC, (table CS-2)A = 0.125 / (Ro / t)

= 0.125 / (8.8125 / 0.1250)= 0.001773

B = 12508.6357 psi

S = 20000.0000 / 1.0000= 20000.0000 psi

ScHC = 12508.6357 psi

Allowable Compressive Stress, Hot and New- ScHN, (table CS-2)A = 0.125 / (Ro / t)

= 0.125 / (8.8125 / 0.1875)= 0.002660

B = 13596.3066 psi

S = 20000.0000 / 1.0000= 20000.0000 psi

ScHN = 13596.3066 psi

17/226

Page 19: HTRI-COMPRESS Kettle Calculations

Allowable Compressive Stress, Cold and New- ScCN, (table CS-2)A = 0.125 / (Ro / t)

= 0.125 / (8.8125 / 0.1875)= 0.002660

B = 15833.8398 psi

S = 20000.0000 / 1.0000= 20000.0000 psi

ScCN = 15833.8398 psi

Allowable Compressive Stress, Cold and Corroded- ScCC, (table CS-2)A = 0.125 / (Ro / t)

= 0.125 / (8.8125 / 0.1250)= 0.001773

B = 14491.5537 psi

S = 20000.0000 / 1.0000= 20000.0000 psi

ScCC = 14491.5537 psi

Allowable Compressive Stress, Vacuum and Corroded- ScVC, (table CS-2)A = 0.125 / (Ro / t)

= 0.125 / (8.8125 / 0.1250)= 0.001773

B = 12508.6357 psi

S = 20000.0000 / 1.0000= 20000.0000 psi

ScVC = 12508.6357 psi

18/226

Page 20: HTRI-COMPRESS Kettle Calculations

Port Cylinder (front)

ASME Section VIII Division 1, 2007 Edition

Component: CylinderMaterial specification: SA-516 70 (II-D p. 18, ln. 22)Material impact test exemption temperature from Fig UCS-66 Curve B = -20 °FFig UCS-66.1 MDMT reduction = 105 °F, (coincident ratio = 0.3972073)Rated MDMT is governed by UCS-66(b)(2)UCS-66 governing thickness = 0.125 in

Internal design pressure: P = 60.3041 psi @ 307.57°F

Static liquid head:

Ps =0.9314 psi (SG=0.9145, Hs=28.2167" Operating head)Pth =1.0163 psi (SG=1.0000, Hs=28.1542", Horizontal test head)

Corrosion allowance: Inner C = 0.0625" Outer C = 0.0000"

Design MDMT = -20.00°F No impact test performedRated MDMT = -55.00°F Material is not normalized

Material is not produced to Fine Grain PracticePWHT is not performed

Radiography: Longitudinal joint - Full UW-11(a) Type 1Left circumferential joint - Full UW-11(a) Type 1Right circumferential joint - Full UW-11(a) Type 1

Estimated weight: New = 11.5857 lb corr = 5.8137 lbCapacity: New = 6.0703 gal corr = 6.1586 galID = 17.2500"Length Lc = 6.0000"t = 0.1250"

Design thickness, (at 307.57°F) UG-27(c)(1)

t = P*R/(S*E - 0.60*P) + Corrosion= 61.24*8.6875/(20000*1.00 - 0.60*61.24) + 0.0625= 0.0892"

Maximum allowable working pressure, (at 307.57°F) UG-27(c)(1)

P = S*E*t/(R + 0.60*t) - Ps= 20000*1.00*0.0625 / (8.6875 + 0.60*0.0625) - 0.9314= 142.3350 psi

Maximum allowable pressure, (at 70.00°F) UG-27(c)(1)

P = S*E*t/(R + 0.60*t)= 20000*1.00*0.1250 / (8.6250 + 0.60*0.1250)= 287.3563 psi

% Extreme fiber elongation - UCS-79(d)

= (50 * t / Rf) * (1 - Rf / Ro)= (50 * 0.1250 / 8.6875) * (1 - 8.6875 / ∞)

19/226

Page 21: HTRI-COMPRESS Kettle Calculations

= 0.7194 %

Allowable Compressive Stress, Hot and Corroded- ScHC, (table CS-2)A = 0.125 / (Ro / t)

= 0.125 / (8.7500 / 0.0625)= 0.000893

B = 11683.4004 psi

S = 20000.0000 / 1.0000= 20000.0000 psi

ScHC = 11683.4004 psi

Allowable Compressive Stress, Hot and New- ScHN, (table CS-2)A = 0.125 / (Ro / t)

= 0.125 / (8.7500 / 0.1250)= 0.001786

B = 14380.1836 psi

S = 20000.0000 / 1.0000= 20000.0000 psi

ScHN = 14380.1836 psi

Allowable Compressive Stress, Cold and New- ScCN, (table CS-2)A = 0.125 / (Ro / t)

= 0.125 / (8.7500 / 0.1250)= 0.001786

B = 14521.1133 psi

S = 20000.0000 / 1.0000= 20000.0000 psi

ScCN = 14521.1133 psi

Allowable Compressive Stress, Cold and Corroded- ScCC, (table CS-2)A = 0.125 / (Ro / t)

= 0.125 / (8.7500 / 0.0625)= 0.000893

B = 11772.5020 psi

S = 20000.0000 / 1.0000= 20000.0000 psi

ScCC = 11772.5020 psi

Allowable Compressive Stress, Vacuum and Corroded- ScVC, (table CS-2)A = 0.125 / (Ro / t)

= 0.125 / (8.7500 / 0.0625)= 0.000893

B = 11683.4004 psi

20/226

Page 22: HTRI-COMPRESS Kettle Calculations

S = 20000.0000 / 1.0000= 20000.0000 psi

ScVC = 11683.4004 psi

21/226

Page 23: HTRI-COMPRESS Kettle Calculations

Front Cone

ASME Section VIII Division 1, 2007 Edition

Component: TransitionMaterial specification: SA-516 70 (II-D p. 18, ln. 22)Material impact test exemption temperature from Fig UCS-66 Curve B = -20 °FFig UCS-66.1 MDMT reduction = 36.4 °F, (coincident ratio = 0.6364939)Rated MDMT is governed by UCS-66(b)(2)UCS-66 governing thickness = 0.125 in

Internal design pressure: P = 60.3041 psi @ 307.57°F

Static liquid head:

Ps =0.9294 psi (SG=0.9145, Hs=28.1542" Operating head at small end)Ps =1.0871 psi (SG=0.9145, Hs=32.9333" Operating head at large end)Pth =1.0163 psi (SG=1.0000, Hs=28.1542", Horizontal test head at small end)Pth =1.1888 psi (SG=1.0000, Hs=32.9333", Horizontal test head at large end)

Corrosion allowance: Inner C = 0.0625" Outer C = 0.0000"

Design MDMT = -20.00°F No impact test performedRated MDMT = -55.00°F Material is not normalized

Material is not produced to Fine Grain PracticePWHT is not performed

Radiography: Category A joints - Full UW-11(a) Type 1Circ. joint top/left - Full UW-11(a) Type 1Circ. joint right/bottom - Full UW-11(a) Type 1

Estimated weight: New = 46.5 lb corr = 23.3 lbCapacity: New = 32.0 US gal corr = 32.4 US galAxial length = 19.1165"Large End ID = 26.8083"Small End ID = 17.2500"Cone tc = 0.1250"

Design thickness, (at 307.57°F) UG-32(g) (Large End)

t = P*D / (2*Cos(α)*(S*E - 0.60*P)) + C

= 61.3912*26.9371 / (2*Cos(14.036)*(20000*1.00 - 0.60*61.3912))+ 0.0625

= 0.1052"Small End design thickness (t = 0.0900") does not govern.

MAWP, (Corroded at 307.57°F) UG-32(g) (Large End)

P = 2*S*E*t*Cos(α) / (D + 1.20*t*Cos(α)) - Ps

= 2*20000*1.00*0.0625*Cos(14.036) / (26.9371 + 1.20*0.0625*Cos(14.036)) -1.0871

= 88.71 psi

Small End MAWP (138.0467 psi) does not govern.

22/226

Page 24: HTRI-COMPRESS Kettle Calculations

MAP, (New at 70.00°F) UG-32(g) (Large End)

P = 2*S*E*t*Cos(α) / (D + 1.20*t*Cos(α)) - Ps

= 2*20000*1.00*0.1250*Cos(14.036) / (26.8083 + 1.20*0.1250*Cos(14.036)) -0.0000

= 179.96 psi

Small End MAP (278.8483 psi) does not govern.

% Extreme fiber elongation - UCS-79(d)

= (50 * t / Rf) * (1 - Rf / Ro)= (50 * 0.1288 / 8.6894) * (1 - 8.6894 / ∞)= 0.7414 %

23/226

Page 25: HTRI-COMPRESS Kettle Calculations

Cone juncture large end calculations, P =89.797 psi (MAWP =88.708 psi)

Appendix 1-5(d)

LoadingArea check

required(∆ < α)

U-2(g)

analysisrequired

f1(lbf /in)

QL

(lbf /in)A

rL(in2)

AeL

(in2)Ring

area (in2)Status

Pressure No No 0 604.63 0 0 none OK

24/226

Page 26: HTRI-COMPRESS Kettle Calculations

Cone large end calculations per Appendix 1-5(d), pressure, corroded

f1 = -Wl/(π*2*Rm) + 12*Ml/(π*R

m2)

= -0/(π*2*13.4979) + 12*0/(π*13.49792)= 0 lb/in

P*RL/2 = 604.6334 lb/in

|f1| <= P*RL/2 so a U-2(g) analysis is not required.

P/(Ss*E1) = 89.79716/(20,000.00*1) = 0.00449

From table 1-5.1 ∆ = 21.98°

As ∆ >= α no additional reinforcement is required.

Cone juncture small end calculations P = 89.637 psi (MAWP =88.708 psi)

Appendix 1-5(e)

LoadingArea check

required(∆ < α)

U-2(g)

analysisrequired

f2(lbf /in)

Qs(lbf /in)

Ars(in2)

Aes(in2)

Ringarea (in2)

Status

Pressure Yes No 0 389.36 0.03 0.03 none OK

25/226

Page 27: HTRI-COMPRESS Kettle Calculations

Cone small end calculations per Appendix 1-5(e), pressure, corroded

f2 = -Ws/(π*2*Rm) + 12*Ms/(π*R

m2)

= -0/(π*2*8.7188) + 12*0/(π*8.71882)= 0 lb/in

P*Rs/2 = 389.3619 lb/in

|f2| <= P*Rs/2 so a U-2(g) analysis is not required.

P/(Ss*E1) = 89.63727/(20,000.00*1) = 0.004482

From table 1-5.2 ∆ = 5.65°

As ∆ < α reinforcement is required.

Qs = P*Rs/2 + f2= 389.3619 + 0= 389.3619 lb/in

Ars = (k*Qs*Rs/(Ss*E1))*(1 - ∆/α)*tan(α)= (1*389.3619*8.6875/(20,000*1))*(1 - 5.65/14.0363)*tan(14.0363)= 0.02526261 in2

Aes = 0.78*(Rs*ts)0.5*[(ts - t) + (tc - tr)/cos(α)]= 0.78*(8.6875*0.0625)0.5*[(0.0625 - 0.0390412) + (0.0625 - 0.0402427)/cos(14.0363)]= 0.02666922 in2

Aes >= Ars therefore the small end juncture is adequately reinforced.

MAP Cone juncture large end calculations, P =179.964 psiAppendix 1-5(d)

LoadingArea check

required(∆ < α)

U-2(g)

analysisrequired

f1(lbf /in)

QL

(lbf /in)A

rL(in2)

AeL

(in2)Ring

area (in2)Status

Pressure No No 0 1,213.43 0 0 none OK

26/226

Page 28: HTRI-COMPRESS Kettle Calculations

Cone large end calculations per Appendix 1-5(d), pressure, new

f1 = -Wl/(π*2*Rm) + 12*Ml/(π*R

m2)

= -0/(π*2*13.4667) + 12*0/(π*13.46672)= 0 lb/in

P*RL/2 = 1,213.431 lb/in

|f1| <= P*RL/2 so a U-2(g) analysis is not required.

P/(Ss*E1) = 179.9638/(20,000.00*1) = 0.008998

From table 1-5.1 ∆ = 30°

As ∆ >= α no additional reinforcement is required.

MAP Cone juncture small end calculations P = 179.964 psiAppendix 1-5(e)

LoadingArea check

required(∆ < α)

U-2(g)

analysisrequired

f2(lbf /in)

Qs(lbf /in)

Ars(in2)

Aes(in2)

Ringarea (in2)

Status

Pressure Yes No 0 780.1 0.03 0.07 none OK

Cone small end calculations per Appendix 1-5(e), pressure, new

f2 = -Ws/(π*2*Rm) + 12*Ms/(π*R

m2)

= -0/(π*2*8.6875) + 12*0/(π*8.68752)= 0 lb/in

P*Rs/2 = 780.1017 lb/in

|f2| <= P*Rs/2 so a U-2(g) analysis is not required.

P/(Ss*E1) = 179.9638/(20,000.00*1) = 0.008998

From table 1-5.2 ∆ = 8.4°

As ∆ < α reinforcement is required.

Qs = P*Rs/2 + f2= 780.1017 + 0= 780.1017 lb/in

Ars = (k*Qs*Rs/(Ss*E1))*(1 - ∆/α)*tan(α)= (1*780.1017*8.625/(20,000*1))*(1 - 8.4/14.0363)*tan(14.0363)= 0.03359281 in2

Aes = 0.78*(Rs*ts)0.5*[(ts - t) + (tc - tr)/cos(α)]= 0.78*(8.625*0.125)0.5*[(0.125 - 0.0784358) + (0.125 - 0.0808498)/cos(14.0363)]= 0.07456966 in2

Aes >= Ars therefore the small end juncture is adequately reinforced.

27/226

Page 29: HTRI-COMPRESS Kettle Calculations

Shell

ASME Section VIII Division 1, 2007 Edition

Component: CylinderMaterial specification: SA-516 70 (II-D p. 18, ln. 22)Material impact test exemption temperature from Fig UCS-66 Curve B = -20 °FFig UCS-66.1 MDMT reduction = 38.3 °F, (coincident ratio = 0.6174237)Rated MDMT is governed by UCS-66(b)(2)UCS-66 governing thickness = 0.125 in

Internal design pressure: P = 60.3041 psi @ 307.57°F

Static liquid head:

Ps =1.0892 psi (SG=0.9145, Hs=32.9958" Operating head)Pth =1.1888 psi (SG=1.0000, Hs=32.9333", Horizontal test head)

Corrosion allowance: Inner C = 0.0625" Outer C = 0.0000"

Design MDMT = -20.00°F No impact test performedRated MDMT = -55.00°F Material is not normalized

Material is not produced to Fine Grain PracticePWHT is not performed

Radiography: Longitudinal joint - Full UW-11(a) Type 1Left circumferential joint - Full UW-11(a) Type 1Right circumferential joint - Full UW-11(a) Type 1

Estimated weight: New = 143.9936 lb corr = 72.1639 lbCapacity: New = 82.4331 gal corr = 83.5319 galID = 26.8083"Length Lc = 48.1069"t = 0.1250"

Design thickness, (at 307.57°F) UG-27(c)(1)

t = P*R/(S*E - 0.60*P) + Corrosion= 61.39*13.4667/(20000*1.00 - 0.60*61.39) + 0.0625= 0.1040"

Maximum allowable working pressure, (at 307.57°F) UG-27(c)(1)

P = S*E*t/(R + 0.60*t) - Ps= 20000*1.00*0.0625 / (13.4667 + 0.60*0.0625) - 1.0892= 91.4749 psi

Maximum allowable pressure, (at 70.00°F) UG-27(c)(1)

P = S*E*t/(R + 0.60*t)= 20000*1.00*0.1250 / (13.4042 + 0.60*0.1250)= 185.4716 psi

% Extreme fiber elongation - UCS-79(d)

= (50 * t / Rf) * (1 - Rf / Ro)= (50 * 0.1250 / 13.4667) * (1 - 13.4667 / ∞)

28/226

Page 30: HTRI-COMPRESS Kettle Calculations

= 0.4641 %

Allowable Compressive Stress, Hot and Corroded- ScHC, (table CS-2)A = 0.125 / (Ro / t)

= 0.125 / (13.5292 / 0.0625)= 0.000577

B = 8298.0957 psi

S = 20000.0000 / 1.0000= 20000.0000 psi

ScHC = 8298.0957 psi

Allowable Compressive Stress, Hot and New- ScHN, (table CS-2)A = 0.125 / (Ro / t)

= 0.125 / (13.5292 / 0.1250)= 0.001155

B = 12711.7021 psi

S = 20000.0000 / 1.0000= 20000.0000 psi

ScHN = 12711.7021 psi

Allowable Compressive Stress, Cold and New- ScCN, (table CS-2)A = 0.125 / (Ro / t)

= 0.125 / (13.5292 / 0.1250)= 0.001155

B = 12817.7939 psi

S = 20000.0000 / 1.0000= 20000.0000 psi

ScCN = 12817.7939 psi

Allowable Compressive Stress, Cold and Corroded- ScCC, (table CS-2)A = 0.125 / (Ro / t)

= 0.125 / (13.5292 / 0.0625)= 0.000577

B = 8323.0674 psi

S = 20000.0000 / 1.0000= 20000.0000 psi

ScCC = 8323.0674 psi

Allowable Compressive Stress, Vacuum and Corroded- ScVC, (table CS-2)A = 0.125 / (Ro / t)

= 0.125 / (13.5292 / 0.0625)= 0.000577

B = 8298.0957 psi

29/226

Page 31: HTRI-COMPRESS Kettle Calculations

S = 20000.0000 / 1.0000= 20000.0000 psi

ScVC = 8298.0957 psi

30/226

Page 32: HTRI-COMPRESS Kettle Calculations

Front Head

ASME Section VIII, Division 1, 2007 Edition

Component: Ellipsoidal HeadMaterial Specification: SA-516 70 (II-D p.18, ln. 22)Straight Flange governs MDMT

External design pressure: Pe = 13.1759 psi @ 414.5 °F

Static liquid head:

Ps= 0.5754 psi (SG=0.6802, Hs=23.4375" Operating head)Pth= 0.8438 psi (SG=1, Hs=23.375" Horizontal test head)

Corrosion allowance: Inner C = 0.0625" Outer C = 0"

Design MDMT = -20°F No impact test performedRated MDMT = N/A Material is not normalized

Material is not produced to fine grain practicePWHT is not performedDo not Optimize MDMT / Find MAWP

Radiography: Category A joints - Seamless No RT Head to shell seam - Full UW-11(a) Type 1

Estimated weight*: new = 18.2 lb corr = 10.1 lbCapacity*: new = 4.9 US gal corr = 5 US gal* includes straight flange

Inner diameter = 17.25"Minimum head thickness = 0.125"Head ratio D/2h = 2 (new)Head ratio D/2h = 1.9857 (corroded)Straight flange length Lsf = 2"Nominal straight flange thickness tsf = 0.1875"Results Summary

The governing condition is UG-16.Minimum thickness per UG-16 = 0.0625" + 0.0625" = 0.125"Design thickness due to internal pressure (t) = 0.0628"Design thickness due to external pressure (te) = 0.1056"Maximum allowable working pressure (MAWP) = 144.58 psiMaximum allowable pressure (MAP) = 289.44 psiMaximum allowable external pressure (MAEP) = 27.86 psi

K (Corroded)

K=(1/6)*[2 + (D / (2*h))2]=(1/6)*[2 + (17.375 / (2*4.375))2]=0.99051

K (New)

K=(1/6)*[2 + (D / (2*h))2]=(1/6)*[2 + (17.25 / (2*4.3125))2]=1

31/226

Page 33: HTRI-COMPRESS Kettle Calculations

Design thickness for internal pressure, (Corroded at 414.5 °F) Appendix 1-4(c)

t = P*D*K / (2*S*E - 0.2*P) + Corrosion= 0.58*17.375*0.99051 / (2*20,000*1 - 0.2*0.58) + 0.0625= 0.0627"

The head internal pressure design thickness is 0.0628".

Maximum allowable working pressure, (Corroded at 414.5 °F) Appendix 1-4(c)

P = 2*S*E*t / (K*D + 0.2*t) - Ps= 2*20,000*1*0.0625 / (0.99051*17.375 +0.2*0.0625) - 0.58= 144.58 psi

The maximum allowable working pressure (MAWP) is 144.58 psi.

Maximum allowable pressure, (New at 70 °F) Appendix 1-4(c)

P = 2*S*E*t / (K*D + 0.2*t) - Ps= 2*20,000*1*0.125 / (1*17.25 +0.2*0.125) - 0= 289.44 psi

The maximum allowable pressure (MAP) is 289.44 psi.

Design thickness for external pressure, (Corroded at 414.5 °F) UG-33(d)

Equivalent outside spherical radius (Ro)Ro = Ko*Do

= 0.8873 * 17.5= 15.5282 in

A = 0.125 / (Ro/t)= 0.125 / (15.5282/0.043038)= 0.000346

From Table CS-2: B=4,753.9014 psi

Pa = B/(Ro/t)= 4,753.901/(15.5282/0.043038)= 13.1759 psi

t = 0.043" + Corrosion = 0.043" + 0.0625" = 0.1055"Check the external pressure per UG-33(a)(1) Appendix 1-4(c)

t = 1.67*Pe*D*K / (2*S*E - 0.2*1.67*Pe) + Corrosion= 1.67*13.18*17.375*0.99051 / (2*20,000*1 - 0.2*1.67*13.18) + 0.0625= 0.072"

The head external pressure design thickness (te) is 0.1055".

Maximum Allowable External Pressure, (Corroded at 414.5 °F) UG-33(d)

Equivalent outside spherical radius (Ro)Ro = Ko*Do

= 0.8873 * 17.5= 15.5282 in

32/226

Page 34: HTRI-COMPRESS Kettle Calculations

A = 0.125 / (Ro/t)= 0.125 / (15.5282/0.0625)= 0.000503

From Table CS-2: B=6,922.457 psi

Pa = B/(Ro/t)= 6,922.457/(15.5282/0.0625)= 27.8625 psi

Check the Maximum External Pressure, UG-33(a)(1) Appendix 1-4(c)

P = 2*S*E*t / ((K*D + 0.2*t)*1.67) - Ps2= 2*20,000*1*0.0625 / ((0.99051*17.375 +0.2*0.0625)*1.67) - 0= 86.92 psi

The maximum allowable external pressure (MAEP) is 27.86 psi.

% Extreme fiber elongation - UCS-79(d)

= (75*t / Rf)*(1 - Rf / Ro)= (75*0.1875 / 3.0263)*(1 - 3.0263 / ∞)= 4.6468%

The extreme fiber elongation does not exceed 5%.

33/226

Page 35: HTRI-COMPRESS Kettle Calculations

Straight Flange on Front Head

ASME Section VIII Division 1, 2007 Edition

Component: Straight FlangeMaterial specification: SA-516 70 (II-D p. 18, ln. 22)Material is impact test exempt per UG-20(f)UCS-66 governing thickness = 0.1875 in

Internal design pressure: P = 0 psi @ 414.5°FExternal design pressure: Pe = 13.1759 psi @ 414.5°F

Static liquid head:

Ps =0.5754 psi (SG=0.6802, Hs=23.4375" Operating head)Pth =0.8438 psi (SG=1.0000, Hs=23.3750", Horizontal test head)

Corrosion allowance: Inner C = 0.0625" Outer C = 0.0000"

Design MDMT = -20.00°F No impact test performedRated MDMT = -20.00°F Material is not normalized

Material is not produced to Fine Grain PracticePWHT is not performed

Radiography: Longitudinal joint - Seamless No RTCircumferential joint - Full UW-11(a) Type 1

Estimated weight: New = 5.8137 lb corr = 3.8897 lbCapacity: New = 2.0234 gal corr = 2.0529 galID = 17.2500"Length Lc = 2.0000"t = 0.1875"

Design thickness, (at 414.50°F) UG-27(c)(1)

t = P*R/(S*E - 0.60*P) + Corrosion= 0.58*8.6875/(20000*1.00 - 0.60*0.58) + 0.0625= 0.0628"

Maximum allowable working pressure, (at 414.50°F) UG-27(c)(1)

P = S*E*t/(R + 0.60*t) - Ps= 20000*1.00*0.1250 / (8.6875 + 0.60*0.1250) - 0.5754= 284.7313 psi

Maximum allowable pressure, (at 70.00°F) UG-27(c)(1)

P = S*E*t/(R + 0.60*t)= 20000*1.00*0.1875 / (8.6250 + 0.60*0.1875)= 429.1845 psi

External Pressure, (Corroded & at 414.50°F) UG-28(c)

L/Do = 29.7083/17.6250 = 1.6856Do/t = 17.6250/0.068219 = 258.3596

From table G: A = 0.000187

34/226

Page 36: HTRI-COMPRESS Kettle Calculations

From table CS-2: B = 2553.0984 psi

Pa = 4*B/(3*(Do/t))= 4*2553.0984/(3*(17.6250/0.068219))= 13.1759 psi

Design thickness for external pressure Pa = 13.1759 psi

= t + Corrosion = 0.068219 + 0.0625 = 0.1307"

Maximum Allowable External Pressure, (Corroded & at 414.50°F) UG-28(c)

L/Do = 29.7083/17.6250 = 1.6856Do/t = 17.6250/0.1250 = 141.0000

From table G: A = 0.000466From table CS-2: B = 6402.5376 psi

Pa = 4*B/(3*(Do/t))= 4*6402.5376/(3*(17.6250/0.1250))= 60.5441 psi

% Extreme fiber elongation - UCS-79(d)

= (50 * t / Rf) * (1 - Rf / Ro)= (50 * 0.1875 / 8.7188) * (1 - 8.7188 / ∞)= 1.0753 %

Allowable Compressive Stress, Hot and Corroded- ScHC, (table CS-2)A = 0.125 / (Ro / t)

= 0.125 / (8.8125 / 0.1250)= 0.001773

B = 12508.6357 psi

S = 20000.0000 / 1.0000= 20000.0000 psi

ScHC = 12508.6357 psi

Allowable Compressive Stress, Hot and New- ScHN, (table CS-2)A = 0.125 / (Ro / t)

= 0.125 / (8.8125 / 0.1875)= 0.002660

B = 13596.3066 psi

S = 20000.0000 / 1.0000= 20000.0000 psi

ScHN = 13596.3066 psi

35/226

Page 37: HTRI-COMPRESS Kettle Calculations

Allowable Compressive Stress, Cold and New- ScCN, (table CS-2)A = 0.125 / (Ro / t)

= 0.125 / (8.8125 / 0.1875)= 0.002660

B = 15833.8398 psi

S = 20000.0000 / 1.0000= 20000.0000 psi

ScCN = 15833.8398 psi

Allowable Compressive Stress, Cold and Corroded- ScCC, (table CS-2)A = 0.125 / (Ro / t)

= 0.125 / (8.8125 / 0.1250)= 0.001773

B = 14491.5537 psi

S = 20000.0000 / 1.0000= 20000.0000 psi

ScCC = 14491.5537 psi

Allowable Compressive Stress, Vacuum and Corroded- ScVC, (table CS-2)A = 0.125 / (Ro / t)

= 0.125 / (8.8125 / 0.1250)= 0.001773

B = 12508.6357 psi

S = 20000.0000 / 1.0000= 20000.0000 psi

ScVC = 12508.6357 psi

36/226

Page 38: HTRI-COMPRESS Kettle Calculations

Straight Flange on Rear Shell Head

ASME Section VIII Division 1, 2007 Edition

Component: Straight FlangeMaterial specification: SA-516 70 (II-D p. 18, ln. 22)Material impact test exemption temperature from Fig UCS-66 Curve B = -20 °FFig UCS-66.1 MDMT reduction = 38.3 °F, (coincident ratio = 0.6174237)Rated MDMT is governed by UCS-66(b)(2)UCS-66 governing thickness = 0.125 in

Internal design pressure: P = 60.3041 psi @ 307.57°F

Static liquid head:

Ps =1.0892 psi (SG=0.9145, Hs=32.9958" Operating head)Pth =1.1888 psi (SG=1.0000, Hs=32.9333", Horizontal test head)

Corrosion allowance: Inner C = 0.0625" Outer C = 0.0000"

Design MDMT = -20.00°F No impact test performedRated MDMT = -55.00°F Material is not normalized

Material is not produced to Fine Grain PracticePWHT is not performed

Radiography: Longitudinal joint - Seamless No RTCircumferential joint - Full UW-11(a) Type 1

Estimated weight: New = 5.9864 lb corr = 3.0001 lbCapacity: New = 4.8870 gal corr = 4.9327 galID = 26.8083"Length Lc = 2.0000"t = 0.1250"

Design thickness, (at 307.57°F) UG-27(c)(1)

t = P*R/(S*E - 0.60*P) + Corrosion= 61.39*13.4667/(20000*1.00 - 0.60*61.39) + 0.0625= 0.1040"

Maximum allowable working pressure, (at 307.57°F) UG-27(c)(1)

P = S*E*t/(R + 0.60*t) - Ps= 20000*1.00*0.0625 / (13.4667 + 0.60*0.0625) - 1.0892= 91.4749 psi

Maximum allowable pressure, (at 70.00°F) UG-27(c)(1)

P = S*E*t/(R + 0.60*t)= 20000*1.00*0.1250 / (13.4042 + 0.60*0.1250)= 185.4716 psi

% Extreme fiber elongation - UCS-79(d)

= (50 * t / Rf) * (1 - Rf / Ro)= (50 * 0.1250 / 13.4667) * (1 - 13.4667 / ∞)= 0.4641 %

37/226

Page 39: HTRI-COMPRESS Kettle Calculations

Allowable Compressive Stress, Hot and Corroded- ScHC, (table CS-2)A = 0.125 / (Ro / t)

= 0.125 / (13.5292 / 0.0625)= 0.000577

B = 8298.0957 psi

S = 20000.0000 / 1.0000= 20000.0000 psi

ScHC = 8298.0957 psi

Allowable Compressive Stress, Hot and New- ScHN, (table CS-2)A = 0.125 / (Ro / t)

= 0.125 / (13.5292 / 0.1250)= 0.001155

B = 12711.7021 psi

S = 20000.0000 / 1.0000= 20000.0000 psi

ScHN = 12711.7021 psi

Allowable Compressive Stress, Cold and New- ScCN, (table CS-2)A = 0.125 / (Ro / t)

= 0.125 / (13.5292 / 0.1250)= 0.001155

B = 12817.7939 psi

S = 20000.0000 / 1.0000= 20000.0000 psi

ScCN = 12817.7939 psi

Allowable Compressive Stress, Cold and Corroded- ScCC, (table CS-2)A = 0.125 / (Ro / t)

= 0.125 / (13.5292 / 0.0625)= 0.000577

B = 8323.0674 psi

S = 20000.0000 / 1.0000= 20000.0000 psi

ScCC = 8323.0674 psi

Allowable Compressive Stress, Vacuum and Corroded- ScVC, (table CS-2)A = 0.125 / (Ro / t)

= 0.125 / (13.5292 / 0.0625)= 0.000577

B = 8298.0957 psi

S = 20000.0000 / 1.0000= 20000.0000 psi

38/226

Page 40: HTRI-COMPRESS Kettle Calculations

ScVC = 8298.0957 psi

39/226

Page 41: HTRI-COMPRESS Kettle Calculations

Rear Shell Head

ASME Section VIII, Division 1, 2007 Edition

Component: Ellipsoidal HeadMaterial Specification: SA-516 70 (II-D p.18, ln. 22)Straight Flange governs MDMT

Internal design pressure: P = 60.3041 psi @ 307.57 °F

Static liquid head:

Ps= 1.0892 psi (SG=0.9145, Hs=32.9958" Operating head)Pth= 1.1888 psi (SG=1, Hs=32.9333" Horizontal test head)

Corrosion allowance: Inner C = 0.0625" Outer C = 0"

Design MDMT = -20°F No impact test performedRated MDMT = -55°F Material is not normalized

Material is not produced to fine grain practicePWHT is not performedDo not Optimize MDMT / Find MAWP

Radiography: Category A joints - Seamless No RT Head to shell seam - Full UW-11(a) Type 1

Estimated weight*: new = 35.6 lb corr = 17.9 lbCapacity*: new = 15.8 US gal corr = 16.1 US gal* includes straight flange

Inner diameter = 26.8083"Minimum head thickness = 0.125"Head ratio D/2h = 2 (new)Head ratio D/2h = 1.9908 (corroded)Straight flange length Lsf = 2"Nominal straight flange thickness tsf = 0.125"Results Summary

The governing condition is UG-16.Minimum thickness per UG-16 = 0.0625" + 0.0625" = 0.125"Design thickness due to internal pressure (t) = 0.1036"Maximum allowable working pressure (MAWP) = 92.26 psiMaximum allowable pressure (MAP) = 186.34 psi

K (Corroded)

K=(1/6)*[2 + (D / (2*h))2]=(1/6)*[2 + (26.9333 / (2*6.7646))2]=0.993855

K (New)

K=(1/6)*[2 + (D / (2*h))2]=(1/6)*[2 + (26.8083 / (2*6.7021))2]=1

40/226

Page 42: HTRI-COMPRESS Kettle Calculations

Design thickness for internal pressure, (Corroded at 307.57 °F) Appendix 1-4(c)

t = P*D*K / (2*S*E - 0.2*P) + Corrosion= 61.39*26.9333*0.993855 / (2*20,000*1 - 0.2*61.39) + 0.0625= 0.1036"

The head internal pressure design thickness is 0.1036".

Maximum allowable working pressure, (Corroded at 307.57 °F) Appendix 1-4(c)

P = 2*S*E*t / (K*D + 0.2*t) - Ps= 2*20,000*1*0.0625 / (0.993855*26.9333 +0.2*0.0625) - 1.09= 92.26 psi

The maximum allowable working pressure (MAWP) is 92.26 psi.

Maximum allowable pressure, (New at 70 °F) Appendix 1-4(c)

P = 2*S*E*t / (K*D + 0.2*t) - Ps= 2*20,000*1*0.125 / (1*26.8083 +0.2*0.125) - 0= 186.34 psi

The maximum allowable pressure (MAP) is 186.34 psi.

% Extreme fiber elongation - UCS-79(d)

= (75*t / Rf)*(1 - Rf / Ro)= (75*0.125 / 4.6199)*(1 - 4.6199 / ∞)= 2.0293%

The extreme fiber elongation does not exceed 5%.

41/226

Page 43: HTRI-COMPRESS Kettle Calculations

Shell Side Flange (front)

ASME VIII-1, 2007 Edition, Appendix 2 Flange Calculations

Flange is attached to: Port Cylinder (front) (Left)Flange type: Weld neck integralFlange material specification: SA-516 70 (II-D p. 18, ln. 22)

Bolt material specification: SA-193 B7 Bolt <= 2 1/2 (II-D p. 348,ln. 33)

Internal design pressure, P: 60.3 psi @ 307.57 °FLiquid static head acting on flange: 0.9294 psiRequired flange thickness: tr= 1.7279 inMaximum allowable working pressure,MAWP: 303.26 psi @ 307.57 °F

Maximum allowable pressure, MAP: 285.34 psi @ 70 °FCorrosion allowance: Bore = 0 in Flange = 0 inBolt corrosion (root), Cbolt: 0 inDesign MDMT: -20 °F No impact test performedRated MDMT: -55 °F Flange material is not normalized

Material is not produced to fine grainpracticePWHT is not performed

Estimated weight: New = 50.7 lb corroded = 50.7 lb

Flange dimensions, new

flange OD A = 20.5 inbolt circle C = 19.25 ingasket OD = 18.125 ingasket ID = 17.25 inflange ID B = 17.25 inthickness t = 1.75 inbolting = 24- 0.625 in diahub thickness g1 = 0.1875 inhub thickness g0 = 0.125 inhub length h = 1.25 inlength e = 3 ingasket factor m = 3seating stress y = 5,000.00 psi

Note: this flange is calculated as an integral type.

42/226

Page 44: HTRI-COMPRESS Kettle Calculations

Determination of Flange MDMT

UCS-66(b)(1)(b) has been applied.Flange is impact test exempt to -155 °F per UCS-66(b)(3) (coincident ratio = 0.19669)Bolts rated MDMT per Fig UCS-66 note (e) = -55 °F

The rated flange MDMT is -55 °F

Flange calculations for Internal Pressure + Weight Only

43/226

Page 45: HTRI-COMPRESS Kettle Calculations

Gasket details from facing sketch 1(a) or (b), Column II

Gasket width N = 0.4375 in

b0 = N/2 = 0.2188 in

Effective gasket seating width, b = b0 = 0.2188 in

G = (OD of contact face + gasket ID) / 2 = 17.6875 in

hG = (C - G)/2 = (19.25 - 17.6875)/2 = 0.7813 in

hD = R + g1/2 = 0.8125 + 0.1875/2 = 0.9063 in

hT = (R + g1 + hG)/2 = (0.8125 + 0.1875 + 0.7813)/2 = 0.8906 in

Hp = 2*b*3.14*G*m*P= 2*0.2188*3.14*17.6875*3*61.2335= 4,463.59 lbf

H = 0.785*G2*P= 0.785*17.68752*61.2335= 15,038.05 lbf

HD = 0.785*B2*P= 0.785*17.252*61.2335= 14,303.32 lbf

HT = H - HD= 15,038.05 - 14,303.32= 734.73 lbf

Wm1 = H + Hp= 15,038.05 + 4,463.59= 19,501.65 lbf

Wm2 = 3.14*b*G*y= 3.14*0.2188*17.6875*5,000= 60,745.51 lbf

Per VIII-1, Appendix 2-5(a)(2): Wm2 from the mating flange governs so Wm2 = 97,800.2 lbf

Required bolt area, Am = greater of Am1, Am2 = 3.912008 in2

Am1 = Wm1/Sb = 19,501.65/25,000 = 0.7801 in2

Am2 = Wm2/Sa = 97,800.2/25,000 = 3.912 in2

Total area for 24- 0.625 in dia bolts, corroded, Ab = 4.848 in2

W = (Am + Ab)*Sa/2= (3.912 + 4.848)*25,000/2= 109,500.1 lbf

MD = HD*hD = 14,303.32*0.9063 = 12,962.4 lb-inMT = HT*hT = 734.73*0.8906 = 654.4 lb-in

44/226

Page 46: HTRI-COMPRESS Kettle Calculations

HG = Wm1 - H = 19,501.65 - 15,038.05 = 4,463.59 lbf

MG = HG*hG = 4,463.59*0.7813 = 3,487.2 lb-in

Mo = MD + MT + MG = 12,962.4 + 654.4 + 3,487.2 = 17,103.9 lb-in

Mg = W*hG = 109,500.1*0.7813 = 85,547 lb-in

The bolts are adequately spaced so the TEMA RCB-11.23 load concentration factor does not apply.

Hub and Flange Factors

h0 = (B*g0)1/2 = (17.25*0.125)1/2 = 1.4684 in

From FIG. 2-7.1, where K = A/B = 20.5/17.25 = 1.1884

T = 1.8436 Z = 5.8507 Y = 11.3396 U =12.4611

h/h0 = 0.8513 g1/g0 = 1.5

F = 0.8078 V = 0.2647 e = F/h0 = 0.5501

d = (U/V)*h0*g02= (12.46108/0.2647)*1.4684*0.1252

= 1.0802 in3

Stresses at operating conditions - VIII-1, Appendix 2-7

f = 1

L = (t*e + 1)/T + t3/d= (1.75*0.5501 + 1)/1.843613 + 1.753/1.0802= 6.026093

SH = f*Mo/(L*g12*B)

= 1*17,103.9/(6.026093*0.18752*17.25)= 4,680 psi

SR = (1.33*t*e + 1)*Mo/(L*t2*B)= (1.33*1.75*0.5501 + 1)*17,103.9/(6.026093*1.752*17.25)= 123 psi

ST = Y*Mo/(t2*B) - Z*SR= 11.3396*17,103.9/(1.752*17.25) - 5.8507*123= 2,955 psi

Allowable stress Sfo = 20,000 psiAllowable stress Sno = 20,000 psi

ST does not exceed SfoSH does not exceed Min[ 1.5*Sfo, 2.5*Sno ] = 30,000 psiSR does not exceed Sfo0.5(SH + SR) = 2,401 psi does not exceed Sfo0.5(SH + ST) = 3,817 psi does not exceed Sfo

Stresses at gasket seating - VIII-1, Appendix 2-7

SH = f*Mg/(L*g12*B)

= 1*85,547/(6.026093*0.18752*17.25)

45/226

Page 47: HTRI-COMPRESS Kettle Calculations

= 23,409 psi

SR = (1.33*t*e + 1)*Mg/(L*t2*B)= (1.33*1.75*0.5501 + 1)*85,547/(6.026093*1.752*17.25)= 613 psi

ST = Y*Mg/(t2*B) - Z*SR= 11.3396*85,547/(1.752*17.25) - 5.8507*613= 14,777 psi

Allowable stress Sfa = 20,000 psiAllowable stress Sna = 20,000 psi

ST does not exceed SfaSH does not exceed Min[ 1.5*Sfa, 2.5*Sna ] = 30,000 psiSR does not exceed Sfa0.5(SH + SR) = 12,011 psi does not exceed Sfa0.5(SH + ST) = 19,093 psi does not exceed Sfa

Flange rigidity per VIII-1, Appendix 2-14

J = 52.14*V*Mo/(L*E*g02*KI*h0)

= 52.14*0.2647*85,547/(6.0261*29,400,000*0.1252*0.3*1.4684)= 0.9681055

The flange rigidity index J does not exceed 1; satisfactory.

Flange calculations for External Pressure + Weight Only per VIII-1, Appendix 2-11

46/226

Page 48: HTRI-COMPRESS Kettle Calculations

Gasket details from facing sketch 1(a) or (b), Column II

Gasket width N = 0.4375 in

b0 = N/2 = 0.2188 in

Effective gasket seating width, b = b0 = 0.2188 in

G = (OD of contact face + gasket ID) / 2 = 17.6875 in

hG = (C - G)/2 = (19.25 - 17.6875)/2 = 0.7813 in

hD = R + g1/2 = 0.8125 + 0.1875/2 = 0.9063 in

hT = (R + g1 + hG)/2 = (0.8125 + 0.1875 + 0.7813)/2 = 0.8906 in

Hp = 2*b*3.14*G*m*P= 2*0.2188*3.14*17.6875*3*0= 0 lbf

H = 0.785*G2*P= 0.785*17.68752*0= 0 lbf

HD = 0.785*B2*P= 0.785*17.252*0= 0 lbf

HT = H - HD= 0 - 0= 0 lbf

Wm1 = H + Hp= 0 + 0= 0 lbf

Per VIII-1, Appendix 2-5(a)(2): Wm1 from the mating flange governs so Wm1 = 4,782.14 lbf

Wm2 = 3.14*b*G*y= 3.14*0.2188*17.6875*5,000= 60,745.51 lbf

Per VIII-1, Appendix 2-5(a)(2): Wm2 from the mating flange governs so Wm2 = 97,800.2 lbf

Required bolt area, Am = greater of Am1, Am2 = 3.912008 in2

Am1 = 0.785*G2*(Pm - Pr)/Sb = 0/25,000 = 0 in2

Am2 = Wm2/Sa = 97,800.2/25,000 = 3.912 in2

Total area for 24- 0.625 in dia bolts, corroded, Ab = 4.848 in2

W = (Am2 + Ab)*Sa/2= (3.912 + 4.848)*25,000/2= 109,500.1 lbf

Mo = HD*(hD - hG) + HT*(hT - hG)

47/226

Page 49: HTRI-COMPRESS Kettle Calculations

= 0*(0.9063 - 0.7813) + 0*(0.8906 - 0.7813)= 0 lb-in

Mg = W*hG = 109,500.1*0.7813 = 85,547 lb-in

The bolts are adequately spaced so the TEMA RCB-11.23 load concentration factor does not apply.

Hub and Flange Factors

h0 = (B*g0)1/2 = (17.25*0.125)1/2 = 1.4684 in

From FIG. 2-7.1, where K = A/B = 20.5/17.25 = 1.1884

T = 1.8436 Z = 5.8507 Y = 11.3396 U =12.4611

h/h0 = 0.8513 g1/g0 = 1.5

F = 0.8078 V = 0.2647 e = F/h0 = 0.5501

d = (U/V)*h0*g02= (12.46108/0.2647)*1.4684*0.1252

= 1.0802 in3

Stresses at operating conditions - VIII-1, Appendix 2-7

f = 1

L = (t*e + 1)/T + t3/d= (1.75*0.5501 + 1)/1.843613 + 1.753/1.0802= 6.026093

SH = f*Mo/(L*g12*B)

= 1*0/(6.026093*0.18752*17.25)= 0 psi

SR = (1.33*t*e + 1)*Mo/(L*t2*B)= (1.33*1.75*0.5501 + 1)*0/(6.026093*1.752*17.25)= 0 psi

ST = Y*Mo/(t2*B) - Z*SR= 11.3396*0/(1.752*17.25) - 5.8507*0= 0 psi

Allowable stress Sfo = 20,000 psiAllowable stress Sno = 20,000 psi

ST does not exceed SfoSH does not exceed Min[ 1.5*Sfo, 2.5*Sno ] = 30,000 psiSR does not exceed Sfo0.5(SH + SR) = 0 psi does not exceed Sfo0.5(SH + ST) = 0 psi does not exceed Sfo

Stresses at gasket seating - VIII-1, Appendix 2-7

SH = f*Mg/(L*g12*B)

= 1*85,547/(6.026093*0.18752*17.25)= 23,409 psi

SR = (1.33*t*e + 1)*Mg/(L*t2*B)

48/226

Page 50: HTRI-COMPRESS Kettle Calculations

= (1.33*1.75*0.5501 + 1)*85,547/(6.026093*1.752*17.25)= 613 psi

ST = Y*Mg/(t2*B) - Z*SR= 11.3396*85,547/(1.752*17.25) - 5.8507*613= 14,777 psi

Allowable stress Sfa = 20,000 psiAllowable stress Sna = 20,000 psi

ST does not exceed SfaSH does not exceed Min[ 1.5*Sfa, 2.5*Sna ] = 30,000 psiSR does not exceed Sfa0.5(SH + SR) = 12,011 psi does not exceed Sfa0.5(SH + ST) = 19,093 psi does not exceed Sfa

Flange rigidity per VIII-1, Appendix 2-14

J = 52.14*V*Mo/(L*E*g02*KI*h0)

= 52.14*0.2647*85,547/(6.0261*29,400,000*0.1252*0.3*1.4684)= 0.9681055

The flange rigidity index J does not exceed 1; satisfactory.

Shell Side Flange (front) - Flange hub

ASME Section VIII Division 1, 2007 Edition

Component: Flange hubMaterial specification: SA-516 70 (II-D p. 18, ln. 22)Material is impact test exempt to -155 °F per UCS-66(b)(3) (coincident ratio = 0.19717)

Internal design pressure: P = 60.3041 psi @ 307.57°F

Static liquid head:

Not Considered

Corrosion allowance: Inner C = 0.0000" Outer C = 0.0000"

Design MDMT = -20.00°F No impact test performedRated MDMT = -155.00°F Material is not normalized

Material is not produced to Fine Grain PracticePWHT is not performed

Radiography: Longitudinal joint - Seamless No RTLeft circumferential joint - N/ARight circumferential joint - Full UW-11(a) Type 1

Estimated weight: New = 2.3963 lb corr = 2.3963 lbCapacity: New = 1.2646 gal corr = 1.2646 galID = 17.2500"Length Lc = 1.2500"t = 0.1250"

49/226

Page 51: HTRI-COMPRESS Kettle Calculations

Design thickness, (at 307.57°F) UG-27(c)(1)

t = P*R/(S*E - 0.60*P) + Corrosion= 61.23*8.6250/(20000*1.00 - 0.60*61.23) + 0.0000= 0.0265"

Maximum allowable working pressure, (at 307.57°F) UG-27(c)(1)

P = S*E*t/(R + 0.60*t) - Ps= 20000*1.00*0.1250 / (8.6250 + 0.60*0.1250) - 0.9294= 286.4269 psi

Maximum allowable pressure, (at 70.00°F) UG-27(c)(1)

P = S*E*t/(R + 0.60*t)= 20000*1.00*0.1250 / (8.6250 + 0.60*0.1250)= 287.3563 psi

% Extreme fiber elongation - UCS-79(d)

= (50 * t / Rf) * (1 - Rf / Ro)= (50 * 0.1250 / 8.6875) * (1 - 8.6875 / ∞)= 0.7194 %

Allowable Compressive Stress, Hot and Corroded- ScHC, (table CS-2)A = 0.125 / (Ro / t)

= 0.125 / (8.7500 / 0.1250)= 0.001786

B = 14380.1836 psi

S = 20000.0000 / 1.0000= 20000.0000 psi

ScHC = 14380.1836 psi

Allowable Compressive Stress, Hot and New- ScHN

ScHN = ScHC

= 14380.1836 psi

Allowable Compressive Stress, Cold and New- ScCN, (table CS-2)A = 0.125 / (Ro / t)

= 0.125 / (8.7500 / 0.1250)= 0.001786

B = 14521.1133 psi

S = 20000.0000 / 1.0000= 20000.0000 psi

ScCN = 14521.1133 psi

50/226

Page 52: HTRI-COMPRESS Kettle Calculations

Allowable Compressive Stress, Cold and Corroded- ScCC

ScCC = ScCN

= 14521.1133 psi

Allowable Compressive Stress, Vacuum and Corroded- ScVC, (table CS-2)A = 0.125 / (Ro / t)

= 0.125 / (8.7500 / 0.1250)= 0.001786

B = 14380.1836 psi

S = 20000.0000 / 1.0000= 20000.0000 psi

ScVC = 14380.1836 psi

51/226

Page 53: HTRI-COMPRESS Kettle Calculations

SS Inlet (N4)

ASME Section VIII Division 1, 2007 Edition

tw(lower) = 0.125 inLeg41 = 0.0625 in

Note: round inside edges per UG-76(c)

Located on: ShellLiquid static head included: 1.0913 psiNozzle material specification: SA-455 <= 3/8 (II-D p. 22, ln. 14)Nozzle longitudinal joint efficiency: 1Flange description: 4 inch Class 150 WN A105Bolt Material: SA-193 B7 Bolt <= 2 1/2 (II-D p. 348, ln. 33)Flange rated MDMT: -55°F(UCS-66(b)(3): Coincident ratio = 0.2014462)(Flange rated MDMT = -155 °FBolts rated MDMT per Fig UCS-66 note (e) = -55 °F)Liquid static head on flange: 1.2893 psiASME B16.5 flange rating MAWP: 227.73 psi @ 307.57°FASME B16.5 flange rating MAP: 285 psi @ 70°FASME B16.5 flange hydro test: 450 psi @ 70°FNozzle orientation: 180°Local vessel minimum thickness: 0.125 inNozzle center line offset to datum line: 24.0535 inEnd of nozzle to shell center: 19.5292 inNozzle inside diameter, new: 4 inNozzle nominal wall thickness: 0.25 inNozzle corrosion allowance: 0.0625 inProjection available outside vessel, Lpr: 5.06 inProjection available outside vessel to flange face, Lf: 6 in

52/226

Page 54: HTRI-COMPRESS Kettle Calculations

Reinforcement Calculations for Internal Pressure

Available reinforcement per UG-37 governs the MAWP of this nozzle.

UG-37 Area Calculation Summary (in2)For P = 57.21 psi @ 307.57 °F

The opening is adequately reinforced

UG-45Nozzle WallThicknessSummary

(in)The nozzle

passes UG-45

Arequired

Aavailable A1 A2 A3 A5

Awelds treq tmin

0.1592 0.1594 0.0986 0.0569 -- -- 0.0039 0.125 0.25

Weld Failure Path Analysis Summary

The nozzle is exempt from weld strengthcalculations per UW-15(b)(1)

UW-16 Weld Sizing Summary

Weld description Required weldthroat size (in)

Actual weldthroat size (in) Status

Nozzle to shell fillet (Leg41) 0.0438 0.0438 weld size is adequate

Calculations for internal pressure 57.21 psi @ 307.57 °F

Nozzle impact test exemption temperature from Fig UCS-66 Curve A = 18 °FFig UCS-66.1 MDMT reduction = 38.3 °F, (coincident ratio = 0.61744).

Nozzle UCS-66 governing thk: 0.125 inNozzle rated MDMT: -20.3 °F

Limits of reinforcement per UG-40

Parallel to the vessel wall: d = 4.125 inNormal to the vessel wall outside: 2.5*(t - C) = 0.1563 in

Nozzle required thickness per UG-27(c)(1)

trn = P*Rn/(Sn*E - 0.6*P)= 57.2142*2.0625/(21,400*1 - 0.6*57.2142)= 0.0055 in

Required thickness tr from UG-37(a)

tr = P*R/(S*E - 0.6*P)= 57.2142*13.4667/(20,000*1 - 0.6*57.2142)= 0.0386 in

53/226

Page 55: HTRI-COMPRESS Kettle Calculations

Area required per UG-37(c)

Allowable stresses: Sn = 21,400, Sv = 20,000 psi

fr1 = lesser of 1 or Sn/Sv = 1fr2 = lesser of 1 or Sn/Sv = 1

A = d*tr*F + 2*tn*tr*F*(1 - fr1)= 4.125*0.0386*1 + 2*0.1875*0.0386*1*(1 - 1)= 0.1592 in2

Area available from FIG. UG-37.1

A1 = larger of the following= 0.0986 in2

= d*(E1*t - F*tr) - 2*tn*(E1*t - F*tr)*(1 - fr1)= 4.125*(1*0.0625 - 1*0.0386) - 2*0.1875*(1*0.0625 - 1*0.0386)*(1 - 1)= 0.0986 in2

= 2*(t + tn)*(E1*t - F*tr) - 2*tn*(E1*t - F*tr)*(1 - fr1)= 2*(0.0625 + 0.1875)*(1*0.0625 - 1*0.0386) - 2*0.1875*(1*0.0625 - 1*0.0386)*(1 - 1)= 0.012 in2

A2 = smaller of the following= 0.0569 in2

= 5*(tn - trn)*fr2*t= 5*(0.1875 - 0.0055)*1*0.0625= 0.0569 in2

= 5*(tn - trn)*fr2*tn= 5*(0.1875 - 0.0055)*1*0.1875= 0.1706 in2

A41 = Leg2*fr2= 0.06252*1= 0.0039 in2

Area = A1 + A2 + A41

= 0.0986 + 0.0569 + 0.0039= 0.1594 in2

As Area >= A the reinforcement is adequate.

UW-16(c) Weld Check

Fillet weld: tmin = lesser of 0.75 or tn or t = 0.0625 intc(min) = lesser of 0.25 or 0.7*tmin = 0.0438 intc(actual) = 0.7*Leg = 0.7*0.0625 = 0.0438 in

54/226

Page 56: HTRI-COMPRESS Kettle Calculations

The fillet weld size is satisfactory.

Weld strength calculations are not required for this detail which conforms to Fig. UW-16.1, sketch (c-e).

UG-45 Nozzle Neck Thickness Check

Wall thickness per UG-45(a): tr1 = 0.068 in (E =1)Wall thickness per UG-45(b)(1): tr2 = 0.1011 inWall thickness per UG-16(b): tr3 = 0.125 inStandard wall pipe per UG-45(b)(4): tr4 = 0.2699 inThe greater of tr2 or tr3: tr5 = 0.125 inThe lesser of tr4 or tr5: tr6 = 0.125 in

Required per UG-45 is the larger of tr1 or tr6 = 0.125 in

Available nozzle wall thickness new, tn = 0.25 in

The nozzle neck thickness is adequate.

% Extreme fiber elongation - UCS-79(d)

= (50*t / Rf)*(1 - Rf / Ro)= (50*0.25 / 2.125)*(1 - 2.125 / ∞)= 5.8824%

55/226

Page 57: HTRI-COMPRESS Kettle Calculations

The extreme fiber elongation exceeds 5 percent. Heat treatment per UCS-56 may be required. See UCS-79(d)(4) or(5).

Reinforcement Calculations for MAP

Available reinforcement per UG-37 governs the MAP of this nozzle.

UG-37 Area Calculation Summary (in2)For P = 121.27 psi @ 70 °F

The opening is adequately reinforced

UG-45Nozzle WallThicknessSummary

(in)The nozzle

passes UG-45

Arequired

Aavailable A1 A2 A3 A5

Awelds treq tmin

0.3263 0.3267 0.1737 0.1491 -- -- 0.0039 0.0816 0.25

Weld Failure Path Analysis Summary

The nozzle is exempt from weld strengthcalculations per UW-15(b)(1)

UW-16 Weld Sizing Summary

Weld description Required weldthroat size (in)

Actual weldthroat size (in) Status

Nozzle to shell fillet (Leg41) 0.0875 0.0438 weld size is NOT adequate

Calculations for internal pressure 121.27 psi @ 70 °F

Limits of reinforcement per UG-40

Parallel to the vessel wall: d = 4 inNormal to the vessel wall outside: 2.5*(t - C) = 0.3125 in

Nozzle required thickness per UG-27(c)(1)

trn = P*Rn/(Sn*E - 0.6*P)= 121.2745*2/(21,400*1 - 0.6*121.2745)= 0.0114 in

Required thickness tr from UG-37(a)

tr = P*R/(S*E - 0.6*P)= 121.2745*13.4042/(20,000*1 - 0.6*121.2745)= 0.0816 in

Area required per UG-37(c)

56/226

Page 58: HTRI-COMPRESS Kettle Calculations

Allowable stresses: Sn = 21,400, Sv = 20,000 psi

fr1 = lesser of 1 or Sn/Sv = 1fr2 = lesser of 1 or Sn/Sv = 1

A = d*tr*F + 2*tn*tr*F*(1 - fr1)= 4*0.0816*1 + 2*0.25*0.0816*1*(1 - 1)= 0.3263 in2

Area available from FIG. UG-37.1

A1 = larger of the following= 0.1737 in2

= d*(E1*t - F*tr) - 2*tn*(E1*t - F*tr)*(1 - fr1)= 4*(1*0.125 - 1*0.0816) - 2*0.25*(1*0.125 - 1*0.0816)*(1 - 1)= 0.1737 in2

= 2*(t + tn)*(E1*t - F*tr) - 2*tn*(E1*t - F*tr)*(1 - fr1)= 2*(0.125 + 0.25)*(1*0.125 - 1*0.0816) - 2*0.25*(1*0.125 - 1*0.0816)*(1 - 1)= 0.0326 in2

A2 = smaller of the following= 0.1491 in2

= 5*(tn - trn)*fr2*t= 5*(0.25 - 0.0114)*1*0.125= 0.1491 in2

= 5*(tn - trn)*fr2*tn= 5*(0.25 - 0.0114)*1*0.25= 0.2983 in2

A41 = Leg2*fr2= 0.06252*1= 0.0039 in2

Area = A1 + A2 + A41

= 0.1737 + 0.1491 + 0.0039= 0.3267 in2

As Area >= A the reinforcement is adequate.

UW-16(c) Weld Check

Fillet weld: tmin = lesser of 0.75 or tn or t = 0.125 intc(min) = lesser of 0.25 or 0.7*tmin = 0.0875 intc(actual) = 0.7*Leg = 0.7*0.0625 = 0.0438 in

** The fillet weld size IS NOT satisfactory. **UG-45 Nozzle Neck Thickness Check

57/226

Page 59: HTRI-COMPRESS Kettle Calculations

Wall thickness per UG-45(a): tr1 = 0.0114 in (E =1)Wall thickness per UG-45(b)(1): tr2 = 0.0816 inWall thickness per UG-16(b): tr3 = 0.0625 inStandard wall pipe per UG-45(b)(4): tr4 = 0.2074 inThe greater of tr2 or tr3: tr5 = 0.0816 inThe lesser of tr4 or tr5: tr6 = 0.0816 in

Required per UG-45 is the larger of tr1 or tr6 = 0.0816 in

Available nozzle wall thickness new, tn = 0.25 in

The nozzle neck thickness is adequate.

58/226

Page 60: HTRI-COMPRESS Kettle Calculations

Tabular Results

Results were generated with the finite element program FE/Pipe&#174. Stress results are post-processed inaccordance with the rules specified in ASME Section III and ASME Section VIII, Division 2.

Analysis Time Stamp: Thu Nov 25 14:30:55 2010.

Model Notes• Load Case Report• Solution Data• ASME Code Stress Output Plots• ASME Overstressed Areas• Highest Primary Stress Ratios• Highest Secondary Stress Ratios• Highest Fatigue Stress Ratios• Stress Intensification Factors• Allowable Loads• Flexibilities• Graphical Results•

Model Notes

Input Echo:

Model Type : Cylindrical Shell

Parent Outside Diameter : 27.058 in.Thickness : 0.063 in.Fillet Along Shell : 0.063 in.

Parent Properties:Cold Allowable : 20000.0 psiHot Allowable : 20000.0 psiMaterial ID #2 : Low Alloy SteelUltimate Tensile (Amb) : 70000.0 psiYield Strength (Amb) : 38000.0 psiYield Strength (Hot) : 33500.0 psiElastic Modulus (Amb) : 29400000.0 psiPoissons Ratio : 0.300Weight Density : 0.283 lb./cu.in.(NOT USED)

Nozzle Outside Diameter : 4.500 in.Thickness : 0.188 in.Length : 6.031 in.Nozzle Weld Length : 0.063 in.Nozzle Tilt Angle : 0.000 deg.Distance from Top : 24.053 in.Distance from Bottom : 24.053 in.

Nozzle Properties

59/226

Page 61: HTRI-COMPRESS Kettle Calculations

Cold Allowable : 21400.0 psiHot Allowable : 21400.0 psiMaterial ID #2 : Low Alloy SteelUltimate Tensile (Amb) : 75000.0 psiYield Strength (Amb) : 38000.0 psiYield Strength (Hot) : 33500.0 psiElastic Modulus (Amb) : 29200000.0 psiPoissons Ratio : 0.300Weight Density : 0.283 lb./cu.in. (NOT USED)

Design Operating Cycles : 0.Ambient Temperature (Deg.) : 70.00Nozzle Pressure : 61.4 psiVessel Pressure : 61.4 psi

No external forces or bending moments were included in this analysis.

Both ends of the model are "fixed," except that one endis free axially so that longitudinal pressure stressesmay be developed in the geometry.

Stresses are NOT averaged.

Unstructured Mesh Generation used for this model.

Vessel Centerline Vector : 0.000 0.000 1.000Nozzle Orientation Vector : 0.000 -1.000 0.000

Table of Contents

Load Case Report

Inner and outer element temperatures are the samethroughout the model. No thermal ratchetingcalculations will be performed.

THE 9 LOAD CASES ANALYZED ARE:

1 Weight ONLY

Weight ONLY case run to get the stress rangebetween the installed and the operating states.It is assumed that the weight only case accuratelyrepresents the installed stress state.

/-------- Loads in Case 1Forces due to Weight

2 Sustained

Sustained case run to satisfy Pl Qb, the bending stress due to primary loads mustbe less than 3Smh as per Note 3 of Fig. NB-3222-1,and Table 4-120.1

60/226

Page 62: HTRI-COMPRESS Kettle Calculations

/-------- Loads in Case 2Forces due to WeightPressure Case 1

3 Operating

Operating case run to compute the extreme operatingstress state to be used in the shakedown and peakstress calculations.

/-------- Loads in Case 3Pressure Case 1Force Case (Operating)

4 Expansion (Fatigue Calc Performed)

Expansion case run to get the RANGE of stressesas described in NB-3222.2, or Note 1 of 4-130.1.The allowable is 3Smavg.

/-------- Combinations in Expansion Case 4Plus Stress Results from CASE 3Minus Stress Results from CASE 1

5 Program Generated -- Force Only

Case run to compute sif's and flexibilities.

/-------- Loads in Case 5Force Case (Axial)

6 Program Generated -- Force Only

Case run to compute sif's and flexibilities.

/-------- Loads in Case 6Force Case (Inplane)

7 Program Generated -- Force Only

Case run to compute sif's and flexibilities.

/-------- Loads in Case 7Force Case (Outplane)

8 Program Generated -- Force Only

Case run to compute sif's and flexibilities.

/-------- Loads in Case 8Force Case (Torsion)

9 Program Generated -- Force Only

Case run to compute sif's and flexibilities.

/-------- Loads in Case 9

61/226

Page 63: HTRI-COMPRESS Kettle Calculations

Pressure Case 1

Table of Contents

Solution Data

Maximum Solution Row Size = 924Number of Nodes = 2339Number of Elements = 756Number of Solution Cases = 8

Largest On-Diagonal Stiffness = 643712797181.Smallest On-Diagonal Stiffness = 2.

Largest Off-Diagonal Stiffness = 317150669168.Smallest Off-Diagonal Stiffness = 1.

Summation of Loads per Case

Case # FX FY FZ

1 0. -76. 0.2 0. -1. 34978.3 0. -1. 34978.4 0. -29821. 0.5 0. 0. 0.6 0. 0. 0.7 0. 0. 0.8 0. 76. 34978.

Equation Coefficient (Stiffness) Distribution)

OnDiagonal Number of AveragePercentile Coefficients Stiffness

90-to-100% 24 639233579164.70-to-90% 0 0.50-to-70% 0 0.30-to-50% 96 231105249849.10-to-30% 144 92060611835.1-to-10% 96 56146602265..1-to- 1% 100 1256696747..01-to-.1% 368 269908248..001-to-.01% 3727 16628457..0001-TO-.001% 9479 1915116.

OFF Diagonal Number of AveragePercentile Coefficients Stiffness

90-to-100% 48 314868703720.70-to-90% 0 0.50-to-70% 0 0.

62/226

Page 64: HTRI-COMPRESS Kettle Calculations

30-to-50% 144 125099360394.10-to-30% 424 52317133205.1-to-10% 2292 10867263975..1-to- 1% 5428 1097279174..01-to-.1% 7052 129612138..001-to-.01% 13079 9355474..0001-TO-.001% 609241 161456.

Table of Contents

ASME Code Stress Output Plots

1) Pl < 1.5(k)Smh (SUS,Membrane) Case 2

2) Qb < 3(Smh) (SUS,Bending) Case 2

3) Pl+Pb+Q < 3(Smavg) (OPE,Inside) Case 3

4) Pl+Pb+Q < 3(Smavg) (OPE,Outside) Case 3

5) Pl+Pb+Q+F < Sa (SIF,Outside) Case 5

6) Pl+Pb+Q+F < Sa (SIF,Outside) Case 6

7) Pl+Pb+Q+F < Sa (SIF,Outside) Case 7

8) Pl+Pb+Q+F < Sa (SIF,Outside) Case 8

9) Pl+Pb+Q+F < Sa (SIF,Outside) Case 9

10) Pl+Pb+Q < 3(Smavg) (EXP,Inside) Case 4

11) Pl+Pb+Q < 3(Smavg) (EXP,Outside) Case 4

12) Pl+Pb+Q+F < Sa (EXP,Inside) Case 4

13) Pl+Pb+Q+F < Sa (EXP,Outside) Case 4

Table of Contents

ASME Overstressed Areas

*** NO OVERSTRESSED NODES IN THIS MODEL ***

Table of Contents

Highest Primary Stress Ratios

Header Next to Nozzle Weld

Pl 1.5(k)Smh Primary Membrane Load Case 2

63/226

Page 65: HTRI-COMPRESS Kettle Calculations

20,675 30,000 Plot Reference:psi psi 1) Pl < 1.5(k)Smh (SUS,Membrane) Case 2

68%

Branch Next to Header Weld

Pl 1.5(k)Smh Primary Membrane Load Case 215,793 32,100 Plot Reference:psi psi 1) Pl < 1.5(k)Smh (SUS,Membrane) Case 2

49%

Branch Transition

Pl 1.5(k)Smh Primary Membrane Load Case 21,590 32,100 Plot Reference:psi psi 1) Pl < 1.5(k)Smh (SUS,Membrane) Case 2

4%

Header away from Junction

Pl 1.5(k)Smh Primary Membrane Load Case 219,640 30,000 Plot Reference:psi psi 1) Pl < 1.5(k)Smh (SUS,Membrane) Case 2

65%

Branch away from Junction

Qb 3(Smh) Primary Bending Load Case 24,183 64,200 Plot Reference:psi psi 2) Qb < 3(Smh) (SUS,Bending) Case 2

6%

Table of Contents

Highest Secondary Stress Ratios

Header Next to Nozzle Weld

Pl+Pb+Q 3(Smavg) Primary+Secondary (Outer) Load Case 327,824 60,000 Plot Reference:psi psi 4) Pl+Pb+Q < 3(Smavg) (OPE,Outside) Case 3

46%

Branch Next to Header Weld

64/226

Page 66: HTRI-COMPRESS Kettle Calculations

Pl+Pb+Q 3(Smavg) Primary+Secondary (Inner) Load Case 318,765 64,200 Plot Reference:psi psi 3) Pl+Pb+Q < 3(Smavg) (OPE,Inside) Case 3

29%

Branch Transition

Pl+Pb+Q 3(Smavg) Primary+Secondary (Inner) Load Case 42,945 64,200 Plot Reference:psi psi 10) Pl+Pb+Q < 3(Smavg) (EXP,Inside) Case 4

4%

Header away from Junction

Pl+Pb+Q 3(Smavg) Primary+Secondary (Outer) Load Case 323,071 60,000 Plot Reference:psi psi 4) Pl+Pb+Q < 3(Smavg) (OPE,Outside) Case 3

38%

Branch away from Junction

Pl+Pb+Q 3(Smavg) Primary+Secondary (Inner) Load Case 35,483 64,200 Plot Reference:psi psi 3) Pl+Pb+Q < 3(Smavg) (OPE,Inside) Case 3

8%

Table of Contents

Highest Fatigue Stress Ratios

Header Next to Nozzle Weld

Pl+Pb+Q+F Sa Primary+Secondary+Peak (Outer) Load Case 418,741 568,400 Stress Concentration Factor = 1.350psi psi Strain Concentration Factor = 1.000Cycles Allowed for this Stress = 117527.03% "B31" Fatigue Stress Allowable = 50000.0Markl Fatigue Stress Allowable = 245000.0WRC 474 Mean Cycles to Failure = 2874399.WRC 474 99% Probability Cycles = 667762.WRC 474 95% Probability Cycles = 927116.BS5500 Allowed Cycles(Curve F) = 98781.Membrane-to-Bending Ratio = 1.585Bending-to-PL+PB+Q Ratio = 0.387Plot Reference:13) Pl+Pb+Q+F < Sa (EXP,Outside) Case 4

65/226

Page 67: HTRI-COMPRESS Kettle Calculations

Branch Next to Header Weld

Pl+Pb+Q+F Sa Primary+Secondary+Peak (Inner) Load Case 412,653 564,533 Stress Concentration Factor = 1.350psi psi Strain Concentration Factor = 1.000Cycles Allowed for this Stress = 702353.42% "B31" Fatigue Stress Allowable = 53500.0Markl Fatigue Stress Allowable = 245000.0WRC 474 Mean Cycles to Failure = 4336082.WRC 474 99% Probability Cycles = 1007330.WRC 474 95% Probability Cycles = 1398571.BS5500 Allowed Cycles(Curve F) = 327575.Membrane-to-Bending Ratio = 3.568Bending-to-PL+PB+Q Ratio = 0.219Plot Reference:12) Pl+Pb+Q+F < Sa (EXP,Inside) Case 4

Branch Transition

Pl+Pb+Q+F Sa Primary+Secondary+Peak (Inner) Load Case 41,988 564,533 Stress Concentration Factor = 1.350psi psi Strain Concentration Factor = 1.000Cycles Allowed for this Stress = 1000000.00% "B31" Fatigue Stress Allowable = 53500.0Markl Fatigue Stress Allowable = 245000.0WRC 474 Mean Cycles to Failure = 1596255872.WRC 474 99% Probability Cycles = 370831808.WRC 474 95% Probability Cycles = 514860608.BS5500 Allowed Cycles(Curve F) = 355817888.Membrane-to-Bending Ratio = 0.635Bending-to-PL+PB+Q Ratio = 0.612Plot Reference:12) Pl+Pb+Q+F < Sa (EXP,Inside) Case 4

Header away from Junction

Pl+Pb+Q+F Sa Primary+Secondary+Peak (Outer) Load Case 411,511 568,400 Stress Concentration Factor = 1.000psi psi Strain Concentration Factor = 1.000Cycles Allowed for this Stress = 1000000.02% "B31" Fatigue Stress Allowable = 50000.0Markl Fatigue Stress Allowable = 245000.0WRC 474 Mean Cycles to Failure = 5025799.WRC 474 99% Probability Cycles = 1167561.WRC 474 95% Probability Cycles = 1621034.BS5500 Allowed Cycles(Curve F) = 173270.Membrane-to-Bending Ratio = 2.927Bending-to-PL+PB+Q Ratio = 0.255Plot Reference:13) Pl+Pb+Q+F < Sa (EXP,Outside) Case 4

Branch away from Junction

66/226

Page 68: HTRI-COMPRESS Kettle Calculations

Pl+Pb+Q+F Sa Primary+Secondary+Peak (Inner) Load Case 42,739 564,533 Stress Concentration Factor = 1.000psi psi Strain Concentration Factor = 1.000Cycles Allowed for this Stress = 1000000.00% "B31" Fatigue Stress Allowable = 53500.0Markl Fatigue Stress Allowable = 245000.0WRC 474 Mean Cycles to Failure = 227633072.WRC 474 99% Probability Cycles = 52882236.WRC 474 95% Probability Cycles = 73421376.BS5500 Allowed Cycles(Curve F) = 15968436.Membrane-to-Bending Ratio = 0.372Bending-to-PL+PB+Q Ratio = 0.729Plot Reference:12) Pl+Pb+Q+F < Sa (EXP,Inside) Case 4

Table of Contents

Stress Intensification Factors

Branch/Nozzle Sif Summary

Peak Primary SecondaryAxial : 188.875 33.459 279.815Inplane : 34.961 17.668 51.794Outplane: 125.957 18.058 186.602Torsion : 5.765 7.344 8.697Pressure: 1.410 1.554 2.089

The above stress intensification factors are to be usedin a beam-type analysis of the piping system. Inplane,Outplane and Torsional sif's should be used with thematching branch pipe whose diameter and thickness is givenbelow. The axial sif should be used to intensify theaxial stress in the branch pipe calculated by F/A. Thepressure sif should be used to intensify the nominalpressure stress in the PARENT or HEADER, calculatedfrom PD/2T.

Pipe OD : 4.500 in.Pipe Thk: 0.188 in.Z approx: 2.739 cu.in.Z exact : 2.630 cu.in.

B31.3Peak Stress Sif .... 0.000 Axial73.642 Inplane97.189 Outplane1.000 TorsionalB31.1Peak Stress Sif .... 0.000 Axial62.044 Inplane62.044 Outplane62.044 TorsionalWRC 330Peak Stress Sif .... 0.000 Axial

67/226

Page 69: HTRI-COMPRESS Kettle Calculations

41.880 Inplane41.880 Outplane6.690 Torsional

Table of Contents

Allowable Loads

SECONDARY Maximum Conservative RealisticLoad Type (Range): Individual Simultaneous SimultaneousOccuring Occuring OccuringAxial Force (lb. ) 545. 98. 146.Inplane Moment (in. lb.) 3046. 386. 818.Outplane Moment (in. lb.) 846. 107. 227.Torsional Moment (in. lb.) 18141. 3476. 5213.Pressure (psi ) 132.68 61.40 61.40

PRIMARY Maximum Conservative RealisticLoad Type: Individual Simultaneous SimultaneousOccuring Occuring OccuringAxial Force (lb. ) 2278. 237. 355.Inplane Moment (in. lb.) 4465. 328. 695.Outplane Moment (in. lb.) 4368. 321. 680.Torsional Moment (in. lb.) 10742. 1115. 1673.Pressure (psi ) 89.17 61.40 61.40

NOTES:

1) Maximum Individual Occuring Loads are the maximumallowed values of the respective loads if all otherload components are zero, i.e. the listed axial forcemay be applied if the inplane, outplane and torsionalmoments, and the pressure are zero.

2) The Conservative Allowable Simultaneous loads arethe maximum loads that can be applied simultaneously.A conservative stress combination equation is usedthat typically produces stresses within 50-70% of theallowable stress.

3) The Realistic Allowable Simultaneous loads are themaximum loads that can be applied simultaneously. Amore realistic stress combination equation is usedbased on experience at Paulin Research. Stresses aretypically produced within 80-105% of the allowable.

4) Secondary allowable loads are limits for expansionand operating piping loads.

5) Primary allowable loads are limits for weight,primary and sustained type piping loads.

Table of Contents

68/226

Page 70: HTRI-COMPRESS Kettle Calculations

Flexibilities

The following stiffnesses should be used in a piping,"beam-type" analysis of the intersection. The stiff-nesses should be inserted at the surface of thebranch/header or nozzle/vessel junction. The generalcharacteristics used for the branch pipe should be:

Outside Diameter = 4.500 in.Wall Thickness = 0.188 in.

Axial Translational Stiffness = 13086. lb./in.Inplane Rotational Stiffness = 5592. in.lb./degOutplane Rotational Stiffness = 884. in.lb./degTorsional Rotational Stiffness = 449356. in.lb./deg

Table of Contents

69/226

Page 71: HTRI-COMPRESS Kettle Calculations

Finite Element Model

Finite Element Model•

Elements at Discontinuity

1) Pl < 1.5(k)Smh (SUS Membrane) Case 2• 2) Qb < 3(Smh) (SUS Bending) Case 2• 3) Pl+Pb+Q < 3(Smavg) (OPE Inside) Case 3• 4) Pl+Pb+Q < 3(Smavg) (OPE Outside) Case 3• 10) Pl+Pb+Q < 3(Smavg) (EXP Inside) Case 4• 11) Pl+Pb+Q < 3(Smavg) (EXP Outside) Case 4• 12) Pl+Pb+Q+F < Sa (EXP Inside) Case 4• 13) Pl+Pb+Q+F < Sa (EXP Outside) Case 4• 5) Pl+Pb+Q+F < Sa (SIF Outside) Case 5• 6) Pl+Pb+Q+F < Sa (SIF Outside) Case 6• 7) Pl+Pb+Q+F < Sa (SIF Outside) Case 7• 8) Pl+Pb+Q+F < Sa (SIF Outside) Case 8• 9) Pl+Pb+Q+F < Sa (SIF Outside) Case 9•

Tabular Results

70/226

Page 72: HTRI-COMPRESS Kettle Calculations

71/226

Page 73: HTRI-COMPRESS Kettle Calculations

72/226

Page 74: HTRI-COMPRESS Kettle Calculations

73/226

Page 75: HTRI-COMPRESS Kettle Calculations

74/226

Page 76: HTRI-COMPRESS Kettle Calculations

75/226

Page 77: HTRI-COMPRESS Kettle Calculations

76/226

Page 78: HTRI-COMPRESS Kettle Calculations

77/226

Page 79: HTRI-COMPRESS Kettle Calculations

SS Outlet (N3)

ASME Section VIII Division 1, 2007 Edition

tw(lower) = 0.125 inLeg41 = 0.0625 in

Note: round inside edges per UG-76(c)

Located on: Front ConeLiquid static head included: 0.2768 psiNozzle material specification: SA-455 <= 3/8 (II-D p. 22, ln. 14)Nozzle longitudinal joint efficiency: 1Flange description: 8 inch Class 150 WN A105Bolt Material: SA-193 B7 Bolt <= 2 1/2 (II-D p. 348, ln. 33)Flange rated MDMT: -55°F(UCS-66(b)(3): Coincident ratio = 0.1971988)(Flange rated MDMT = -155 °FBolts rated MDMT per Fig UCS-66 note (e) = -55 °F)Liquid static head on flange: 0.0788 psiASME B16.5 flange rating MAWP: 227.73 psi @ 307.57°FASME B16.5 flange rating MAP: 285 psi @ 70°FASME B16.5 flange hydro test: 450 psi @ 70°FNozzle orientation: 0°Local vessel minimum thickness: 0.125 inNozzle center line offset to datum line: 57.6652 inEnd of nozzle to shell center: 17.1434 inNozzle inside diameter, new: 8.001 inNozzle nominal wall thickness: 0.312 inNozzle corrosion allowance: 0.0625 inProjection available outside vessel, Lpr: 3.8019 inProjection available outside vessel to flange face, Lf: 4.9219 inNozzle longitudinal axis is: perpendicular to the vessel longitudinal axisOpening chord length: 8.3761 in

78/226

Page 80: HTRI-COMPRESS Kettle Calculations

Reinforcement Calculations for Internal Pressure

Available reinforcement per UG-37 governs the MAWP of this nozzle.

UG-37 Area Calculation Summary (in2)For P = 62.78 psi @ 307.57 °F

The opening is adequately reinforced

UG-45Nozzle WallThicknessSummary

(in)The nozzle

passes UG-45

Arequired

Aavailable A1 A2 A3 A5

Awelds treq tmin

0.3008 0.3008 0.2227 0.0742 -- -- 0.0039 0.125 0.312

Weld Failure Path Analysis Summary

The nozzle is exempt from weld strengthcalculations per UW-15(b)(1)

UW-16 Weld Sizing Summary

Weld description Required weldthroat size (in)

Actual weldthroat size (in) Status

Nozzle to shell fillet (Leg41) 0.0438 0.0438 weld size is adequate

Calculations for internal pressure 62.78 psi @ 307.57 °F

Nozzle impact test exemption temperature from Fig UCS-66 Curve A = 18 °FFig UCS-66.1 MDMT reduction = 55.7 °F, (coincident ratio = 0.516).

Nozzle UCS-66 governing thk: 0.125 inNozzle rated MDMT: -37.7 °F

Limits of reinforcement per UG-40

Parallel to the vessel wall: d = 8.3761 inNormal to the vessel wall outside: 2.5*(t - C) = 0.1563 in

Nozzle required thickness per UG-27(c)(1)

trn = P*Rn/(Sn*E - 0.6*P)= 62.7801*4.063/(21,400*1 - 0.6*62.7801)= 0.0119 in

Required thickness tr from UG-37(a)(b)

tr = P*Di/(2*cos(α)*(S*E - 0.6*P))= 62.7801*22.1542/(2*cos(14.04)*(20,000*1 - 0.6*62.7801))= 0.0359 in

79/226

Page 81: HTRI-COMPRESS Kettle Calculations

Area required per UG-37(c)

Allowable stresses: Sn = 21,400, Sv = 20,000 psi

fr1 = lesser of 1 or Sn/Sv = 1fr2 = lesser of 1 or Sn/Sv = 1

A = d*tr*F + (2*tn/Cos(14.0363))*tr*F*(1 - fr1)= 8.3761*0.0359*1 + (2*0.2495/Cos(14.0363))*0.0359*1*(1 - 1)= 0.3008 in2

Area available from FIG. UG-37.1

A1 = larger of the following= 0.2227 in2

= d*(E1*t - F*tr) - 2*tn*(E1*t - F*tr)*(1 - fr1)= 8.3761*(1*0.0625 - 1*0.0359) - 2*0.2495*(1*0.0625 - 1*0.0359)*(1 - 1)= 0.2227 in2

= 2*(t + tn)*(E1*t - F*tr) - 2*tn*(E1*t - F*tr)*(1 - fr1)= 2*(0.0625 + 0.2495)*(1*0.0625 - 1*0.0359) - 2*0.2495*(1*0.0625 - 1*0.0359)*(1 - 1)= 0.0166 in2

A2 = smaller of the following= 0.0742 in2

= 5*(tn - trn)*fr2*t= 5*(0.2495 - 0.0119)*1*0.0625= 0.0742 in2

= 5*(tn - trn)*fr2*tn= 5*(0.2495 - 0.0119)*1*0.2495= 0.2964 in2

A41 = Leg2*fr2= 0.06252*1= 0.0039 in2

Area = A1 + A2 + A41

= 0.2227 + 0.0742 + 0.0039= 0.3008 in2

As Area >= A the reinforcement is adequate.

UW-16(c) Weld Check

Fillet weld: tmin = lesser of 0.75 or tn or t = 0.0625 intc(min) = lesser of 0.25 or 0.7*tmin = 0.0438 intc(actual) = 0.7*Leg = 0.7*0.0625 = 0.0438 in

80/226

Page 82: HTRI-COMPRESS Kettle Calculations

The fillet weld size is satisfactory.

Weld strength calculations are not required for this detail which conforms to Fig. UW-16.1, sketch (c-e).

UG-45 Nozzle Neck Thickness Check

Wall thickness per UG-45(a): tr1 = 0.0744 in (E =1)Wall thickness per UG-45(b)(1): tr2 = 0.0984 inWall thickness per UG-16(b): tr3 = 0.125 inStandard wall pipe per UG-45(b)(4): tr4 = 0.3443 inThe greater of tr2 or tr3: tr5 = 0.125 inThe lesser of tr4 or tr5: tr6 = 0.125 in

Required per UG-45 is the larger of tr1 or tr6 = 0.125 in

Available nozzle wall thickness new, tn = 0.312 in

The nozzle neck thickness is adequate.

% Extreme fiber elongation - UCS-79(d)

= (50*t / Rf)*(1 - Rf / Ro)= (50*0.312 / 4.1565)*(1 - 4.1565 / ∞)= 3.7532%

81/226

Page 83: HTRI-COMPRESS Kettle Calculations

The extreme fiber elongation does not exceed 5%.

Reinforcement Calculations for MAP

Available reinforcement per UG-37 governs the MAP of this nozzle.

UG-37 Area Calculation Summary (in2)For P = 129.16 psi @ 70 °F

The opening is adequately reinforced

UG-45 NozzleWall

ThicknessSummary (in)The nozzle passes

UG-45

Arequired

Aavailable A1 A2 A3 A5

Awelds treq tmin

0.6071 0.6076 0.4238 0.1799 -- -- 0.0039 0.0736 0.312

Weld Failure Path Analysis Summary

The nozzle is exempt from weld strengthcalculations per UW-15(b)(1)

UW-16 Weld Sizing Summary

Weld description Required weldthroat size (in)

Actual weldthroat size (in) Status

Nozzle to shell fillet (Leg41) 0.0875 0.0438 weld size is NOT adequate

Calculations for internal pressure 129.16 psi @ 70 °F

Limits of reinforcement per UG-40

Parallel to the vessel wall: d = 8.2472 inNormal to the vessel wall outside: 2.5*(t - C) = 0.3125 in

Nozzle required thickness per UG-27(c)(1)

trn = P*Rn/(Sn*E - 0.6*P)= 129.1612*4.0005/(21,400*1 - 0.6*129.1612)= 0.0242 in

Required thickness tr from UG-37(a)(b)

tr = P*Di/(2*cos(α)*(S*E - 0.6*P))= 129.1612*22.0292/(2*cos(14.04)*(20,000*1 - 0.6*129.1612))= 0.0736 in

Area required per UG-37(c)

Allowable stresses: Sn = 21,400, Sv = 20,000 psi

82/226

Page 84: HTRI-COMPRESS Kettle Calculations

fr1 = lesser of 1 or Sn/Sv = 1fr2 = lesser of 1 or Sn/Sv = 1

A = d*tr*F + (2*tn/Cos(14.0363))*tr*F*(1 - fr1)= 8.2472*0.0736*1 + (2*0.312/Cos(14.0363))*0.0736*1*(1 - 1)= 0.6071 in2

Area available from FIG. UG-37.1

A1 = larger of the following= 0.4238 in2

= d*(E1*t - F*tr) - 2*tn*(E1*t - F*tr)*(1 - fr1)= 8.2472*(1*0.125 - 1*0.0736) - 2*0.312*(1*0.125 - 1*0.0736)*(1 - 1)= 0.4238 in2

= 2*(t + tn)*(E1*t - F*tr) - 2*tn*(E1*t - F*tr)*(1 - fr1)= 2*(0.125 + 0.312)*(1*0.125 - 1*0.0736) - 2*0.312*(1*0.125 - 1*0.0736)*(1 - 1)= 0.0449 in2

A2 = smaller of the following= 0.1799 in2

= 5*(tn - trn)*fr2*t= 5*(0.312 - 0.0242)*1*0.125= 0.1799 in2

= 5*(tn - trn)*fr2*tn= 5*(0.312 - 0.0242)*1*0.312= 0.449 in2

A41 = Leg2*fr2= 0.06252*1= 0.0039 in2

Area = A1 + A2 + A41

= 0.4238 + 0.1799 + 0.0039= 0.6076 in2

As Area >= A the reinforcement is adequate.

UW-16(c) Weld Check

Fillet weld: tmin = lesser of 0.75 or tn or t = 0.125 intc(min) = lesser of 0.25 or 0.7*tmin = 0.0875 intc(actual) = 0.7*Leg = 0.7*0.0625 = 0.0438 in

** The fillet weld size IS NOT satisfactory. **UG-45 Nozzle Neck Thickness Check

Wall thickness per UG-45(a): tr1 = 0.0242 in (E =1)Wall thickness per UG-45(b)(1): tr2 = 0.0736 in

83/226

Page 85: HTRI-COMPRESS Kettle Calculations

Wall thickness per UG-16(b): tr3 = 0.0625 inStandard wall pipe per UG-45(b)(4): tr4 = 0.2818 inThe greater of tr2 or tr3: tr5 = 0.0736 inThe lesser of tr4 or tr5: tr6 = 0.0736 in

Required per UG-45 is the larger of tr1 or tr6 = 0.0736 in

Available nozzle wall thickness new, tn = 0.312 in

The nozzle neck thickness is adequate.

84/226

Page 86: HTRI-COMPRESS Kettle Calculations

Tabular Results

Results were generated with the finite element program FE/Pipe&#174. Stress results are post-processed inaccordance with the rules specified in ASME Section III and ASME Section VIII, Division 2.

Analysis Time Stamp: Thu Nov 25 14:30:52 2010.

Model Notes• Load Case Report• Solution Data• ASME Code Stress Output Plots• ASME Overstressed Areas• Highest Primary Stress Ratios• Highest Secondary Stress Ratios• Highest Fatigue Stress Ratios• Stress Intensification Factors• Allowable Loads• Flexibilities• Graphical Results•

Model Notes

Input Echo:

Model Type : Conical Shell

Parent Outside Diameter : 27.066 in.Thickness : 0.063 in.Cone Length : 19.117 in.Cone OD at Top : 17.508 in.Knuckle Radius @ Top : 0.000 in.Knuckle Radius @ Bottom: 0.000 in.Fillet Along Shell : 0.063 in.

Parent Properties:Cold Allowable : 20000.0 psiHot Allowable : 20000.0 psiMaterial ID #2 : Low Alloy SteelUltimate Tensile (Amb) : 70000.0 psiYield Strength (Amb) : 38000.0 psiYield Strength (Hot) : 33500.0 psiElastic Modulus (Amb) : 29400000.0 psiPoissons Ratio : 0.300Weight Density : 0.283 lb./cu.in.(NOT USED)

Nozzle Outside Diameter : 8.625 in.Thickness : 0.250 in.Length : 6.031 in.Nozzle Weld Length : 0.063 in.Nozzle Tilt Angle : 90.000 deg.

85/226

Page 87: HTRI-COMPRESS Kettle Calculations

Distance from Top : 11.143 in.Distance from Bottom : 7.973 in.

Nozzle PropertiesCold Allowable : 21400.0 psiHot Allowable : 21400.0 psiMaterial ID #2 : Low Alloy SteelUltimate Tensile (Amb) : 75000.0 psiYield Strength (Amb) : 38000.0 psiYield Strength (Hot) : 33500.0 psiElastic Modulus (Amb) : 29200000.0 psiPoissons Ratio : 0.300Weight Density : 0.283 lb./cu.in. (NOT USED)

Design Operating Cycles : 0.Ambient Temperature (Deg.) : 70.00Nozzle Pressure : 60.6 psiVessel Pressure : 60.6 psi

No external forces or bending moments were included in this analysis.

Both ends of the model are "fixed," except that one endis free axially so that longitudinal pressure stressesmay be developed in the geometry.

Stresses are NOT averaged.

Unstructured Mesh Generation used for this model.

Vessel Centerline Vector: 0.000 0.000 1.000Nozzle Centerline Vector: 0.000 0.000 1.000Zero Degree Orientation Vector: 0.000 1.000 0.000

Table of Contents

Load Case Report

Inner and outer element temperatures are the samethroughout the model. No thermal ratchetingcalculations will be performed.

THE 9 LOAD CASES ANALYZED ARE:

1 Weight ONLY

Weight ONLY case run to get the stress rangebetween the installed and the operating states.It is assumed that the weight only case accuratelyrepresents the installed stress state.

/-------- Loads in Case 1Forces due to Weight

2 Sustained

86/226

Page 88: HTRI-COMPRESS Kettle Calculations

Sustained case run to satisfy Pl Qb, the bending stress due to primary loads mustbe less than 3Smh as per Note 3 of Fig. NB-3222-1,and Table 4-120.1

/-------- Loads in Case 2Forces due to WeightPressure Case 1

3 Operating

Operating case run to compute the extreme operatingstress state to be used in the shakedown and peakstress calculations.

/-------- Loads in Case 3Pressure Case 1Force Case (Operating)

4 Expansion (Fatigue Calc Performed)

Expansion case run to get the RANGE of stressesas described in NB-3222.2, or Note 1 of 4-130.1.The allowable is 3Smavg.

/-------- Combinations in Expansion Case 4Plus Stress Results from CASE 3Minus Stress Results from CASE 1

5 Program Generated -- Force Only

Case run to compute sif's and flexibilities.

/-------- Loads in Case 5Force Case (Axial)

6 Program Generated -- Force Only

Case run to compute sif's and flexibilities.

/-------- Loads in Case 6Force Case (Inplane)

7 Program Generated -- Force Only

Case run to compute sif's and flexibilities.

/-------- Loads in Case 7Force Case (Outplane)

8 Program Generated -- Force Only

Case run to compute sif's and flexibilities.

/-------- Loads in Case 8Force Case (Torsion)

87/226

Page 89: HTRI-COMPRESS Kettle Calculations

9 Program Generated -- Force Only

Case run to compute sif's and flexibilities.

/-------- Loads in Case 9Pressure Case 1

Table of Contents

Solution Data

Maximum Solution Row Size = 708Number of Nodes = 2380Number of Elements = 780Number of Solution Cases = 8

Largest On-Diagonal Stiffness = 42801518806782.Smallest On-Diagonal Stiffness = 2.

Largest Off-Diagonal Stiffness = 1613771282605.Smallest Off-Diagonal Stiffness = 1.

Summation of Loads per Case

Case # FX FY FZ

1 0. -36. 0.2 0. -36. 20214.3 0. -36. 20214.4 0. 131295. 0.5 0. 0. 0.6 0. 0. 0.7 0. 0. 0.8 0. 0. 20214.

Equation Coefficient (Stiffness) Distribution)

OnDiagonal Number of AveragePercentile Coefficients Stiffness

90-to-100% 1 42801518806782.70-to-90% 0 0.50-to-70% 0 0.30-to-50% 0 0.10-to-30% 0 0.1-to-10% 354 1556163368744..1-to- 1% 191 128388370436..01-to-.1% 4 42393908159..001-to-.01% 0 0..0001-TO-.001% 13730 9014652.

OFF Diagonal Number of Average

88/226

Page 90: HTRI-COMPRESS Kettle Calculations

Percentile Coefficients Stiffness

90-to-100% 48 1574057434559.70-to-90% 48 1293470424615.50-to-70% 60 952290798143.30-to-50% 268 628588640003.10-to-30% 420 298259837402.1-to-10% 2352 54218383466..1-to- 1% 1888 7489744863..01-to-.1% 456 715467004..001-to-.01% 2091 34498721..0001-TO-.001% 633676 276057.

Table of Contents

ASME Code Stress Output Plots

1) Pl < 1.5(k)Smh (SUS,Membrane) Case 2

2) Qb < 3(Smh) (SUS,Bending) Case 2

3) Pl+Pb+Q < 3(Smavg) (OPE,Inside) Case 3

4) Pl+Pb+Q < 3(Smavg) (OPE,Outside) Case 3

5) Pl+Pb+Q+F < Sa (SIF,Outside) Case 5

6) Pl+Pb+Q+F < Sa (SIF,Outside) Case 6

7) Pl+Pb+Q+F < Sa (SIF,Outside) Case 7

8) Pl+Pb+Q+F < Sa (SIF,Outside) Case 8

9) Pl+Pb+Q+F < Sa (SIF,Outside) Case 9

10) Pl+Pb+Q < 3(Smavg) (EXP,Inside) Case 4

11) Pl+Pb+Q < 3(Smavg) (EXP,Outside) Case 4

12) Pl+Pb+Q+F < Sa (EXP,Inside) Case 4

13) Pl+Pb+Q+F < Sa (EXP,Outside) Case 4

Table of Contents

ASME Overstressed Areas

*** NO OVERSTRESSED NODES IN THIS MODEL ***

Table of Contents

89/226

Page 91: HTRI-COMPRESS Kettle Calculations

Highest Primary Stress Ratios

Shell Next to Nozzle 1

Pl 1.5(k)Smh Primary Membrane Load Case 224,512 30,000 Plot Reference:psi psi 1) Pl < 1.5(k)Smh (SUS,Membrane) Case 2

81%

Nozzle 1 Next to Shell

Pl 1.5(k)Smh Primary Membrane Load Case 213,791 32,100 Plot Reference:psi psi 1) Pl < 1.5(k)Smh (SUS,Membrane) Case 2

42%

Shell In Nozzle 1 Vicinity

Pl 1.5(k)Smh Primary Membrane Load Case 223,027 30,000 Plot Reference:psi psi 1) Pl < 1.5(k)Smh (SUS,Membrane) Case 2

76%

Nozzle 1

Pl 1.5(k)Smh Primary Membrane Load Case 25,879 32,100 Plot Reference:psi psi 1) Pl < 1.5(k)Smh (SUS,Membrane) Case 2

18%

Table of Contents

Highest Secondary Stress Ratios

Shell Next to Nozzle 1

Pl+Pb+Q 3(Smavg) Primary+Secondary (Outer) Load Case 438,518 60,000 Plot Reference:psi psi 11) Pl+Pb+Q < 3(Smavg) (EXP,Outside) Case 4

64%

Nozzle 1 Next to Shell

Pl+Pb+Q 3(Smavg) Primary+Secondary (Inner) Load Case 414,825 64,200 Plot Reference:psi psi 10) Pl+Pb+Q < 3(Smavg) (EXP,Inside) Case 4

90/226

Page 92: HTRI-COMPRESS Kettle Calculations

23%

Shell In Nozzle 1 Vicinity

Pl+Pb+Q 3(Smavg) Primary+Secondary (Inner) Load Case 428,301 60,000 Plot Reference:psi psi 10) Pl+Pb+Q < 3(Smavg) (EXP,Inside) Case 4

47%

Nozzle 1

Pl+Pb+Q 3(Smavg) Primary+Secondary (Inner) Load Case 49,315 64,200 Plot Reference:psi psi 10) Pl+Pb+Q < 3(Smavg) (EXP,Inside) Case 4

14%

Table of Contents

Highest Fatigue Stress Ratios

Shell Next to Nozzle 1

Pl+Pb+Q+F Sa Primary+Secondary+Peak (Outer) Load Case 426,000 568,400 Stress Concentration Factor = 1.350psi psi Strain Concentration Factor = 1.000Cycles Allowed for this Stress = 32255.74% "B31" Fatigue Stress Allowable = 50000.0Markl Fatigue Stress Allowable = 245000.0WRC 474 Mean Cycles to Failure = 1086101.WRC 474 99% Probability Cycles = 252316.WRC 474 95% Probability Cycles = 350314.BS5500 Allowed Cycles(Curve F) = 36995.Membrane-to-Bending Ratio = 0.948Bending-to-PL+PB+Q Ratio = 0.513Plot Reference:13) Pl+Pb+Q+F < Sa (EXP,Outside) Case 4

Nozzle 1 Next to Shell

Pl+Pb+Q+F Sa Primary+Secondary+Peak (Inner) Load Case 410,007 564,533 Stress Concentration Factor = 1.350psi psi Strain Concentration Factor = 1.000Cycles Allowed for this Stress = 1000000.01% "B31" Fatigue Stress Allowable = 53500.0Markl Fatigue Stress Allowable = 245000.0WRC 474 Mean Cycles to Failure = 7360944.WRC 474 99% Probability Cycles = 1710047.WRC 474 95% Probability Cycles = 2374218.BS5500 Allowed Cycles(Curve F) = 662329.

91/226

Page 93: HTRI-COMPRESS Kettle Calculations

Membrane-to-Bending Ratio = 5.669Bending-to-PL+PB+Q Ratio = 0.150Plot Reference:12) Pl+Pb+Q+F < Sa (EXP,Inside) Case 4

Shell In Nozzle 1 Vicinity

Pl+Pb+Q+F Sa Primary+Secondary+Peak (Inner) Load Case 414,151 568,400 Stress Concentration Factor = 1.000psi psi Strain Concentration Factor = 1.000Cycles Allowed for this Stress = 367752.82% "B31" Fatigue Stress Allowable = 50000.0Markl Fatigue Stress Allowable = 245000.0WRC 474 Mean Cycles to Failure = 2743425.WRC 474 99% Probability Cycles = 637335.WRC 474 95% Probability Cycles = 884872.BS5500 Allowed Cycles(Curve F) = 93263.Membrane-to-Bending Ratio = 1.488Bending-to-PL+PB+Q Ratio = 0.402Plot Reference:12) Pl+Pb+Q+F < Sa (EXP,Inside) Case 4

Nozzle 1

Pl+Pb+Q+F Sa Primary+Secondary+Peak (Inner) Load Case 44,658 564,533 Stress Concentration Factor = 1.000psi psi Strain Concentration Factor = 1.000Cycles Allowed for this Stress = 1000000.00% "B31" Fatigue Stress Allowable = 53500.0Markl Fatigue Stress Allowable = 245000.0WRC 474 Mean Cycles to Failure = 35122520.WRC 474 99% Probability Cycles = 8159435.WRC 474 95% Probability Cycles = 11328510.BS5500 Allowed Cycles(Curve F) = 2669660.Membrane-to-Bending Ratio = 0.715Bending-to-PL+PB+Q Ratio = 0.583Plot Reference:12) Pl+Pb+Q+F < Sa (EXP,Inside) Case 4

Table of Contents

Stress Intensification Factors

Branch/Nozzle Sif Summary

Peak Primary SecondaryAxial : 137.593 45.339 203.841Inplane : 61.875 26.439 91.666Outplane: 158.511 53.637 234.831Torsion : 39.121 14.327 57.956Pressure: 1.982 1.873 2.936

The above stress intensification factors are to be used

92/226

Page 94: HTRI-COMPRESS Kettle Calculations

in a beam-type analysis of the piping system. Inplane,Outplane and Torsional sif's should be used with thematching branch pipe whose diameter and thickness is givenbelow. The axial sif should be used to intensify theaxial stress in the branch pipe calculated by F/A. Thepressure sif should be used to intensify the nominalpressure stress in the PARENT or HEADER, calculatedfrom PD/2T.

Pipe OD : 8.625 in.Pipe Thk: 0.250 in.Z approx: 13.746 cu.in.Z exact : 13.360 cu.in.

B31.3Peak Stress Sif .... 0.000 Axial98.012 Inplane129.352 Outplane1.000 TorsionalB31.1Peak Stress Sif .... 0.000 Axial116.592 Inplane116.592 Outplane116.592 TorsionalWRC 330Peak Stress Sif .... 0.000 Axial78.700 Inplane78.700 Outplane24.410 Torsional

Table of Contents

Allowable Loads

SECONDARY Maximum Conservative RealisticLoad Type (Range): Individual Simultaneous SimultaneousOccuring Occuring OccuringAxial Force (lb. ) 1932. 231. 346.Inplane Moment (in. lb.) 8745. 738. 1566.Outplane Moment (in. lb.) 3414. 288. 611.Torsional Moment (in. lb.) 13831. 1651. 2476.Pressure (psi ) 94.37 60.58 60.58

PRIMARY Maximum Conservative RealisticLoad Type: Individual Simultaneous SimultaneousOccuring Occuring OccuringAxial Force (lb. ) 4344. 262. 393.Inplane Moment (in. lb.) 15160. 646. 1371.Outplane Moment (in. lb.) 7473. 319. 676.Torsional Moment (in. lb.) 27975. 1687. 2530.Pressure (psi ) 73.96 60.58 60.58

NOTES:

93/226

Page 95: HTRI-COMPRESS Kettle Calculations

1) Maximum Individual Occuring Loads are the maximumallowed values of the respective loads if all otherload components are zero, i.e. the listed axial forcemay be applied if the inplane, outplane and torsionalmoments, and the pressure are zero.

2) The Conservative Allowable Simultaneous loads arethe maximum loads that can be applied simultaneously.A conservative stress combination equation is usedthat typically produces stresses within 50-70% of theallowable stress.

3) The Realistic Allowable Simultaneous loads are themaximum loads that can be applied simultaneously. Amore realistic stress combination equation is usedbased on experience at Paulin Research. Stresses aretypically produced within 80-105% of the allowable.

4) Secondary allowable loads are limits for expansionand operating piping loads.

5) Primary allowable loads are limits for weight,primary and sustained type piping loads.

Table of Contents

Flexibilities

The following stiffnesses should be used in a piping,"beam-type" analysis of the intersection. The stiff-nesses should be inserted at the surface of thebranch/header or nozzle/vessel junction. The generalcharacteristics used for the branch pipe should be:

Outside Diameter = 8.625 in.Wall Thickness = 0.250 in.

Axial Translational Stiffness = 91188. lb./in.Inplane Rotational Stiffness = 36029. in.lb./degOutplane Rotational Stiffness = 9584. in.lb./degTorsional Rotational Stiffness = 148373. in.lb./deg

Table of Contents

94/226

Page 96: HTRI-COMPRESS Kettle Calculations

Finite Element Model

Finite Element Model•

Area of Discontinuity at Nozzle

1) Pl < 1.5(k)Smh (SUS Membrane) Case 2• 2) Qb < 3(Smh) (SUS Bending) Case 2• 3) Pl+Pb+Q < 3(Smavg) (OPE Inside) Case 3• 4) Pl+Pb+Q < 3(Smavg) (OPE Outside) Case 3• 10) Pl+Pb+Q < 3(Smavg) (EXP Inside) Case 4• 11) Pl+Pb+Q < 3(Smavg) (EXP Outside) Case 4• 12) Pl+Pb+Q+F < Sa (EXP Inside) Case 4• 13) Pl+Pb+Q+F < Sa (EXP Outside) Case 4• 5) Pl+Pb+Q+F < Sa (SIF Outside) Case 5• 6) Pl+Pb+Q+F < Sa (SIF Outside) Case 6• 7) Pl+Pb+Q+F < Sa (SIF Outside) Case 7• 8) Pl+Pb+Q+F < Sa (SIF Outside) Case 8• 9) Pl+Pb+Q+F < Sa (SIF Outside) Case 9•

Tabular Results

95/226

Page 97: HTRI-COMPRESS Kettle Calculations

96/226

Page 98: HTRI-COMPRESS Kettle Calculations

97/226

Page 99: HTRI-COMPRESS Kettle Calculations

98/226

Page 100: HTRI-COMPRESS Kettle Calculations

99/226

Page 101: HTRI-COMPRESS Kettle Calculations

100/226

Page 102: HTRI-COMPRESS Kettle Calculations

101/226

Page 103: HTRI-COMPRESS Kettle Calculations

102/226

Page 104: HTRI-COMPRESS Kettle Calculations

SS Outlet 2 (N5)

ASME Section VIII Division 1, 2007 Edition

tw(lower) = 0.125 inLeg41 = 0.0625 in

Note: round inside edges per UG-76(c)

Located on: ShellLiquid static head included: 0.1981 psiNozzle material specification: SA-455 ( 3/8 < t <= 0.58) (II-D p. 22, ln. 12)Nozzle longitudinal joint efficiency: 1Flange description: 8 inch Class 150 WN A105Bolt Material: SA-193 B7 Bolt <= 2 1/2 (II-D p. 348, ln. 33)Flange rated MDMT: -55°F(UCS-66(b)(3): Coincident ratio = 0.1969223)(Flange rated MDMT = -155 °FBolts rated MDMT per Fig UCS-66 note (e) = -55 °F)Liquid static head on flange: 0 psiASME B16.5 flange rating MAWP: 227.73 psi @ 307.57°FASME B16.5 flange rating MAP: 285 psi @ 70°FASME B16.5 flange hydro test: 450 psi @ 70°FNozzle orientation: 0°Local vessel minimum thickness: 0.125 inNozzle center line offset to datum line: 16 inEnd of nozzle to shell center: 19.5292 inNozzle inside diameter, new: 7.625 inNozzle nominal wall thickness: 0.5 inNozzle corrosion allowance: 0.0625 inProjection available outside vessel, Lpr: 4.88 inProjection available outside vessel to flange face, Lf: 6 in

103/226

Page 105: HTRI-COMPRESS Kettle Calculations

Reinforcement Calculations for Internal Pressure

Available reinforcement per UG-37 governs the MAWP of this nozzle.

UG-37 Area Calculation Summary (in2)For P = 59.44 psi @ 307.57 °F

The opening is adequately reinforced

UG-45Nozzle WallThicknessSummary

(in)The nozzle

passes UG-45

Arequired

Aavailable A1 A2 A3 A5

Awelds treq tmin

0.3108 0.3108 0.1736 0.1333 -- -- 0.0039 0.125 0.5

Weld Failure Path Analysis Summary

The nozzle is exempt from weld strengthcalculations per UW-15(b)(1)

UW-16 Weld Sizing Summary

Weld description Required weldthroat size (in)

Actual weldthroat size (in) Status

Nozzle to shell fillet (Leg41) 0.0438 0.0438 weld size is adequate

Calculations for internal pressure 59.44 psi @ 307.57 °F

Nozzle impact test exemption temperature from Fig UCS-66 Curve A = 18 °FFig UCS-66.1 MDMT reduction = 39.2 °F, (coincident ratio = 0.60784).

Nozzle UCS-66 governing thk: 0.125 inNozzle rated MDMT: -21.2 °F

Limits of reinforcement per UG-40

Parallel to the vessel wall: d = 7.75 inNormal to the vessel wall outside: 2.5*(t - C) = 0.1563 in

Nozzle required thickness per UG-27(c)(1)

trn = P*Rn/(Sn*E - 0.6*P)= 59.4422*3.875/(20,900*1 - 0.6*59.4422)= 0.011 in

Required thickness tr from UG-37(a)

tr = P*R/(S*E - 0.6*P)= 59.4422*13.4667/(20,000*1 - 0.6*59.4422)= 0.0401 in

104/226

Page 106: HTRI-COMPRESS Kettle Calculations

Area required per UG-37(c)

Allowable stresses: Sn = 20,900, Sv = 20,000 psi

fr1 = lesser of 1 or Sn/Sv = 1fr2 = lesser of 1 or Sn/Sv = 1

A = d*tr*F + 2*tn*tr*F*(1 - fr1)= 7.75*0.0401*1 + 2*0.4375*0.0401*1*(1 - 1)= 0.3108 in2

Area available from FIG. UG-37.1

A1 = larger of the following= 0.1736 in2

= d*(E1*t - F*tr) - 2*tn*(E1*t - F*tr)*(1 - fr1)= 7.75*(1*0.0625 - 1*0.0401) - 2*0.4375*(1*0.0625 - 1*0.0401)*(1 - 1)= 0.1736 in2

= 2*(t + tn)*(E1*t - F*tr) - 2*tn*(E1*t - F*tr)*(1 - fr1)= 2*(0.0625 + 0.4375)*(1*0.0625 - 1*0.0401) - 2*0.4375*(1*0.0625 - 1*0.0401)*(1 - 1)= 0.0224 in2

A2 = smaller of the following= 0.1333 in2

= 5*(tn - trn)*fr2*t= 5*(0.4375 - 0.011)*1*0.0625= 0.1333 in2

= 5*(tn - trn)*fr2*tn= 5*(0.4375 - 0.011)*1*0.4375= 0.933 in2

A41 = Leg2*fr2= 0.06252*1= 0.0039 in2

Area = A1 + A2 + A41

= 0.1736 + 0.1333 + 0.0039= 0.3108 in2

As Area >= A the reinforcement is adequate.

UW-16(c) Weld Check

Fillet weld: tmin = lesser of 0.75 or tn or t = 0.0625 intc(min) = lesser of 0.25 or 0.7*tmin = 0.0438 intc(actual) = 0.7*Leg = 0.7*0.0625 = 0.0438 in

105/226

Page 107: HTRI-COMPRESS Kettle Calculations

The fillet weld size is satisfactory.

Weld strength calculations are not required for this detail which conforms to Fig. UW-16.1, sketch (c-e).

UG-45 Nozzle Neck Thickness Check

Wall thickness per UG-45(a): tr1 = 0.0735 in (E =1)Wall thickness per UG-45(b)(1): tr2 = 0.1026 inWall thickness per UG-16(b): tr3 = 0.125 inStandard wall pipe per UG-45(b)(4): tr4 = 0.3443 inThe greater of tr2 or tr3: tr5 = 0.125 inThe lesser of tr4 or tr5: tr6 = 0.125 in

Required per UG-45 is the larger of tr1 or tr6 = 0.125 in

Available nozzle wall thickness new, tn = 0.5 in

The nozzle neck thickness is adequate.

% Extreme fiber elongation - UCS-79(d)

= (50*t / Rf)*(1 - Rf / Ro)= (50*0.5 / 4.0625)*(1 - 4.0625 / ∞)= 6.1538%

106/226

Page 108: HTRI-COMPRESS Kettle Calculations

The extreme fiber elongation exceeds 5 percent. Heat treatment per UCS-56 may be required. See UCS-79(d)(4) or(5).

Reinforcement Calculations for MAP

Available reinforcement per UG-37 governs the MAP of this nozzle.

UG-37 Area Calculation Summary (in2)For P = 122.34 psi @ 70 °F

The opening is adequately reinforced

UG-45Nozzle WallThicknessSummary

(in)The nozzle

passes UG-45

Arequired

Aavailable A1 A2 A3 A5

Awelds treq tmin

0.6275 0.6281 0.3257 0.2985 -- -- 0.0039 0.0823 0.5

Weld Failure Path Analysis Summary

The nozzle is exempt from weld strengthcalculations per UW-15(b)(1)

UW-16 Weld Sizing Summary

Weld description Required weldthroat size (in)

Actual weldthroat size (in) Status

Nozzle to shell fillet (Leg41) 0.0875 0.0438 weld size is NOT adequate

Calculations for internal pressure 122.34 psi @ 70 °F

Limits of reinforcement per UG-40

Parallel to the vessel wall: d = 7.625 inNormal to the vessel wall outside: 2.5*(t - C) = 0.3125 in

Nozzle required thickness per UG-27(c)(1)

trn = P*Rn/(Sn*E - 0.6*P)= 122.3362*3.8125/(20,900*1 - 0.6*122.3362)= 0.0224 in

Required thickness tr from UG-37(a)

tr = P*R/(S*E - 0.6*P)= 122.3362*13.4042/(20,000*1 - 0.6*122.3362)= 0.0823 in

Area required per UG-37(c)

107/226

Page 109: HTRI-COMPRESS Kettle Calculations

Allowable stresses: Sn = 20,900, Sv = 20,000 psi

fr1 = lesser of 1 or Sn/Sv = 1fr2 = lesser of 1 or Sn/Sv = 1

A = d*tr*F + 2*tn*tr*F*(1 - fr1)= 7.625*0.0823*1 + 2*0.5*0.0823*1*(1 - 1)= 0.6275 in2

Area available from FIG. UG-37.1

A1 = larger of the following= 0.3257 in2

= d*(E1*t - F*tr) - 2*tn*(E1*t - F*tr)*(1 - fr1)= 7.625*(1*0.125 - 1*0.0823) - 2*0.5*(1*0.125 - 1*0.0823)*(1 - 1)= 0.3257 in2

= 2*(t + tn)*(E1*t - F*tr) - 2*tn*(E1*t - F*tr)*(1 - fr1)= 2*(0.125 + 0.5)*(1*0.125 - 1*0.0823) - 2*0.5*(1*0.125 - 1*0.0823)*(1 - 1)= 0.0534 in2

A2 = smaller of the following= 0.2985 in2

= 5*(tn - trn)*fr2*t= 5*(0.5 - 0.0224)*1*0.125= 0.2985 in2

= 5*(tn - trn)*fr2*tn= 5*(0.5 - 0.0224)*1*0.5= 1.194 in2

A41 = Leg2*fr2= 0.06252*1= 0.0039 in2

Area = A1 + A2 + A41

= 0.3257 + 0.2985 + 0.0039= 0.6281 in2

As Area >= A the reinforcement is adequate.

UW-16(c) Weld Check

Fillet weld: tmin = lesser of 0.75 or tn or t = 0.125 intc(min) = lesser of 0.25 or 0.7*tmin = 0.0875 intc(actual) = 0.7*Leg = 0.7*0.0625 = 0.0438 in

** The fillet weld size IS NOT satisfactory. **UG-45 Nozzle Neck Thickness Check

108/226

Page 110: HTRI-COMPRESS Kettle Calculations

Wall thickness per UG-45(a): tr1 = 0.0224 in (E =1)Wall thickness per UG-45(b)(1): tr2 = 0.0823 inWall thickness per UG-16(b): tr3 = 0.0625 inStandard wall pipe per UG-45(b)(4): tr4 = 0.2818 inThe greater of tr2 or tr3: tr5 = 0.0823 inThe lesser of tr4 or tr5: tr6 = 0.0823 in

Required per UG-45 is the larger of tr1 or tr6 = 0.0823 in

Available nozzle wall thickness new, tn = 0.5 in

The nozzle neck thickness is adequate.

109/226

Page 111: HTRI-COMPRESS Kettle Calculations

Tabular Results

Results were generated with the finite element program FE/Pipe&#174. Stress results are post-processed inaccordance with the rules specified in ASME Section III and ASME Section VIII, Division 2.

Analysis Time Stamp: Thu Nov 25 14:30:40 2010.

Model Notes• Load Case Report• Solution Data• ASME Code Stress Output Plots• ASME Overstressed Areas• Highest Primary Stress Ratios• Highest Secondary Stress Ratios• Highest Fatigue Stress Ratios• Stress Intensification Factors• Allowable Loads• Flexibilities• Graphical Results•

Model Notes

Input Echo:

Model Type : Cylindrical Shell

Parent Outside Diameter : 27.058 in.Thickness : 0.063 in.Fillet Along Shell : 0.063 in.

Parent Properties:Cold Allowable : 20000.0 psiHot Allowable : 20000.0 psiMaterial ID #2 : Low Alloy SteelUltimate Tensile (Amb) : 70000.0 psiYield Strength (Amb) : 38000.0 psiYield Strength (Hot) : 33500.0 psiElastic Modulus (Amb) : 29400000.0 psiPoissons Ratio : 0.300Weight Density : 0.283 lb./cu.in.(NOT USED)

Nozzle Outside Diameter : 8.625 in.Thickness : 0.438 in.Length : 6.031 in.Nozzle Weld Length : 0.063 in.Nozzle Tilt Angle : 0.000 deg.Distance from Top : 32.107 in.Distance from Bottom : 16.000 in.

Nozzle Properties

110/226

Page 112: HTRI-COMPRESS Kettle Calculations

Cold Allowable : 20900.0 psiHot Allowable : 20900.0 psiMaterial ID #2 : Low Alloy SteelUltimate Tensile (Amb) : 73000.0 psiYield Strength (Amb) : 37000.0 psiYield Strength (Hot) : 32600.0 psiElastic Modulus (Amb) : 29200000.0 psiPoissons Ratio : 0.300Weight Density : 0.283 lb./cu.in. (NOT USED)

Design Operating Cycles : 0.Ambient Temperature (Deg.) : 70.00Nozzle Pressure : 60.5 psiVessel Pressure : 60.5 psi

No external forces or bending moments were included in this analysis.

Both ends of the model are "fixed," except that one endis free axially so that longitudinal pressure stressesmay be developed in the geometry.

Stresses are NOT averaged.

Unstructured Mesh Generation used for this model.

Vessel Centerline Vector : 0.000 0.000 1.000Nozzle Orientation Vector : 0.000 1.000 0.000

Table of Contents

Load Case Report

Inner and outer element temperatures are the samethroughout the model. No thermal ratchetingcalculations will be performed.

THE 9 LOAD CASES ANALYZED ARE:

1 Weight ONLY

Weight ONLY case run to get the stress rangebetween the installed and the operating states.It is assumed that the weight only case accuratelyrepresents the installed stress state.

/-------- Loads in Case 1Forces due to Weight

2 Sustained

Sustained case run to satisfy Pl Qb, the bending stress due to primary loads mustbe less than 3Smh as per Note 3 of Fig. NB-3222-1,and Table 4-120.1

111/226

Page 113: HTRI-COMPRESS Kettle Calculations

/-------- Loads in Case 2Forces due to WeightPressure Case 1

3 Operating

Operating case run to compute the extreme operatingstress state to be used in the shakedown and peakstress calculations.

/-------- Loads in Case 3Pressure Case 1Force Case (Operating)

4 Expansion (Fatigue Calc Performed)

Expansion case run to get the RANGE of stressesas described in NB-3222.2, or Note 1 of 4-130.1.The allowable is 3Smavg.

/-------- Combinations in Expansion Case 4Plus Stress Results from CASE 3Minus Stress Results from CASE 1

5 Program Generated -- Force Only

Case run to compute sif's and flexibilities.

/-------- Loads in Case 5Force Case (Axial)

6 Program Generated -- Force Only

Case run to compute sif's and flexibilities.

/-------- Loads in Case 6Force Case (Inplane)

7 Program Generated -- Force Only

Case run to compute sif's and flexibilities.

/-------- Loads in Case 7Force Case (Outplane)

8 Program Generated -- Force Only

Case run to compute sif's and flexibilities.

/-------- Loads in Case 8Force Case (Torsion)

9 Program Generated -- Force Only

Case run to compute sif's and flexibilities.

/-------- Loads in Case 9

112/226

Page 114: HTRI-COMPRESS Kettle Calculations

Pressure Case 1

Table of Contents

Solution Data

Maximum Solution Row Size = 780Number of Nodes = 1563Number of Elements = 500Number of Solution Cases = 8

Largest On-Diagonal Stiffness = 931597451368.Smallest On-Diagonal Stiffness = 2.

Largest Off-Diagonal Stiffness = 447788344659.Smallest Off-Diagonal Stiffness = 1.

Summation of Loads per Case

Case # FX FY FZ

1 0. -92. 0.2 0. -429. 34469.3 0. -429. 34469.4 0. 255615. 0.5 0. 0. 1.6 -1. 0. 0.7 0. 0. 0.8 0. -337. 34469.

Equation Coefficient (Stiffness) Distribution)

OnDiagonal Number of AveragePercentile Coefficients Stiffness

90-to-100% 24 925263166085.70-to-90% 0 0.50-to-70% 0 0.30-to-50% 96 353944070642.10-to-30% 240 156796948878.1-to-10% 52 18615367883..1-to- 1% 264 5149901501..01-to-.1% 408 207083244..001-to-.01% 1586 37090300..0001-TO-.001% 6708 2960926.

OFF Diagonal Number of AveragePercentile Coefficients Stiffness

90-to-100% 48 444468332268.70-to-90% 0 0.50-to-70% 0 0.

113/226

Page 115: HTRI-COMPRESS Kettle Calculations

30-to-50% 144 172642992909.10-to-30% 616 67661296735.1-to-10% 4216 14647990355..1-to- 1% 8208 1786531066..01-to-.1% 5910 190162875..001-to-.01% 11014 12751559..0001-TO-.001% 392695 261894.

Table of Contents

ASME Code Stress Output Plots

1) Pl < 1.5(k)Smh (SUS,Membrane) Case 2

2) Qb < 3(Smh) (SUS,Bending) Case 2

3) Pl+Pb+Q < 3(Smavg) (OPE,Inside) Case 3

4) Pl+Pb+Q < 3(Smavg) (OPE,Outside) Case 3

5) Pl+Pb+Q+F < Sa (SIF,Outside) Case 5

6) Pl+Pb+Q+F < Sa (SIF,Outside) Case 6

7) Pl+Pb+Q+F < Sa (SIF,Outside) Case 7

8) Pl+Pb+Q+F < Sa (SIF,Outside) Case 8

9) Pl+Pb+Q+F < Sa (SIF,Outside) Case 9

10) Pl+Pb+Q < 3(Smavg) (EXP,Inside) Case 4

11) Pl+Pb+Q < 3(Smavg) (EXP,Outside) Case 4

12) Pl+Pb+Q+F < Sa (EXP,Inside) Case 4

13) Pl+Pb+Q+F < Sa (EXP,Outside) Case 4

Table of Contents

ASME Overstressed Areas

*** NO OVERSTRESSED NODES IN THIS MODEL ***

Table of Contents

Highest Primary Stress Ratios

Header Next to Nozzle Weld

Pl 1.5(k)Smh Primary Membrane Load Case 2

114/226

Page 116: HTRI-COMPRESS Kettle Calculations

16,052 30,000 Plot Reference:psi psi 1) Pl < 1.5(k)Smh (SUS,Membrane) Case 2

53%

Branch Next to Header Weld

Pl 1.5(k)Smh Primary Membrane Load Case 28,068 31,350 Plot Reference:psi psi 1) Pl < 1.5(k)Smh (SUS,Membrane) Case 2

25%

Branch Transition

Pl 1.5(k)Smh Primary Membrane Load Case 22,134 31,350 Plot Reference:psi psi 1) Pl < 1.5(k)Smh (SUS,Membrane) Case 2

6%

Header away from Junction

Pl 1.5(k)Smh Primary Membrane Load Case 215,557 30,000 Plot Reference:psi psi 1) Pl < 1.5(k)Smh (SUS,Membrane) Case 2

51%

Table of Contents

Highest Secondary Stress Ratios

Header Next to Nozzle Weld

Pl+Pb+Q 3(Smavg) Primary+Secondary (Inner) Load Case 321,985 60,000 Plot Reference:psi psi 3) Pl+Pb+Q < 3(Smavg) (OPE,Inside) Case 3

36%

Branch Next to Header Weld

Pl+Pb+Q 3(Smavg) Primary+Secondary (Inner) Load Case 49,683 62,700 Plot Reference:psi psi 10) Pl+Pb+Q < 3(Smavg) (EXP,Inside) Case 4

15%

Branch Transition

115/226

Page 117: HTRI-COMPRESS Kettle Calculations

Pl+Pb+Q 3(Smavg) Primary+Secondary (Outer) Load Case 33,682 62,700 Plot Reference:psi psi 4) Pl+Pb+Q < 3(Smavg) (OPE,Outside) Case 3

5%

Header away from Junction

Pl+Pb+Q 3(Smavg) Primary+Secondary (Inner) Load Case 319,091 60,000 Plot Reference:psi psi 3) Pl+Pb+Q < 3(Smavg) (OPE,Inside) Case 3

31%

Table of Contents

Highest Fatigue Stress Ratios

Header Next to Nozzle Weld

Pl+Pb+Q+F Sa Primary+Secondary+Peak (Inner) Load Case 414,414 568,400 Stress Concentration Factor = 1.350psi psi Strain Concentration Factor = 1.000Cycles Allowed for this Stress = 338035.42% "B31" Fatigue Stress Allowable = 50000.0Markl Fatigue Stress Allowable = 245000.0WRC 474 Mean Cycles to Failure = 6675118.WRC 474 99% Probability Cycles = 1550720.WRC 474 95% Probability Cycles = 2153010.BS5500 Allowed Cycles(Curve F) = 217104.Membrane-to-Bending Ratio = 0.847Bending-to-PL+PB+Q Ratio = 0.541Plot Reference:12) Pl+Pb+Q+F < Sa (EXP,Inside) Case 4

Branch Next to Header Weld

Pl+Pb+Q+F Sa Primary+Secondary+Peak (Inner) Load Case 46,536 564,533 Stress Concentration Factor = 1.350psi psi Strain Concentration Factor = 1.000Cycles Allowed for this Stress = 1000000.01% "B31" Fatigue Stress Allowable = 52250.0Markl Fatigue Stress Allowable = 245000.0WRC 474 Mean Cycles to Failure = 18910530.WRC 474 99% Probability Cycles = 4393171.WRC 474 95% Probability Cycles = 6099452.BS5500 Allowed Cycles(Curve F) = 2377162.Membrane-to-Bending Ratio = 4.204Bending-to-PL+PB+Q Ratio = 0.192Plot Reference:12) Pl+Pb+Q+F < Sa (EXP,Inside) Case 4

116/226

Page 118: HTRI-COMPRESS Kettle Calculations

Branch Transition

Pl+Pb+Q+F Sa Primary+Secondary+Peak (Outer) Load Case 42,481 564,533 Stress Concentration Factor = 1.350psi psi Strain Concentration Factor = 1.000Cycles Allowed for this Stress = 1000000.00% "B31" Fatigue Stress Allowable = 52250.0Markl Fatigue Stress Allowable = 245000.0WRC 474 Mean Cycles to Failure = 411231168.WRC 474 99% Probability Cycles = 95534552.WRC 474 95% Probability Cycles = 132639592.BS5500 Allowed Cycles(Curve F) = 117344832.Membrane-to-Bending Ratio = 0.845Bending-to-PL+PB+Q Ratio = 0.542Plot Reference:13) Pl+Pb+Q+F < Sa (EXP,Outside) Case 4

Header away from Junction

Pl+Pb+Q+F Sa Primary+Secondary+Peak (Inner) Load Case 49,350 568,400 Stress Concentration Factor = 1.000psi psi Strain Concentration Factor = 1.000Cycles Allowed for this Stress = 1000000.01% "B31" Fatigue Stress Allowable = 50000.0Markl Fatigue Stress Allowable = 245000.0WRC 474 Mean Cycles to Failure = 9613735.WRC 474 99% Probability Cycles = 2233400.WRC 474 95% Probability Cycles = 3100840.BS5500 Allowed Cycles(Curve F) = 323268.Membrane-to-Bending Ratio = 2.667Bending-to-PL+PB+Q Ratio = 0.273Plot Reference:12) Pl+Pb+Q+F < Sa (EXP,Inside) Case 4

Table of Contents

Stress Intensification Factors

Branch/Nozzle Sif Summary

Peak Primary SecondaryAxial : 296.400 63.261 439.111Inplane : 69.156 48.408 102.453Outplane: 319.826 60.389 473.817Torsion : 15.498 19.666 23.427Pressure: 1.101 1.228 1.631

The above stress intensification factors are to be usedin a beam-type analysis of the piping system. Inplane,Outplane and Torsional sif's should be used with thematching branch pipe whose diameter and thickness is givenbelow. The axial sif should be used to intensify theaxial stress in the branch pipe calculated by F/A. The

117/226

Page 119: HTRI-COMPRESS Kettle Calculations

pressure sif should be used to intensify the nominalpressure stress in the PARENT or HEADER, calculatedfrom PD/2T.

Pipe OD : 8.625 in.Pipe Thk: 0.438 in.Z approx: 23.034 cu.in.Z exact : 21.928 cu.in.

B31.3Peak Stress Sif .... 0.000 Axial171.831 Inplane226.775 Outplane1.000 TorsionalB31.1Peak Stress Sif .... 0.000 Axial197.590 Inplane197.590 Outplane197.590 TorsionalWRC 330Peak Stress Sif .... 0.000 Axial133.374 Inplane133.374 Outplane40.451 Torsional

Table of Contents

Allowable Loads

SECONDARY Maximum Conservative RealisticLoad Type (Range): Individual Simultaneous SimultaneousOccuring Occuring OccuringAxial Force (lb. ) 1538. 368. 552.Inplane Moment (in. lb.) 12842. 2173. 4609.Outplane Moment (in. lb.) 2777. 470. 997.Torsional Moment (in. lb.) 56161. 12303. 18454.Pressure (psi ) 169.99 60.50 60.50

PRIMARY Maximum Conservative RealisticLoad Type: Individual Simultaneous SimultaneousOccuring Occuring OccuringAxial Force (lb. ) 5337. 855. 1282.Inplane Moment (in. lb.) 13590. 1486. 3153.Outplane Moment (in. lb.) 10893. 1191. 2527.Torsional Moment (in. lb.) 33451. 5174. 7761.Pressure (psi ) 112.88 60.50 60.50

NOTES:

1) Maximum Individual Occuring Loads are the maximumallowed values of the respective loads if all otherload components are zero, i.e. the listed axial forcemay be applied if the inplane, outplane and torsionalmoments, and the pressure are zero.

118/226

Page 120: HTRI-COMPRESS Kettle Calculations

2) The Conservative Allowable Simultaneous loads arethe maximum loads that can be applied simultaneously.A conservative stress combination equation is usedthat typically produces stresses within 50-70% of theallowable stress.

3) The Realistic Allowable Simultaneous loads are themaximum loads that can be applied simultaneously. Amore realistic stress combination equation is usedbased on experience at Paulin Research. Stresses aretypically produced within 80-105% of the allowable.

4) Secondary allowable loads are limits for expansionand operating piping loads.

5) Primary allowable loads are limits for weight,primary and sustained type piping loads.

Table of Contents

Flexibilities

The following stiffnesses should be used in a piping,"beam-type" analysis of the intersection. The stiff-nesses should be inserted at the surface of thebranch/header or nozzle/vessel junction. The generalcharacteristics used for the branch pipe should be:

Outside Diameter = 8.625 in.Wall Thickness = 0.438 in.

Axial Translational Stiffness = 49637. lb./in.Inplane Rotational Stiffness = 40836. in.lb./degOutplane Rotational Stiffness = 5643. in.lb./degTorsional Rotational Stiffness = 1172469. in.lb./deg

Table of Contents

119/226

Page 121: HTRI-COMPRESS Kettle Calculations

Finite Element Model

Finite Element Model•

Elements at Discontinuity

1) Pl < 1.5(k)Smh (SUS Membrane) Case 2• 2) Qb < 3(Smh) (SUS Bending) Case 2• 3) Pl+Pb+Q < 3(Smavg) (OPE Inside) Case 3• 4) Pl+Pb+Q < 3(Smavg) (OPE Outside) Case 3• 10) Pl+Pb+Q < 3(Smavg) (EXP Inside) Case 4• 11) Pl+Pb+Q < 3(Smavg) (EXP Outside) Case 4• 12) Pl+Pb+Q+F < Sa (EXP Inside) Case 4• 13) Pl+Pb+Q+F < Sa (EXP Outside) Case 4• 5) Pl+Pb+Q+F < Sa (SIF Outside) Case 5• 6) Pl+Pb+Q+F < Sa (SIF Outside) Case 6• 7) Pl+Pb+Q+F < Sa (SIF Outside) Case 7• 8) Pl+Pb+Q+F < Sa (SIF Outside) Case 8• 9) Pl+Pb+Q+F < Sa (SIF Outside) Case 9•

Tabular Results

120/226

Page 122: HTRI-COMPRESS Kettle Calculations

121/226

Page 123: HTRI-COMPRESS Kettle Calculations

122/226

Page 124: HTRI-COMPRESS Kettle Calculations

123/226

Page 125: HTRI-COMPRESS Kettle Calculations

124/226

Page 126: HTRI-COMPRESS Kettle Calculations

125/226

Page 127: HTRI-COMPRESS Kettle Calculations

126/226

Page 128: HTRI-COMPRESS Kettle Calculations

127/226

Page 129: HTRI-COMPRESS Kettle Calculations

TS Inlet (N1)

ASME Section VIII Division 1, 2007 Edition

tw(lower) = 0.1875 inLeg41 = 0.125 in

Note: round inside edges per UG-76(c)

Located on: Front ChannelLiquid static head included: 0.1458 psiNozzle material specification: SA-455 <= 3/8 (II-D p. 22, ln. 14)Nozzle longitudinal joint efficiency: 1Flange description: 16 inch Class 150 WN A105Bolt Material: SA-193 B7 Bolt <= 2 1/2 (II-D p. 348, ln. 33)Flange rated MDMT: -51.4°F(UCS-66(b)(1)(b))Liquid static head on flange: 0 psiASME B16.5 flange rating MAWP: 195.65 psi @ 414.5°FASME B16.5 flange rating MAP: 285 psi @ 70°FASME B16.5 flange hydro test: 450 psi @ 70°FNozzle orientation: 0°Local vessel minimum thickness: 0.1875 inNozzle center line offset to datum line: 91.8642 inEnd of nozzle to shell center: 14.75 inNozzle inside diameter, new: 13.876 inNozzle nominal wall thickness: 1.062 inNozzle corrosion allowance: 0.0625 inProjection available outside vessel, Lpr: 4.4975 inProjection available outside vessel to flange face, Lf: 5.9375 in

128/226

Page 130: HTRI-COMPRESS Kettle Calculations

Reinforcement Calculations for Internal Pressure

The attached ASME B16.5 flange limits the nozzle MAWP.

Division 2 Part 4.5 Maximum Local PrimaryMembrane Stress

For P = 195.8 psi @ 414.5 °FThe opening is adequately reinforced

UG-45 NozzleWall

ThicknessSummary (in)The nozzle passes

UG-45

PL(psi)

Sallow(psi)

A1(in2)

A2(in2)

A3(in2)

A5(in2)

Awelds(in2)

treq(in)

tmin(in)

13,705 30,000 0.2376 0.9995 -- -- 0.0078 0.1481 1.062

Division 2 Part 4.5 Strength of Nozzle Attachment Welds SummaryAverage Shear Stress in Weld

kyLτ

(in)L41T(in)

L42T(in)

L43T(in)

fwelds(lbf)

τ(psi)

S(psi)

Overstressed

1.1428 12.5664 0.0884 0 0 13,705.47 9,219 20,000 No

UW-16 Weld Sizing Summary

Weld description Required weldthroat size (in)

Actual weldthroat size (in) Status

Nozzle to shell fillet (Leg41) 0.0875 0.0875 weld size is adequate

Calculations for internal pressure 195.8 psi @ 414.5 °F

Nozzle is impact test exempt per UG-20(f).

Nozzle UCS-66 governing thk: 0.1875 inNozzle rated MDMT: -20 °FDivision 2 Part 4.5 Design Rules for Openings in Shells and Heads (U-2(g) analysis)

Effective radius of the vessel

Reff = 0.5*Di= 0.5*17.375= 8.6875 in

Limit of reinforcement along the vessel wall

LR = min[ (Reff*t)0.5, 2*Rn]= min[ (8.6875*0.125)0.5, 2*7.0005]= 1.0421 in

129/226

Page 131: HTRI-COMPRESS Kettle Calculations

Limit of reinforcement along the nozzle wall projecting outside the vessel surface

LH1 = t + te + (Rn*tn)0.5

= 0.125 + 0 + (7.0005*0.9995)0.5

= 2.7702 in

LH2 = Lpr1 + t= 4.4975 + 0.125= 4.6225 in

LH3 = 8*(t + te)= 8*(0.125 + 0)= 1 in

LH = min[ LH1, LH2, LH3]= min[ 2.7702, 4.6225, 1]= 1 in

Effective thickness

teff = t= 0.125 in

Total available area near the nozzle opening

λ = min[ (dn + tn) / ((Di + teff)*teff)0.5, 12]= min[ (14.001 + 0.9995) / ((17.375 + 0.125)*0.125)0.5, 12]= 10.1422

A1 = t*LR*max[ (λ / 5)0.85 , 1]= 0.125*1.0421*max[ (10.1422 / 5)0.85 , 1]= 0.125*1.0421*1.8243= 0.2376 in2

A2 = tn*LH= 0.9995*1= 0.9995 in2

A41 = 0.5*L412

= 0.5*0.1252

= 0.0078 in2

frn = Sn / S= 21,300 / 20,000= 1.065

AT = A1 + frn*A2 + A41= 0.2376 + 1.065*0.9995 + 0.0078= 1.3099 in2

130/226

Page 132: HTRI-COMPRESS Kettle Calculations

Forces at nozzle to vessel intersection

Rxn = tn / ln[(Rn + tn) / Rn]= 0.9995 / ln[(7.0005 + 0.9995) / 7.0005]= 7.4891 in

Rxs = teff / ln[(Reff + teff) / Reff]= 0.125 / ln[(8.6875 + 0.125) / 8.6875]= 8.7499 in

fN = P*Rxn*(LH - t)= 195.8*7.4891*(1 - 0.125)= 1,283.05 lbf

fS = P*Rxs*(LR + tn)= 195.8*8.7499*(1.0421 + 0.9995)= 3,497.61 lbf

fY = P*Rxs*Rnc= 195.8*8.7499*7.0005= 11,993.14 lbf

Average local primary membrane stress

σavg = (fN + fS + fY) / AT= (1,283.05 + 3,497.61 + 11,993.14) / 1.3099= 12,805 psi

General primary membrane stress

σcirc = P*Rxs / teff= 195.8*8.7499 / 0.125= 13,705 psi

Maximum local primary membrane stress at the nozzle intersection

PL = max[ (2*σavg - σcirc) , σcirc]= max[ (2*12,805 - 13,705) , 13,705]= 13,705 psi

Allowable stress

Sallow = 1.5*S*E= 1.5*20,000*1= 30,000 psi

PL = 13,705 psi ≤ Sallow = 30,000 psi satisfactory

Maximum allowable working pressure

Ap = Rxn*(LH - t) + Rxs*(LR + tn + Rnc)

131/226

Page 133: HTRI-COMPRESS Kettle Calculations

= (7.4891*(1 - 0.125) + 8.7499*(1.0421 + 0.9995 + 7.0005))= 85.6699 in2

Pmax1 = Sallow / (2*Ap/ AT - Rxs / teff)= 30,000 / (2*85.6699/ 1.3099 - 8.7499 / 0.125)= 493.3889 psi

Pmax2 = S*(t / Rxs)= 20,000*(0.125 / 8.7499)= 285.7191 psi

Pmax = min[ Pmax1, Pmax2]= min[ 493.39, 285.72]= 285.7191 psi

Strength of Nozzle Attachment Welds

Discontinuity force factor

ky = (Rnc + tn) / Rnc= (7.0005 + 0.9995) / 7.0005= 1.1428

Weld length resisting discontinuity force

Lτ = π / 2 * (Rn + tn)= π / 2 * (7.0005 + 0.9995)= 12.5664 in

Weld throat dimensions

L41T = 0.7071*L41= 0.7071*0.125= 0.0884 in

Average shear stress in weld

fwelds = min[ fY*ky, 1.5*Sn*(A2 + A3) ]= min[ 11,993.14*1.1428, 1.5*21,300*(0.9995 + 0) ]= 13,705.47 lbf

τ = fwelds / [Lτ*(0.49*L41T + 0.6*tw1 + 0.49*L43T)]= 13,705.47 / [12.5664*(0.49*0.0884 + 0.6*0.125 + 0.49*0)]= 9,219 psi

τ = 9,219 psi ≤ S = 20,000 psi satisfactory

132/226

Page 134: HTRI-COMPRESS Kettle Calculations

UW-16(c) Weld Check

Fillet weld: tmin = lesser of 0.75 or tn or t = 0.125 intc(min) = lesser of 0.25 or 0.7*tmin = 0.0875 intc(actual) = 0.7*Leg = 0.7*0.125 = 0.0875 in

The fillet weld size is satisfactory.

Weld strength calculations are not required for this detail which conforms to Fig. UW-16.1, sketch (c-e).

UG-45 Nozzle Neck Thickness Check

Wall thickness per UG-45(a): tr1 = 0.1272 in (E =1)Wall thickness per UG-45(b)(1): tr2 = 0.1481 inWall thickness per UG-16(b): tr3 = 0.125 inStandard wall pipe per UG-45(b)(4): tr4 = 0.3906 inThe greater of tr2 or tr3: tr5 = 0.1481 inThe lesser of tr4 or tr5: tr6 = 0.1481 in

Required per UG-45 is the larger of tr1 or tr6 = 0.1481 in

Available nozzle wall thickness new, tn = 1.062 in

The nozzle neck thickness is adequate.

% Extreme fiber elongation - UCS-79(d)

= (50*t / Rf)*(1 - Rf / Ro)= (50*1.062 / 7.469)*(1 - 7.469 / ∞)= 7.1094%

133/226

Page 135: HTRI-COMPRESS Kettle Calculations

The extreme fiber elongation exceeds 5 percent and the thickness exceeds 5/8 inch;. Heat treatment per UCS-56 isrequired if fabricated by cold forming.

Reinforcement Calculations for MAP

The attached ASME B16.5 flange limits the nozzle MAP.

Appendix 1-10 Maximum Local PrimaryMembrane StressFor P = 285 psi @ 70 °F

The opening is adequately reinforced

UG-45Nozzle WallThicknessSummary

(in)The nozzle

passes UG-45

PL(psi)

Sallow(psi)

A1(in2)

A2(in2)

A3(in2)

A5(in2)

Awelds(in2)

treq(in)

tmin(in)

13,110 30,000 0.5809 1.593 -- -- 0.0078 0.124 1.062

Division 2 Part 4.5 Strength of Nozzle Attachment Welds SummaryAverage Shear Stress in Weld

kyLτ

(in)L41T(in)

L42T(in)

L43T(in)

fwelds(lbf)

τ(psi)

S(psi)

Overstressed

1.1531 12.5664 0.0884 0 0 19,665 10,044 20,000 No

UW-16 Weld Sizing Summary

Weld description Required weldthroat size (in)

Actual weldthroat size (in) Status

Nozzle to shell fillet (Leg41) 0.1312 0.0875 weld size is NOT adequate

Calculations for internal pressure 285 psi @ 70 °F

Appendix 1-10

Effective radius of the vessel

Reff = 0.5*Di= 0.5*17.25= 8.625 in

Limit of reinforcement along the vessel wall

LR = 8*t= 8*0.1875= 1.5 in

134/226

Page 136: HTRI-COMPRESS Kettle Calculations

Limit of reinforcement along the nozzle wall projecting outside the vessel surface

LH1 = t + 0.78*(Rn*tn)0.5

= 0.1875 + 0.78*(6.938*1.062)0.5

= 2.3048 in

LH2 = Lpr1 + t= 4.4975 + 0.1875= 4.685 in

LH3 = 8*(t + te)= 8*(0.1875 + 0)= 1.5 in

LH = min[ LH1, LH2, LH3]= min[ 2.3048, 4.685, 1.5]= 1.5 in

Effective thickness

teff = t= 0.1875 in

Total available area near the nozzle opening

λ = min[ (dn + tn) / ((Di + teff)*teff)0.5, 10]= min[ (13.876 + 1.062) / ((17.25 + 0.1875)*0.1875)0.5, 10]= 8.2613

A1 = t*LR*max[ (λ / 4) , 1]= 0.1875*1.5*max[ (8.2613 / 4) , 1]= 0.1875*1.5*2.0653= 0.5809 in2

A2 = tn*LH= 1.062*1.5= 1.593 in2

A41 = 0.5*L412

= 0.5*0.1252

= 0.0078 in2

AT = A1 + A2 + A41= 0.5809 + 1.593 + 0.0078= 2.1817 in2

Forces at nozzle to vessel intersection

fN = P*Rn*(LH - t)= 285*6.938*(1.5 - 0.1875)= 2,595.25 lbf

135/226

Page 137: HTRI-COMPRESS Kettle Calculations

fS = P*Reff*(LR + tn)= 285*8.625*(1.5 + 1.062)= 6,297.72 lbf

fY = P*Reff*Rnc= 285*8.625*6.938= 17,054.47 lbf

Average local primary membrane stress

σavg = (fN + fS + fY) / AT= (2,595.25 + 6,297.72 + 17,054.47) / 2.1817= 11,893 psi

General primary membrane stress

σcirc = P*Reff / teff= 285*8.625 / 0.1875= 13,110 psi

Maximum local primary membrane stress at the nozzle intersection

PL = max[ (2*σavg - σcirc) , σcirc]= max[ (2*11,893 - 13,110) , 13,110]= 13,110 psi

Allowable stress

Sallow = 1.5*S*E= 1.5*20,000*1= 30,000 psi

PL = 13,110 psi ≤ Sallow = 30,000 psi satisfactory

Maximum allowable pressure

Ap = Rn*(LH - t) + Reff*(LR + tn + Rnc)= (6.938*(1.5 - 0.1875) + 8.625*(1.5 + 1.062 + 6.938))= 91.0436 in2

Pmax1 = Sallow / (2*Ap/ AT - Reff / teff)= 30,000 / (2*91.0436/ 2.1817 - 8.625 / 0.1875)= 800.8184 psi

Pmax2 = S*(t / Reff)= 20,000*(0.1875 / 8.625)= 434.7826 psi

Pmax = min[ Pmax1, Pmax2]= min[ 800.82, 434.78]

136/226

Page 138: HTRI-COMPRESS Kettle Calculations

= 434.7826 psi

Division 2 Part 4.5 Strength of Nozzle Attachment Welds (U-2(g) analysis)

Discontinuity force factor

ky = (Rnc + tn) / Rnc= (6.938 + 1.062) / 6.938= 1.1531

Weld length resisting discontinuity force

Lτ = π / 2 * (Rn + tn)= π / 2 * (6.938 + 1.062)= 12.5664 in

Weld throat dimensions

L41T = 0.7071*L41= 0.7071*0.125= 0.0884 in

Average shear stress in weld

fwelds = min[ fY*ky, 1.5*Sn*(A2 + A3) ]= min[ 17,054.47*1.1531, 1.5*21,400*(1.593 + 0) ]= 19,665 lbf

τ = fwelds / [Lτ*(0.49*L41T + 0.6*tw1 + 0.49*L43T)]= 19,665 / [12.5664*(0.49*0.0884 + 0.6*0.1875 + 0.49*0)]= 10,044 psi

τ = 10,044 psi ≤ S = 20,000 psi satisfactory

UW-16(c) Weld Check

Fillet weld: tmin = lesser of 0.75 or tn or t = 0.1875 intc(min) = lesser of 0.25 or 0.7*tmin = 0.1312 intc(actual) = 0.7*Leg = 0.7*0.125 = 0.0875 in

** The fillet weld size IS NOT satisfactory. **UG-45 Nozzle Neck Thickness Check

Wall thickness per UG-45(a): tr1 = 0.0931 in (E =1)Wall thickness per UG-45(b)(1): tr2 = 0.124 inWall thickness per UG-16(b): tr3 = 0.0625 in

137/226

Page 139: HTRI-COMPRESS Kettle Calculations

Standard wall pipe per UG-45(b)(4): tr4 = 0.3281 inThe greater of tr2 or tr3: tr5 = 0.124 inThe lesser of tr4 or tr5: tr6 = 0.124 in

138/226

Page 140: HTRI-COMPRESS Kettle Calculations

Required per UG-45 is the larger of tr1 or tr6 = 0.124 in

Available nozzle wall thickness new, tn = 1.062 in

The nozzle neck thickness is adequate.

Reinforcement Calculations for External Pressure

Division 2 Part 4.5 Maximum Local PrimaryMembrane Stress

For Pe = 60.54 psi @ 414.5 °FThe opening is adequately reinforced

UG-45 NozzleWall

ThicknessSummary (in)The nozzle passes

UG-45

PL(psi)

Sallow(psi)

A1(in2)

A2(in2)

A3(in2)

A5(in2)

Awelds(in2)

treq(in)

tmin(in)

4,388 6,403 0.1303 0.9995 -- -- 0.0078 0.1407 1.062

Division 2 Part 4.5 Strength of Nozzle Attachment Welds SummaryAverage Shear Stress in Weld

kyLτ

(in)L41T(in)

L42T(in)

L43T(in)

fwelds(lbf)

τ(psi)

S(psi)

Overstressed

1.1428 12.5664 0.0884 0 0 4,238.01 2,851 20,000 No

UW-16 Weld Sizing Summary

Weld description Required weldthroat size (in)

Actual weldthroat size (in) Status

Nozzle to shell fillet (Leg41) 0.0875 0.0875 weld size is adequate

Calculations for external pressure 60.54 psi @ 414.5 °F

Division 2 Part 4.5 Design Rules for Openings in Shells and Heads (U-2(g) analysis)

Effective radius of the vessel

Reff = 0.5*Di= 0.5*17.375= 8.6875 in

Limit of reinforcement along the vessel wall

LR = min[ (Reff*t)0.5, 2*Rn]= min[ (8.6875*0.125)0.5, 2*7.0005]= 1.0421 in

139/226

Page 141: HTRI-COMPRESS Kettle Calculations

Limit of reinforcement along the nozzle wall projecting outside the vessel surface

LH1 = t + te + (Rn*tn)0.5

= 0.125 + 0 + (7.0005*0.9995)0.5

= 2.7702 in

LH2 = Lpr1 + t= 4.4975 + 0.125= 4.6225 in

LH3 = 8*(t + te)= 8*(0.125 + 0)= 1 in

LH = min[ LH1, LH2, LH3]= min[ 2.7702, 4.6225, 1]= 1 in

Effective thickness

teff = t= 0.125 in

Total available area near the nozzle opening

λ = 0 (for external pressure design)

A1 = t*LR*max[ (λ / 5)0.85 , 1]= 0.125*1.0421*max[ (0 / 5)0.85 , 1]= 0.125*1.0421*1= 0.1303 in2

A2 = tn*LH= 0.9995*1= 0.9995 in2

A41 = 0.5*L412

= 0.5*0.1252

= 0.0078 in2

frn = Sn / S= 21,300 / 20,000= 1.065

AT = A1 + frn*A2 + A41= 0.1303 + 1.065*0.9995 + 0.0078= 1.2025 in2

Forces at nozzle to vessel intersection

Rxn = tn / ln[(Rn + tn) / Rn]

140/226

Page 142: HTRI-COMPRESS Kettle Calculations

= 0.9995 / ln[(7.0005 + 0.9995) / 7.0005]= 7.4891 in

Rxs = teff / ln[(Reff + teff) / Reff]= 0.125 / ln[(8.6875 + 0.125) / 8.6875]= 8.7499 in

fN = P*Rxn*(LH - t)= 60.54*7.4891*(1 - 0.125)= 396.75 lbf

fS = P*Rxs*(LR + tn)= 60.54*8.7499*(1.0421 + 0.9995)= 1,081.53 lbf

fY = P*Rxs*Rnc= 60.54*8.7499*7.0005= 3,708.53 lbf

Average local primary membrane stress

σavg = (fN + fS + fY) / AT= (396.75 + 1,081.53 + 3,708.53) / 1.2025= 4,313 psi

General primary membrane stress

σcirc = P*Rxs / teff= 60.54*8.7499 / 0.125= 4,238 psi

Maximum local primary membrane stress at the nozzle intersection

PL = max[ (2*σavg - σcirc) , σcirc]= max[ (2*4,313 - 4,238) , 4,238]= 4,388 psi

Allowable stress

Sallow = min[ Sc, S]= min[ 6,403, 20,000]= 6,403 psi

PL = 4,388 psi ≤ Sallow = 6,403 psi satisfactory

Maximum allowable external pressure

Ap = Rxn*(LH - t) + Rxs*(LR + tn + Rnc)= (7.4891*(1 - 0.125) + 8.7499*(1.0421 + 0.9995 + 7.0005))= 85.6699 in2

141/226

Page 143: HTRI-COMPRESS Kettle Calculations

Pmax1 = Sallow / (2*Ap/ AT - Rxs / teff)= 6,403 / (2*85.6699/ 1.2025 - 8.7499 / 0.125)= 88.332 psi

Pmax2 = S*(t / Rxs)= 20,000*(0.125 / 8.7499)= 285.7191 psi

Pmax = min[ Pmax1, Pmax2]= min[ 88.33, 285.72]= 88.332 psi

Strength of Nozzle Attachment Welds

Discontinuity force factor

ky = (Rnc + tn) / Rnc= (7.0005 + 0.9995) / 7.0005= 1.1428

Weld length resisting discontinuity force

Lτ = π / 2 * (Rn + tn)= π / 2 * (7.0005 + 0.9995)= 12.5664 in

Weld throat dimensions

L41T = 0.7071*L41= 0.7071*0.125= 0.0884 in

Average shear stress in weld

fwelds = min[ fY*ky, 1.5*Sn*(A2 + A3) ]= min[ 3,708.53*1.1428, 1.5*21,300*(0.9995 + 0) ]= 4,238.01 lbf

τ = fwelds / [Lτ*(0.49*L41T + 0.6*tw1 + 0.49*L43T)]= 4,238.01 / [12.5664*(0.49*0.0884 + 0.6*0.125 + 0.49*0)]= 2,851 psi

τ = 2,851 psi ≤ S = 20,000 psi satisfactory

UW-16(c) Weld Check

Fillet weld: tmin = lesser of 0.75 or tn or t = 0.125 in

142/226

Page 144: HTRI-COMPRESS Kettle Calculations

tc(min) = lesser of 0.25 or 0.7*tmin = 0.0875 intc(actual) = 0.7*Leg = 0.7*0.125 = 0.0875 in

The fillet weld size is satisfactory.

Weld strength calculations are not required for this detail which conforms to Fig. UW-16.1, sketch (c-e).

UG-45 Nozzle Neck Thickness Check

Wall thickness per UG-45(a): tr1 = 0.1407 inWall thickness per UG-45(b)(2): tr2 = 0.0888 inWall thickness per UG-16(b): tr3 = 0.125 inStandard wall pipe per UG-45(b)(4): tr4 = 0.3906 inThe greater of tr2 or tr3: tr5 = 0.125 inThe lesser of tr4 or tr5: tr6 = 0.125 in

Required per UG-45 is the larger of tr1 or tr6 = 0.1407 in

Available nozzle wall thickness new, tn = 1.062 in

The nozzle neck thickness is adequate.

External Pressure, (Corroded & at 414.50°F) UG-28(c)

L/Do = 11.0540/16.0000 = 0.6909Do/t = 16.0000/0.078211 = 204.5757

From table G: A = 0.000674From table CS-2: B = 9289.4531 psi

Pa = 4*B/(3*(Do/t))= 4*9289.4531/(3*(16.0000/0.078211))= 60.5445 psi

Design thickness for external pressure Pa = 60.5445 psi

= t + Corrosion = 0.078211 + 0.0625 = 0.1407"

143/226

Page 145: HTRI-COMPRESS Kettle Calculations

Tabular Results

Results were generated with the finite element program FE/Pipe&#174. Stress results are post-processed inaccordance with the rules specified in ASME Section III and ASME Section VIII, Division 2.

Analysis Time Stamp: Thu Nov 25 14:30:52 2010.

Model Notes• Load Case Report• Solution Data• ASME Code Stress Output Plots• ASME Overstressed Areas• Highest Primary Stress Ratios• Highest Secondary Stress Ratios• Highest Fatigue Stress Ratios• Stress Intensification Factors• Allowable Loads• Flexibilities• Graphical Results•

Model Notes

Input Echo:

Model Type : Cylindrical Shell

Parent Outside Diameter : 17.625 in.Thickness : 0.125 in.Fillet Along Shell : 0.125 in.

Parent Properties:Cold Allowable : 20000.0 psiHot Allowable : 20000.0 psiMaterial ID #2 : Low Alloy SteelUltimate Tensile (Amb) : 70000.0 psiYield Strength (Amb) : 38000.0 psiYield Strength (Hot) : 32300.0 psiElastic Modulus (Amb) : 29400000.0 psiPoissons Ratio : 0.300Weight Density : 0.283 lb./cu.in.(NOT USED)

Nozzle Outside Diameter : 16.000 in.Thickness : 1.000 in.Length : 6.000 in.Nozzle Weld Length : 0.125 in.Nozzle Tilt Angle : 0.000 deg.Distance from Top : 11.625 in.Distance from Bottom : 11.625 in.

Nozzle Properties

144/226

Page 146: HTRI-COMPRESS Kettle Calculations

Cold Allowable : 21400.0 psiHot Allowable : 21300.0 psiMaterial ID #2 : Low Alloy SteelUltimate Tensile (Amb) : 75000.0 psiYield Strength (Amb) : 38000.0 psiYield Strength (Hot) : 32300.0 psiElastic Modulus (Amb) : 29200000.0 psiPoissons Ratio : 0.300Weight Density : 0.283 lb./cu.in. (NOT USED)

Design Operating Cycles : 0.Ambient Temperature (Deg.) : 70.00Nozzle Pressure : 0.1 psiVessel Pressure : 0.1 psi

No external forces or bending moments were included in this analysis.

Both ends of the model are "fixed," except that one endis free axially so that longitudinal pressure stressesmay be developed in the geometry.

Stresses are NOT averaged.

Unstructured Mesh Generation used for this model.

Vessel Centerline Vector : 0.000 0.000 1.000Nozzle Orientation Vector : 0.000 1.000 0.000

Table of Contents

Load Case Report

Inner and outer element temperatures are the samethroughout the model. No thermal ratchetingcalculations will be performed.

THE 9 LOAD CASES ANALYZED ARE:

1 Weight ONLY

Weight ONLY case run to get the stress rangebetween the installed and the operating states.It is assumed that the weight only case accuratelyrepresents the installed stress state.

/-------- Loads in Case 1Forces due to Weight

2 Sustained

Sustained case run to satisfy Pl Qb, the bending stress due to primary loads mustbe less than 3Smh as per Note 3 of Fig. NB-3222-1,and Table 4-120.1

145/226

Page 147: HTRI-COMPRESS Kettle Calculations

/-------- Loads in Case 2Forces due to WeightPressure Case 1

3 Operating

Operating case run to compute the extreme operatingstress state to be used in the shakedown and peakstress calculations.

/-------- Loads in Case 3Pressure Case 1Force Case (Operating)

4 Expansion (Fatigue Calc Performed)

Expansion case run to get the RANGE of stressesas described in NB-3222.2, or Note 1 of 4-130.1.The allowable is 3Smavg.

/-------- Combinations in Expansion Case 4Plus Stress Results from CASE 3Minus Stress Results from CASE 1

5 Program Generated -- Force Only

Case run to compute sif's and flexibilities.

/-------- Loads in Case 5Force Case (Axial)

6 Program Generated -- Force Only

Case run to compute sif's and flexibilities.

/-------- Loads in Case 6Force Case (Inplane)

7 Program Generated -- Force Only

Case run to compute sif's and flexibilities.

/-------- Loads in Case 7Force Case (Outplane)

8 Program Generated -- Force Only

Case run to compute sif's and flexibilities.

/-------- Loads in Case 8Force Case (Torsion)

9 Program Generated -- Force Only

Case run to compute sif's and flexibilities.

/-------- Loads in Case 9

146/226

Page 148: HTRI-COMPRESS Kettle Calculations

Pressure Case 1

Table of Contents

Solution Data

Maximum Solution Row Size = 1014Number of Nodes = 2355Number of Elements = 760Number of Solution Cases = 8

Largest On-Diagonal Stiffness = 2381148381049.Smallest On-Diagonal Stiffness = 2.

Largest Off-Diagonal Stiffness = 1153967166297.Smallest Off-Diagonal Stiffness = 1.

Summation of Loads per Case

Case # FX FY FZ

1 0. -151. 0.2 0. -154. 35.3 0. -154. 35.4 0. 2009614. 0.5 0. 0. 0.6 0. 0. 0.7 0. 0. 0.8 0. -3. 35.

Equation Coefficient (Stiffness) Distribution)

OnDiagonal Number of AveragePercentile Coefficients Stiffness

90-to-100% 40 2360063001927.70-to-90% 0 0.50-to-70% 0 0.30-to-50% 160 886725194314.10-to-30% 400 363252103024.1-to-10% 428 64311099006..1-to- 1% 128 12355396064..01-to-.1% 410 484258060..001-to-.01% 3520 91318297..0001-TO-.001% 9044 6987867.

OFF Diagonal Number of AveragePercentile Coefficients Stiffness

90-to-100% 80 1143045757771.70-to-90% 0 0.50-to-70% 0 0.

147/226

Page 149: HTRI-COMPRESS Kettle Calculations

30-to-50% 240 447337846266.10-to-30% 840 181341141920.1-to-10% 8224 35080453750..1-to- 1% 15764 4622162155..01-to-.1% 7096 506163982..001-to-.01% 19964 31609910..0001-TO-.001% 589104 765281.

Table of Contents

ASME Code Stress Output Plots

1) Pl < 1.5(k)Smh (SUS,Membrane) Case 2

2) Qb < 3(Smh) (SUS,Bending) Case 2

3) Pl+Pb+Q < 3(Smavg) (OPE,Inside) Case 3

4) Pl+Pb+Q < 3(Smavg) (OPE,Outside) Case 3

5) Pl+Pb+Q+F < Sa (SIF,Outside) Case 5

6) Pl+Pb+Q+F < Sa (SIF,Outside) Case 6

7) Pl+Pb+Q+F < Sa (SIF,Outside) Case 7

8) Pl+Pb+Q+F < Sa (SIF,Outside) Case 8

9) Pl+Pb+Q+F < Sa (SIF,Outside) Case 9

10) Pl+Pb+Q < 3(Smavg) (EXP,Inside) Case 4

11) Pl+Pb+Q < 3(Smavg) (EXP,Outside) Case 4

12) Pl+Pb+Q+F < Sa (EXP,Inside) Case 4

13) Pl+Pb+Q+F < Sa (EXP,Outside) Case 4

Table of Contents

ASME Overstressed Areas

*** NO OVERSTRESSED NODES IN THIS MODEL ***

Table of Contents

Highest Primary Stress Ratios

Header Next to Nozzle Weld

Qb 3(Smh) Primary Bending Load Case 2

148/226

Page 150: HTRI-COMPRESS Kettle Calculations

184 60,000 Plot Reference:psi psi 2) Qb < 3(Smh) (SUS,Bending) Case 2

0%

Branch Next to Header Weld

Pl 1.5(k)Smh Primary Membrane Load Case 215 31,950 Plot Reference:psi psi 1) Pl < 1.5(k)Smh (SUS,Membrane) Case 2

0%

Branch Transition

Pl 1.5(k)Smh Primary Membrane Load Case 25 31,950 Plot Reference:psi psi 1) Pl < 1.5(k)Smh (SUS,Membrane) Case 2

0%

Header away from Junction

Pl 1.5(k)Smh Primary Membrane Load Case 291 30,000 Plot Reference:psi psi 1) Pl < 1.5(k)Smh (SUS,Membrane) Case 2

0%

Table of Contents

Highest Secondary Stress Ratios

Header Next to Nozzle Weld

Pl+Pb+Q 3(Smavg) Primary+Secondary (Outer) Load Case 3198 60,000 Plot Reference:psi psi 4) Pl+Pb+Q < 3(Smavg) (OPE,Outside) Case 3

0%

Branch Next to Header Weld

Pl+Pb+Q 3(Smavg) Primary+Secondary (Inner) Load Case 319 64,050 Plot Reference:psi psi 3) Pl+Pb+Q < 3(Smavg) (OPE,Inside) Case 3

0%

Branch Transition

149/226

Page 151: HTRI-COMPRESS Kettle Calculations

Pl+Pb+Q 3(Smavg) Primary+Secondary (Outer) Load Case 312 64,050 Plot Reference:psi psi 4) Pl+Pb+Q < 3(Smavg) (OPE,Outside) Case 3

0%

Header away from Junction

Pl+Pb+Q 3(Smavg) Primary+Secondary (Outer) Load Case 3150 60,000 Plot Reference:psi psi 4) Pl+Pb+Q < 3(Smavg) (OPE,Outside) Case 3

0%

Table of Contents

Highest Fatigue Stress Ratios

Header Next to Nozzle Weld

Pl+Pb+Q+F Sa Primary+Secondary+Peak (Inner) Load Case 410 568,400 Stress Concentration Factor = 1.350psi psi Strain Concentration Factor = 1.000Cycles Allowed for this Stress = 1000000.00% "B31" Fatigue Stress Allowable = 50000.0Markl Fatigue Stress Allowable = 245000.0WRC 474 Mean Cycles to Failure = 352740638908WRC 474 99% Probability Cycles = 819464137133WRC 474 95% Probability Cycles = 113773898419BS5500 Allowed Cycles(Curve F) =*************Membrane-to-Bending Ratio = 0.815Bending-to-PL+PB+Q Ratio = 0.551Plot Reference:12) Pl+Pb+Q+F < Sa (EXP,Inside) Case 4

Branch Next to Header Weld

Pl+Pb+Q+F Sa Primary+Secondary+Peak (Inner) Load Case 45 564,533 Stress Concentration Factor = 1.350psi psi Strain Concentration Factor = 1.000Cycles Allowed for this Stress = 1000000.00% "B31" Fatigue Stress Allowable = 53375.0Markl Fatigue Stress Allowable = 245000.0WRC 474 Mean Cycles to Failure = 740499692370WRC 474 99% Probability Cycles = 172028086043WRC 474 95% Probability Cycles = 238842744783BS5500 Allowed Cycles(Curve F) =*************Membrane-to-Bending Ratio = 5.511Bending-to-PL+PB+Q Ratio = 0.154Plot Reference:12) Pl+Pb+Q+F < Sa (EXP,Inside) Case 4

150/226

Page 152: HTRI-COMPRESS Kettle Calculations

Branch Transition

Pl+Pb+Q+F Sa Primary+Secondary+Peak (Outer) Load Case 43 564,533 Stress Concentration Factor = 1.350psi psi Strain Concentration Factor = 1.000Cycles Allowed for this Stress = 1000000.00% "B31" Fatigue Stress Allowable = 53375.0Markl Fatigue Stress Allowable = 245000.0WRC 474 Mean Cycles to Failure = 540823484503WRC 474 99% Probability Cycles = 125640601000WRC 474 95% Probability Cycles = 174438636438BS5500 Allowed Cycles(Curve F) =*************Membrane-to-Bending Ratio = 0.428Bending-to-PL+PB+Q Ratio = 0.700Plot Reference:13) Pl+Pb+Q+F < Sa (EXP,Outside) Case 4

Header away from Junction

Pl+Pb+Q+F Sa Primary+Secondary+Peak (Outer) Load Case 46 568,400 Stress Concentration Factor = 1.000psi psi Strain Concentration Factor = 1.000Cycles Allowed for this Stress = 1000000.00% "B31" Fatigue Stress Allowable = 50000.0Markl Fatigue Stress Allowable = 245000.0WRC 474 Mean Cycles to Failure = 525177519939WRC 474 99% Probability Cycles = 122005826012WRC 474 95% Probability Cycles = 169392146502BS5500 Allowed Cycles(Curve F) =*************Membrane-to-Bending Ratio = 7.765Bending-to-PL+PB+Q Ratio = 0.114Plot Reference:13) Pl+Pb+Q+F < Sa (EXP,Outside) Case 4

Table of Contents

Stress Intensification Factors

Branch/Nozzle Sif Summary

Peak Primary SecondaryAxial : 63.401 35.895 93.927Inplane : 18.143 19.158 26.878Outplane: 86.509 26.240 128.162Torsion : 14.919 21.770 22.102Pressure: 0.931 1.125 1.379

The above stress intensification factors are to be usedin a beam-type analysis of the piping system. Inplane,Outplane and Torsional sif's should be used with thematching branch pipe whose diameter and thickness is givenbelow. The axial sif should be used to intensify theaxial stress in the branch pipe calculated by F/A. The

151/226

Page 153: HTRI-COMPRESS Kettle Calculations

pressure sif should be used to intensify the nominalpressure stress in the PARENT or HEADER, calculatedfrom PD/2T.

Pipe OD : 16.000 in.Pipe Thk: 0.999 in.Z approx: 176.638 cu.in.Z exact : 166.339 cu.in.

B31.3Peak Stress Sif .... 0.000 Axial93.672 Inplane122.231 Outplane1.000 TorsionalB31.1Peak Stress Sif .... 0.000 Axial122.231 Inplane122.231 Outplane122.231 TorsionalWRC 330Peak Stress Sif .... 0.000 Axial100.454 Inplane119.358 Outplane102.311 Torsional

Table of Contents

Allowable Loads

SECONDARY Maximum Conservative RealisticLoad Type (Range): Individual Simultaneous SimultaneousOccuring Occuring OccuringAxial Force (lb. ) 30088. 10028. 15041.Inplane Moment (in. lb.) 371319. 87504. 185624.Outplane Moment (in. lb.) 77873. 18351. 38929.Torsional Moment (in. lb.) 451554. 150489. 225734.Pressure (psi ) 617.08 0.15 0.15

PRIMARY Maximum Conservative RealisticLoad Type: Individual Simultaneous SimultaneousOccuring Occuring OccuringAxial Force (lb. ) 39367. 13117. 19676.Inplane Moment (in. lb.) 260468. 61372. 130190.Outplane Moment (in. lb.) 190175. 44809. 95055.Torsional Moment (in. lb.) 229223. 76382. 114572.Pressure (psi ) 378.15 0.15 0.15

NOTES:

1) Maximum Individual Occuring Loads are the maximumallowed values of the respective loads if all otherload components are zero, i.e. the listed axial forcemay be applied if the inplane, outplane and torsionalmoments, and the pressure are zero.

152/226

Page 154: HTRI-COMPRESS Kettle Calculations

2) The Conservative Allowable Simultaneous loads arethe maximum loads that can be applied simultaneously.A conservative stress combination equation is usedthat typically produces stresses within 50-70% of theallowable stress.

3) The Realistic Allowable Simultaneous loads are themaximum loads that can be applied simultaneously. Amore realistic stress combination equation is usedbased on experience at Paulin Research. Stresses aretypically produced within 80-105% of the allowable.

4) Secondary allowable loads are limits for expansionand operating piping loads.

5) Primary allowable loads are limits for weight,primary and sustained type piping loads.

Table of Contents

Flexibilities

The following stiffnesses should be used in a piping,"beam-type" analysis of the intersection. The stiff-nesses should be inserted at the surface of thebranch/header or nozzle/vessel junction. The generalcharacteristics used for the branch pipe should be:

Outside Diameter = 16.000 in.Wall Thickness = 0.999 in.

Axial Translational Stiffness = 5782656. lb./in.Inplane Rotational Stiffness = 4622923. in.lb./degOutplane Rotational Stiffness = 997225. in.lb./degTorsional Rotational Stiffness = 57612744. in.lb./deg

Table of Contents

153/226

Page 155: HTRI-COMPRESS Kettle Calculations

Finite Element Model

Finite Element Model• 1) Pl < 1.5(k)Smh (SUS Membrane) Case 2• 2) Qb < 3(Smh) (SUS Bending) Case 2• 3) Pl+Pb+Q < 3(Smavg) (OPE Inside) Case 3• 4) Pl+Pb+Q < 3(Smavg) (OPE Outside) Case 3• 10) Pl+Pb+Q < 3(Smavg) (EXP Inside) Case 4• 11) Pl+Pb+Q < 3(Smavg) (EXP Outside) Case 4• 12) Pl+Pb+Q+F < Sa (EXP Inside) Case 4• 13) Pl+Pb+Q+F < Sa (EXP Outside) Case 4• 5) Pl+Pb+Q+F < Sa (SIF Outside) Case 5• 6) Pl+Pb+Q+F < Sa (SIF Outside) Case 6• 7) Pl+Pb+Q+F < Sa (SIF Outside) Case 7• 8) Pl+Pb+Q+F < Sa (SIF Outside) Case 8• 9) Pl+Pb+Q+F < Sa (SIF Outside) Case 9•

Tabular Results

154/226

Page 156: HTRI-COMPRESS Kettle Calculations

155/226

Page 157: HTRI-COMPRESS Kettle Calculations

156/226

Page 158: HTRI-COMPRESS Kettle Calculations

157/226

Page 159: HTRI-COMPRESS Kettle Calculations

158/226

Page 160: HTRI-COMPRESS Kettle Calculations

159/226

Page 161: HTRI-COMPRESS Kettle Calculations

160/226

Page 162: HTRI-COMPRESS Kettle Calculations

161/226

Page 163: HTRI-COMPRESS Kettle Calculations

TS Outlet (N2)

ASME Section VIII Division 1, 2007 Edition

tw(lower) = 0.1875 inLeg41 = 0.125 in

Note: round inside edges per UG-76(c)

Located on: Front ChannelLiquid static head included: 0.5785 psiNozzle material specification: SA-455 <= 3/8 (II-D p. 22, ln. 14)Nozzle longitudinal joint efficiency: 1Flange description: 8 inch Class 150 WN A105Bolt Material: SA-193 B7 Bolt <= 2 1/2 (II-D p. 348, ln. 33)Flange rated MDMT: -55°F(UCS-66(b)(1)(b))Liquid static head on flange: 0.7258 psiASME B16.5 flange rating MAWP: 195.65 psi @ 414.5°FASME B16.5 flange rating MAP: 285 psi @ 70°FASME B16.5 flange hydro test: 450 psi @ 70°FNozzle orientation: 180°Local vessel minimum thickness: 0.1875 inNozzle center line offset to datum line: 91.8642 inEnd of nozzle to shell center: 14.8125 inNozzle inside diameter, new: 8.071 inNozzle nominal wall thickness: 0.277 inNozzle corrosion allowance: 0.0625 inProjection available outside vessel, Lpr: 4.88 inProjection available outside vessel to flange face, Lf: 6 in

162/226

Page 164: HTRI-COMPRESS Kettle Calculations

Reinforcement Calculations for Internal Pressure

Available reinforcement per UG-37 governs the MAWP of this nozzle.

UG-37 Area Calculation Summary (in2)For P = 161.32 psi @ 414.5 °F

The opening is adequately reinforced

UG-45 NozzleWall

ThicknessSummary (in)The nozzle passes

UG-45

Arequired

Aavailable A1 A2 A3 A5

Awelds treq tmin

0.5772 0.5775 0.4473 0.1146 -- -- 0.0156 0.1329 0.277

Weld Failure Path Analysis Summary

The nozzle is exempt from weld strengthcalculations per UW-15(b)(1)

UW-16 Weld Sizing Summary

Weld description Required weldthroat size (in)

Actual weldthroat size (in) Status

Nozzle to shell fillet (Leg41) 0.0875 0.0875 weld size is adequate

Calculations for internal pressure 161.32 psi @ 414.5 °F

Nozzle impact test exemption temperature from Fig UCS-66 Curve A = 18 °FFig UCS-66.1 MDMT reduction = 45.6 °F, (coincident ratio = 0.56336).

Nozzle UCS-66 governing thk: 0.1875 inNozzle rated MDMT: -27.6 °F

Limits of reinforcement per UG-40

Parallel to the vessel wall: d = 8.196 inNormal to the vessel wall outside: 2.5*(t - C) = 0.3125 in

Nozzle required thickness per UG-27(c)(1)

trn = P*Rn/(Sn*E - 0.6*P)= 161.3249*4.098/(21,300*1 - 0.6*161.3249)= 0.0312 in

Required thickness tr from UG-37(a)

tr = P*R/(S*E - 0.6*P)= 161.3249*8.6875/(20,000*1 - 0.6*161.3249)= 0.0704 in

163/226

Page 165: HTRI-COMPRESS Kettle Calculations

Area required per UG-37(c)

Allowable stresses: Sn = 21,300, Sv = 20,000 psi

fr1 = lesser of 1 or Sn/Sv = 1fr2 = lesser of 1 or Sn/Sv = 1

A = d*tr*F + 2*tn*tr*F*(1 - fr1)= 8.196*0.0704*1 + 2*0.2145*0.0704*1*(1 - 1)= 0.5772 in2

Area available from FIG. UG-37.1

A1 = larger of the following= 0.4473 in2

= d*(E1*t - F*tr) - 2*tn*(E1*t - F*tr)*(1 - fr1)= 8.196*(1*0.125 - 1*0.0704) - 2*0.2145*(1*0.125 - 1*0.0704)*(1 - 1)= 0.4473 in2

= 2*(t + tn)*(E1*t - F*tr) - 2*tn*(E1*t - F*tr)*(1 - fr1)= 2*(0.125 + 0.2145)*(1*0.125 - 1*0.0704) - 2*0.2145*(1*0.125 - 1*0.0704)*(1 - 1)= 0.0371 in2

A2 = smaller of the following= 0.1146 in2

= 5*(tn - trn)*fr2*t= 5*(0.2145 - 0.0312)*1*0.125= 0.1146 in2

= 5*(tn - trn)*fr2*tn= 5*(0.2145 - 0.0312)*1*0.2145= 0.1966 in2

A41 = Leg2*fr2= 0.1252*1= 0.0156 in2

Area = A1 + A2 + A41

= 0.4473 + 0.1146 + 0.0156= 0.5775 in2

As Area >= A the reinforcement is adequate.

UW-16(c) Weld Check

Fillet weld: tmin = lesser of 0.75 or tn or t = 0.125 intc(min) = lesser of 0.25 or 0.7*tmin = 0.0875 intc(actual) = 0.7*Leg = 0.7*0.125 = 0.0875 in

164/226

Page 166: HTRI-COMPRESS Kettle Calculations

The fillet weld size is satisfactory.

Weld strength calculations are not required for this detail which conforms to Fig. UW-16.1, sketch (c-e).

UG-45 Nozzle Neck Thickness Check

Wall thickness per UG-45(a): tr1 = 0.0937 in (E =1)Wall thickness per UG-45(b)(1): tr2 = 0.1329 inWall thickness per UG-16(b): tr3 = 0.125 inStandard wall pipe per UG-45(b)(4): tr4 = 0.3443 inThe greater of tr2 or tr3: tr5 = 0.1329 inThe lesser of tr4 or tr5: tr6 = 0.1329 in

Required per UG-45 is the larger of tr1 or tr6 = 0.1329 in

Available nozzle wall thickness new, tn = 0.277 in

The nozzle neck thickness is adequate.

% Extreme fiber elongation - UCS-79(d)

= (50*t / Rf)*(1 - Rf / Ro)= (50*0.277 / 4.174)*(1 - 4.174 / ∞)= 3.3182%

165/226

Page 167: HTRI-COMPRESS Kettle Calculations

The extreme fiber elongation does not exceed 5%.

Reinforcement Calculations for MAP

Available reinforcement per UG-37 governs the MAP of this nozzle.

UG-37 Area Calculation Summary (in2)For P = 248.71 psi @ 70 °F

The opening is adequately reinforced

UG-45 NozzleWall

ThicknessSummary (in)The nozzle passes

UG-45

Arequired

Aavailable A1 A2 A3 A5

Awelds treq tmin

0.8722 0.8722 0.6412 0.2154 -- -- 0.0156 0.1081 0.277

Weld Failure Path Analysis Summary

The nozzle is exempt from weld strengthcalculations per UW-15(b)(1)

UW-16 Weld Sizing Summary

Weld description Required weldthroat size (in)

Actual weldthroat size (in) Status

Nozzle to shell fillet (Leg41) 0.1312 0.0875 weld size is NOT adequate

Calculations for internal pressure 248.71 psi @ 70 °F

Limits of reinforcement per UG-40

Parallel to the vessel wall: d = 8.071 inNormal to the vessel wall outside: 2.5*(t - C) = 0.4688 in

Nozzle required thickness per UG-27(c)(1)

trn = P*Rn/(Sn*E - 0.6*P)= 248.705*4.0355/(21,400*1 - 0.6*248.705)= 0.0472 in

Required thickness tr from UG-37(a)

tr = P*R/(S*E - 0.6*P)= 248.705*8.625/(20,000*1 - 0.6*248.705)= 0.1081 in

Area required per UG-37(c)

Allowable stresses: Sn = 21,400, Sv = 20,000 psi

166/226

Page 168: HTRI-COMPRESS Kettle Calculations

fr1 = lesser of 1 or Sn/Sv = 1fr2 = lesser of 1 or Sn/Sv = 1

A = d*tr*F + 2*tn*tr*F*(1 - fr1)= 8.071*0.1081*1 + 2*0.277*0.1081*1*(1 - 1)= 0.8722 in2

Area available from FIG. UG-37.1

A1 = larger of the following= 0.6412 in2

= d*(E1*t - F*tr) - 2*tn*(E1*t - F*tr)*(1 - fr1)= 8.071*(1*0.1875 - 1*0.1081) - 2*0.277*(1*0.1875 - 1*0.1081)*(1 - 1)= 0.6412 in2

= 2*(t + tn)*(E1*t - F*tr) - 2*tn*(E1*t - F*tr)*(1 - fr1)= 2*(0.1875 + 0.277)*(1*0.1875 - 1*0.1081) - 2*0.277*(1*0.1875 - 1*0.1081)*(1 - 1)= 0.0738 in2

A2 = smaller of the following= 0.2154 in2

= 5*(tn - trn)*fr2*t= 5*(0.277 - 0.0472)*1*0.1875= 0.2154 in2

= 5*(tn - trn)*fr2*tn= 5*(0.277 - 0.0472)*1*0.277= 0.3183 in2

A41 = Leg2*fr2= 0.1252*1= 0.0156 in2

Area = A1 + A2 + A41

= 0.6412 + 0.2154 + 0.0156= 0.8722 in2

As Area >= A the reinforcement is adequate.

UW-16(c) Weld Check

Fillet weld: tmin = lesser of 0.75 or tn or t = 0.1875 intc(min) = lesser of 0.25 or 0.7*tmin = 0.1312 intc(actual) = 0.7*Leg = 0.7*0.125 = 0.0875 in

** The fillet weld size IS NOT satisfactory. **UG-45 Nozzle Neck Thickness Check

Wall thickness per UG-45(a): tr1 = 0.0472 in (E =1)Wall thickness per UG-45(b)(1): tr2 = 0.1081 in

167/226

Page 169: HTRI-COMPRESS Kettle Calculations

Wall thickness per UG-16(b): tr3 = 0.0625 inStandard wall pipe per UG-45(b)(4): tr4 = 0.2818 inThe greater of tr2 or tr3: tr5 = 0.1081 inThe lesser of tr4 or tr5: tr6 = 0.1081 in

168/226

Page 170: HTRI-COMPRESS Kettle Calculations

Required per UG-45 is the larger of tr1 or tr6 = 0.1081 in

Available nozzle wall thickness new, tn = 0.277 in

The nozzle neck thickness is adequate.

Reinforcement Calculations for External Pressure

UG-37 Area Calculation Summary (in2)For Pe = 29.83 psi @ 414.5 °F

The opening is adequately reinforced

UG-45Nozzle WallThicknessSummary

(in)The nozzle

passes UG-45

Arequired

Aavailable A1 A2 A3 A5

Awelds treq tmin

0.3842 0.3842 0.2561 0.1125 -- -- 0.0156 0.125 0.277

Weld Failure Path Analysis Summary

Weld strength calculations are not required forexternal pressure

UW-16 Weld Sizing Summary

Weld description Required weldthroat size (in)

Actual weldthroat size (in) Status

Nozzle to shell fillet (Leg41) 0.0875 0.0875 weld size is adequate

Calculations for external pressure 29.83 psi @ 414.5 °F

Limits of reinforcement per UG-40

Parallel to the vessel wall: d = 8.196 inNormal to the vessel wall outside: 2.5*(t - C) = 0.3125 in

Nozzle required thickness per UG-28 trn = 0.0345 in

From UG-37(d)(1) required thickness tr = 0.0938 in

Area required per UG-37(d)(1)

Allowable stresses: Sn = 21,300, Sv = 20,000 psi

fr1 = lesser of 1 or Sn/Sv = 1fr2 = lesser of 1 or Sn/Sv = 1

A = 0.5*(d*tr*F + 2*tn*tr*F*(1 - fr1))

169/226

Page 171: HTRI-COMPRESS Kettle Calculations

= 0.5*(8.196*0.0938*1 + 2*0.2145*0.0938*1*(1 - 1))= 0.3842 in2

Area available from FIG. UG-37.1

A1 = larger of the following= 0.2561 in2

= d*(E1*t - F*tr) - 2*tn*(E1*t - F*tr)*(1 - fr1)= 8.196*(1*0.125 - 1*0.0938) - 2*0.2145*(1*0.125 - 1*0.0938)*(1 - 1)= 0.2561 in2

= 2*(t + tn)*(E1*t - F*tr) - 2*tn*(E1*t - F*tr)*(1 - fr1)= 2*(0.125 + 0.2145)*(1*0.125 - 1*0.0938) - 2*0.2145*(1*0.125 - 1*0.0938)*(1 - 1)= 0.0212 in2

A2 = smaller of the following= 0.1125 in2

= 5*(tn - trn)*fr2*t= 5*(0.2145 - 0.0345)*1*0.125= 0.1125 in2

= 5*(tn - trn)*fr2*tn= 5*(0.2145 - 0.0345)*1*0.2145= 0.1931 in2

A41 = Leg2*fr2= 0.1252*1= 0.0156 in2

Area = A1 + A2 + A41

= 0.2561 + 0.1125 + 0.0156= 0.3842 in2

As Area >= A the reinforcement is adequate.

UW-16(c) Weld Check

Fillet weld: tmin = lesser of 0.75 or tn or t = 0.125 intc(min) = lesser of 0.25 or 0.7*tmin = 0.0875 intc(actual) = 0.7*Leg = 0.7*0.125 = 0.0875 in

The fillet weld size is satisfactory.

Weld strength calculations are not required for this detail which conforms to Fig. UW-16.1, sketch (c-e).

UG-45 Nozzle Neck Thickness Check

Wall thickness per UG-45(a): tr1 = 0.097 inWall thickness per UG-45(b)(2): tr2 = 0.0755 inWall thickness per UG-16(b): tr3 = 0.125 in

170/226

Page 172: HTRI-COMPRESS Kettle Calculations

Standard wall pipe per UG-45(b)(4): tr4 = 0.3443 inThe greater of tr2 or tr3: tr5 = 0.125 inThe lesser of tr4 or tr5: tr6 = 0.125 in

Required per UG-45 is the larger of tr1 or tr6 = 0.125 in

Available nozzle wall thickness new, tn = 0.277 in

The nozzle neck thickness is adequate.

External Pressure, (Corroded & at 414.50°F) UG-28(c)

L/Do = 7.1273/8.6250 = 0.8264Do/t = 8.6250/0.034461 = 250.2845

From table G: A = 0.000408From table CS-2: B = 5598.6196 psi

Pa = 4*B/(3*(Do/t))= 4*5598.6196/(3*(8.6250/0.034461))= 29.8254 psi

Design thickness for external pressure Pa = 29.8254 psi

= t + Corrosion = 0.034461 + 0.0625 = 0.0970"

171/226

Page 173: HTRI-COMPRESS Kettle Calculations

Tabular Results

Results were generated with the finite element program FE/Pipe&#174. Stress results are post-processed inaccordance with the rules specified in ASME Section III and ASME Section VIII, Division 2.

Analysis Time Stamp: Thu Nov 25 14:30:21 2010.

Model Notes• Load Case Report• Solution Data• ASME Code Stress Output Plots• ASME Overstressed Areas• Highest Primary Stress Ratios• Highest Secondary Stress Ratios• Highest Fatigue Stress Ratios• Stress Intensification Factors• Allowable Loads• Flexibilities• Graphical Results•

Model Notes

Input Echo:

Model Type : Cylindrical Shell

Parent Outside Diameter : 17.625 in.Thickness : 0.125 in.Fillet Along Shell : 0.125 in.

Parent Properties:Cold Allowable : 20000.0 psiHot Allowable : 20000.0 psiMaterial ID #2 : Low Alloy SteelUltimate Tensile (Amb) : 70000.0 psiYield Strength (Amb) : 38000.0 psiYield Strength (Hot) : 32300.0 psiElastic Modulus (Amb) : 29400000.0 psiPoissons Ratio : 0.300Weight Density : 0.283 lb./cu.in.(NOT USED)

Nozzle Outside Diameter : 8.625 in.Thickness : 0.214 in.Length : 6.062 in.Nozzle Weld Length : 0.125 in.Nozzle Tilt Angle : 0.000 deg.Distance from Top : 11.625 in.Distance from Bottom : 11.625 in.

Nozzle Properties

172/226

Page 174: HTRI-COMPRESS Kettle Calculations

Cold Allowable : 21400.0 psiHot Allowable : 21300.0 psiMaterial ID #2 : Low Alloy SteelUltimate Tensile (Amb) : 75000.0 psiYield Strength (Amb) : 38000.0 psiYield Strength (Hot) : 32300.0 psiElastic Modulus (Amb) : 29200000.0 psiPoissons Ratio : 0.300Weight Density : 0.283 lb./cu.in. (NOT USED)

Design Operating Cycles : 0.Ambient Temperature (Deg.) : 70.00Nozzle Pressure : 0.6 psiVessel Pressure : 0.6 psi

No external forces or bending moments were included in this analysis.

Both ends of the model are "fixed," except that one endis free axially so that longitudinal pressure stressesmay be developed in the geometry.

Stresses are NOT averaged.

Unstructured Mesh Generation used for this model.

Vessel Centerline Vector : 0.000 0.000 1.000Nozzle Orientation Vector : 0.000 -1.000 0.000

Table of Contents

Load Case Report

Inner and outer element temperatures are the samethroughout the model. No thermal ratchetingcalculations will be performed.

THE 9 LOAD CASES ANALYZED ARE:

1 Weight ONLY

Weight ONLY case run to get the stress rangebetween the installed and the operating states.It is assumed that the weight only case accuratelyrepresents the installed stress state.

/-------- Loads in Case 1Forces due to Weight

2 Sustained

Sustained case run to satisfy Pl Qb, the bending stress due to primary loads mustbe less than 3Smh as per Note 3 of Fig. NB-3222-1,and Table 4-120.1

173/226

Page 175: HTRI-COMPRESS Kettle Calculations

/-------- Loads in Case 2Forces due to WeightPressure Case 1

3 Operating

Operating case run to compute the extreme operatingstress state to be used in the shakedown and peakstress calculations.

/-------- Loads in Case 3Pressure Case 1Force Case (Operating)

4 Expansion (Fatigue Calc Performed)

Expansion case run to get the RANGE of stressesas described in NB-3222.2, or Note 1 of 4-130.1.The allowable is 3Smavg.

/-------- Combinations in Expansion Case 4Plus Stress Results from CASE 3Minus Stress Results from CASE 1

5 Program Generated -- Force Only

Case run to compute sif's and flexibilities.

/-------- Loads in Case 5Force Case (Axial)

6 Program Generated -- Force Only

Case run to compute sif's and flexibilities.

/-------- Loads in Case 6Force Case (Inplane)

7 Program Generated -- Force Only

Case run to compute sif's and flexibilities.

/-------- Loads in Case 7Force Case (Outplane)

8 Program Generated -- Force Only

Case run to compute sif's and flexibilities.

/-------- Loads in Case 8Force Case (Torsion)

9 Program Generated -- Force Only

Case run to compute sif's and flexibilities.

/-------- Loads in Case 9

174/226

Page 176: HTRI-COMPRESS Kettle Calculations

Pressure Case 1

Table of Contents

Solution Data

Maximum Solution Row Size = 708Number of Nodes = 1215Number of Elements = 388Number of Solution Cases = 8

Largest On-Diagonal Stiffness = 296151034771.Smallest On-Diagonal Stiffness = 2.

Largest Off-Diagonal Stiffness = 133911826400.Smallest Off-Diagonal Stiffness = 1.

Summation of Loads per Case

Case # FX FY FZ

1 0. -54. 0.2 0. -52. 137.3 0. -52. 137.4 0. -125324. 0.5 0. 0. 0.6 0. 0. 0.7 0. 0. 0.8 0. 2. 137.

Equation Coefficient (Stiffness) Distribution)

OnDiagonal Number of AveragePercentile Coefficients Stiffness

90-to-100% 24 294248147250.70-to-90% 0 0.50-to-70% 12 149628597740.30-to-50% 172 113004092414.10-to-30% 152 72134257559.1-to-10% 148 6028634056..1-to- 1% 186 1185434547..01-to-.1% 918 74504631..001-to-.01% 2663 14583238..0001-TO-.001% 3015 633054.

OFF Diagonal Number of AveragePercentile Coefficients Stiffness

90-to-100% 48 132839369693.70-to-90% 0 0.50-to-70% 0 0.

175/226

Page 177: HTRI-COMPRESS Kettle Calculations

30-to-50% 192 50154167788.10-to-30% 1464 22256099087.1-to-10% 5696 4020734916..1-to- 1% 6324 614066247..01-to-.1% 6300 44266165..001-to-.01% 25469 3801545..0001-TO-.001% 282835 147879.

Table of Contents

ASME Code Stress Output Plots

1) Pl < 1.5(k)Smh (SUS,Membrane) Case 2

2) Qb < 3(Smh) (SUS,Bending) Case 2

3) Pl+Pb+Q < 3(Smavg) (OPE,Inside) Case 3

4) Pl+Pb+Q < 3(Smavg) (OPE,Outside) Case 3

5) Pl+Pb+Q+F < Sa (SIF,Outside) Case 5

6) Pl+Pb+Q+F < Sa (SIF,Outside) Case 6

7) Pl+Pb+Q+F < Sa (SIF,Outside) Case 7

8) Pl+Pb+Q+F < Sa (SIF,Outside) Case 8

9) Pl+Pb+Q+F < Sa (SIF,Outside) Case 9

10) Pl+Pb+Q < 3(Smavg) (EXP,Inside) Case 4

11) Pl+Pb+Q < 3(Smavg) (EXP,Outside) Case 4

12) Pl+Pb+Q+F < Sa (EXP,Inside) Case 4

13) Pl+Pb+Q+F < Sa (EXP,Outside) Case 4

Table of Contents

ASME Overstressed Areas

*** NO OVERSTRESSED NODES IN THIS MODEL ***

Table of Contents

Highest Primary Stress Ratios

Header Next to Nozzle Weld

Pl 1.5(k)Smh Primary Membrane Load Case 2

176/226

Page 178: HTRI-COMPRESS Kettle Calculations

103 30,000 Plot Reference:psi psi 1) Pl < 1.5(k)Smh (SUS,Membrane) Case 2

0%

Branch Next to Header Weld

Pl 1.5(k)Smh Primary Membrane Load Case 286 31,950 Plot Reference:psi psi 1) Pl < 1.5(k)Smh (SUS,Membrane) Case 2

0%

Branch Transition

Pl 1.5(k)Smh Primary Membrane Load Case 225 31,950 Plot Reference:psi psi 1) Pl < 1.5(k)Smh (SUS,Membrane) Case 2

0%

Header away from Junction

Pl 1.5(k)Smh Primary Membrane Load Case 293 30,000 Plot Reference:psi psi 1) Pl < 1.5(k)Smh (SUS,Membrane) Case 2

0%

Table of Contents

Highest Secondary Stress Ratios

Header Next to Nozzle Weld

Pl+Pb+Q 3(Smavg) Primary+Secondary (Outer) Load Case 3135 60,000 Plot Reference:psi psi 4) Pl+Pb+Q < 3(Smavg) (OPE,Outside) Case 3

0%

Branch Next to Header Weld

Pl+Pb+Q 3(Smavg) Primary+Secondary (Inner) Load Case 390 64,050 Plot Reference:psi psi 3) Pl+Pb+Q < 3(Smavg) (OPE,Inside) Case 3

0%

Branch Transition

177/226

Page 179: HTRI-COMPRESS Kettle Calculations

Pl+Pb+Q 3(Smavg) Primary+Secondary (Outer) Load Case 435 64,050 Plot Reference:psi psi 11) Pl+Pb+Q < 3(Smavg) (EXP,Outside) Case 4

0%

Header away from Junction

Pl+Pb+Q 3(Smavg) Primary+Secondary (Outer) Load Case 3112 60,000 Plot Reference:psi psi 4) Pl+Pb+Q < 3(Smavg) (OPE,Outside) Case 3

0%

Table of Contents

Highest Fatigue Stress Ratios

Header Next to Nozzle Weld

Pl+Pb+Q+F Sa Primary+Secondary+Peak (Outer) Load Case 472 568,400 Stress Concentration Factor = 1.350psi psi Strain Concentration Factor = 1.000Cycles Allowed for this Stress = 1000000.00% "B31" Fatigue Stress Allowable = 50000.0Markl Fatigue Stress Allowable = 245000.0WRC 474 Mean Cycles to Failure = 643321676431WRC 474 99% Probability Cycles = 149452320931WRC 474 95% Probability Cycles = 207498678108BS5500 Allowed Cycles(Curve F) = 562908506986Membrane-to-Bending Ratio = 1.475Bending-to-PL+PB+Q Ratio = 0.404Plot Reference:13) Pl+Pb+Q+F < Sa (EXP,Outside) Case 4

Branch Next to Header Weld

Pl+Pb+Q+F Sa Primary+Secondary+Peak (Inner) Load Case 450 564,533 Stress Concentration Factor = 1.350psi psi Strain Concentration Factor = 1.000Cycles Allowed for this Stress = 1000000.00% "B31" Fatigue Stress Allowable = 53375.0Markl Fatigue Stress Allowable = 245000.0WRC 474 Mean Cycles to Failure = 125324822052WRC 474 99% Probability Cycles = 291146479697WRC 474 95% Probability Cycles = 404226006056BS5500 Allowed Cycles(Curve F) = 347097910875Membrane-to-Bending Ratio = 8.475Bending-to-PL+PB+Q Ratio = 0.106Plot Reference:12) Pl+Pb+Q+F < Sa (EXP,Inside) Case 4

178/226

Page 180: HTRI-COMPRESS Kettle Calculations

Branch Transition

Pl+Pb+Q+F Sa Primary+Secondary+Peak (Outer) Load Case 423 564,533 Stress Concentration Factor = 1.350psi psi Strain Concentration Factor = 1.000Cycles Allowed for this Stress = 1000000.00% "B31" Fatigue Stress Allowable = 53375.0Markl Fatigue Stress Allowable = 245000.0WRC 474 Mean Cycles to Failure = 144103830034WRC 474 99% Probability Cycles = 334772635172WRC 474 95% Probability Cycles = 464796294053BS5500 Allowed Cycles(Curve F) =1556488726366Membrane-to-Bending Ratio = 0.757Bending-to-PL+PB+Q Ratio = 0.569Plot Reference:13) Pl+Pb+Q+F < Sa (EXP,Outside) Case 4

Header away from Junction

Pl+Pb+Q+F Sa Primary+Secondary+Peak (Outer) Load Case 445 568,400 Stress Concentration Factor = 1.000psi psi Strain Concentration Factor = 1.000Cycles Allowed for this Stress = 1000000.00% "B31" Fatigue Stress Allowable = 50000.0Markl Fatigue Stress Allowable = 245000.0WRC 474 Mean Cycles to Failure = 107512107892WRC 474 99% Probability Cycles = 249765140889WRC 474 95% Probability Cycles = 346772408893BS5500 Allowed Cycles(Curve F) = 134516131590Membrane-to-Bending Ratio = 2.484Bending-to-PL+PB+Q Ratio = 0.287Plot Reference:13) Pl+Pb+Q+F < Sa (EXP,Outside) Case 4

Table of Contents

Stress Intensification Factors

Branch/Nozzle Sif Summary

Peak Primary SecondaryAxial : 27.038 9.026 40.057Inplane : 8.121 6.505 12.031Outplane: 33.302 7.533 49.336Torsion : 3.394 4.193 5.028Pressure: 1.756 2.072 2.602

The above stress intensification factors are to be usedin a beam-type analysis of the piping system. Inplane,Outplane and Torsional sif's should be used with thematching branch pipe whose diameter and thickness is givenbelow. The axial sif should be used to intensify theaxial stress in the branch pipe calculated by F/A. The

179/226

Page 181: HTRI-COMPRESS Kettle Calculations

pressure sif should be used to intensify the nominalpressure stress in the PARENT or HEADER, calculatedfrom PD/2T.

Pipe OD : 8.625 in.Pipe Thk: 0.214 in.Z approx: 11.917 cu.in.Z exact : 11.628 cu.in.

B31.3Peak Stress Sif .... 0.000 Axial20.103 Inplane26.232 Outplane1.000 TorsionalB31.1Peak Stress Sif .... 0.000 Axial29.555 Inplane29.555 Outplane29.555 TorsionalWRC 330Peak Stress Sif .... 0.000 Axial17.999 Inplane19.950 Outplane9.588 Torsional

Table of Contents

Allowable Loads

SECONDARY Maximum Conservative RealisticLoad Type (Range): Individual Simultaneous SimultaneousOccuring Occuring OccuringAxial Force (lb. ) 8489. 2825. 4237.Inplane Moment (in. lb.) 57989. 13644. 28943.Outplane Moment (in. lb.) 14141. 3327. 7058.Torsional Moment (in. lb.) 138764. 46179. 69268.Pressure (psi ) 327.06 0.58 0.58

PRIMARY Maximum Conservative RealisticLoad Type: Individual Simultaneous SimultaneousOccuring Occuring OccuringAxial Force (lb. ) 18837. 6263. 9394.Inplane Moment (in. lb.) 53624. 12604. 26737.Outplane Moment (in. lb.) 46311. 10888. 23096.Torsional Moment (in. lb.) 83195. 27653. 41480.Pressure (psi ) 205.34 0.58 0.58

NOTES:

1) Maximum Individual Occuring Loads are the maximumallowed values of the respective loads if all otherload components are zero, i.e. the listed axial forcemay be applied if the inplane, outplane and torsionalmoments, and the pressure are zero.

180/226

Page 182: HTRI-COMPRESS Kettle Calculations

2) The Conservative Allowable Simultaneous loads arethe maximum loads that can be applied simultaneously.A conservative stress combination equation is usedthat typically produces stresses within 50-70% of theallowable stress.

3) The Realistic Allowable Simultaneous loads are themaximum loads that can be applied simultaneously. Amore realistic stress combination equation is usedbased on experience at Paulin Research. Stresses aretypically produced within 80-105% of the allowable.

4) Secondary allowable loads are limits for expansionand operating piping loads.

5) Primary allowable loads are limits for weight,primary and sustained type piping loads.

Table of Contents

Flexibilities

The following stiffnesses should be used in a piping,"beam-type" analysis of the intersection. The stiff-nesses should be inserted at the surface of thebranch/header or nozzle/vessel junction. The generalcharacteristics used for the branch pipe should be:

Outside Diameter = 8.625 in.Wall Thickness = 0.214 in.

Axial Translational Stiffness = 519157. lb./in.Inplane Rotational Stiffness = 235239. in.lb./degOutplane Rotational Stiffness = 44442. in.lb./degTorsional Rotational Stiffness = 5304302. in.lb./deg

Table of Contents

181/226

Page 183: HTRI-COMPRESS Kettle Calculations

Finite Element Model

Finite Element Model• 1) Pl < 1.5(k)Smh (SUS Membrane) Case 2• 2) Qb < 3(Smh) (SUS Bending) Case 2• 3) Pl+Pb+Q < 3(Smavg) (OPE Inside) Case 3• 4) Pl+Pb+Q < 3(Smavg) (OPE Outside) Case 3• 10) Pl+Pb+Q < 3(Smavg) (EXP Inside) Case 4• 11) Pl+Pb+Q < 3(Smavg) (EXP Outside) Case 4• 12) Pl+Pb+Q+F < Sa (EXP Inside) Case 4• 13) Pl+Pb+Q+F < Sa (EXP Outside) Case 4• 5) Pl+Pb+Q+F < Sa (SIF Outside) Case 5• 6) Pl+Pb+Q+F < Sa (SIF Outside) Case 6• 7) Pl+Pb+Q+F < Sa (SIF Outside) Case 7• 8) Pl+Pb+Q+F < Sa (SIF Outside) Case 8• 9) Pl+Pb+Q+F < Sa (SIF Outside) Case 9•

Tabular Results

182/226

Page 184: HTRI-COMPRESS Kettle Calculations

183/226

Page 185: HTRI-COMPRESS Kettle Calculations

184/226

Page 186: HTRI-COMPRESS Kettle Calculations

185/226

Page 187: HTRI-COMPRESS Kettle Calculations

186/226

Page 188: HTRI-COMPRESS Kettle Calculations

187/226

Page 189: HTRI-COMPRESS Kettle Calculations

188/226

Page 190: HTRI-COMPRESS Kettle Calculations

189/226

Page 191: HTRI-COMPRESS Kettle Calculations

Tube Side Flange (front)

ASME VIII-1, 2007 Edition, Appendix 2 Flange Calculations

Flange is attached to: Front Channel (Right)Flange type: Weld neck integralFlange material specification: SA-516 70 (II-D p. 18, ln. 22)

Bolt material specification: SA-193 B7 Bolt <= 2 1/2 (II-D p. 348,ln. 33)

Internal design pressure, P: 0 psi @ 414.5 °FLiquid static head acting on flange: 0.5739 psiRequired flange thickness: tr= 1.7279 inMaximum allowable working pressure,MAWP: 265.6 psi @ 414.5 °F

Maximum allowable pressure, MAP: 285.33 psi @ 70 °FExternal design pressure, Pe 13.18 psi @ 414.5 °FMaximum allowable external pressure,MAEP: 989.51 psi @ 414.5 °F

Corrosion allowance: Bore = 0 in Flange = 0 inBolt corrosion (root), Cbolt: 0 inDesign MDMT: -20 °F No impact test performedRated MDMT: -26.9 °F Flange material is not normalized

Material is not produced to fine grainpracticePWHT is not performed

Estimated weight: New = 50.7 lb corroded = 50.7 lb

Flange dimensions, new

flange OD A = 20.5 inbolt circle C = 19.25 ingasket OD = 18.125 ingasket ID = 17.25 inflange ID B = 17.25 inthickness t = 1.75 inbolting = 24- 0.625 in diahub thickness g1 = 0.1875 inhub thickness g0 = 0.125 inhub length h = 1.25 inlength e = 3 ingasket factor m = 3seating stress y = 5,000.00 psi

190/226

Page 192: HTRI-COMPRESS Kettle Calculations

Note: this flange is calculated as an integral type.

Determination of Flange MDMT

UCS-66(b)(1)(b) has been applied.Flange impact test exemption temperature from Fig UCS-66 Curve B = -20 °FFig UCS-66.1 MDMT reduction = 6.9 °F, (coincident ratio = 0.9308646)UCS-66 governing thickness = 0.125 inBolts rated MDMT per Fig UCS-66 note (e) = -55 °F

The rated flange MDMT is -26.9 °F

Flange calculations for Internal Pressure + Weight Only

191/226

Page 193: HTRI-COMPRESS Kettle Calculations

Gasket details from facing sketch 1(a) or (b), Column II

Gasket width N = 0.4375 in

b0 = N/2 = 0.2188 in

Effective gasket seating width, b = b0 = 0.2188 in

G = (OD of contact face + gasket ID) / 2 = 17.6875 in

hG = (C - G)/2 = (19.25 - 17.6875)/2 = 0.7813 in

hD = R + g1/2 = 0.8125 + 0.1875/2 = 0.9063 in

hT = (R + g1 + hG)/2 = (0.8125 + 0.1875 + 0.7813)/2 = 0.8906 in

Hp = 2*P*(b*3.14*G*m + br*rl*m')= 2*0.5739*(0.2188*3.14*17.6875*3 + 0.3188*23.25*3)= 67.35 lbf

H = 0.785*G2*P= 0.785*17.68752*0.5739= 140.94 lbf

HD = 0.785*B2*P= 0.785*17.252*0.5739= 134.06 lbf

HT = H - HD= 140.94 - 134.06= 6.89 lbf

Wm1 = H + Hp= 140.94 + 67.35= 208.29 lbf

Per VIII-1, Appendix 2-5(a)(2): Wm1 from the mating flange governs so Wm1 = 19,501.65 lbf

Wm2 = 3.14*b*G*y + br*rl*Y'= 3.14*0.2188*17.6875*5,000 + 0.3188*23.25*5,000= 97,800.2 lbf

The pass partition gasket load has been included in the calculation of Wm1 and Wm2 per TEMA RGP-RCB-11.7.

Required bolt area, Am = greater of Am1, Am2 = 3.912008 in2

Am1 = Wm1/Sb = 19,501.65/25,000 = 0.7801 in2

Am2 = Wm2/Sa = 97,800.2/25,000 = 3.912 in2

Total area for 24- 0.625 in dia bolts, corroded, Ab = 4.848 in2

W = (Am + Ab)*Sa/2= (3.912 + 4.848)*25,000/2= 109,500.1 lbf

MD = HD*hD = 134.06*0.9063 = 121.5 lb-in

192/226

Page 194: HTRI-COMPRESS Kettle Calculations

MT = HT*hT = 6.89*0.8906 = 6.1 lb-in

HG = Wm1 - H = 19,501.65 - 140.94 = 19,360.71 lbf

MG = HG*hG = 19,360.71*0.7813 = 15,125.6 lb-in

Mo = MD + MT + MG = 121.5 + 6.1 + 15,125.6 = 15,253.2 lb-in

Mg = W*hG = 109,500.1*0.7813 = 85,547 lb-in

The bolts are adequately spaced so the TEMA RCB-11.23 load concentration factor does not apply.

Hub and Flange Factors

h0 = (B*g0)1/2 = (17.25*0.125)1/2 = 1.4684 in

From FIG. 2-7.1, where K = A/B = 20.5/17.25 = 1.1884

T = 1.8436 Z = 5.8507 Y = 11.3396 U =12.4611

h/h0 = 0.8513 g1/g0 = 1.5

F = 0.8078 V = 0.2647 e = F/h0 = 0.5501

d = (U/V)*h0*g02= (12.46108/0.2647)*1.4684*0.1252

= 1.0802 in3

Stresses at operating conditions - VIII-1, Appendix 2-7

f = 1

L = (t*e + 1)/T + t3/d= (1.75*0.5501 + 1)/1.843613 + 1.753/1.0802= 6.026093

SH = f*Mo/(L*g12*B)

= 1*15,253.2/(6.026093*0.18752*17.25)= 4,174 psi

SR = (1.33*t*e + 1)*Mo/(L*t2*B)= (1.33*1.75*0.5501 + 1)*15,253.2/(6.026093*1.752*17.25)= 109 psi

ST = Y*Mo/(t2*B) - Z*SR= 11.3396*15,253.2/(1.752*17.25) - 5.8507*109= 2,635 psi

Allowable stress Sfo = 20,000 psiAllowable stress Sno = 20,000 psi

ST does not exceed SfoSH does not exceed Min[ 1.5*Sfo, 2.5*Sno ] = 30,000 psiSR does not exceed Sfo0.5(SH + SR) = 2,142 psi does not exceed Sfo0.5(SH + ST) = 3,404 psi does not exceed Sfo

Stresses at gasket seating - VIII-1, Appendix 2-7

193/226

Page 195: HTRI-COMPRESS Kettle Calculations

SH = f*Mg/(L*g12*B)

= 1*85,547/(6.026093*0.18752*17.25)= 23,409 psi

SR = (1.33*t*e + 1)*Mg/(L*t2*B)= (1.33*1.75*0.5501 + 1)*85,547/(6.026093*1.752*17.25)= 613 psi

ST = Y*Mg/(t2*B) - Z*SR= 11.3396*85,547/(1.752*17.25) - 5.8507*613= 14,777 psi

Allowable stress Sfa = 20,000 psiAllowable stress Sna = 20,000 psi

ST does not exceed SfaSH does not exceed Min[ 1.5*Sfa, 2.5*Sna ] = 30,000 psiSR does not exceed Sfa0.5(SH + SR) = 12,011 psi does not exceed Sfa0.5(SH + ST) = 19,093 psi does not exceed Sfa

Flange rigidity per VIII-1, Appendix 2-14

J = 52.14*V*Mo/(L*E*g02*KI*h0)

= 52.14*0.2647*85,547/(6.0261*29,400,000*0.1252*0.3*1.4684)= 0.9681055

The flange rigidity index J does not exceed 1; satisfactory.

Flange calculations for External Pressure + Weight Only per VIII-1, Appendix 2-11

194/226

Page 196: HTRI-COMPRESS Kettle Calculations

Gasket details from facing sketch 1(a) or (b), Column II

Gasket width N = 0.4375 in

b0 = N/2 = 0.2188 in

Effective gasket seating width, b = b0 = 0.2188 in

G = (OD of contact face + gasket ID) / 2 = 17.6875 in

hG = (C - G)/2 = (19.25 - 17.6875)/2 = 0.7813 in

hD = R + g1/2 = 0.8125 + 0.1875/2 = 0.9063 in

hT = (R + g1 + hG)/2 = (0.8125 + 0.1875 + 0.7813)/2 = 0.8906 in

Hp = 2*P*(b*3.14*G*m + br*rl*m')= 2*13.1759*(0.2188*3.14*17.6875*3 + 0.3188*23.25*3)= 1,546.33 lbf

H = 0.785*G2*P= 0.785*17.68752*13.1759= 3,235.81 lbf

HD = 0.785*B2*P= 0.785*17.252*13.1759= 3,077.71 lbf

HT = H - HD= 3,235.81 - 3,077.71= 158.1 lbf

Wm1 = H + Hp= 3,235.81 + 1,546.33= 4,782.14 lbf

Wm2 = 3.14*b*G*y + br*rl*Y'= 3.14*0.2188*17.6875*5,000 + 0.3188*23.25*5,000= 97,800.2 lbf

The pass partition gasket load has been included in the calculation of Wm1 and Wm2 per TEMA RGP-RCB-11.7.

Required bolt area, Am = greater of Am1, Am2 = 3.912008 in2

Am1 = 0.785*G2*(Pm - Pr)/Sb = 0/25,000 = 0 in2

Am2 = Wm2/Sa = 97,800.2/25,000 = 3.912 in2

Total area for 24- 0.625 in dia bolts, corroded, Ab = 4.848 in2

W = (Am2 + Ab)*Sa/2= (3.912 + 4.848)*25,000/2= 109,500.1 lbf

Mo = HD*(hD - hG) + HT*(hT - hG)= 3,077.71*(0.9063 - 0.7813) + 158.1*(0.8906 - 0.7813)= 402 lb-in

195/226

Page 197: HTRI-COMPRESS Kettle Calculations

Mg = W*hG = 109,500.1*0.7813 = 85,547 lb-in

The bolts are adequately spaced so the TEMA RCB-11.23 load concentration factor does not apply.

Hub and Flange Factors

h0 = (B*g0)1/2 = (17.25*0.125)1/2 = 1.4684 in

From FIG. 2-7.1, where K = A/B = 20.5/17.25 = 1.1884

T = 1.8436 Z = 5.8507 Y = 11.3396 U =12.4611

h/h0 = 0.8513 g1/g0 = 1.5

F = 0.8078 V = 0.2647 e = F/h0 = 0.5501

d = (U/V)*h0*g02= (12.46108/0.2647)*1.4684*0.1252

= 1.0802 in3

Stresses at operating conditions - VIII-1, Appendix 2-7

f = 1

L = (t*e + 1)/T + t3/d= (1.75*0.5501 + 1)/1.843613 + 1.753/1.0802= 6.026093

SH = f*Mo/(L*g12*B)

= 1*402/(6.026093*0.18752*17.25)= 110 psi

SR = (1.33*t*e + 1)*Mo/(L*t2*B)= (1.33*1.75*0.5501 + 1)*402/(6.026093*1.752*17.25)= 3 psi

ST = Y*Mo/(t2*B) - Z*SR= 11.3396*402/(1.752*17.25) - 5.8507*3= 69 psi

Allowable stress Sfo = 20,000 psiAllowable stress Sno = 20,000 psi

ST does not exceed SfoSH does not exceed Min[ 1.5*Sfo, 2.5*Sno ] = 30,000 psiSR does not exceed Sfo0.5(SH + SR) = 56 psi does not exceed Sfo0.5(SH + ST) = 90 psi does not exceed Sfo

Stresses at gasket seating - VIII-1, Appendix 2-7

SH = f*Mg/(L*g12*B)

= 1*85,547/(6.026093*0.18752*17.25)= 23,409 psi

SR = (1.33*t*e + 1)*Mg/(L*t2*B)= (1.33*1.75*0.5501 + 1)*85,547/(6.026093*1.752*17.25)= 613 psi

196/226

Page 198: HTRI-COMPRESS Kettle Calculations

ST = Y*Mg/(t2*B) - Z*SR= 11.3396*85,547/(1.752*17.25) - 5.8507*613= 14,777 psi

Allowable stress Sfa = 20,000 psiAllowable stress Sna = 20,000 psi

ST does not exceed SfaSH does not exceed Min[ 1.5*Sfa, 2.5*Sna ] = 30,000 psiSR does not exceed Sfa0.5(SH + SR) = 12,011 psi does not exceed Sfa0.5(SH + ST) = 19,093 psi does not exceed Sfa

Flange rigidity per VIII-1, Appendix 2-14

J = 52.14*V*Mo/(L*E*g02*KI*h0)

= 52.14*0.2647*85,547/(6.0261*29,400,000*0.1252*0.3*1.4684)= 0.9681055

The flange rigidity index J does not exceed 1; satisfactory.

Tube Side Flange (front) - Flange hub

ASME Section VIII Division 1, 2007 Edition

Component: Flange hubMaterial specification: SA-516 70 (II-D p. 18, ln. 22)Material is impact test exempt per UG-20(f)UCS-66 governing thickness = 0.125 in

Internal design pressure: P = 0 psi @ 414.5°FExternal design pressure: Pe = 13.1759 psi @ 414.5°F

Static liquid head:

Not Considered

Corrosion allowance: Inner C = 0.0000" Outer C = 0.0000"

Design MDMT = -20.00°F No impact test performedRated MDMT = -20.00°F Material is not normalized

Material is not produced to Fine Grain PracticePWHT is not performed

Radiography: Longitudinal joint - Seamless No RTLeft circumferential joint - Full UW-11(a) Type 1Right circumferential joint - N/A

Estimated weight: New = 2.3963 lb corr = 2.3963 lbCapacity: New = 1.2646 gal corr = 1.2646 galID = 17.2500"Length Lc = 1.2500"t = 0.1250"

197/226

Page 199: HTRI-COMPRESS Kettle Calculations

Design thickness, (at 414.50°F) UG-27(c)(1)

t = P*R/(S*E - 0.60*P) + Corrosion= 0.57*8.6250/(20000*1.00 - 0.60*0.57) + 0.0000= 0.0003"

Maximum allowable working pressure, (at 414.50°F) UG-27(c)(1)

P = S*E*t/(R + 0.60*t) - Ps= 20000*1.00*0.1250 / (8.6250 + 0.60*0.1250) - 0.5739= 286.7824 psi

Maximum allowable pressure, (at 70.00°F) UG-27(c)(1)

P = S*E*t/(R + 0.60*t)= 20000*1.00*0.1250 / (8.6250 + 0.60*0.1250)= 287.3563 psi

External Pressure, (Corroded & at 414.50°F) UG-28(c)

L/Do = 29.7083/17.5000 = 1.6976Do/t = 17.5000/0.067955 = 257.5244

From table G: A = 0.000186From table CS-2: B = 2544.8130 psi

Pa = 4*B/(3*(Do/t))= 4*2544.8130/(3*(17.5000/0.067955))= 13.1758 psi

Design thickness for external pressure Pa = 13.1758 psi

= t + Corrosion = 0.067955 + 0.0000 = 0.0680"

Maximum Allowable External Pressure, (Corroded & at 414.50°F) UG-28(c)

L/Do = 29.7083/17.5000 = 1.6976Do/t = 17.5000/0.1250 = 140.0000

From table G: A = 0.000467From table CS-2: B = 6426.6948 psi

Pa = 4*B/(3*(Do/t))= 4*6426.6948/(3*(17.5000/0.1250))= 61.2066 psi

% Extreme fiber elongation - UCS-79(d)

= (50 * t / Rf) * (1 - Rf / Ro)= (50 * 0.1250 / 8.6875) * (1 - 8.6875 / ∞)= 0.7194 %

198/226

Page 200: HTRI-COMPRESS Kettle Calculations

Allowable Compressive Stress, Hot and Corroded- ScHC, (table CS-2)A = 0.125 / (Ro / t)

= 0.125 / (8.7500 / 0.1250)= 0.001786

B = 12529.6797 psi

S = 20000.0000 / 1.0000= 20000.0000 psi

ScHC = 12529.6797 psi

Allowable Compressive Stress, Hot and New- ScHN

ScHN = ScHC

= 12529.6797 psi

Allowable Compressive Stress, Cold and New- ScCN, (table CS-2)A = 0.125 / (Ro / t)

= 0.125 / (8.7500 / 0.1250)= 0.001786

B = 14521.1133 psi

S = 20000.0000 / 1.0000= 20000.0000 psi

ScCN = 14521.1133 psi

Allowable Compressive Stress, Cold and Corroded- ScCC

ScCC = ScCN

= 14521.1133 psi

Allowable Compressive Stress, Vacuum and Corroded- ScVC, (table CS-2)A = 0.125 / (Ro / t)

= 0.125 / (8.7500 / 0.1250)= 0.001786

B = 12529.6797 psi

S = 20000.0000 / 1.0000= 20000.0000 psi

ScVC = 12529.6797 psi

199/226

Page 201: HTRI-COMPRESS Kettle Calculations

Saddle

Saddle material: A36Saddle construction is: Web at edge of ribSaddle allowable stress: Ss = 24,000 psiSaddle yield stress: Sy = 36,000 psiSaddle distance to datum: 6.7646 inTangent to tangent length: L = 107.4892inSaddle separation: Ls = 34.5778 inVessel radius: R = 13.5292 inTangent distance left: Al = 64.1469 inTangent distance right: Ar = 8.7646 inTubesheet distance left: Atsl = 35.389 inSaddle height: Hs = 25.5292 inSaddle contact angle: θ = 120 °Wear plate thickness: tp = 0.25 inWear plate width: Wp = 5 inWear plate contact angle: θw = 132 °Web plate thickness: ts = 0.25 inBase plate length: E = 27 inBase plate width: F = 4 inBase plate thickness: tb = 0.375 inNumber of stiffener ribs: n = 2Largest stiffener rib spacing: di = 25.75 inStiffener rib thickness: tw = 0.25 inSaddle width: B = 3 inAnchor bolt size & type: 1 inch series 8 threadedAnchor bolt material: SA-193 B8Anchor bolt allowable shear: 18,800 psiAnchor bolt corrosion allowance: 0 inAnchor bolts per saddle: 4Base coefficient of friction: µ = 0.45

Weight on left saddle: operating corr =3,362 lb, test new =3,828 lbWeight on right saddle: operating corr =-473 lb, test new =-557 lbWeight of saddle pair =108 lb

200/226

Page 202: HTRI-COMPRESS Kettle Calculations

Notes:(1) Saddle calculations are based on the method presented in "Stresses in Large Cylindrical Pressure Vessels onTwo Saddle Supports" by L.P. Zick.(2) If CL of tubesheet is located within a distance of Ro/2 to CL of saddle, the shell is assumed stiffened as iftubesheet is a bulk head.

Load Vesselcondition

Bending + pressurebetween saddles

(psi)

Bending + pressure atthe saddle

(psi)

S1(+)

allow(+)

S1(-)

allow(-)

S2(+)

allow(+)

S2(-)

allow(-)

Weight Operating 5,944 20,000 -219 8,298 20,697 20,000 14,533 8,298

Weight Test 3,846 34,200 -130 8,323 12,241 34,200 8,266 8,323

Load Vesselcondition

Tangentialshear (psi)

Circumferentialstress (psi)

Stressover

saddle(psi)

Splitting(psi)

S3 allow S4(horns)

S4(Wearplate)

allow(+/-) S5 allow S6 allow

Weight Operating 2,326 16,000 -4,642 -59,320 30,000 2,366 16,750 288 16,000

Weight Test 1,335 27,360 -21,007 NA 34,200 2,062 32,400 328 32,400

Load Case 1: Weight ,Operating

Longitudinal stress between saddles (Weight ,Operating, right saddle loading and geometry govern)

S1 = +- 3*K1*Q*(L/12) / (π*R2*t)= 3*0.6175*-473*(107.4892/12) / (π*13.49792*0.0625)= -219 psi

Sp = P*R/(2*t)= 57.21*13.4667/(2*0.0625)= 6,164 psi

Maximum tensile stress S1t = S1 + Sp = 5,944 psiMaximum compressive stress (shut down) S1c = S1 = -219 psi

Tensile stress is acceptable (<=1*S*E = 20,000 psi)Compressive stress is acceptable (<=1*Sc = 8,298 psi)

Longitudinal stress at the left saddle (Weight ,Operating)

Le = 2*(Left head depth)/3 + L + 2*(Right head depth)/3= 2*4.4375/3 + 107.4892 + 2*6.8271/3= 114.999 in

w = Wt/Le = 2,889/114.999 = 25.12 lb/in

Bending moment at the left saddle:

201/226

Page 203: HTRI-COMPRESS Kettle Calculations

Mq = w*(2*H*Al/3 + Al2/2 - (R2 - H2)/4)

= 25.12*(2*4.4375*64.1469/3 + 64.14692/2 - (13.52922 - 4.43752)/4)= 55,427.7 lb-in

S2 = +- Mq*K1'/ (π*R2*t)= 55,427.7*9.3799/ (π*13.49792*0.0625)= 14,533 psi

Sp = P*R/(2*t)= 57.21*13.4667/(2*0.0625)= 6,164 psi

Maximum tensile stress S2t = S2 + Sp = 20,697 psiMaximum compressive stress (shut down) S2c = S2 = 14,533 psi

** WARNING Tensile stress at the saddle is excessive (> 20,000 psi)**

** WARNING Compressive stress at the saddle is excessive (> 8,298 #)**

Tangential shear stress in the shell (left saddle, Weight ,Operating)

Qshear = Q - w*(a + 2*H/3)= 3,362 - 25.12*(64.1469 + 2*4.4375/3)= 1,676.18 lbf

S3 = K2.2*Qshear/(R*t)= 1.1707*1,676.18/(13.4979*0.0625)= 2,326 psi

Tangential shear stress is acceptable (<= 0.8*S = 16,000 psi)

Circumferential stress at the left saddle horns (Weight ,Operating)

S4 = -Q/(4*(t+tp)*(b+1.56*Sqr(Ro*t))) - 12*K3*Q*R/(L*(t2+tp2))= -3,362/(4*(0.0625+0.25)*(3+1.56*Sqr(13.5292*0.0625))) - 12*0.0529*3,362*13.4979/(107.4892*(0.06252+0.252))= -4,642 psi

Circumferential stress at saddle horns is acceptable (<=1.5*Sa = 30,000 psi)

Circumferential stress at the left saddle wear plate horns (Weight ,Operating)

S4 = -Q/(4*t*(b+1.56*Sqr(Ro*t))) - 12*K3*Q*R/(L*t2)= -3,362/(4*0.0625*(3+1.56*Sqr(13.5292*0.0625))) - 12*0.0434*3,362*13.4979/(107.4892*0.06252)= -59,320 psi

** WARNING Circumferential stress at the wear plate horns is excessive (> 30,000 psi)**

Ring compression in shell over left saddle (Weight ,Operating)

S5 = K5*Q/((t + tp)*(ts + 1.56*Sqr(Ro*tc)))= 0.7603*3,362/((0.0625 + 0.25)*(0.25 + 1.56*Sqr(13.5292*0.3125)))= 2,366 psi

Ring compression in shell is acceptable (<= 0.5*Sy = 16,750 psi)

202/226

Page 204: HTRI-COMPRESS Kettle Calculations

Saddle splitting load (left, Weight ,Operating)

Area resisting splitting force = Web area + wear plate area

Ae = Heff*ts + tp*Wp= 4.5097*0.25 + 0.25*5= 2.3774 in2

S6 = K8*Q / Ae= 0.2035*3,362 / 2.3774= 288 psi

Stress in saddle is acceptable (<= (2/3)*Ss = 16,000 psi)

Load Case 2: Weight ,Test

Longitudinal stress between saddles (Weight ,Test, right saddle loading and geometry govern)

S1 = +- 3*K1*Q*(L/12) / (π*R2*t)= 3*0.6175*-557*(107.4892/12) / (π*13.46672*0.125)= -130 psi

Sp = P*R/(2*t)= 74.15*13.4042/(2*0.125)= 3,976 psi

Maximum tensile stress S1t = S1 + Sp = 3,846 psiMaximum compressive stress (shut down) S1c = S1 = -130 psi

Tensile stress is acceptable (<= 0.9*Sy = 34,200 psi)Compressive stress is acceptable (<=1*Sc = 8,323 psi)

Longitudinal stress at the left saddle (Weight ,Test)

Le = 2*(Left head depth)/3 + L + 2*(Right head depth)/3= 2*4.4375/3 + 107.4892 + 2*6.8271/3= 114.999 in

w = Wt/Le = 3,271/114.999 = 28.44 lb/in

Bending moment at the left saddle:

Mq = w*(2*H*Al/3 + Al2/2 - (R2 - H2)/4)

= 28.44*(2*4.4375*64.1469/3 + 64.14692/2 - (13.52922 - 4.43752)/4)= 62,756.7 lb-in

S2 = +- Mq*K1'/ (π*R2*t)= 62,756.7*9.3799/ (π*13.46672*0.125)= 8,266 psi

Sp = P*R/(2*t)= 74.15*13.4042/(2*0.125)= 3,976 psi

Maximum tensile stress S2t = S2 + Sp = 12,241 psiMaximum compressive stress (shut down) S2c = S2 = 8,266 psi

203/226

Page 205: HTRI-COMPRESS Kettle Calculations

Tensile stress is acceptable (<= 0.9*Sy = 34,200 psi)Compressive stress is acceptable (<=1*Sc = 8,323 psi)

Tangential shear stress in the shell (left saddle, Weight ,Test)

Qshear = Q - w*(a + 2*H/3)= 3,828 - 28.44*(64.1469 + 2*4.4375/3)= 1,919.28 lbf

S3 = K2.2*Qshear/(R*t)= 1.1707*1,919.28/(13.4667*0.125)= 1,335 psi

Tangential shear stress is acceptable (<= 0.8*(0.9*Sy) = 27,360 psi)

Circumferential stress at the left saddle horns (Weight ,Test)

S4 = -Q/(4*t*(b+1.56*Sqr(Ro*t))) - 12*K3*Q*R/(L*t2)= -3,828/(4*0.125*(3+1.56*Sqr(13.5292*0.125))) - 12*0.0529*3,828*13.4667/(107.4892*0.1252)= -21,007 psi

Circumferential stress at saddle horns is acceptable (<= 0.9*Sy = 34,200 psi)The wear plate was not considered in the calculation of S4 because the wear plate width is not at least {B +1.56*(Rotc)0.5} =5.0287 in

Ring compression in shell over left saddle (Weight ,Test)

S5 = K5*Q/((t + tp)*(ts + 1.56*Sqr(Ro*tc)))= 0.7603*3,828/((0.125 + 0.25)*(0.25 + 1.56*Sqr(13.5292*0.375)))= 2,062 psi

Ring compression in shell is acceptable (<= 0.9*Sy = 32,400 psi)

Saddle splitting load (left, Weight ,Test)

Area resisting splitting force = Web area + wear plate area

Ae = Heff*ts + tp*Wp= 4.5097*0.25 + 0.25*5= 2.3774 in2

S6 = K8*Q / Ae= 0.2035*3,828 / 2.3774= 328 psi

Stress in saddle is acceptable (<= 0.9*Sy = 32,400 psi)

Shear stress in anchor bolting, one end slotted

Maximum seismic or wind base shear = 0 lbf

Thermal expansion base shear = W*µ = 3,416 * 0.45= 1,537.2 lbf

Corroded root area for a 1 inch series 8 threaded bolt = 0.551 in2 ( 4 per saddle )

Bolt shear stress = 1,537.2/(0.551*4) = 697 psi

204/226

Page 206: HTRI-COMPRESS Kettle Calculations

Anchor bolt stress is acceptable (<= 18,800 psi)

Web plate buckling check (Escoe pg 251)

Allowable compressive stress Sc is the lesser of 24,000 or 3,162 psi: (3,162)

Sc = Ki*π2*E/(12*(1 - 0.32)*(di/tw)2)= 1.28*π2*29E+06/(12*(1 - 0.32)*(25.75/0.25)2)= 3,162 psi

Allowable compressive load on the saddle

be = di*ts/(di*ts + 2*tw*(b - 1))= 25.75*0.25/(25.75*0.25 + 2*0.25*(3 - 1))= 0.8655

Fb = n*(As + 2*be*tw)*Sc= 2*(0.6875 + 2*0.8655*0.25)*3,162= 7,085.4 lbf

Saddle loading of 3,882 lbf is <= Fb; satisfactory.

Primary bending + axial stress in the saddle due to end loads (assumes one saddle slotted)σb = V * (Hs - xo)* y / I + Q / A= 0 * (25.5292 - 11.1885)* 2.125 / 2.42 + 3,362 / 7.2333= 465 psi

The primary bending + axial stress in the saddle <= 24,000 psi; satisfactory.

Secondary bending + axial stress in the saddle due to end loads (includes thermal expansion, assumes onesaddle slotted)σb = V * (Hs - xo)* y / I + Q / A= 1,537.2 * (25.5292 - 11.1885)* 2.125 / 2.42 + 3,362 / 7.2333= 19,817 psi

The secondary bending + axial stress in the saddle < 2*Sy= 72,000 psi; satisfactory.

Saddle base plate thickness check (Roark sixth edition, Table 26, case 7a)

where a = 25.75, b = 3.75 in

tb = (β1*q*b2/(1.5*Sa))0.5

= (3*36*3.752/(1.5*24,000))0.5

= 0.2052 in

The base plate thickness of 0.375 in is adequate.

Foundation bearing check

Sf = Qmax / (F*E)= 3,882 / (4*27)= 36 psi

Concrete bearing stress < 1,658 psi ; satisfactory.

205/226

Page 207: HTRI-COMPRESS Kettle Calculations

Data Inputs Summary

General Options

Identifier Kettle reboiler

Codes ASME VIII-1,2007 Edition TEMA Eighth Edition (1999)

Description U-tube Class C Kettle, transition front end only SIZE 17-72.0008 TYPE BKU

Shell material: SA-516 70 Perform ASME tube design check

Tube supports\baffle plates are not present

Tube Options

Tube material: SA-179 Smls tube Tube length from outer tubesheet face to bend: L t= 72.0008in

Tube dimensions, new, in do= 1 tt= 0.091 Inner corrosion: 0 Outer corrosion: 0

Tube to tubesheet joint option Tube to tubesheet joint calculations have not been performed

Channel and Shell Options

Shell dimensionsnew, in

Material:SA-516 70 Di= 26.8083 ts= 0.125 Inner corrosion: 0.0625 Outer corrosion: 0 MDMT:

-20 °F

Front channeldimensions, new, in

Type: bonnet Ellipsoidal head Inner corrosion: 0.0625 Outer corrosion: 0 MDMT: -20 °F

Cylinder SA-516 70 Di= 17.25 tc= 0.1875 L= 23.25

Closure SA-516 70 Di= 17.25 tmin= 0.125 LSF= 2

Tubesheet Options

Tube Layout Shear doesnot govern Tube count: 116 Tube pitch: 1.25 in Pattern: 30° (triangular)

Tubesheet dimensions,in

(front and rear)

Material:SA-516 70 T = 1.0158 OD = 17.625

Shell sidecorrosion =

0.0625

Tube sidecorrosion =

0.0625MDMT = -20 °F

Tubesheetpass groove

depth =0.1875

Impact test isnot

performed

Notnormalized

Not produced fine grainpractice PWHT not performed Gasketed shell

sideGasketed tube

side

206/226

Page 208: HTRI-COMPRESS Kettle Calculations

Design Conditions Summary

Design Conditions

Description Design Condition 1 Tube side hydrotest Shell sidehydrotest

Tube Side

Pressure (psi) -13.18 37.24 0

Design temperature (°F) 414.5 70 70

Et (psi) 28,219,040 29,400,000 29,400,000

St (psi) 13,400 23,400 23,400

Shell Side

Pressure (psi) 60.3 0 73.98

Design temperature (°F) 307.57 70 70

Es (psi) 28,270,240 29,400,000 29,400,000

Ss (psi) 20,000 34,200 34,200

TubesheetDesign temperature (°F) 414.5 70 70

E (psi) 28,214,560 29,400,000 29,400,000

S (psi) 20,000 34,200 34,200

207/226

Page 209: HTRI-COMPRESS Kettle Calculations

Liquid Level bounded by Rear Channel Head

Location from Center Line 19.5292"

Operating Liquid Specific Gravity 0.9145Test liquid specific gravity 1.0000

208/226

Page 210: HTRI-COMPRESS Kettle Calculations

Liquid Level bounded by Tubesheet

Location from Center Line 14.7500"

Operating Liquid Specific Gravity 0.6802Test liquid specific gravity 1.0000

209/226

Page 211: HTRI-COMPRESS Kettle Calculations

Materials and Gaskets Summary

Materials And Gaskets

Part Quantity Size Material Gasket

Front ellipsoidal head 1 17.25 ID x 0.125 in min thk SA-516 70 -

Front channel cylinder 1 17.25 ID x 0.1875 thkx 23.25 in SA-516 70 -

Tube Side Flange (front) 1 20.50 OD x 1.75 in thk SA-516 7018.13 OD x 17.25

ID inFront tubesheet 1 17.63 OD x 1.0158 in thk SA-516 70

Shell Side Flange (front) 1 20.50 OD x 1.75 in thk SA-516 70 18.13 OD x 17.25ID in

Front Tubesheet flange bolts 24 0.625 in dia. stud x 6.88 in long SA-193 B7 -

Tubes 58 1.00 OD x 0.091 wall in SA-179 Smls tube -

Shell cylinder 1 26.81 ID x 0.125 in thkx 48.11 in SA-516 70 -

Rear ellipsoidal head 1 26.81 ID x 0.125 in min thk SA-516 70 -

Front pass partition - 0.375 in thk SA-516 70 -

210/226

Page 212: HTRI-COMPRESS Kettle Calculations

Nozzle Materials And Gaskets

Part Quantity Size Material Gasket

TS Inlet (N1) 1 16 in 150# WN A105-

1 13.88 ID x 1.062 in wall SA-455 <= 3/8

Bolts for TS Inlet (N1) 16 1 in dia. bolt x 4.5 in long SA-193 B7

TS Outlet (N2) 1 8 in 150# WN A105-

1 8.07 ID x 0.277 in wall SA-455 <= 3/8

Bolts for TS Outlet (N2) 8 0.75 in dia. bolt x 3.5 in long SA-193 B7

SS Outlet (N3) 1 8 in 150# WN A105-

1 8.00 ID x 0.312 in wall SA-455 <= 3/8

Bolts for SS Outlet (N3) 8 0.75 in dia. bolt x 3.5 in long SA-193 B7

SS Inlet (N4) 1 4 in 150# WN A105-

1 4.00 ID x 0.25 in wall SA-455 <= 3/8

Bolts for SS Inlet (N4) 8 0.625 in dia. bolt x 3 in long SA-193 B7

SS Outlet 2 (N5) 1 8 in 150# WN A105-

1 7.63 ID x 0.5 in wall SA-455 ( 3/8 < t <= 0.58)

Bolts for SS Outlet 2 (N5) 8 0.75 in dia. bolt x 3.5 in long SA-193 B7

211/226

Page 213: HTRI-COMPRESS Kettle Calculations

TEMA RCB-9.132 Pass Partition Plate Calculations

Minimum Front Pass Partition Plate Thickness

Front tube side pressure drop: q = 0.2976 psiFront pass plate material: SA-516 70 (II-D p. 18, ln. 22)Front pass plate allowable stress: S = 20,000 psiFront pass plate dimension: a = 17.1875inFront pass plate dimension: b = 29.8125inFront pass plate thickness, new: T = 0.375 inFront pass plate corrosion allowance: C = 0.125 inFront pass plate fillet weld leg size, new 0.25 in

From TABLE RCB-9.131

t = 0.375

From TABLE RCB-9.132, three sides fixed, a/b = 0.5765, B = 0.1092

t = b*(q*B/(1.5*S))1/2 + C= 29.8125*(0.2976*0.1092/(1.5*20,000.00))1/2 + 0.125= 0.156 in

The pass partition plate thickness of 0.375 in is adequate.

Pass partition minimum weld size = 0.75*t + C/0.7= 0.2018 in

The pass partition fillet weld size of 0.25 in is adequate.

212/226

Page 214: HTRI-COMPRESS Kettle Calculations

Tubes

ASME Section VIII Division 1, 2007 Edition

Component: TubesMaterial specification: SA-179 Smls tube (II-D p. 6, ln. 11)Material is impact test exempt per UCS-66(d) (NPS 4 or smaller pipe)

Internal design pressure: P = 0 psi @ 414.5°FExternal design pressure: Pe = 73.48 psi @ 414.5°F

Static liquid head:

Ps =0.5650 psi (SG=0.6802, Hs=23.0125" Operating head)Pse =0.9174 psi (SG=0.9145, Hs=27.7916" Vacuum head)Pth =0.8307 psi (SG=1.0000, Hs=23.0125", Horizontal test head)

Corrosion allowance: Inner C = 0.0000" Outer C = 0.0000"

Design MDMT = -20.00°F No impact test performedRated MDMT = -155.00°F Material is not normalized

Material is not produced to Fine Grain PracticePWHT is not performed

Estimated weight: New = 6.8436 lb corr = 6.8436 lbCapacity: New = 0.2117 gal corr = 0.2117 galOD = 1.0000"Length Lc = 72.0008"t = 0.0910"

Design thickness, (at 414.50°F) Appendix 1-1

t = P*Ro/(S*E + 0.40*P) + Corrosion= 0.56*0.5000/(13400*1.00 + 0.40*0.56) + 0.0000= 0.0001"

Maximum allowable working pressure, (at 414.50°F) Appendix 1-1

P = S*E*t/(Ro - 0.40*t) - Ps= 13400*1.00*0.0796 / (0.5000 - 0.40*0.0796) - 0.5650= 2278.5703 psi

Maximum allowable pressure, (at 70.00°F) Appendix 1-1

P = S*E*t/(Ro - 0.40*t)= 13400*1.00*0.0796 / (0.5000 - 0.40*0.0796)= 2279.1355 psi

External Pressure, (Corroded & at 414.50°F) UG-28(c)

L/Do = 72.0008/1.0000 = 50.0000Do/t = 1.0000/0.015055 = 66.4232

From table G: A = 0.000263From table CS-1: B = 3706.3921 psi

Pa = 4*B/(3*(Do/t))

213/226

Page 215: HTRI-COMPRESS Kettle Calculations

= 4*3706.3921/(3*(1.0000/0.015055))= 74.3996 psi

Design thickness for external pressure Pa = 74.3996 psi

= t + Corrosion = 0.015055 + 0.0000 = 0.0151"

Maximum Allowable External Pressure, (Corroded & at 414.50°F) UG-28(c)

L/Do = 72.0008/1.0000 = 50.0000Do/t = 1.0000/0.0796 = 12.5588

From table G: A = 0.007927

From table CS-1: B = 12430.4736psi

Pa = 4*B/(3*(Do/t)) - Pse

= 4*12430.4736/(3*(1.0000/0.0796)) -0.9174

= 1318.7872 psi

214/226

Page 216: HTRI-COMPRESS Kettle Calculations

Tubesheet -- ASME

ASME Section VIII, Division 1, 2007 Edition

TubesheetType of heat exchanger: U-Tube

Type of construction: Fig. UHX-12.1 Configuration d:tubesheet gasketed with shell and channel

Simply supported: NoTubesheet material specification: SA-516 70 (II-D p. 18, ln. 22)Tube layout: TriangularTubesheet outer diameter, A: 17.625 inTubesheet thickness, h: 1.0158 in (tdesign = 1.0125 in)Number of tubes, Nt: 116Tube pitch, p: 1.25 inRadius to outer tube center, ro: 7.7625 inTotal area of untubed lanes, AL: 0 in2

Pass partition groove depth, hg: 0.1875 inCorrosion allowance shell side , cs: 0.0625 inCorrosion allowance tube side , ct: 0.0625 inTubesheet poisson's ratio, ν: 0.31Gasket groove depth shell side: 0.1875 inGasket groove depth tube side: 0.1875 in

Port cylinderPort cylinder material specification: SA-516 70 (II-D p. 18, ln. 22)Port cylinder inner diameter, Ds: 17.25 inPort cylinder thickness, ts: 0.125 inPort cylinder inner corrosion allowance: 0.0625 inPort cylinder outer corrosion allowance: 0 inPort cylinder poisson's ratio, νs: 0.31

ChannelChannel material specification: SA-516 70 (II-D p. 18, ln. 22)Channel inner diameter, Dc: 17.25 inChannel thickness, tc: 0.1875 inChannel inner corrosion allowance: 0.0625 inChannel outer corrosion allowance: 0 inChannel poisson's ratio, νc: 0.31

TubesTube material specification: SA-179 Smls tube (II-D p. 6, ln. 11)Tube outer diameter, dt: 1 inTube nominal thickness, tt: 0.091 inTube inner corrosion allowance: 0 inTube outer corrosion allowance: 0 inTube expansion depth ratio, ρ: 0.85Tube poisson's ratio, νt: 0.31

FlangeBolt circle diameter, C: 19.25 inShell side gasket load reaction diameter, Gs: 17.6875 inChannel side gasket load reaction diameter,Gc:

17.6875 in

Tube SupportsTube supports present: No

215/226

Page 217: HTRI-COMPRESS Kettle Calculations

Summary Tables

Tubesheet DesignThickness Summary

Condition tdesign(in)

Design Condition 1 1.0124588

Tube side hydrotest 0.6183662

Shell side hydrotest 0.7967882

Bolt Load Summary

Condition Load CaseShell design bolt load

Ws(lbf)

Channel designbolt load

Wc(lbf)

Design Condition 1 All load cases 109,500.1 109,500.1

Tube side hydrotest Load case 1 109,500.1 109,500.1

Shell side hydrotest Load case 2 109,500.1 109,500.1

Pressures and Temperatures

Condition

Shell side designpressure

Ps(psi)

Tube side designpressure

Pt(psi)

Tubesheet designtemp

T(°F)

Shell designtemp

Ts(°F)

Channel designtemp

Tc(°F)

Tube designtemp

Tt(°F)

Design Condition 1 60.3 -13.18 414.5 307.57 414.5 414.5

Tube sidehydrotest 0 37.24 70 70 70 70

Shell sidehydrotest 73.98 0 70 70 70 70

Material Properties

Condition Component MaterialModulus ofElasticity

(psi)

AllowableStress(psi)

YieldStress(psi)

Design Condition 1

Port cylinder SA-516 70 Es = 28,269,720 Ss = 20,000 Sy,s =33,500

Channel SA-516 70 Ec =27,813,000 Sc =20,000 Sy,c =32,300

Tubesheet SA-516 70 E =27,813,000 S =20,000 S =32,300

Tubes SA-179 Smls tube Et =27,813,000 St =13,400 Sy,t =22,100

Tube side hydrotest

Port cylinder SA-516 70 Es = 29.4E+06 Ss = 34,200 Sy,s =38,000

Channel SA-516 70 Ec =29.4E+06 Sc =34,200 Sy,c =38,000

Tubesheet SA-516 70 E =29.4E+06 S =34,200 S =38,000

Tubes SA-179 Smls tube Et =29.4E+06 St =23,400 Sy,t =26,000

Shell side hydrotest

Port cylinder SA-516 70 Es = 29.4E+06 Ss = 34,200 Sy,s =38,000

Channel SA-516 70 Ec =29.4E+06 Sc =34,200 Sy,c =38,000

Tubesheet SA-516 70 E =29.4E+06 S =34,200 S =38,000

Tubes SA-179 Smls tube Et =29.4E+06 St =23,400 Sy,t =26,000

Calculations for Design Condition 1 Condition

216/226

Page 218: HTRI-COMPRESS Kettle Calculations

UHX-12.5.1 Step 1

Do = 2*ro + dt

µ = (p - dt) / p

d* = MAX{[dt - 2*tt*(Et / E)*(St / S)*ρ], [dt - 2*tt]}

p* = p /(1 - 4*MIN(AL, 4*Do*p) /(π*Do2))0.5

µ* = (p* - d*)/p*

hg' = MAX[(hg - ct), 0]

Condition Design Condition 1

New or corroded Do = 2*7.7625 + 1 = 16.525

New or corroded µ = (1.25 - 1) /1.25 = 0.2

Newd* = MAX{[1 - 2*0.091*(27,813,000 / 27,813,000)*(13,400 / 20,000)*0.85],

[1 - 2*0.091]} = 0.896349

Corrodedd* = MAX{[1 - 2*0.091*(27,813,000 / 27,813,000)*(13,400 / 20,000)*0.8991],

[1 - 2*0.091]} = 0.8903604

New or corroded p* = 1.25 /(1 - 4*MIN(0, 4*16.525*1.25) /(π*16.5252))0.5 = 1.25

New µ* = (1.25 - 0.896349)/1.25 = 0.282921

Corroded µ* = (1.25 - 0.8903604)/1.25 = 0.287712

hg' = 0.125

UHX-12.5.2 Step 2

ρs = Gs / Do

ρc = Gc / Do

MTS = Do2 / 16 *[(ρs -1)*(ρs

2 + 1)*Ps - (ρc - 1)*(ρc2 + 1)*Pt]

Condition Design Condition 1

New orcorroded

All loadcases ρs = 17.6875 / 16.525 = 1.0703

New orcorroded

All loadcases ρc = 17.6875 / 16.525 = 1.0703

New orcorroded

Load case 1MTS = 16.5252 / 16 *[(1.0703481 -1)*(1.07034812 + 1)*0 - (1.0703481 -

1)*(1.07034812 + 1)*-13.18] = 33.94

Load case 2MTS = 16.5252 / 16 *[(1.0703481 -1)*(1.07034812 + 1)*60.3 - (1.0703481 -

1)*(1.07034812 + 1)*0] = 155.35

Load case 3MTS = 16.5252 / 16 *[(1.0703481 -1)*(1.07034812 + 1)*60.3 - (1.0703481 -

1)*(1.07034812 + 1)*-13.18] = 189.3

217/226

Page 219: HTRI-COMPRESS Kettle Calculations

UHX-12.5.3 Step 3

E* / E = α0 + α1*µ* + α2*µ*2 + α3*µ*3 + α4*µ*4

ν* = β0 + β1*µ* + β2*µ*2 + β3*µ*3 + β4*µ*4

Condition Design Condition 1

New h/p = 1.0158/1.25 = 0.8127

Corroded h/p = 0.8908/1.25 = 0.7127

New - from Fig. UHX-11.3(a) E*/E = 0.3011

Corroded - from Fig. UHX-11.3(a) E*/E = 0.3112

New E* = 0.3010515*27,813,000 = 8,373,146

Corroded E* = 0.3111648*27,813,000 = 8,654,426

New - from Fig. UHX-11.3(b) ν* = 0.3035

Corroded - from Fig. UHX-11.3(b) ν* = 0.2877

UHX-12.5.5 Step 5

K = A / Do

F = ((1 - ν*) / E*)*(E*ln(K))

Condition Design Condition 1

New or corroded All load cases K = 17.625 / 16.525 = 1.0666

New All load cases F = ((1 - 0.3034659) / 8,373,146)*(27,813,000*ln(1.0666)) = 0.1491

Corroded All load cases F = ((1 - 0.2876637) / 8,654,426)*(27,813,000*ln(1.0666)) = 0.1475

UHX-12.5.6 Step 6

M* = MTS + Wmax*(Gc - Gs) / (2*π*Do)

Condition Design Condition 1

New or corroded

Load case 1 M* = 33.94 + 109,500.1*(17.6875 - 17.6875) / (2*π*16.525) = 33.94

Load case 2 M* = 155.35 + 109,500.1*(17.6875 - 17.6875) / (2*π*16.525) = 155.35

Load case 3 M* = 189.3 + 109,500.1*(17.6875 - 17.6875) / (2*π*16.525) = 189.3

UHX-12.5.7 Step 7

Mp = (M* - (Do2 / 32)*F*(Ps - Pt)) / (1 + F)

Mo = Mp + (Do2 / 64)*(3 + ν*)*(Ps - Pt)

M = Max[Abs(Mp),Abs(Mo)]

218/226

Page 220: HTRI-COMPRESS Kettle Calculations

Condition Design Condition 1

New

Load case 1 Mp = (33.94 - (16.5252 / 32)*0.1491*(0 - -13.1759)) / (1 + 0.1491) = 14.95

Load case 2 Mp = (155.35 - (16.5252 / 32)*0.1491*(60.3041 - 0)) / (1 + 0.1491) = 68.42

Load case 3 Mp = (189.3 - (16.5252 / 32)*0.1491*(60.3041 - -13.1759)) / (1 + 0.1491) = 83.37

Corroded

Load case 1 Mp = (33.94 - (16.5252 / 32)*0.1475*(0 - -13.1759)) / (1 + 0.1475) = 15.12

Load case 2 Mp = (155.35 - (16.5252 / 32)*0.1475*(60.3041 - 0)) / (1 + 0.1475) = 69.22

Load case 3 Mp = (189.3 - (16.5252 / 32)*0.1475*(60.3041 - -13.1759)) / (1 + 0.1475) = 84.34

New

Load case 1 Mo = 14.9495 + (16.5252 / 64)*(3 + 0.3034659)*(0 - -13.1759) = 200.67

Load case 2 Mo = 68.4215 + (16.5252 / 64)*(3 + 0.3034659)*(60.3041 - 0) = 918.42

Load case 3 Mo = 83.3709 + (16.5252 / 64)*(3 + 0.3034659)*(60.3041 - -13.1759) = 1,119.09

Corroded

Load case 1 Mo = 15.1241 + (16.5252 / 64)*(3 + 0.2876637)*(0 - -13.1759) = 199.95

Load case 2 Mo = 69.2208 + (16.5252 / 64)*(3 + 0.2876637)*(60.3041 - 0) = 915.16

Load case 3 Mo = 84.3449 + (16.5252 / 64)*(3 + 0.2876637)*(60.3041 - -13.1759) = 1,115.11

New

Load case 1 M = Max[Abs(14.9495),Abs(200.67)] = 200.67

Load case 2 M = Max[Abs(68.4215),Abs(918.42)] = 918.42

Load case 3 M = Max[Abs(83.3709),Abs(1,119.09)] = 1,119.09

Corroded

Load case 1 M = Max[Abs(15.1241),Abs(199.95)] = 199.95

Load case 2 M = Max[Abs(69.2208),Abs(915.16)] = 915.16

Load case 3 M = Max[Abs(84.3449),Abs(1,115.11)] = 1,115.11

UHX-12.5.8 Step 8

σ = 6*M / (µ**(h - hg')2)

Condition Design Condition 1 Stress(psi)

Allowable2*S(psi)

Over-stressed?

New

Load case 1 σ = 6*200.667 / (0.2829208*(1.0158 - 0.1875)2) = 6,202 40,000 No

Load case 2 σ = 6*918.4225 / (0.2829208*(1.0158 - 0.1875)2) = 28,387 40,000 No

Load case 3 σ = 6*1,119.0896 / (0.2829208*(1.0158 - 0.1875)2) = 34,589 40,000 No

Corroded

Load case 1 σ = 6*199.9533 / (0.2877117*(0.8908 - 0.125)2) = 7,110 40,000 No

Load case 2 σ = 6*915.1559 / (0.2877117*(0.8908 - 0.125)2) = 32,540 40,000 No

Load case 3 σ = 6*1,115.1093 / (0.2877117*(0.8908 - 0.125)2) = 39,650 40,000 No

UHX-12.5.9 Step 9

219/226

Page 221: HTRI-COMPRESS Kettle Calculations

τ = (1 / (4*µ))*(Do / h)*ABS(Ps - Pt)

Condition Design Condition 1

Tubesheet Shear Stress Stress(psi)

Allowable(psi)

Over-stressed?

New

Load case 1 τ = (1 / (4*0.2))*(16.525 / 1.0158)*ABS(0 - -13.18) = 268 16,000 No

Load case 2 τ = (1 / (4*0.2))*(16.525 / 1.0158)*ABS(60.3 - 0) = 1,226 16,000 No

Load case 3 τ = (1 / (4*0.2))*(16.525 / 1.0158)*ABS(60.3 - -13.18) = 1,494 16,000 No

Corroded

Load case 1 τ = (1 / (4*0.2))*(16.525 / 0.8908)*ABS(0 - -13.18) = 306 16,000 No

Load case 2 τ = (1 / (4*0.2))*(16.525 / 0.8908)*ABS(60.3 - 0) = 1,398 16,000 No

Load case 3 τ = (1 / (4*0.2))*(16.525 / 0.8908)*ABS(60.3 - -13.18) = 1,704 16,000 No

Calculations for Tube side hydrotest Condition

UHX-12.5.1 Step 1

Do = 2*ro + dt

µ = (p - dt) / p

d* = MAX{[dt - 2*tt*(Et / E)*(St / S)*ρ], [dt - 2*tt]}

p* = p /(1 - 4*MIN(AL, 4*Do*p) /(π*Do2))0.5

µ* = (p* - d*)/p*

hg' = MAX[(hg - ct), 0]

Condition Tube side hydrotest

New Do = 2*7.7625 + 1 = 16.525

New µ = (1.25 - 1) /1.25 = 0.2

Newd* = MAX{[1 - 2*0.091*(29.4E+06 / 29.4E+06)*(23,400 / 45,600)*0.85],

[1 - 2*0.091]} = 0.9206125

New p* = 1.25 /(1 - 4*MIN(0, 4*16.525*1.25) /(π*16.5252))0.5 = 1.25

New µ* = (1.25 - 0.9206125)/1.25 = 0.26351

hg' = 0.1875

UHX-12.5.2 Step 2

ρs = Gs / Do

ρc = Gc / Do

MTS = Do2 / 16 *[(ρs -1)*(ρs

2 + 1)*Ps - (ρc - 1)*(ρc2 + 1)*Pt]

Condition Tube side hydrotest

New ρs = 17.6875 / 16.525 = 1.0703

220/226

Page 222: HTRI-COMPRESS Kettle Calculations

All loadcases

New All loadcases ρc = 17.6875 / 16.525 = 1.0703

New Load case 1MTS = 16.5252 / 16 *[(1.0703481 -1)*(1.07034812 + 1)*0 - (1.0703481 - 1)*(1.07034812 +

1)*37.24] = -95.93

UHX-12.5.3 Step 3

E* / E = α0 + α1*µ* + α2*µ*2 + α3*µ*3 + α4*µ*4

ν* = β0 + β1*µ* + β2*µ*2 + β3*µ*3 + β4*µ*4

Condition Tube side hydrotest

New h/p = 1.0158/1.25 = 0.8127

New - from Fig. UHX-11.3(a) E*/E = 0.2747

New E* = 0.2747335*29.4E+06 = 8,077,166

New - from Fig. UHX-11.3(b) ν* = 0.3165

UHX-12.5.5 Step 5

K = A / Do

F = ((1 - ν*) / E*)*(E*ln(K))

Condition Tube side hydrotest

New All load cases K = 17.625 / 16.525 = 1.0666

New All load cases F = ((1 - 0.3165134) / 8,077,166)*(29.4E+06*ln(1.0666)) = 0.1603

UHX-12.5.6 Step 6

M* = MTS + Wmax*(Gc - Gs) / (2*π*Do)

Condition Tube side hydrotest

New Load case 1 M* = -95.93 + 109,500.1*(17.6875 - 17.6875) / (2*π*16.525) = -95.93

UHX-12.5.7 Step 7

Mp = (M* - (Do2 / 32)*F*(Ps - Pt)) / (1 + F)

Mo = Mp + (Do2 / 64)*(3 + ν*)*(Ps - Pt)

M = Max[Abs(Mp),Abs(Mo)]

Condition Tube side hydrotest

New Load case 1 Mp = (-95.93 - (16.5252 / 32)*0.1603*(0 - 37.2375)) / (1 + 0.1603) = -38.77

221/226

Page 223: HTRI-COMPRESS Kettle Calculations

New Load case 1 Mo = -38.7678 + (16.5252 / 64)*(3 + 0.3165134)*(0 - 37.2375) = -565.71

New Load case 1 M = Max[Abs(-38.7678),Abs(-565.71)] = 565.71

UHX-12.5.8 Step 8

σ = 6*M / (µ**(h - hg')2)

Condition Tube side hydrotest Stress(psi)

Allowable(psi)

Over-stressed?

New Load case 1 σ = 6*565.7131 / (0.26351*(1.0158 - 0.1875)2) = 18,773 68,400 No

UHX-12.5.9 Step 9

Condition Tube side hydrotest

Tubesheet Shear Stress Stress(psi)

Allowable(psi)

Over-stressed?

New Load case 1 τ = (1 / (4*0.2))*(16.525 / 1.0158)*ABS(0 - 37.24) = 757 27,360 No

Calculations for Shell side hydrotest Condition

UHX-12.5.1 Step 1

Do = 2*ro + dt

µ = (p - dt) / p

d* = MAX{[dt - 2*tt*(Et / E)*(St / S)*ρ], [dt - 2*tt]}

p* = p /(1 - 4*MIN(AL, 4*Do*p) /(π*Do2))0.5

µ* = (p* - d*)/p*

hg' = MAX[(hg - ct), 0]

Condition Shell side hydrotest

New Do = 2*7.7625 + 1 = 16.525

New µ = (1.25 - 1) /1.25 = 0.2

Newd* = MAX{[1 - 2*0.091*(29.4E+06 / 29.4E+06)*(23,400 / 45,600)*0.85],

[1 - 2*0.091]} = 0.9206125

New p* = 1.25 /(1 - 4*MIN(0, 4*16.525*1.25) /(π*16.5252))0.5 = 1.25

New µ* = (1.25 - 0.9206125)/1.25 = 0.26351

hg' = 0.1875

UHX-12.5.2 Step 2

ρs = Gs / Do

222/226

Page 224: HTRI-COMPRESS Kettle Calculations

ρc = Gc / Do

MTS = Do2 / 16 *[(ρs -1)*(ρs

2 + 1)*Ps - (ρc - 1)*(ρc2 + 1)*Pt]

Condition Shell side hydrotest

New All loadcases ρs = 17.6875 / 16.525 = 1.0703

New All loadcases ρc = 17.6875 / 16.525 = 1.0703

New Load case 2MTS = 16.5252 / 16 *[(1.0703481 -1)*(1.07034812 + 1)*73.98 - (1.0703481 -

1)*(1.07034812 + 1)*0] = 190.57

UHX-12.5.3 Step 3

E* / E = α0 + α1*µ* + α2*µ*2 + α3*µ*3 + α4*µ*4

ν* = β0 + β1*µ* + β2*µ*2 + β3*µ*3 + β4*µ*4

Condition Shell side hydrotest

New h/p = 1.0158/1.25 = 0.8127

New - from Fig. UHX-11.3(a) E*/E = 0.2747

New E* = 0.2747335*29.4E+06 = 8,077,166

New - from Fig. UHX-11.3(b) ν* = 0.3165

UHX-12.5.5 Step 5

K = A / Do

F = ((1 - ν*) / E*)*(E*ln(K))

Condition Shell side hydrotest

New All load cases K = 17.625 / 16.525 = 1.0666

New All load cases F = ((1 - 0.3165134) / 8,077,166)*(29.4E+06*ln(1.0666)) = 0.1603

UHX-12.5.6 Step 6

M* = MTS + Wmax*(Gc - Gs) / (2*π*Do)

Condition Shell side hydrotest

New Load case 2 M* = 190.57 + 109,500.1*(17.6875 - 17.6875) / (2*π*16.525) = 190.57

UHX-12.5.7 Step 7

Mp = (M* - (Do2 / 32)*F*(Ps - Pt)) / (1 + F)

Mo = Mp + (Do2 / 64)*(3 + ν*)*(Ps - Pt)

223/226

Page 225: HTRI-COMPRESS Kettle Calculations

M = Max[Abs(Mp),Abs(Mo)]

Condition Shell side hydrotest

New Load case 2 Mp = (190.57 - (16.5252 / 32)*0.1603*(73.976 - 0)) / (1 + 0.1603) = 77.02

New Load case 2 Mo = 77.0161 + (16.5252 / 64)*(3 + 0.3165134)*(73.976 - 0) = 1,123.84

New Load case 2 M = Max[Abs(77.0161),Abs(1,123.84)] = 1,123.84

UHX-12.5.8 Step 8

σ = 6*M / (µ**(h - hg')2)

Condition Shell side hydrotest Stress(psi)

Allowable(psi)

Over-stressed?

New Load case 2 σ = 6*1,123.8444 / (0.26351*(1.0158 - 0.1875)2) = 37,295 68,400 No

UHX-12.5.9 Step 9

Condition Shell side hydrotest

Tubesheet Shear Stress Stress(psi)

Allowable(psi)

Over-stressed?

New Load case 2 τ = (1 / (4*0.2))*(16.525 / 1.0158)*ABS(73.98 - 0) = 1,504 27,360 No

224/226

Page 226: HTRI-COMPRESS Kettle Calculations

Tubesheet -- TEMA

TEMA RCB-7.13 Required Effective Tubesheet Thickness, in

Actual Tubesheet Thickness Used, TNominal = 1.0158 in

TMin effective for bending/shear, corr

= TNominal - Larger (Tube Side Pass Groove Depth, Tube Side Corrosion) - ShellSide Corrosion

= 1.0158 - Larger(0.1875, 0.0625) - 0.0625 = 0.7658 in

TMin effective for bending/shear, new

= TNominal - Larger (Tube Side Pass Groove Depth, Tube Side Corrosion) - ShellSide Corrosion

= 1.0158 - Larger(0.1875, 0) - 0 = 0.8283 in

Equations used

RCB-7.132(bending)

η = 1 - 0.907/(Pitch/Tube OD)2 = 1 - 0.907/(1.25/1)2

= 0.4195

F = 1.25

Tbending = (F*G/3)*(P/(η*S))1/2

RCB-7.133(shear)

DL = 4*A/C

Tshear = 0.31*DL*(P/S)/(1 - do/Pitch)

Shear does not control if (P/S) < 1.6*(1 - do/Pitch)2

Design Condition 1 Corroded

Shell Side

Tbending =(1.25*17.6875/3)*(73.48/(0.4195*20,000.00))1/2 =0.6897

Shear does not control as (73.48/20,000.00) <1.6*(1 - 1/1.25)2

Tube Side

Tbending =(1.25*17.6875/3)*(13.1759/(0.4195*20,000.00)) 1/2 =0.2921

Shear does not control as (-13.1759/20,000.00) <1.6*(1 - 1/1.25)2

Tube side hydrotest New Tube Side

Tbending =(1.25*17.6875/3)*(37.23753/(0.4195*34,200.00)) 1/2

= 0.3755

Shear does not control as (37.23753/34,200.00) <1.6*(1 - 1/1.25)2

Shell side hydrotest New Shell Side

Tbending =(1.25*17.6875/3)*(73.976/(0.4195*34,200.00)) 1/2 =0.5292

Shear does not control as (73.976/34,200.00) <1.6*(1 - 1/1.25)2

225/226

Page 227: HTRI-COMPRESS Kettle Calculations

Tubesheet Maximum Pressure Report

ASME Tubesheet Maximum Pressure Ratings

Description Design Condition 1 Tube side hydrotest Shell side hydrotest

Tube Side Pressure (psi) -13.51 135.67 0

Design temperature (°F) 414.5 70 70

Shell Side Pressure (psi) 60.62 0 135.67

Design temperature (°F) 307.57 70 70

Tubesheet Design temperature (°F) 414.5 70 70

TEMA Tubesheet Maximum Pressure Ratings

Description Design Condition 1 Tube side hydrotest Shell side hydrotest

Tube Side Pressure (psi) 0 181.24 0

Design temperature (°F) 414.5 70 70

Shell Side Pressure (psi) 90.6 0 181.24

Design temperature (°F) 307.57 70 70

Tubesheet Design temperature (°F) 414.5 70 70

226/226