23
Bucharest, October 19 th 2017 Coordinator : Martin Wahlich (Airbus) FULL-SCALE WIND-TUNNEL TEST OF ACTIVE FLOW CONTROL AT THE WING/PYLON/ENGINE JUNCTION Soudakov V. (TsAGI), Amiryants G. (TsAGI) Schloesser P. (Airbus), Bauer M. (Navasto), Weigel P. (Fraunhofer), Bardet M. (NLR) Ciobaca V., Gebhardt A., Wild J. (DLR)

FULL-SCALE WIND-TUNNEL TEST OF ACTIVE FLOW … 2017/AFLoNext_CEAS_2017... · Martin Wahlich (Airbus) ... Large nacelle for UHBR engine Standard nacelle Relatively large cutout. Subsonic

  • Upload
    lengoc

  • View
    235

  • Download
    0

Embed Size (px)

Citation preview

Bucharest, October 19th 2017

Coordinator :

Martin Wahlich (Airbus)

FULL-SCALE WIND-TUNNEL TEST OF ACTIVE FLOW CONTROL AT THE WING/PYLON/ENGINE JUNCTION

Soudakov V. (TsAGI), Amiryants G. (TsAGI)

Schloesser P. (Airbus), Bauer M. (Navasto),

Weigel P. (Fraunhofer), Bardet M. (NLR)

Ciobaca V., Gebhardt A., Wild J. (DLR)

Objectives

2 October 2017

To develop WT model,

install AFC hardware and

systems to suppress

separation

To prepare and carry-out

large scale WT tests

with/without AFC for TRL4

demonstration

Relatively small cutout

Large nacelle for

UHBR engine Standard nacelle

Relatively large cutout

Subsonic wind tunnel T-101 TsAGI

3

Test section dimensions:

Nozzle cross section 2414 m (elliptic)

Large-scale WT

Flow velocity up to 45-50 m/s

Re (MAC=3.259m) 11.2106

Total pressure atmospheric

Temperature environmental

M 0.15

October 2017

AFLONEXT model in WT

October 24, 2016 4

Total parts for

manufacturing: 1983

Total standard parts:

9807

Total parts: 11790

October 2017 4

DLR F-15 configuration

2.5D high-lift

Underwing throughflow nacelle for

UHBR engine

Sref =16.29 m2

MAC=3.259 m

Wing sweep angle 28°

5

CFD, CLmax regime

October 2017

•Separation in pylon wake

•Similar to aircraft

configuration

•Different critical AoA

Model

Aircraft

AFLoNext model overview

FLAP

SUPPORT OF THE

MODEL

SIDE PLATE INBOARD

TRAILING EDGE

WINGBOX

SLAT OUTBOARD

LEADING EDGE

LEADING EDGE

INBOARD

FAIRING INBOARD

NACELLE

PYLON

SIDE PLATE

OUTBOARD

SJA-insert

PJA - insert

BALANCE

SLAT

INBOARD

LEADING

EDGE

OUTBOARD

FAIRING

OUTBOARD

FAIRING OF THE

CCD - CAMERA

LENGTH OF MODEL ~ 7900 mm

WIDTH OF MODEL ~ 6000 mm

SPAN OF WING 5000 mm

SWEEP ANGLE 28°

WEIGHT ~5500 kg

6 October 2017

Trailing edge + flap Trailing edge

Flap

Ribs

Wingbox

Number of parts – 247

October 2017 7

Nacelle + pylon

Pylon

Internal body

Nacelle

Number of parts – 151

8 October 2017

Leading edge for PJA

Air supply for the PJA - insert

October 2017 9

Leading edge for the SJA - insert

Top panel for SJA/PJA LE

Cover

Top panel for

SJA/PJA LE

SJA - insert

10 October 2017

Measurements

11

• Balances

• Minitifts

• Cp

Number of taps - 380

October 2017

Wind tunnel tests, September 2017

12

PJA installed

October 2017

Experimental results, strake

13

• NO stall due to separation in pylon

wake even without strake

• There is a potential for AFC

October 2017

with Strake

no Strake

Mini-tufts, with strake

14

AoA -> linear regime AoA -> ~CLmax

No separation

Separation

October 2017

V V

• Minitufts show that separation in pylon

wake starts to grow which can be

suppressed by AFC

• There is the deviation from linear CL(AoA)

curve which can be suppressed by AFC

PJA installation

15 October 2017

Experiments, PJA, V=30 m/s

16

CL(AoA)

• Reference configuration with

strake

• Blue – PJA with Mj~0.6, close to

reference

• Brown – PJA with Mj~0.86

• Green – PJA with Mj~1

• Monotonic effect with increase of

jet intensity

October 2017

0.1

2 deg

Experiments, PJA, V=30 m/s, Cp, AoA=max

17

Cp

X

1.0

0.0

-1.0

-2.0

-3.0

-4.0

-5.0

-320-420-520-620-720

Прот. Отс. Сеч.1012;1 9 SLAT_11023;1 8 SLAT_11030;1 8 SLAT_11031;1 8 SLAT_11032;1 8 SLAT_1

V актуатор Конфиг G параметр актуатора30 баз LEX --- ---30 PJA LEX --- ---30 PJA LEX 1.25 Mj=130 PJA LEX 0.67 Mj=0.630 PJA LEX 0.98 Mj=0.86

Cp

X

1.0

0.0

-1.0

-2.0

-3.0

0 500 1000 1500

Прот. Отс. Сеч.1012;1 9 WING_11023;1 8 WING_11030;1 8 WING_11031;1 8 WING_11032;1 8 WING_1

V актуатор Конфиг G параметр актуатора30 баз LEX --- ---30 PJA LEX --- ---30 PJA LEX 1.25 Mj=130 PJA LEX 0.67 Mj=0.630 PJA LEX 0.98 Mj=0.86

Cp

X

1.0

0.0

-1.0

-2.0

1800 2050 2300 2550

Прот. Отс. Сеч.1012;1 9 FLAP_11023;1 8 FLAP_11030;1 8 FLAP_11031;1 8 FLAP_11032;1 8 FLAP_1

V актуатор Конфиг G параметр актуатора30 баз LEX --- ---30 PJA LEX --- ---30 PJA LEX 1.25 Mj=130 PJA LEX 0.67 Mj=0.630 PJA LEX 0.98 Mj=0.86

October 2017

Cp

X

1.0

0.0

-1.0

-2.0

2650 2900 3150

Прот. Отс. Сеч.1012;1 9 FLAP_21023;1 8 FLAP_21030;1 8 FLAP_21031;1 8 FLAP_21032;1 8 FLAP_2

V актуатор Конфиг G параметр актуатора30 баз LEX --- ---30 PJA LEX --- ---30 PJA LEX 1.25 Mj=130 PJA LEX 0.67 Mj=0.630 PJA LEX 0.98 Mj=0.86

Cp

X

1.0

0.0

-1.0

-2.0

3450 3700 3950

Прот. Отс. Сеч.1012;1 9 FLAP_31023;1 8 FLAP_31030;1 8 FLAP_31031;1 8 FLAP_31032;1 8 FLAP_3

V актуатор Конфиг G параметр актуатора30 баз LEX --- ---30 PJA LEX --- ---30 PJA LEX 1.25 Mj=130 PJA LEX 0.67 Mj=0.630 PJA LEX 0.98 Mj=0.86

Experiments, PJA, minitufts

18

AoA = max, No jet

Separation

upstream of

PJA

AoA = max, With jet

Separation Fully attached

downstream

of PJA

October 2017

V V

Experiments, PJA, different free-stream velocities

19

• Noticeable effect

for all speeds

October 2017

CL(AoA)

0.1

2 deg

CL(AoA)

0.1

2 deg

V=40 m/s V=48 m/s

With PJA

Reference, no jet

Experiments, PJA, no strake

20

• Monotonic increase of

effect due increase of

intensity

• DCL is approximately the

same as in case with strake

October 2017

V=48 m/s

CL(AoA)

0.1

2 deg

SJA and equipment installation

21 October 2017

SJA, experiments, V=30 m/s

22

• Frequency sweep then AoA sweep with

optimal F

• No optimal F on balances

• Very small scale

• SJA effect within scale of accuracy /

repeatability

October 2017

CL

0.01

Frequency sweep, F

CL (AoA)

1 deg

0.1

Summary

23 October 2017

• WT model has been developed, PJA and SJA hardware and

systems have been installed

• Large-scale WT tests without/with PJA and SJA have been carried

out in T-101 TsAGI WT

• PJA essentially increases CL values near CLmax regime

• Cp-distributions and minitufts show that this increase is due to

suppression of separation in pylon wake region

• There is no essential difference in CL and minitufts due to SJA