21
FEKT VUT v Brně ESO / L1 / J.Boušek 1 Intrinsic semiconductor

FEKT VUT v BrněESO / L1 / J.Boušek1 Intrinsic semiconductor

Embed Size (px)

Citation preview

Page 1: FEKT VUT v BrněESO / L1 / J.Boušek1 Intrinsic semiconductor

FEKT VUT v Brně ESO / L1 / J.Boušek 1

Intrinsic semiconductor

Page 2: FEKT VUT v BrněESO / L1 / J.Boušek1 Intrinsic semiconductor

FEKT VUT v Brně ESO / L1 / J.Boušek 2

Doped semiconductor N-type

Page 3: FEKT VUT v BrněESO / L1 / J.Boušek1 Intrinsic semiconductor

FEKT VUT v Brně ESO / L1 / J.Boušek 3

Doped semiconductor P-type

Page 4: FEKT VUT v BrněESO / L1 / J.Boušek1 Intrinsic semiconductor

ESO / L2 / J.Boušek 4

E

+

-v

vd

d

+

-

Electric current in semiconductors

Drift of charged carriers

Page 5: FEKT VUT v BrněESO / L1 / J.Boušek1 Intrinsic semiconductor

ESO / L2 / J.Boušek 5

+

+

E

IA

Ip,drift = qpvd A Jp,drift = qpvd

vd = μpE

Jp,drift = qμppE Jn,drift = qμnnE

Electric current in semiconductors

Page 6: FEKT VUT v BrněESO / L1 / J.Boušek1 Intrinsic semiconductor

ESO / L2 / J.Boušek 6

Carrier mobility : Dimension : m2V-1s-1. cm2V-1s-1. - n > p Si , T=300K : n = 1300 cm2V-1s-1 pro ND = 1014 cm-3 N- typ -

p = 490 cm2V-1s-1 pro NA = 1014 cm-3.

Page 7: FEKT VUT v BrněESO / L1 / J.Boušek1 Intrinsic semiconductor

ESO / L2 / J.Boušek 7

10 10 1010

elektrony

díry

14 15 16 17 18 19

1000

100

10

10 10

N nebo N [cm ]D A-3

pohyblivost [cm / Vs]2

Dependence on dopant concentration

Page 8: FEKT VUT v BrněESO / L1 / J.Boušek1 Intrinsic semiconductor

ESO / L2 / J.Boušek 8

+

+

+

+

+

+

+

+

++

-

-

-

-

-

-

-

-

--

x x

difúze difúze

J Jp,dif n,dif

Diffusion

Page 9: FEKT VUT v BrněESO / L1 / J.Boušek1 Intrinsic semiconductor

ESO / L2 / J.Boušek 9

cDz

c

y

c

x

cDJ grad.,,

dx

dnqDJ ndifn ,

dx

dnqDJ ndifn ,

Diffusion

1. Fick-Law:

Page 10: FEKT VUT v BrněESO / L1 / J.Boušek1 Intrinsic semiconductor

ESO / L2 / J.Boušek 10

Jx = qEx(pp + nn) + q(Dn dn

dx- Dp

dp

dx)

D/ = kT/q

Dn

n =

Dp

p = kT

q = UT

Einstein equation

Diffusion + Drift

Page 11: FEKT VUT v BrněESO / L1 / J.Boušek1 Intrinsic semiconductor

ESO / L2 / J.Boušek 11

Generation = need energy = generation in pairs: (electron + hole)

- photo-generation

- thermal excitation of the crystal lattice

- high energy electron

Recombination = loss of energy = recombination in pairs: (el. + hole) :

- large number of complicated processes

- direct (interband)

- undirect (recombination centres, traps)

- surface

generation lifetime recombination

electrones… n holes…. p

Generation and recombination

Page 12: FEKT VUT v BrněESO / L1 / J.Boušek1 Intrinsic semiconductor

ESO / L2 / J.Boušek 12

Doped semiconductor:

Type N n >> p ; Type P p >> n

Usually : n , p ≈ 1 s

High quality silicon : n , p ≥ 1 ms

High density of traps / of recombination centres :

n , p ≈ 1 s ÷1 ns

- High speed devices: Intentionally ... Au (Al)

- Low quality production: Crystal distortions, Impurities

Lifetime of the carriers

Page 13: FEKT VUT v BrněESO / L1 / J.Boušek1 Intrinsic semiconductor

ESO / L2 / J.Boušek 13

p0 n0 = ni2 equilibrium state (index "0")

Distortion of thermal equilibrium: n = n0 + n ; p = p0 + p

(n a p concentration of non-equilibrium carriers)

Injection : np > ni2

low (n << n0) - medium (n n0) - high (n >> n0)

Extraction : np < ni2.

Thermal equilibrium

Page 14: FEKT VUT v BrněESO / L1 / J.Boušek1 Intrinsic semiconductor

ESO / L2 / J.Boušek 14

Depletion region

PN-Junction in equilibrium state

Page 15: FEKT VUT v BrněESO / L1 / J.Boušek1 Intrinsic semiconductor

ESO / L2 / J.Boušek 15

Electrons in N: nn = ND = 1019 m-3

Electrons in P: np = ni2 / NA = 1032 m-6 / 1020 m-3 = 1012 m-3

Difference in concentration 107 electron diffusion to P !!!!!

In N only ionized donors (ND +) standing firmly in the lattice

Holes in P: pp = NA = 1020 m-3

Holes in N: pp = ni2 / ND = 1032 m-6 / 1019 m-3 = 1013 m-3

Difference in concentration 107 diffusion of holes to N !!!!!

In N only ionized donors (ND +) standing firmly in the lattice

PN-Junction in equilibrium state

Concentration of dopants: ND = 1019 m-3 NA = 1020 m-3

Ionized dopants create space charge !!!!!!!!!

Page 16: FEKT VUT v BrněESO / L1 / J.Boušek1 Intrinsic semiconductor

ESO / L2 / J.Boušek 16

Space charge in depletion area

Electrical field

Potential

Page 17: FEKT VUT v BrněESO / L1 / J.Boušek1 Intrinsic semiconductor

ESO / L2 / J.Boušek 17

Density of the space charge given by dopants concentration

Junction area with lower dopants concentration ís wider

Consequence : Electrical field in depletion area

Emax- in metalurgical junction !!!!

Actual potential value given by the shape of electrical field

Potential difference between P and N : Diffusion voltage.

PN-Junction in equilibrium state

Page 18: FEKT VUT v BrněESO / L1 / J.Boušek1 Intrinsic semiconductor

ESO / L2 / J.Boušek 18

Band-diagram of PN-Junction

Page 19: FEKT VUT v BrněESO / L1 / J.Boušek1 Intrinsic semiconductor

ESO / L2 / J.Boušek 19

Band-diagram of PN-Junction

1) The position of EF in both areas P and N must correspond to

the type of semiconductor / type of conductivity.

(shift EF to EV in case of “P-type“ or to EC in case of “N-type“)

2) In Thermal equilibrium the value of Fermi level EF is constant.

To fulfuill both 1) + 2) :

a) mutual shift of Conductive and Valence bands (band-bending)

b) The shift corresponds to qUD .

qUD : energetic treshold - prevents diffusion of majority carriers.

Page 20: FEKT VUT v BrněESO / L1 / J.Boušek1 Intrinsic semiconductor

ESO / L2 / J.Boušek 20

PN junction in FORWARD polarisation

Diffusion voltage - barrier against diffusion of majority carriers

Equilibrium state :

Only small diffusion current which is compensated with the drift casused by potential difference in space charge area.

majority carriers - diffusion

minoritní carriers - drift

In forward polarisation : external voltage acts against the potential in depletion area - the barrier / treshold is lower !!!

Forward current is made by DIFFUSSION of majority carriers !!

Page 21: FEKT VUT v BrněESO / L1 / J.Boušek1 Intrinsic semiconductor

ESO / L2 / J.Boušek 21

Polarity of external voltage is the same as the polarity of electrical field in the space charge region:

!! Electrical field in the space charge region grows !!

Electrical field in space charge region enhance the drift of minority carriers from quasineutral parts of the junction:

-The concentration of minority carriers in quasineutral parts of the junction drops.

- When increasing the reverse voltage the reverse current does not increase !!!!

Reverse current : DRIFT current of minority carriers !!!!

PN junction in REVERSE polarisation