29
Ekofisk Revisited G. A. Jones 1 , D. G. Raymer 2 , K. Chambers 1 and J-M. Kendall 1 1. University of Bristol; 2. Schlumberger Cambridge Research Reservoir monitoring seismic experiment Hypocentre determination using grid search methods Monte Carlo hypocentre error analysis Multiplet relocation Fault reactivation and production induced deformation

Ekofisk Revisited G. A. Jones 1, D. G. Raymer 2, K. Chambers 1 and J-M. Kendall 1 1. University of Bristol; 2. Schlumberger Cambridge Research Reservoir

Embed Size (px)

Citation preview

Page 1: Ekofisk Revisited G. A. Jones 1, D. G. Raymer 2, K. Chambers 1 and J-M. Kendall 1 1. University of Bristol; 2. Schlumberger Cambridge Research Reservoir

Ekofisk Revisited

G. A. Jones 1, D. G. Raymer 2, K. Chambers1 and J-M. Kendall 1

1. University of Bristol; 2. Schlumberger Cambridge Research

• Reservoir monitoring seismic experiment• Hypocentre determination using grid search methods• Monte Carlo hypocentre error analysis• Multiplet relocation• Fault reactivation and production induced deformation

Page 2: Ekofisk Revisited G. A. Jones 1, D. G. Raymer 2, K. Chambers 1 and J-M. Kendall 1 1. University of Bristol; 2. Schlumberger Cambridge Research Reservoir

Challenges in microseismicityAnisotropy and shear

wave splitting

Focal mechanism

Fault/fracture identification

Repeating earthquakes

Page 3: Ekofisk Revisited G. A. Jones 1, D. G. Raymer 2, K. Chambers 1 and J-M. Kendall 1 1. University of Bristol; 2. Schlumberger Cambridge Research Reservoir

The Ekofisk reservoir

• Located in the central Graben of the Norwegian North Sea

• Field discovered in 1969 and was the first economically viable chalk reservoir

• Sea-floor subsidence ~30cm/year

• The challenge: to monitor subsidence, compaction and its effects on reservoir permeability

Page 4: Ekofisk Revisited G. A. Jones 1, D. G. Raymer 2, K. Chambers 1 and J-M. Kendall 1 1. University of Bristol; 2. Schlumberger Cambridge Research Reservoir

The Ekofisk microseismic experiment

• One of the 1st microseismic monitoring experiments experiments in oil industry

• Vertical downhole geophone array of 6, 3 component receivers spaced 20 meters

• Geophones located in producing part of reservoir

• 4490 events triggered over the 18 day experiment in April 1997

Page 5: Ekofisk Revisited G. A. Jones 1, D. G. Raymer 2, K. Chambers 1 and J-M. Kendall 1 1. University of Bristol; 2. Schlumberger Cambridge Research Reservoir

Signal characteristics

Page 6: Ekofisk Revisited G. A. Jones 1, D. G. Raymer 2, K. Chambers 1 and J-M. Kendall 1 1. University of Bristol; 2. Schlumberger Cambridge Research Reservoir

Event evolution with time

Page 7: Ekofisk Revisited G. A. Jones 1, D. G. Raymer 2, K. Chambers 1 and J-M. Kendall 1 1. University of Bristol; 2. Schlumberger Cambridge Research Reservoir

Event evolution with time

Page 8: Ekofisk Revisited G. A. Jones 1, D. G. Raymer 2, K. Chambers 1 and J-M. Kendall 1 1. University of Bristol; 2. Schlumberger Cambridge Research Reservoir

Velocity model construction

Page 9: Ekofisk Revisited G. A. Jones 1, D. G. Raymer 2, K. Chambers 1 and J-M. Kendall 1 1. University of Bristol; 2. Schlumberger Cambridge Research Reservoir

Arrival time picking and polarisationsV

eloc

ity (

µm

)

P S

Page 10: Ekofisk Revisited G. A. Jones 1, D. G. Raymer 2, K. Chambers 1 and J-M. Kendall 1 1. University of Bristol; 2. Schlumberger Cambridge Research Reservoir

Polarisation analysis – refining position and azimuth

Jones et al. in press

Page 11: Ekofisk Revisited G. A. Jones 1, D. G. Raymer 2, K. Chambers 1 and J-M. Kendall 1 1. University of Bristol; 2. Schlumberger Cambridge Research Reservoir

• Use the array-velocity model symmetry to reduce problem from 3D to 2D

• Simplification of the problem allows for a dense grid search procedure to be implemented

Page 12: Ekofisk Revisited G. A. Jones 1, D. G. Raymer 2, K. Chambers 1 and J-M. Kendall 1 1. University of Bristol; 2. Schlumberger Cambridge Research Reservoir

Which hypocentre method?

• Which minimisation function to use?– P- and S-times

individually? – Differential S-P?– All possible combinations

of differential arrival times?

• Or use EDT surfaces?

Page 13: Ekofisk Revisited G. A. Jones 1, D. G. Raymer 2, K. Chambers 1 and J-M. Kendall 1 1. University of Bristol; 2. Schlumberger Cambridge Research Reservoir

EDT tolerance selection

Page 14: Ekofisk Revisited G. A. Jones 1, D. G. Raymer 2, K. Chambers 1 and J-M. Kendall 1 1. University of Bristol; 2. Schlumberger Cambridge Research Reservoir

Arrival Time Monte Carlo TestS-P

All pairs

EDT

Page 15: Ekofisk Revisited G. A. Jones 1, D. G. Raymer 2, K. Chambers 1 and J-M. Kendall 1 1. University of Bristol; 2. Schlumberger Cambridge Research Reservoir

Velocity Model Monte Carlo TestS-P

All pairs

EDT

Page 16: Ekofisk Revisited G. A. Jones 1, D. G. Raymer 2, K. Chambers 1 and J-M. Kendall 1 1. University of Bristol; 2. Schlumberger Cambridge Research Reservoir

Summary of Monte Carlo Analysis

∆rtt(m) ∆ztt(m) ∆rvel(m) ∆zvel(m)

S-P 0.13 ± 9.6 -1.5 ± 17.5 1.5 ± 13.5 0.7 ± 29.6

All pairs 0.04 ± 1.3 -0.04 ± 2.7 2.0 ± 5.2 1.8 ± 6.7

EDT -0.06 ± 14.6 -0.4 ± 7.8 0.4 ± 22.5 1.3 ± 12.0

Page 17: Ekofisk Revisited G. A. Jones 1, D. G. Raymer 2, K. Chambers 1 and J-M. Kendall 1 1. University of Bristol; 2. Schlumberger Cambridge Research Reservoir

Hypocentre Locations

Page 18: Ekofisk Revisited G. A. Jones 1, D. G. Raymer 2, K. Chambers 1 and J-M. Kendall 1 1. University of Bristol; 2. Schlumberger Cambridge Research Reservoir

Multiplet Identification

Page 19: Ekofisk Revisited G. A. Jones 1, D. G. Raymer 2, K. Chambers 1 and J-M. Kendall 1 1. University of Bristol; 2. Schlumberger Cambridge Research Reservoir

Arrival time re-pickingBefore After

Page 20: Ekofisk Revisited G. A. Jones 1, D. G. Raymer 2, K. Chambers 1 and J-M. Kendall 1 1. University of Bristol; 2. Schlumberger Cambridge Research Reservoir

Multiplet polarisation analysis

• Modified polarisation analysis of de Meersman et al. 2006

Page 21: Ekofisk Revisited G. A. Jones 1, D. G. Raymer 2, K. Chambers 1 and J-M. Kendall 1 1. University of Bristol; 2. Schlumberger Cambridge Research Reservoir
Page 22: Ekofisk Revisited G. A. Jones 1, D. G. Raymer 2, K. Chambers 1 and J-M. Kendall 1 1. University of Bristol; 2. Schlumberger Cambridge Research Reservoir

Location of 5 largest multiplet clusters identified with cluster analysis

Page 23: Ekofisk Revisited G. A. Jones 1, D. G. Raymer 2, K. Chambers 1 and J-M. Kendall 1 1. University of Bristol; 2. Schlumberger Cambridge Research Reservoir

Cluster 1

Page 24: Ekofisk Revisited G. A. Jones 1, D. G. Raymer 2, K. Chambers 1 and J-M. Kendall 1 1. University of Bristol; 2. Schlumberger Cambridge Research Reservoir

Cluster 2

Page 25: Ekofisk Revisited G. A. Jones 1, D. G. Raymer 2, K. Chambers 1 and J-M. Kendall 1 1. University of Bristol; 2. Schlumberger Cambridge Research Reservoir

Cluster 3

Page 26: Ekofisk Revisited G. A. Jones 1, D. G. Raymer 2, K. Chambers 1 and J-M. Kendall 1 1. University of Bristol; 2. Schlumberger Cambridge Research Reservoir

Cluster 4

Page 27: Ekofisk Revisited G. A. Jones 1, D. G. Raymer 2, K. Chambers 1 and J-M. Kendall 1 1. University of Bristol; 2. Schlumberger Cambridge Research Reservoir

Cluster 5

Page 28: Ekofisk Revisited G. A. Jones 1, D. G. Raymer 2, K. Chambers 1 and J-M. Kendall 1 1. University of Bristol; 2. Schlumberger Cambridge Research Reservoir

Results• Different mechanism of

failure seen based on waveform characteristics and location.

• Mechanisms include stress triggering - cluster 2, pore pressure diffusion cluster 4, and fault re-activation - clusters 1,3 and 5.

• Clusters dip away from monitoring well

Page 29: Ekofisk Revisited G. A. Jones 1, D. G. Raymer 2, K. Chambers 1 and J-M. Kendall 1 1. University of Bristol; 2. Schlumberger Cambridge Research Reservoir

Conclusions

• Use of all available arrival time pairs result in most robust hypocentres at Ekofisk

• Errors in velocity model x2 those of arrival times

• Numerous possible mechanisms of microseismic activity present at Ekofisk:– Fault re-activation– Pore pressure diffusion– Stress triggering – Production induced activity around wells