37
EE4800 CMOS Digital IC Design & Analysis Lecture 12 Packaging, Power and Clock Distributions Zhuo Feng Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 2010 Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 2010 12. 12.1

EE4800 CMOS Digital IC Design & Analysiszhuofeng/EE4800Slides2010... · EE4800 CMOS Digital IC Design & Analysis Lecture 12 Packaging, Power and Clock Distributions Zhuo Feng 12.12.11

  • Upload
    others

  • View
    21

  • Download
    0

Embed Size (px)

Citation preview

Page 1: EE4800 CMOS Digital IC Design & Analysiszhuofeng/EE4800Slides2010... · EE4800 CMOS Digital IC Design & Analysis Lecture 12 Packaging, Power and Clock Distributions Zhuo Feng 12.12.11

EE4800 CMOS Digital IC Design & Analysis

Lecture 12 Packaging, Power and Clock Distributions

Zhuo Feng

Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 2010Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 201012.12.11

Page 2: EE4800 CMOS Digital IC Design & Analysiszhuofeng/EE4800Slides2010... · EE4800 CMOS Digital IC Design & Analysis Lecture 12 Packaging, Power and Clock Distributions Zhuo Feng 12.12.11

Outline■ Packaging■ Power Distribution■ Clock Distribution

Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 2010Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 201012.12.22

Page 3: EE4800 CMOS Digital IC Design & Analysiszhuofeng/EE4800Slides2010... · EE4800 CMOS Digital IC Design & Analysis Lecture 12 Packaging, Power and Clock Distributions Zhuo Feng 12.12.11

Packagesg■ Package functions

►Electrical connection of signals and power from g pchip to board

►Little delay or distortionM h i l i f hi b d►Mechanical connection of chip to board

►Removes heat produced on chip►Protects chip from mechanical damage►Protects chip from mechanical damage►Compatible with thermal expansion► Inexpensive to manufacture and test► Inexpensive to manufacture and test

Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 2010Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 201012.12.33

Page 4: EE4800 CMOS Digital IC Design & Analysiszhuofeng/EE4800Slides2010... · EE4800 CMOS Digital IC Design & Analysis Lecture 12 Packaging, Power and Clock Distributions Zhuo Feng 12.12.11

Package Typesg y■ Through-hole vs. surface mount

Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 2010Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 201012.12.44

Page 5: EE4800 CMOS Digital IC Design & Analysiszhuofeng/EE4800Slides2010... · EE4800 CMOS Digital IC Design & Analysis Lecture 12 Packaging, Power and Clock Distributions Zhuo Feng 12.12.11

Multichip Modules■ Pentium Pro MCM

►Fast connection of CPU to cache►Expensive, requires known good dice

Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 2010Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 201012.12.55

Page 6: EE4800 CMOS Digital IC Design & Analysiszhuofeng/EE4800Slides2010... · EE4800 CMOS Digital IC Design & Analysis Lecture 12 Packaging, Power and Clock Distributions Zhuo Feng 12.12.11

Chip-to-Package BondingChip to Package Bonding■ Traditionally, chip is surrounded by pad frame

► Metal pads on 100 – 200 μm pitchp μ p► Gold bond wires attach pads to package► Lead frame distributes signals in package► Metal heat spreader helps with cooling► Metal heat spreader helps with cooling

Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 2010Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 201012.12.66

Page 7: EE4800 CMOS Digital IC Design & Analysiszhuofeng/EE4800Slides2010... · EE4800 CMOS Digital IC Design & Analysis Lecture 12 Packaging, Power and Clock Distributions Zhuo Feng 12.12.11

Advanced Packagesg■ Bond wires contribute parasitic inductance■ Fancy packages have many signal, power layers■ Fancy packages have many signal, power layers

► Like tiny printed circuit boards

■ Flip-chip places connections across surface of di th th d i hdie rather than around periphery► Top level metal pads covered with solder balls► Chip flips upside downp p p► Carefully aligned to package (done blind!)► Heated to melt balls► Also called C4 (Controlled Collapse Chip Connection)► Also called C4 (Controlled Collapse Chip Connection)

Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 2010Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 201012.12.77

Page 8: EE4800 CMOS Digital IC Design & Analysiszhuofeng/EE4800Slides2010... · EE4800 CMOS Digital IC Design & Analysis Lecture 12 Packaging, Power and Clock Distributions Zhuo Feng 12.12.11

Package ParasiticsgUse many VDD, GND in parallel– Inductance I

Package

– Inductance, IDD

S S ChipVDD

BoardVDD

Bond Wire Lead Frame

Chip

ignal Pins

PackageCapacitor

ignal Pads

DD

Chip

DD

BoardpGND GND

Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 2010Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 201012.12.88

Page 9: EE4800 CMOS Digital IC Design & Analysiszhuofeng/EE4800Slides2010... · EE4800 CMOS Digital IC Design & Analysis Lecture 12 Packaging, Power and Clock Distributions Zhuo Feng 12.12.11

Heat Dissipation■ 60 W light bulb has surface area of 120 cm2

■ Itanium 2 die dissipates 130 W over 4 cm2p► Chips have enormous power densities► Cooling is a serious challenge

Package spreads heat to larger surface area■ Package spreads heat to larger surface area► Heat sinks may increase surface area further► Fans increase airflow rate over surface area► Liquid cooling used in extreme cases ($$$)

Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 2010Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 201012.12.99

Page 10: EE4800 CMOS Digital IC Design & Analysiszhuofeng/EE4800Slides2010... · EE4800 CMOS Digital IC Design & Analysis Lecture 12 Packaging, Power and Clock Distributions Zhuo Feng 12.12.11

Thermal Resistance■ ΔT = θjaP

► ΔT: temperature rise on chip► θja: thermal resistance of chip junction to ambient► P: power dissipation on chip

■ Thermal resistances combine like resistors■ Thermal resistances combine like resistors► Series and parallel

■ θja = θjp + θpa

► Series combination

Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 2010Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 201012.12.1010

Page 11: EE4800 CMOS Digital IC Design & Analysiszhuofeng/EE4800Slides2010... · EE4800 CMOS Digital IC Design & Analysis Lecture 12 Packaging, Power and Clock Distributions Zhuo Feng 12.12.11

Example■ Your chip has a heat sink with a thermal

resistance to the package of 4.0° C/W. ■ The resistance from chip to package is 1° C/W.

■ The system box ambient temperature may reach 55° C55° C.

■ The chip temperature must not exceed 100° C.

■ What is the maximum chip power dissipation?■ What is the maximum chip power dissipation?

■ (100-55 C) / (4 + 1 C/W) = 9 W■ (100 55 C) / (4 1 C/W) 9 W

Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 2010Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 201012.12.1111

Page 12: EE4800 CMOS Digital IC Design & Analysiszhuofeng/EE4800Slides2010... · EE4800 CMOS Digital IC Design & Analysis Lecture 12 Packaging, Power and Clock Distributions Zhuo Feng 12.12.11

Temperature Sensor■ Monitor die temperature and throttle performance■ Use a pair of pnp bipolar transistors

► Vertical pnp available in CMOS

lnBEqV

ckTc s BE

IkTI I e VI

= → =

1 2 11 2

2

ln ln ln ln

c

c c cBE BE BE

s s c

q I

I I IkT kT kTV V V mq I I q I q⎛ ⎞ ⎛ ⎞

Δ = − = − = =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

■ Voltage difference is proportional to absolute temp► Measure with on-chip A/D converter

Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 2010Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 201012.12.1212

Page 13: EE4800 CMOS Digital IC Design & Analysiszhuofeng/EE4800Slides2010... · EE4800 CMOS Digital IC Design & Analysis Lecture 12 Packaging, Power and Clock Distributions Zhuo Feng 12.12.11

Power Distribution■ Power Distribution Network functions

►Carry current from pads to transistors on chip►Maintain stable voltage with low noise►Provide average and peak power demands►Provide current return paths for signals►Avoid electromigration & self-heating wearout►C littl hi d i►Consume little chip area and wire►Easy to lay out

Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 2010Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 201012.12.1313

Page 14: EE4800 CMOS Digital IC Design & Analysiszhuofeng/EE4800Slides2010... · EE4800 CMOS Digital IC Design & Analysis Lecture 12 Packaging, Power and Clock Distributions Zhuo Feng 12.12.11

IR Drop in Power Distribution NetworkIR drop: voltage drop due to non-ideal resistive wires

VDD

XX

VDD VDD

Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 2010Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 201012.12.1414

GNDGND Cadence

Page 15: EE4800 CMOS Digital IC Design & Analysiszhuofeng/EE4800Slides2010... · EE4800 CMOS Digital IC Design & Analysis Lecture 12 Packaging, Power and Clock Distributions Zhuo Feng 12.12.11

Power Delivery NetworkySocket

ChipPackage

C4 Bumps

PCB

Entire Power Delivery Network

Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 2010Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 201012.12.1515

On-Chip Power Delivery Network

Page 16: EE4800 CMOS Digital IC Design & Analysiszhuofeng/EE4800Slides2010... · EE4800 CMOS Digital IC Design & Analysis Lecture 12 Packaging, Power and Clock Distributions Zhuo Feng 12.12.11

Power System Modely■ Power comes from regulator on system board

► Board and package add parasitic R and L► Bypass capacitors help stabilize supply voltage► But capacitors also have parasitic R and L

■ Simulate system for time and frequency responses■ Simulate system for time and frequency responses

V lt P i t d Ci it P k S ldVoltageRegulator

Printed CircuitBoard Planes

Packageand Pins

SolderBumps

Bulk Ceramic Package On-Chip On-ChipV

Chip

BulkCapacitor

CeramicCapacitor

PackageCapacitor

On ChipCapacitor

On ChipCurrent DemandVDD

PackageBoard

Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 2010Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 201012.12.1616

Page 17: EE4800 CMOS Digital IC Design & Analysiszhuofeng/EE4800Slides2010... · EE4800 CMOS Digital IC Design & Analysis Lecture 12 Packaging, Power and Clock Distributions Zhuo Feng 12.12.11

Power Delivery Network Modelingy g

Multi-million nodesThousands of nodes

Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 2010Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 201012.12.1717

Page 18: EE4800 CMOS Digital IC Design & Analysiszhuofeng/EE4800Slides2010... · EE4800 CMOS Digital IC Design & Analysis Lecture 12 Packaging, Power and Clock Distributions Zhuo Feng 12.12.11

On-Chip Power Grid Modeling & Analysis■ Multi-layer interconnects are modeled as 3D RC network

► Switching gate effects are modeled by time-varying current loadings

p g y

Vdd Vdd

Vdd Vdd

■ DC analysis solves linear systemTens of millionsof unknowns !G v b⋅ = :n nG ×∈ℜ Conductance Matrix

■ Transient analysis solves

( )( ) ( )dv tG v t C b t+1

::

n n

n

Cv

×

×

∈ℜ

∈ℜ

Capacitance Matrix

Node Voltage Vector

Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 2010Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 201012.12.1818

( )( ) ( )G v t C b tdt

⋅ + ⋅ =1 :nb ×∈ℜ Current Loading Vector

Page 19: EE4800 CMOS Digital IC Design & Analysiszhuofeng/EE4800Slides2010... · EE4800 CMOS Digital IC Design & Analysis Lecture 12 Packaging, Power and Clock Distributions Zhuo Feng 12.12.11

Power Requirements■ VDD = VDDnominal – Vdroop

■ Want Vdroop < +/- 10% of VDD■ Want Vdroop / 10% of VDD

■ Sources of Vdroop

► IR drops► L di/dt noise

■ IDD changes on many time scalesPower

clock gatingMax

Average

Min

Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 2010Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 201012.12.1919

Time

Page 20: EE4800 CMOS Digital IC Design & Analysiszhuofeng/EE4800Slides2010... · EE4800 CMOS Digital IC Design & Analysis Lecture 12 Packaging, Power and Clock Distributions Zhuo Feng 12.12.11

Important Metrics I■ Voltage Droop.

► Two sources: IR drops and Ldi/dt noises.► Large voltage droop leads to circuit timing failure or function► Large voltage droop leads to circuit timing failure or function

failure.► Usually only 5% rail is allowed for 90nm or beyond

technologiestechnologies.VDDn

+ ( )dn DD DDn SSnV V V V= − −

5%V V≤

V

Tn

-

Vn5%dn DDV V≤

VSSn

VDD

V V

5%VDDVdn

Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 2010Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 201012.12.2020

VDDn -VSSn

Page 21: EE4800 CMOS Digital IC Design & Analysiszhuofeng/EE4800Slides2010... · EE4800 CMOS Digital IC Design & Analysis Lecture 12 Packaging, Power and Clock Distributions Zhuo Feng 12.12.11

IR Drop■ A chip draws 24 W from a 1.2 V supply. The

power supply impedance is 5 mΩ. What is the IR drop?

■ IDD = 24 W / 1.2 V = 20 AIR d (20 A)(5 Ω) 100 V■ IR drop = (20 A)(5 mΩ) = 100 mV

Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 2010Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 201012.12.2121

Page 22: EE4800 CMOS Digital IC Design & Analysiszhuofeng/EE4800Slides2010... · EE4800 CMOS Digital IC Design & Analysis Lecture 12 Packaging, Power and Clock Distributions Zhuo Feng 12.12.11

L di/dt Noise■ A 1.2 V chip switches from an idle mode

consuming 5W to a full-power mode consuming 53 W. The transition takes 10 clock cycles at 1 GHz. The supply inductance is 0.1 nH. What is the L di/dt droop?the L di/dt droop?

ΔI = (53 W – 5 W)/(1.2 V) = 40 AΔt = 10 cycles * (1 ns / cycle) = 10 nsL di/dt droop = (0.1 nH) * (40 A / 10 ns) = 0.4 V

Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 2010Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 201012.12.2222

Page 23: EE4800 CMOS Digital IC Design & Analysiszhuofeng/EE4800Slides2010... · EE4800 CMOS Digital IC Design & Analysis Lecture 12 Packaging, Power and Clock Distributions Zhuo Feng 12.12.11

Important Metrics II■ Current density.

► High direct current density leads to electromigration phenomenonphenomenon.

► Electromigration decreases reliability or even breaks connections.

/J I w=

I

, , /avg m avg m mJ I w

,avg mJ σ≤Im

I

0

Im

Iavg,

m

Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 2010Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 201012.12.2323

m

Page 24: EE4800 CMOS Digital IC Design & Analysiszhuofeng/EE4800Slides2010... · EE4800 CMOS Digital IC Design & Analysis Lecture 12 Packaging, Power and Clock Distributions Zhuo Feng 12.12.11

Technology Scaling: Challenges

■ Scaled down supply voltage vs. increased operating frequency and power densities.p g q y p► Higher percentage of voltage droops.► Lower voltage droop tolerance.

■ Shrunk chip area vs. increased gated density.► Less wiring resources.► Larger power delivery network dimensions.

■ Fine-grained power management■ Fine-grained power management.► Power gating.► Multiple power domains.

Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 2010Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 201012.12.2424

Page 25: EE4800 CMOS Digital IC Design & Analysiszhuofeng/EE4800Slides2010... · EE4800 CMOS Digital IC Design & Analysis Lecture 12 Packaging, Power and Clock Distributions Zhuo Feng 12.12.11

Technology Scaling: Implications■ Simulation:

► Stricter accuracy requirement.M ffi i t i t f ti d► More efficient in terms of runtime and memory.

► Full chip simulation with package and integrated components.

■ Verification:► Power-gated power delivery network with multiple power► Power gated power delivery network with multiple power

gating configurations.

D i■ Design:► Optimization for wire sizing.► Detailed tradeoff analysis for on-chip voltage regulation.

Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 2010Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 201012.12.2525

► Optimization for on-chip voltage regulation.

Page 26: EE4800 CMOS Digital IC Design & Analysiszhuofeng/EE4800Slides2010... · EE4800 CMOS Digital IC Design & Analysis Lecture 12 Packaging, Power and Clock Distributions Zhuo Feng 12.12.11

Frequency Responsey■ Multiple capacitors in parallel

► Large capacitor near regulator has low impedance at low frequencies

► But also has a low self-resonant frequency► Small capacitors near chip and on chip have low impedance at

high frequencies

■ Choose caps to get low impedance at all frequencies

impeda

f (H )

nce

Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 2010Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 201012.12.2626

frequency (Hz)

Page 27: EE4800 CMOS Digital IC Design & Analysiszhuofeng/EE4800Slides2010... · EE4800 CMOS Digital IC Design & Analysis Lecture 12 Packaging, Power and Clock Distributions Zhuo Feng 12.12.11

Example: Pentium 4■ Power supply impedance for Pentium 4

► Spike near 100 MHz caused by package Ly g

■ Step response to sudden supply current chain► 1st droop: on-chip bypass caps► 2nd d k it► 2nd droop: package capacitance► 3rd droop: board capacitance

Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 2010Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 201012.12.2727

[Wong06]

Page 28: EE4800 CMOS Digital IC Design & Analysiszhuofeng/EE4800Slides2010... · EE4800 CMOS Digital IC Design & Analysis Lecture 12 Packaging, Power and Clock Distributions Zhuo Feng 12.12.11

Clock Distribution■ On a small chip, the clock distribution network is just a wire

► And possibly an inverter for clkb

■ On practical chips, the RC delay of the wire resistance and gate load is very long► Variations in this delay cause clock to get to different elements at

different times► This is called clock skew

■ Most chips use repeaters to buffer the clock and equalize the delay► Reduces but doesn’t eliminate skew

Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 2010Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 201012.12.2828

Page 29: EE4800 CMOS Digital IC Design & Analysiszhuofeng/EE4800Slides2010... · EE4800 CMOS Digital IC Design & Analysis Lecture 12 Packaging, Power and Clock Distributions Zhuo Feng 12.12.11

Example■ Skew comes from differences in gate and wire delay

► With right buffer sizing, clk1 and clk2 could ideally arrive at the same time.

► But power supply noise changes buffer delays► clk2 and clk3 will always see RC skew2 3

3 mm 3.1 mmgclk

0.5 mm

1.3 pF

clk1 clk2clk3

0 4 pF 0 4 pF0.4 pF 0.4 pF

Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 2010Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 201012.12.2929

Page 30: EE4800 CMOS Digital IC Design & Analysiszhuofeng/EE4800Slides2010... · EE4800 CMOS Digital IC Design & Analysis Lecture 12 Packaging, Power and Clock Distributions Zhuo Feng 12.12.11

Review: Skew Impact

F1 F2

clk clk

Combinational Logic

Tc

Q1 D2■ Ideally full cycle isavailable for work

clk

Q1

tskew

tsetup

tpcq

tpdq

■ Skew adds sequencingoverhead

D2

CLF1

clk

Q1

■ Increases hold time too

F2

clk

D2

( )setup skew

sequencing overhead

pd c pcqt T t t t≤ − + +

Q1

clk

tskew

thold

tccq

hold skewcd ccqt t t t≥ − +

Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 2010Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 201012.12.3030

Q

D2 tcd

ccq

Page 31: EE4800 CMOS Digital IC Design & Analysiszhuofeng/EE4800Slides2010... · EE4800 CMOS Digital IC Design & Analysis Lecture 12 Packaging, Power and Clock Distributions Zhuo Feng 12.12.11

Solutions■ Reduce clock skew

►Careful clock distribution network design►Plenty of metal wiring resources

■ Analyze clock skew►Only budget actual, not worst case skews►Local vs. global skew budgets

T l t l k k■ Tolerate clock skew►Choose circuit structures insensitive to skew

Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 2010Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 201012.12.3131

Page 32: EE4800 CMOS Digital IC Design & Analysiszhuofeng/EE4800Slides2010... · EE4800 CMOS Digital IC Design & Analysis Lecture 12 Packaging, Power and Clock Distributions Zhuo Feng 12.12.11

Clock Dist. Networks■ Ad hoc■ Grids■ Grids■ H-tree

Hybrid■ Hybrid

Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 2010Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 201012.12.3232

Page 33: EE4800 CMOS Digital IC Design & Analysiszhuofeng/EE4800Slides2010... · EE4800 CMOS Digital IC Design & Analysis Lecture 12 Packaging, Power and Clock Distributions Zhuo Feng 12.12.11

Clock Grids■ Use grid on two or more levels to carry

clock■ Make wires wide to reduce RC delay■ Ensures low skew between nearby points■ But possibly large skew across die

Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 2010Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 201012.12.3333

Page 34: EE4800 CMOS Digital IC Design & Analysiszhuofeng/EE4800Slides2010... · EE4800 CMOS Digital IC Design & Analysis Lecture 12 Packaging, Power and Clock Distributions Zhuo Feng 12.12.11

Alpha Clock GridsAlpha 21064 Alpha 21164 Alpha 21264

PLL

gclk gridgclk grid

Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 2010Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 201012.12.3434

Alpha 21064 Alpha 21164 Alpha 21264

Page 35: EE4800 CMOS Digital IC Design & Analysiszhuofeng/EE4800Slides2010... · EE4800 CMOS Digital IC Design & Analysis Lecture 12 Packaging, Power and Clock Distributions Zhuo Feng 12.12.11

H-Trees■ Fractal structure

► Gets clock arbitrarily close to any point► Matched delay along all paths► Matched delay along all paths

■ Delay variations cause skew■ A and B might see big skew

A B

Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 2010Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 201012.12.3535

Page 36: EE4800 CMOS Digital IC Design & Analysiszhuofeng/EE4800Slides2010... · EE4800 CMOS Digital IC Design & Analysis Lecture 12 Packaging, Power and Clock Distributions Zhuo Feng 12.12.11

Itanium 2 H-Tree■ Four levels of buffering:

►Primary driverRepeaters

►Repeater►Second-level

l k b ffclock buffer►Gater

■ Route aroundTypical SLCBLocations■ Route around

obstructions Primary Buffer

Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 2010Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 201012.12.3636

Page 37: EE4800 CMOS Digital IC Design & Analysiszhuofeng/EE4800Slides2010... · EE4800 CMOS Digital IC Design & Analysis Lecture 12 Packaging, Power and Clock Distributions Zhuo Feng 12.12.11

Hybrid Networksy■ Use H-tree to distribute clock to many points■ Tie these points together with a gridp g g

■ Ex: IBM Power4, PowerPC► H-tree drives 16-64 sector buffers► Buffers drive total of 1024 points► All points shorted together with gridp g g

Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 2010Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 201012.12.3737