48
Fundamental Electr onics BJT, CMOS Reference: Thomas L. Floyd, Electronics Fundamentals: Circuits, Devices, and Applications, Pearson Education Inc

Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Reference:

Embed Size (px)

Citation preview

Page 1: Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Reference:

Fundamental Electronics

—BJT, CMOS

Fundamental Electronics

—BJT, CMOS

Reference: Thomas L. Floyd, Electronics Fundamentals: Circuits, Devices, and Applications, Pearson Education Inc

Page 2: Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Reference:

Reference Books

1Electronics Fundamentals:

Circuits, Devices, and Applications

Thomas L. Floyd

Pearson Education

Inc.

2Electronic circuit analysis

and DesignDonald A ,

Neaman Irwin

3

Microelectronics:DIGITAL AND ANALOG CIRCUITS AND SYSTEMS

Jacob Millman, Arvin Grabel

McGraw-Hill

4

Microelectronic Circuits Sedra & Smith Oxford University Press

Page 3: Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Reference:

Objectives• The History of VLSI

• Describe the basic structure and operation of bipolar junction transistors (BJT)

• Describe the basic structure and operation of MOSFETs

• Describe the basic structure and operation of CMOS

Page 4: Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Reference:

The History of VLSI• IC(Integrated Circuits) History Evolution

– vacuum tube, – single transistor, – IC (Integrated Circuits)

• SSI, MSI, LSI, VLSI, SoC

Page 5: Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Reference:

The History of VLSI• 1926—Lilienfeld proposed FET• 1947—Brattin, Bardin, Schockley

proposed BJT from Bell Lab.• 1957—TI Kilby proposed the first IC• 1960– Hoerni invent the planar

process• 70’s—IC composed mainly by pMOS

and BJT

Page 6: Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Reference:

The History of VLSI

• 80’s—IC composed mainly by nMOS and BJT

• 90’s—IC composed mainly by CMOS and BiCMOS

• 1995—NEC, AT&T, Phillips proposed

SOC

Page 7: Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Reference:

The evolution of IC technique

Transistor

Single component

SSI MSI LSI VLSI ULSI GSI

LogicGate count

---- ---- 10100~

1000

1000~

20000

20000~

500,000

>500,0

00

>10,000,000

Produ-ction ----

電晶體二極體

平面元件邏輯閘暫存器

計數器多工器加法器

8bit微處理器ROMRAM

16/32bits微處理器

即時影像處理器

SOC

1947 1950 1961 1966 1971 1980 1985 1990

Page 8: Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Reference:

Moore’s Law plot

The transistor count in an IC would double every 18 momths

Page 9: Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Reference:

Main Families in Digital Logic

1. TTL(implemented by BJT)—big area, high consumption, high speed

2. MOS — small area, low consumption, low speed

3. BiCMOS — speed near TTL, area near MOS, hard manufacture

Page 10: Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Reference:

Architecture of BJTs• The bipolar junction transistor (BJT) is

constructed with three doped semiconductor regions separated by two pn junctions

• Regions are called emitter, base and collector

Page 11: Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Reference:

Architecture of BJTs• There are two types of BJTs, the npn and pnp• The two junctions are termed the base-

emitter junction and the base-collector junction

• The term bipolar refers to the use of both holes and electrons as charge carriers in the transistor structure

• In order for the transistor to operate properly, the two junctions must have the correct dc bias voltages– the base-emitter (BE) junction is forward

biased(>=0.7V for Si, >=0.3V for Ge)– the base-collector (BC) junction is reverse

biased

Page 12: Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Reference:

FIGURE Transistor symbols.

Thomas L. FloydElectronics Fundamentals, 6eElectric Circuit Fundamentals, 6e

Copyright ©2004 by Pearson Education, Inc.

Upper Saddle River, New Jersey 07458All rights reserved.

Page 13: Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Reference:

Basic circuits of BJT

Page 14: Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Reference:

Operation of BJTs

• BJT will operates in one of following four region– Cutoff region (for digital circuit)– Saturation region (for digital circuit)– Linear (active) region (to be an

amplifier)– Breakdown region (always be a

disaster)

Page 15: Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Reference:

Operation of BJTs

Page 16: Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Reference:

DC Analysis of BJTs• Transistor Currents:

IE = IC + IB• alpha (DC)

IC = DCIE• beta (DC)

IC = DCIB– DC typically has a value between 20

and 200

Page 17: Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Reference:

DC Analysis of BJTs

• DC voltages for the biased transistor:

• Collector voltageVC = VCC - ICRC

• Base voltageVB = VE + VBE

– for silicon transistors, VBE = 0.7 V

– for germanium transistors, VBE = 0.3 V

Page 18: Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Reference:

Q-point

• The base current, IB, is established by the base bias

• The point at which the base current curve intersects the dc load line is the quiescent or Q-point for the circuit

Page 19: Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Reference:

Q-point

Page 20: Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Reference:

DC Analysis of BJTs

• The voltage divider biasing is widely used

• Input resistance is:

RIN DCRE

• The base voltage is approximately:VB VCCR2/(R1+R2)

Page 21: Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Reference:

BJT as an amplifier

• Class A Amplifiers

• Class B Amplifiers

Page 22: Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Reference:

BJT Class A Amplifiers• In a class A amplifier, the transistor conducts

for the full cycle of the input signal (360°)– used in low-power applications

• The transistor is operated in the active region, between saturation and cutoff– saturation is when both junctions are forward biased– the transistor is in cutoff when IB = 0

• The load line is drawn on the collector curves between saturation and cutoff

Page 23: Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Reference:

BJT Class A Amplifiers

Page 24: Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Reference:

BJT Class A Amplifiers• Three biasing mode for class A

amplifiers– common-emitter (CE) amplifier– common-collector (CC) amplifier– common-base (CB) amplifier

Page 25: Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Reference:

BJT Class A Amplifiers• A common-emitter (CE) amplifier

– capacitors are used for coupling ac without disturbing dc levels

Page 26: Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Reference:

BJT Class A Amplifiers• A common-collector (CC) amplifier

– voltage gain is approximately 1, but current gain is greater than 1

Page 27: Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Reference:

BJT Class A Amplifiers• The third configuration is the

common-base (CB)– the base is the grounded (common)

terminal– the input signal is applied to the

emitter– output signal is taken off the collector– output is in-phase with the input– voltage gain is greater than 1– current gain is always less than 1

Page 28: Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Reference:

BJT Class B Amplifiers• When an amplifier is biased such that it

operates in the linear region for 180° of the input cycle and is in cutoff for 180°, it is a class B amplifier– A class B amplifier is more efficient than a

class A• In order to get a linear reproduction of the

input waveform, the class B amplifier is configured in a push-pull arrangement– The transistors in a class B amplifier must

be biased above cutoff to eliminate crossover distortion

Page 29: Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Reference:

BJT Class B Amplifiers

Page 30: Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Reference:

The BJT as a Switch• When used as an electronic switch, a

transistor normally is operated alternately in cutoff and saturation– A transistor is in cutoff when the base-

emitter junction is not forward-biased. VCE is approximately equal to VCC

– When the base-emitter junction is forward-biased and there is enough base current to produce a maximum collector current, the transistor is saturated

Page 31: Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Reference:

The BJT as a Switch

Page 32: Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Reference:

An example -- NOR

Page 33: Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Reference:

Architecture of MOS Field-Effect Transistors (FETs)• The metal-oxide semiconductor

field-effect transistor (MOSFET) : the gate is insulated from the channel by a silicon dioxide (SiO2) layer

Page 34: Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Reference:

Architecture of MOS Field-Effect Transistors (FETs)

• Two types of MOSFETs – depletion type (D-MOSFETs) have a

physical channel between Drain and Source, with no voltage applied to the Gate

– enhancement type (E-MOSFETs) have no physical Drain-Source channel

Page 35: Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Reference:

Architecture of MOS Field-Effect Transistors (FETs)• D-MOSFET

– Channel may be enhanced or restricted by gate voltage

• E-MOSFET– Channel is

created by gate voltage

Page 36: Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Reference:

• Simplified symbol

Page 37: Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Reference:

Biasing Circuits

Page 38: Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Reference:

FET Amplifiers• Voltage gain of a FET is determined by

the transconductance (gm) with units of Siemens (S)

gm = Id / Vg

• The D-MOSFET may also be zero-biased• The E-MOSFET requires a voltage-

divider-bias• All FET’s provide extremely high input

resistance

Page 39: Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Reference:

Principle of MOSFETfor E-MOS (n-channel)

(+)

Page 40: Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Reference:

Principle of MOSFET for E-MOS (n-channel)

TNV : The threshold voltage

Page 41: Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Reference:

Principle of MOSFET for E-MOS (n-channel)

Page 42: Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Reference:

Principle of MOSFET for D-MOS (n-channel)

Page 43: Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Reference:

Principle of MOSFET for D-MOS (n-channel)

Page 44: Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Reference:

Voltage-current relations

Page 45: Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Reference:

p-cnannel MOS(pMOS)

P+ P+

n-substrate

S G D

B

body

All the characteristics are similar to NMOS.

+ - -

+++++++

Page 46: Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Reference:

An inverter

Page 47: Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Reference:

Voltage transfer-- see the time delay

Page 48: Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Fundamental Electronics — BJT, CMOS Reference:

Complementary MOS(CMOS)

P PP NN N

p-well

n-substrate

Vss input output Vdd

pMOS

nMOS

in out

Vss

Vdd