101

Divergence radii and classical-quantum channel codinghhlee/Mosonyi.pdf · 2019. 5. 31. · Divergence radii and classical-quantum channel coding Milán Mosonyi Mathematical Institute,

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Divergence radii and classical-quantum channel codinghhlee/Mosonyi.pdf · 2019. 5. 31. · Divergence radii and classical-quantum channel coding Milán Mosonyi Mathematical Institute,

Divergence radii and classical-quantum channel coding

Milán Mosonyi

Mathematical Institute, Budapest University of Technology and Economics

MTA-BME Lendület Quantum Information Theory Research Group

MAQIT 2019, SNU

Joint work with Tomohiro Ogawa

arXiv:1811.10599

1 / 31

Page 2: Divergence radii and classical-quantum channel codinghhlee/Mosonyi.pdf · 2019. 5. 31. · Divergence radii and classical-quantum channel coding Milán Mosonyi Mathematical Institute,

Prelude

• Shannon 1948: A Mathematical Theory of Communication

0. What is information? How to quantify it?

1. How much can information be compressed?

2. How much information can be reliably transmitted over a noisy

medium (channel)?

• Answering 0. via 1. and 2.:

Operationally motivated information measures.

Information measures quantify the ultimate achievable performance of

protocols in information theoretic tasks.

2 / 31

Page 3: Divergence radii and classical-quantum channel codinghhlee/Mosonyi.pdf · 2019. 5. 31. · Divergence radii and classical-quantum channel coding Milán Mosonyi Mathematical Institute,

Prelude

• Shannon 1948: A Mathematical Theory of Communication

0. What is information? How to quantify it?

1. How much can information be compressed?

2. How much information can be reliably transmitted over a noisy

medium (channel)?

• Answering 0. via 1. and 2.:

Operationally motivated information measures.

Information measures quantify the ultimate achievable performance of

protocols in information theoretic tasks.

2 / 31

Page 4: Divergence radii and classical-quantum channel codinghhlee/Mosonyi.pdf · 2019. 5. 31. · Divergence radii and classical-quantum channel coding Milán Mosonyi Mathematical Institute,

Prelude

• Shannon 1948: A Mathematical Theory of Communication

0. What is information? How to quantify it?

1. How much can information be compressed?

2. How much information can be reliably transmitted over a noisy

medium (channel)?

• Answering 0. via 1. and 2.:

Operationally motivated information measures.

Information measures quantify the ultimate achievable performance of

protocols in information theoretic tasks.

2 / 31

Page 5: Divergence radii and classical-quantum channel codinghhlee/Mosonyi.pdf · 2019. 5. 31. · Divergence radii and classical-quantum channel coding Milán Mosonyi Mathematical Institute,

Prelude

• Shannon 1948: A Mathematical Theory of Communication

0. What is information?

How to quantify it?

1. How much can information be compressed?

2. How much information can be reliably transmitted over a noisy

medium (channel)?

• Answering 0. via 1. and 2.:

Operationally motivated information measures.

Information measures quantify the ultimate achievable performance of

protocols in information theoretic tasks.

2 / 31

Page 6: Divergence radii and classical-quantum channel codinghhlee/Mosonyi.pdf · 2019. 5. 31. · Divergence radii and classical-quantum channel coding Milán Mosonyi Mathematical Institute,

Prelude

• Shannon 1948: A Mathematical Theory of Communication

0. What is information? How to quantify it?

1. How much can information be compressed?

2. How much information can be reliably transmitted over a noisy

medium (channel)?

• Answering 0. via 1. and 2.:

Operationally motivated information measures.

Information measures quantify the ultimate achievable performance of

protocols in information theoretic tasks.

2 / 31

Page 7: Divergence radii and classical-quantum channel codinghhlee/Mosonyi.pdf · 2019. 5. 31. · Divergence radii and classical-quantum channel coding Milán Mosonyi Mathematical Institute,

Prelude

• Shannon 1948: A Mathematical Theory of Communication

0. What is information? How to quantify it?

1. How much can information be compressed?

2. How much information can be reliably transmitted over a noisy

medium (channel)?

• Answering 0. via 1. and 2.:

Operationally motivated information measures.

Information measures quantify the ultimate achievable performance of

protocols in information theoretic tasks.

2 / 31

Page 8: Divergence radii and classical-quantum channel codinghhlee/Mosonyi.pdf · 2019. 5. 31. · Divergence radii and classical-quantum channel coding Milán Mosonyi Mathematical Institute,

Prelude

• Shannon 1948: A Mathematical Theory of Communication

0. What is information? How to quantify it?

1. How much can information be compressed?

2. How much information can be reliably transmitted over a noisy

medium (channel)?

• Answering 0. via 1. and 2.:

Operationally motivated information measures.

Information measures quantify the ultimate achievable performance of

protocols in information theoretic tasks.

2 / 31

Page 9: Divergence radii and classical-quantum channel codinghhlee/Mosonyi.pdf · 2019. 5. 31. · Divergence radii and classical-quantum channel coding Milán Mosonyi Mathematical Institute,

Classical-quantum channels

• Classical-quantum (cq) channel: W : X → S(H)

X : input alphabet, S(H) := {density operators on H}

• input distribution: P : X → [0, 1] ∈ Pf (X ): �nitely supported

average state: W (P ) :=∑x

P (x)W (x)

• product channel: Wk : Xk → B(Hk)+, k = 1, . . . , n

(W1 ⊗ . . .⊗Wn)(x) := W1(x1)⊗ . . .⊗Wn(xn), x ∈ X1 × . . .×Xn

product distribution: Pk ∈ Pf (Xk), k = 1, . . . , n.

(P1 ⊗ . . .⊗ Pn)(x) := P1(x1) · . . . · Pn(xn)

3 / 31

Page 10: Divergence radii and classical-quantum channel codinghhlee/Mosonyi.pdf · 2019. 5. 31. · Divergence radii and classical-quantum channel coding Milán Mosonyi Mathematical Institute,

Classical-quantum channels

• Classical-quantum (cq) channel: W : X → S(H)

X : input alphabet, S(H) := {density operators on H}

• input distribution: P : X → [0, 1] ∈ Pf (X ): �nitely supported

average state: W (P ) :=∑x

P (x)W (x)

• product channel: Wk : Xk → B(Hk)+, k = 1, . . . , n

(W1 ⊗ . . .⊗Wn)(x) := W1(x1)⊗ . . .⊗Wn(xn), x ∈ X1 × . . .×Xn

product distribution: Pk ∈ Pf (Xk), k = 1, . . . , n.

(P1 ⊗ . . .⊗ Pn)(x) := P1(x1) · . . . · Pn(xn)

3 / 31

Page 11: Divergence radii and classical-quantum channel codinghhlee/Mosonyi.pdf · 2019. 5. 31. · Divergence radii and classical-quantum channel coding Milán Mosonyi Mathematical Institute,

Classical-quantum channels

• Classical-quantum (cq) channel: W : X → S(H)

X : input alphabet, S(H) := {density operators on H}

• input distribution: P : X → [0, 1] ∈ Pf (X ): �nitely supported

average state: W (P ) :=∑x

P (x)W (x)

• product channel: Wk : Xk → B(Hk)+, k = 1, . . . , n

(W1 ⊗ . . .⊗Wn)(x) := W1(x1)⊗ . . .⊗Wn(xn), x ∈ X1 × . . .×Xn

product distribution: Pk ∈ Pf (Xk), k = 1, . . . , n.

(P1 ⊗ . . .⊗ Pn)(x) := P1(x1) · . . . · Pn(xn)

3 / 31

Page 12: Divergence radii and classical-quantum channel codinghhlee/Mosonyi.pdf · 2019. 5. 31. · Divergence radii and classical-quantum channel coding Milán Mosonyi Mathematical Institute,

Classical-quantum channels

• Classical-quantum (cq) channel: W : X → S(H)

X : input alphabet, S(H) := {density operators on H}

• input distribution: P : X → [0, 1] ∈ Pf (X ): �nitely supported

average state: W (P ) :=∑x

P (x)W (x)

• product channel: Wk : Xk → B(Hk)+, k = 1, . . . , n

(W1 ⊗ . . .⊗Wn)(x) := W1(x1)⊗ . . .⊗Wn(xn), x ∈ X1 × . . .×Xn

product distribution: Pk ∈ Pf (Xk), k = 1, . . . , n.

(P1 ⊗ . . .⊗ Pn)(x) := P1(x1) · . . . · Pn(xn)

3 / 31

Page 13: Divergence radii and classical-quantum channel codinghhlee/Mosonyi.pdf · 2019. 5. 31. · Divergence radii and classical-quantum channel coding Milán Mosonyi Mathematical Institute,

Classical-quantum channel coding

• How many messages can be reliably transmitted by n uses of a cq

channel W?

• encoding: En : [Mn]→ X n

decoding: Dn : [Mn]→ B(H⊗n) POVM state discrimination

average success probability:

Ps(En,Dn) :=1

Mn

Mn∑m=1

TrW⊗n(En(m))Dn(m)

• HSW theorem:

limn→+∞

max{Ps(En,Dn) : Mn ≥ 2nR} =

{1, R < χ(W ),

0, R > χ(W ).

χ(W ) := supP∈Pf (X )

χ(W,P ) Holevo capacity

4 / 31

Page 14: Divergence radii and classical-quantum channel codinghhlee/Mosonyi.pdf · 2019. 5. 31. · Divergence radii and classical-quantum channel coding Milán Mosonyi Mathematical Institute,

Classical-quantum channel coding

• How many messages can be reliably transmitted by n uses of a cq

channel W?

• encoding: En : [Mn]→ X n

decoding: Dn : [Mn]→ B(H⊗n) POVM state discrimination

average success probability:

Ps(En,Dn) :=1

Mn

Mn∑m=1

TrW⊗n(En(m))Dn(m)

• HSW theorem:

limn→+∞

max{Ps(En,Dn) : Mn ≥ 2nR} =

{1, R < χ(W ),

0, R > χ(W ).

χ(W ) := supP∈Pf (X )

χ(W,P ) Holevo capacity

4 / 31

Page 15: Divergence radii and classical-quantum channel codinghhlee/Mosonyi.pdf · 2019. 5. 31. · Divergence radii and classical-quantum channel coding Milán Mosonyi Mathematical Institute,

Classical-quantum channel coding

• How many messages can be reliably transmitted by n uses of a cq

channel W?

• encoding: En : [Mn]→ X n

decoding: Dn : [Mn]→ B(H⊗n) POVM state discrimination

average success probability:

Ps(En,Dn) :=1

Mn

Mn∑m=1

TrW⊗n(En(m))Dn(m)

• HSW theorem:

limn→+∞

max{Ps(En,Dn) : Mn ≥ 2nR} =

{1, R < χ(W ),

0, R > χ(W ).

χ(W ) := supP∈Pf (X )

χ(W,P ) Holevo capacity

4 / 31

Page 16: Divergence radii and classical-quantum channel codinghhlee/Mosonyi.pdf · 2019. 5. 31. · Divergence radii and classical-quantum channel coding Milán Mosonyi Mathematical Institute,

Holevo quantity

H(%) := −Tr % log % von Neumann entropy

χ(W,P ) := H(W (P ))−∑x

P (x)H(W (x))

= D(W (P )‖P ⊗W (P )

)mutual information

=∑x

P (x)D(W (x)‖W (P )) P -weighted D-radius

D(%‖σ) := Tr %(log %− log σ) relative entropy

W (P ) :=∑

x P (x)|x〉〈x| ⊗W (x) joint input-output state

5 / 31

Page 17: Divergence radii and classical-quantum channel codinghhlee/Mosonyi.pdf · 2019. 5. 31. · Divergence radii and classical-quantum channel coding Milán Mosonyi Mathematical Institute,

Holevo quantity

H(%) := −Tr % log % von Neumann entropy

χ(W,P ) := H(W (P ))−∑x

P (x)H(W (x))

= D(W (P )‖P ⊗W (P )

)

mutual information

=∑x

P (x)D(W (x)‖W (P )) P -weighted D-radius

D(%‖σ) := Tr %(log %− log σ) relative entropy

W (P ) :=∑

x P (x)|x〉〈x| ⊗W (x) joint input-output state

5 / 31

Page 18: Divergence radii and classical-quantum channel codinghhlee/Mosonyi.pdf · 2019. 5. 31. · Divergence radii and classical-quantum channel coding Milán Mosonyi Mathematical Institute,

Holevo quantity

H(%) := −Tr % log % von Neumann entropy

χ(W,P ) := H(W (P ))−∑x

P (x)H(W (x))

= D(W (P )‖P ⊗W (P )

)mutual information

=∑x

P (x)D(W (x)‖W (P )) P -weighted D-radius

D(%‖σ) := Tr %(log %− log σ) relative entropy

W (P ) :=∑

x P (x)|x〉〈x| ⊗W (x) joint input-output state

5 / 31

Page 19: Divergence radii and classical-quantum channel codinghhlee/Mosonyi.pdf · 2019. 5. 31. · Divergence radii and classical-quantum channel coding Milán Mosonyi Mathematical Institute,

Holevo quantity

H(%) := −Tr % log % von Neumann entropy

χ(W,P ) := H(W (P ))−∑x

P (x)H(W (x))

= D(W (P )‖P ⊗W (P )

)mutual information

=∑x

P (x)D(W (x)‖W (P ))

P -weighted D-radius

D(%‖σ) := Tr %(log %− log σ) relative entropy

W (P ) :=∑

x P (x)|x〉〈x| ⊗W (x) joint input-output state

5 / 31

Page 20: Divergence radii and classical-quantum channel codinghhlee/Mosonyi.pdf · 2019. 5. 31. · Divergence radii and classical-quantum channel coding Milán Mosonyi Mathematical Institute,

Holevo quantity

H(%) := −Tr % log % von Neumann entropy

χ(W,P ) := H(W (P ))−∑x

P (x)H(W (x))

= D(W (P )‖P ⊗W (P )

)mutual information

=∑x

P (x)D(W (x)‖W (P )) P -weighted D-radius

D(%‖σ) := Tr %(log %− log σ) relative entropy

W (P ) :=∑

x P (x)|x〉〈x| ⊗W (x) joint input-output state

5 / 31

Page 21: Divergence radii and classical-quantum channel codinghhlee/Mosonyi.pdf · 2019. 5. 31. · Divergence radii and classical-quantum channel coding Milán Mosonyi Mathematical Institute,

Holevo quantity

χ(W,P ) := H(W (P ))−∑x

P (x)H(W (x))

= infσ∈S(H)

D(W (P )‖P ⊗ σ

)mutual information

=∑x

P (x)D(W (x)‖W (P )) P -weighted D-radius

D(%‖σ) := Tr %(log %− log σ) relative entropy

W (P ) :=∑

x P (x)|x〉〈x| ⊗W (x) joint input-output state

6 / 31

Page 22: Divergence radii and classical-quantum channel codinghhlee/Mosonyi.pdf · 2019. 5. 31. · Divergence radii and classical-quantum channel coding Milán Mosonyi Mathematical Institute,

Holevo quantity

χ(W,P ) := H(W (P ))−∑x

P (x)H(W (x))

= infσ∈S(H)

D(W (P )‖P ⊗ σ

)mutual information

= infσ∈S(H)

∑x

P (x)D(W (x)‖σ) P -weighted D-radius

D(%‖σ) := Tr %(log %− log σ) relative entropy

W (P ) :=∑

x P (x)|x〉〈x| ⊗W (x) joint input-output state

7 / 31

Page 23: Divergence radii and classical-quantum channel codinghhlee/Mosonyi.pdf · 2019. 5. 31. · Divergence radii and classical-quantum channel coding Milán Mosonyi Mathematical Institute,

Mutual information and P -weighted radius

χ(W,P ) H(W (P ))−∑x

P (x)H(W (x))

I∆(W,P ) := infσ∈S(H)

∆(W (P )‖P ⊗ σ

)∆-mutual information

χ∆(W,P ) := infσ∈S(H)

∑x

P (x) ∆(W (x)‖σ) P -weighted ∆-radius

∆ : B(H)+ × B(H)+ → R ∪ {±∞} divergence

W (P ) :=∑

x P (x)|x〉〈x| ⊗W (x) joint input-output state

8 / 31

Page 24: Divergence radii and classical-quantum channel codinghhlee/Mosonyi.pdf · 2019. 5. 31. · Divergence radii and classical-quantum channel coding Milán Mosonyi Mathematical Institute,

Mutual information and P -weighted radius

χ(W,P ) H(W (P ))−∑x

P (x)H(W (x))

I∆(W,P ) := infσ∈S(H)

∆(W (P )‖P ⊗ σ

)∆-mutual information

χ∆(W,P ) := infσ∈S(H)

∑x

P (x) ∆(W (x)‖σ) P -weighted ∆-radius

∆ := Dα,z Rényi (α, z)-divergence

Which of these quantities are relevant (if any)?

9 / 31

Page 25: Divergence radii and classical-quantum channel codinghhlee/Mosonyi.pdf · 2019. 5. 31. · Divergence radii and classical-quantum channel coding Milán Mosonyi Mathematical Institute,

Mutual information and P -weighted radius

χ(W,P ) H(W (P ))−∑x

P (x)H(W (x))

I∆(W,P ) := infσ∈S(H)

∆(W (P )‖P ⊗ σ

)∆-mutual information

χ∆(W,P ) := infσ∈S(H)

∑x

P (x) ∆(W (x)‖σ) P -weighted ∆-radius

∆ := Dα,z Rényi (α, z)-divergence

Which of these quantities are relevant (if any)?

9 / 31

Page 26: Divergence radii and classical-quantum channel codinghhlee/Mosonyi.pdf · 2019. 5. 31. · Divergence radii and classical-quantum channel coding Milán Mosonyi Mathematical Institute,

Rényi (α, z)-divergence

α ∈ (0,+∞) \ {1}, z ∈ (0,+∞)

• %, σ ∈ B(H)++

Qα,z(%‖σ) := Tr(%α2z σ

1−αz %

α2z

)z

• Special cases:

Qα(%‖σ) := Qα,1(%‖σ) = Tr %ασ1−α Petz-type

Q∗α(%‖σ) := Qα,α(%‖σ) = Tr(%

12σ

1−αα %

12

)αsandwiched

Q[α(%‖σ) := Qα,+∞(%‖σ) := limz→+∞

Qα,z(%‖σ) = Tr eα log %+(1−α) log σ

log-Euclidean

• %, σ ∈ B(H)+

Qα,z(%‖σ) := limε↘0

Qα,z(%+ εI‖σ + εI)

10 / 31

Page 27: Divergence radii and classical-quantum channel codinghhlee/Mosonyi.pdf · 2019. 5. 31. · Divergence radii and classical-quantum channel coding Milán Mosonyi Mathematical Institute,

Rényi (α, z)-divergence

α ∈ (0,+∞) \ {1}, z ∈ (0,+∞)

• %, σ ∈ B(H)++

Qα,z(%‖σ) := Tr(%α2z σ

1−αz %

α2z

)z• Special cases:

Qα(%‖σ) := Qα,1(%‖σ) = Tr %ασ1−α Petz-type

Q∗α(%‖σ) := Qα,α(%‖σ) = Tr(%

12σ

1−αα %

12

)αsandwiched

Q[α(%‖σ) := Qα,+∞(%‖σ) := limz→+∞

Qα,z(%‖σ) = Tr eα log %+(1−α) log σ

log-Euclidean

• %, σ ∈ B(H)+

Qα,z(%‖σ) := limε↘0

Qα,z(%+ εI‖σ + εI)

10 / 31

Page 28: Divergence radii and classical-quantum channel codinghhlee/Mosonyi.pdf · 2019. 5. 31. · Divergence radii and classical-quantum channel coding Milán Mosonyi Mathematical Institute,

Rényi (α, z)-divergence

α ∈ (0,+∞) \ {1}, z ∈ (0,+∞)

• %, σ ∈ B(H)++

Qα,z(%‖σ) := Tr(%α2z σ

1−αz %

α2z

)z• Special cases:

Qα(%‖σ) := Qα,1(%‖σ) = Tr %ασ1−α Petz-type

Q∗α(%‖σ) := Qα,α(%‖σ) = Tr(%

12σ

1−αα %

12

)αsandwiched

Q[α(%‖σ) := Qα,+∞(%‖σ) := limz→+∞

Qα,z(%‖σ) = Tr eα log %+(1−α) log σ

log-Euclidean

• %, σ ∈ B(H)+

Qα,z(%‖σ) := limε↘0

Qα,z(%+ εI‖σ + εI)

10 / 31

Page 29: Divergence radii and classical-quantum channel codinghhlee/Mosonyi.pdf · 2019. 5. 31. · Divergence radii and classical-quantum channel coding Milán Mosonyi Mathematical Institute,

Rényi (α, z)-divergence

α ∈ (0,+∞) \ {1}, z ∈ (0,+∞)

• %, σ ∈ B(H)++

Qα,z(%‖σ) := Tr(%α2z σ

1−αz %

α2z

)z• Special cases:

Qα(%‖σ) := Qα,1(%‖σ) = Tr %ασ1−α Petz-type

Q∗α(%‖σ) := Qα,α(%‖σ) = Tr(%

12σ

1−αα %

12

)αsandwiched

Q[α(%‖σ) := Qα,+∞(%‖σ) := limz→+∞

Qα,z(%‖σ) = Tr eα log %+(1−α) log σ

log-Euclidean

• All of them coincide when %σ = σ%.

11 / 31

Page 30: Divergence radii and classical-quantum channel codinghhlee/Mosonyi.pdf · 2019. 5. 31. · Divergence radii and classical-quantum channel coding Milán Mosonyi Mathematical Institute,

Rényi (α, z)-divergence

α ∈ (0,+∞) \ {1}, z ∈ (0,+∞)

• %, σ ∈ B(H)++

Qα,z(%‖σ) := Tr(%α2z σ

1−αz %

α2z

)z• Special cases:

Qα(%‖σ) := Qα,1(%‖σ) = Tr %ασ1−α Petz-type

Q∗α(%‖σ) := Qα,α(%‖σ) = Tr(%

12σ

1−αα %

12

)αsandwiched

Q[α(%‖σ) := Qα,+∞(%‖σ) := limz→+∞

Qα,z(%‖σ) = Tr eα log %+(1−α) log σ

log-Euclidean

• All of them coincide when %σ = σ%.

11 / 31

Page 31: Divergence radii and classical-quantum channel codinghhlee/Mosonyi.pdf · 2019. 5. 31. · Divergence radii and classical-quantum channel coding Milán Mosonyi Mathematical Institute,

Rényi (α, z)-divergence

α ∈ (0,+∞) \ {1}, z ∈ (0,+∞)

• %, σ ∈ B(H)++

Qα,z(%‖σ) := Tr(%α2z σ

1−αz %

α2z

)z• Special cases:

Qα(%‖σ) := Qα,1(%‖σ) = Tr %ασ1−α Petz-type

Q∗α(%‖σ) := Qα,α(%‖σ) = Tr(%

12σ

1−αα %

12

)αsandwiched

Q[α(%‖σ) := Qα,+∞(%‖σ) := limz→+∞

Qα,z(%‖σ) = Tr eα log %+(1−α) log σ

log-Euclidean

s(α) := sgn(α− 1) =

{−1, α < 1,

1, α > 1, Qα,z := s(α)Qα,z.

12 / 31

Page 32: Divergence radii and classical-quantum channel codinghhlee/Mosonyi.pdf · 2019. 5. 31. · Divergence radii and classical-quantum channel coding Milán Mosonyi Mathematical Institute,

Rényi (α, z)-divergence

α ∈ (0,+∞) \ {1}, z ∈ (0,+∞)

• %, σ ∈ B(H)++

Qα,z(%‖σ) := Tr(%α2z σ

1−αz %

α2z

)z• Special cases:

Qα(%‖σ) := Qα,1(%‖σ) = Tr %ασ1−α Petz-type

Q∗α(%‖σ) := Qα,α(%‖σ) = Tr(%

12σ

1−αα %

12

)αsandwiched

Q[α(%‖σ) := Qα,+∞(%‖σ) := limz→+∞

Qα,z(%‖σ) = Tr eα log %+(1−α) log σ

log-Euclidean

• Rényi (α, z)-divergence: [Audenaert, Datta 2013]

[Lin, Tomamichel 2015]

Dα,z(%‖σ) :=1

α− 1log

Qα,z(%‖σ)

Tr %

−−−→α→1

1

Tr %D(%‖σ)

13 / 31

Page 33: Divergence radii and classical-quantum channel codinghhlee/Mosonyi.pdf · 2019. 5. 31. · Divergence radii and classical-quantum channel coding Milán Mosonyi Mathematical Institute,

Rényi (α, z)-divergence

α ∈ (0,+∞) \ {1}, z ∈ (0,+∞)

• %, σ ∈ B(H)++

Qα,z(%‖σ) := Tr(%α2z σ

1−αz %

α2z

)z• Special cases:

Qα(%‖σ) := Qα,1(%‖σ) = Tr %ασ1−α Petz-type

Q∗α(%‖σ) := Qα,α(%‖σ) = Tr(%

12σ

1−αα %

12

)αsandwiched

Q[α(%‖σ) := Qα,+∞(%‖σ) := limz→+∞

Qα,z(%‖σ) = Tr eα log %+(1−α) log σ

log-Euclidean

• Rényi (α, z)-divergence: [Audenaert, Datta 2013] [Lin, Tomamichel 2015]

Dα,z(%‖σ) :=1

α− 1log

Qα,z(%‖σ)

Tr %−−−→α→1

1

Tr %D(%‖σ)

13 / 31

Page 34: Divergence radii and classical-quantum channel codinghhlee/Mosonyi.pdf · 2019. 5. 31. · Divergence radii and classical-quantum channel coding Milán Mosonyi Mathematical Institute,

Mutual information and radius

I∆(W,P ) = infσ∈S(H)

∆(W (P )‖P ⊗ σ

)

= infσ∈S(H)

(∑x

P (x)|x〉〈x| ⊗W (x)‖∑x

P (x)|x〉〈x| ⊗ σ

)∆ block additive

= infσ∈S(H)

∑x

∆ (P (x)|x〉〈x| ⊗W (x)‖P (x)|x〉〈x| ⊗ σ)

∆ homogeneous= inf

σ∈S(H)

∑x

P (x) ∆ (|x〉〈x| ⊗W (x)‖|x〉〈x| ⊗ σ)

∆ stable= inf

σ∈S(H)

∑x

P (x) ∆ (W (x)‖σ)

= χ∆(W,P )

Examples: Qα,z, relative entropy D

but not Dα,z with α 6= 1

14 / 31

Page 35: Divergence radii and classical-quantum channel codinghhlee/Mosonyi.pdf · 2019. 5. 31. · Divergence radii and classical-quantum channel coding Milán Mosonyi Mathematical Institute,

Mutual information and radius

I∆(W,P ) = infσ∈S(H)

∆(W (P )‖P ⊗ σ

)= inf

σ∈S(H)∆

(∑x

P (x)|x〉〈x| ⊗W (x)‖∑x

P (x)|x〉〈x| ⊗ σ

)

∆ block additive= inf

σ∈S(H)

∑x

∆ (P (x)|x〉〈x| ⊗W (x)‖P (x)|x〉〈x| ⊗ σ)

∆ homogeneous= inf

σ∈S(H)

∑x

P (x) ∆ (|x〉〈x| ⊗W (x)‖|x〉〈x| ⊗ σ)

∆ stable= inf

σ∈S(H)

∑x

P (x) ∆ (W (x)‖σ)

= χ∆(W,P )

Examples: Qα,z, relative entropy D

but not Dα,z with α 6= 1

14 / 31

Page 36: Divergence radii and classical-quantum channel codinghhlee/Mosonyi.pdf · 2019. 5. 31. · Divergence radii and classical-quantum channel coding Milán Mosonyi Mathematical Institute,

Mutual information and radius

I∆(W,P ) = infσ∈S(H)

∆(W (P )‖P ⊗ σ

)= inf

σ∈S(H)∆

(∑x

P (x)|x〉〈x| ⊗W (x)‖∑x

P (x)|x〉〈x| ⊗ σ

)∆ block additive

= infσ∈S(H)

∑x

∆ (P (x)|x〉〈x| ⊗W (x)‖P (x)|x〉〈x| ⊗ σ)

∆ homogeneous= inf

σ∈S(H)

∑x

P (x) ∆ (|x〉〈x| ⊗W (x)‖|x〉〈x| ⊗ σ)

∆ stable= inf

σ∈S(H)

∑x

P (x) ∆ (W (x)‖σ)

= χ∆(W,P )

Examples: Qα,z, relative entropy D

but not Dα,z with α 6= 1

14 / 31

Page 37: Divergence radii and classical-quantum channel codinghhlee/Mosonyi.pdf · 2019. 5. 31. · Divergence radii and classical-quantum channel coding Milán Mosonyi Mathematical Institute,

Mutual information and radius

I∆(W,P ) = infσ∈S(H)

∆(W (P )‖P ⊗ σ

)= inf

σ∈S(H)∆

(∑x

P (x)|x〉〈x| ⊗W (x)‖∑x

P (x)|x〉〈x| ⊗ σ

)∆ block additive

= infσ∈S(H)

∑x

∆ (P (x)|x〉〈x| ⊗W (x)‖P (x)|x〉〈x| ⊗ σ)

∆ homogeneous= inf

σ∈S(H)

∑x

P (x) ∆ (|x〉〈x| ⊗W (x)‖|x〉〈x| ⊗ σ)

∆ stable= inf

σ∈S(H)

∑x

P (x) ∆ (W (x)‖σ)

= χ∆(W,P )

Examples: Qα,z, relative entropy D

but not Dα,z with α 6= 1

14 / 31

Page 38: Divergence radii and classical-quantum channel codinghhlee/Mosonyi.pdf · 2019. 5. 31. · Divergence radii and classical-quantum channel coding Milán Mosonyi Mathematical Institute,

Mutual information and radius

I∆(W,P ) = infσ∈S(H)

∆(W (P )‖P ⊗ σ

)= inf

σ∈S(H)∆

(∑x

P (x)|x〉〈x| ⊗W (x)‖∑x

P (x)|x〉〈x| ⊗ σ

)∆ block additive

= infσ∈S(H)

∑x

∆ (P (x)|x〉〈x| ⊗W (x)‖P (x)|x〉〈x| ⊗ σ)

∆ homogeneous= inf

σ∈S(H)

∑x

P (x) ∆ (|x〉〈x| ⊗W (x)‖|x〉〈x| ⊗ σ)

∆ stable= inf

σ∈S(H)

∑x

P (x) ∆ (W (x)‖σ)

= χ∆(W,P )

Examples: Qα,z, relative entropy D

but not Dα,z with α 6= 1

14 / 31

Page 39: Divergence radii and classical-quantum channel codinghhlee/Mosonyi.pdf · 2019. 5. 31. · Divergence radii and classical-quantum channel coding Milán Mosonyi Mathematical Institute,

Mutual information and radius

I∆(W,P ) = infσ∈S(H)

∆(W (P )‖P ⊗ σ

)= inf

σ∈S(H)∆

(∑x

P (x)|x〉〈x| ⊗W (x)‖∑x

P (x)|x〉〈x| ⊗ σ

)∆ block additive

= infσ∈S(H)

∑x

∆ (P (x)|x〉〈x| ⊗W (x)‖P (x)|x〉〈x| ⊗ σ)

∆ homogeneous= inf

σ∈S(H)

∑x

P (x) ∆ (|x〉〈x| ⊗W (x)‖|x〉〈x| ⊗ σ)

∆ stable= inf

σ∈S(H)

∑x

P (x) ∆ (W (x)‖σ)

= χ∆(W,P )

Examples: Qα,z, relative entropy D

but not Dα,z with α 6= 1

14 / 31

Page 40: Divergence radii and classical-quantum channel codinghhlee/Mosonyi.pdf · 2019. 5. 31. · Divergence radii and classical-quantum channel coding Milán Mosonyi Mathematical Institute,

Mutual information and radius

I∆(W,P ) = infσ∈S(H)

∆(W (P )‖P ⊗ σ

)= inf

σ∈S(H)∆

(∑x

P (x)|x〉〈x| ⊗W (x)‖∑x

P (x)|x〉〈x| ⊗ σ

)∆ block additive

= infσ∈S(H)

∑x

∆ (P (x)|x〉〈x| ⊗W (x)‖P (x)|x〉〈x| ⊗ σ)

∆ homogeneous= inf

σ∈S(H)

∑x

P (x) ∆ (|x〉〈x| ⊗W (x)‖|x〉〈x| ⊗ σ)

∆ stable= inf

σ∈S(H)

∑x

P (x) ∆ (W (x)‖σ)

= χ∆(W,P )

Examples: Qα,z, relative entropy D

but not Dα,z with α 6= 1

14 / 31

Page 41: Divergence radii and classical-quantum channel codinghhlee/Mosonyi.pdf · 2019. 5. 31. · Divergence radii and classical-quantum channel coding Milán Mosonyi Mathematical Institute,

Mutual information and radius

I∆(W,P ) = infσ∈S(H)

∆(W (P )‖P ⊗ σ

)= inf

σ∈S(H)∆

(∑x

P (x)|x〉〈x| ⊗W (x)‖∑x

P (x)|x〉〈x| ⊗ σ

)∆ block additive

= infσ∈S(H)

∑x

∆ (P (x)|x〉〈x| ⊗W (x)‖P (x)|x〉〈x| ⊗ σ)

∆ homogeneous= inf

σ∈S(H)

∑x

P (x) ∆ (|x〉〈x| ⊗W (x)‖|x〉〈x| ⊗ σ)

∆ stable= inf

σ∈S(H)

∑x

P (x) ∆ (W (x)‖σ)

= χ∆(W,P )

Examples: Qα,z, relative entropy D

but not Dα,z with α 6= 114 / 31

Page 42: Divergence radii and classical-quantum channel codinghhlee/Mosonyi.pdf · 2019. 5. 31. · Divergence radii and classical-quantum channel coding Milán Mosonyi Mathematical Institute,

Rényi mutual information

Iα,z(W,P ) := IDα,z(W,P )

= infσ∈S(H)

Dα,z(W (P )‖P ⊗ σ)

= infσ∈S(H)

1

α− 1log∑x

P (x)Qα,z(W (x)‖σ){≤ α<1

≥ α>1

}inf

σ∈S(H)

∑x

P (x)1

α− 1logQα,z(W (x)‖σ){

≤ α<1

≥ α>1

}χDα,z(W,P ) =: χα,z(W,P )

15 / 31

Page 43: Divergence radii and classical-quantum channel codinghhlee/Mosonyi.pdf · 2019. 5. 31. · Divergence radii and classical-quantum channel coding Milán Mosonyi Mathematical Institute,

Rényi mutual information

Iα,z(W,P ) := IDα,z(W,P )

= infσ∈S(H)

Dα,z(W (P )‖P ⊗ σ)

= infσ∈S(H)

1

α− 1log∑x

P (x)Qα,z(W (x)‖σ){≤ α<1

≥ α>1

}inf

σ∈S(H)

∑x

P (x)1

α− 1logQα,z(W (x)‖σ){

≤ α<1

≥ α>1

}χDα,z(W,P ) =: χα,z(W,P )

15 / 31

Page 44: Divergence radii and classical-quantum channel codinghhlee/Mosonyi.pdf · 2019. 5. 31. · Divergence radii and classical-quantum channel coding Milán Mosonyi Mathematical Institute,

Rényi mutual information

Iα,z(W,P ) := IDα,z(W,P )

= infσ∈S(H)

Dα,z(W (P )‖P ⊗ σ)

= infσ∈S(H)

1

α− 1log∑x

P (x)Qα,z(W (x)‖σ)

{≤ α<1

≥ α>1

}inf

σ∈S(H)

∑x

P (x)1

α− 1logQα,z(W (x)‖σ){

≤ α<1

≥ α>1

}χDα,z(W,P ) =: χα,z(W,P )

15 / 31

Page 45: Divergence radii and classical-quantum channel codinghhlee/Mosonyi.pdf · 2019. 5. 31. · Divergence radii and classical-quantum channel coding Milán Mosonyi Mathematical Institute,

Rényi mutual information

Iα,z(W,P ) := IDα,z(W,P )

= infσ∈S(H)

Dα,z(W (P )‖P ⊗ σ)

= infσ∈S(H)

1

α− 1log∑x

P (x)Qα,z(W (x)‖σ){≤ α<1

≥ α>1

}inf

σ∈S(H)

∑x

P (x)1

α− 1logQα,z(W (x)‖σ)

{≤ α<1

≥ α>1

}χDα,z(W,P ) =: χα,z(W,P )

15 / 31

Page 46: Divergence radii and classical-quantum channel codinghhlee/Mosonyi.pdf · 2019. 5. 31. · Divergence radii and classical-quantum channel coding Milán Mosonyi Mathematical Institute,

Rényi mutual information

Iα,z(W,P ) := IDα,z(W,P )

= infσ∈S(H)

Dα,z(W (P )‖P ⊗ σ)

= infσ∈S(H)

1

α− 1log∑x

P (x)Qα,z(W (x)‖σ){≤ α<1

≥ α>1

}inf

σ∈S(H)

∑x

P (x)1

α− 1logQα,z(W (x)‖σ){

≤ α<1

≥ α>1

}χDα,z(W,P ) =: χα,z(W,P )

15 / 31

Page 47: Divergence radii and classical-quantum channel codinghhlee/Mosonyi.pdf · 2019. 5. 31. · Divergence radii and classical-quantum channel coding Milán Mosonyi Mathematical Institute,

Rényi mutual information

Iα,z(W,P ) := IDα,z(W,P )

= infσ∈S(H)

Dα,z(W (P )‖P ⊗ σ)

= infσ∈S(H)

1

α− 1log∑x

P (x)Qα,z(W (x)‖σ)

=1

α− 1log s(α) inf

σ∈S(H)

∑x

P (x)Qα,z(W (x)‖σ)

=1

α− 1log s(α)χQα,z(W,P )

16 / 31

Page 48: Divergence radii and classical-quantum channel codinghhlee/Mosonyi.pdf · 2019. 5. 31. · Divergence radii and classical-quantum channel coding Milán Mosonyi Mathematical Institute,

Rényi mutual information

Iα,z(W,P ) := IDα,z(W,P )

= infσ∈S(H)

Dα,z(W (P )‖P ⊗ σ)

= infσ∈S(H)

1

α− 1log∑x

P (x)Qα,z(W (x)‖σ)

=1

α− 1log s(α) inf

σ∈S(H)

∑x

P (x)Qα,z(W (x)‖σ)

=1

α− 1log s(α)χQα,z(W,P )

16 / 31

Page 49: Divergence radii and classical-quantum channel codinghhlee/Mosonyi.pdf · 2019. 5. 31. · Divergence radii and classical-quantum channel coding Milán Mosonyi Mathematical Institute,

Rényi mutual information

Iα,z(W,P ) := IDα,z(W,P )

= infσ∈S(H)

Dα,z(W (P )‖P ⊗ σ)

= infσ∈S(H)

1

α− 1log∑x

P (x)Qα,z(W (x)‖σ)

=1

α− 1log s(α) inf

σ∈S(H)

∑x

P (x)Qα,z(W (x)‖σ)

=1

α− 1log s(α)χQα,z(W,P )

16 / 31

Page 50: Divergence radii and classical-quantum channel codinghhlee/Mosonyi.pdf · 2019. 5. 31. · Divergence radii and classical-quantum channel coding Milán Mosonyi Mathematical Institute,

Strong converse exponent

limn Pe,n

1

R = limn1n logMn

χ(W )

strong converse property

limn− 1n logPe,n

R = limn1n logMn

limn− 1n log(1− Pe,n)

χ(W )

direct exponentunknown

even classically

d(R) =?

strong converse exponent

Dueck Körner, 1979; Mosonyi, Ogawa, 2014

supα>1

α− 1

α[R− χ∗α(W )] = sc(R)

χ∗α(W ) = supP∈Pf (X )

χ∗α(W,P )

= supP∈Pf (X )

infσ∈S(H)

∑x

P (x)D∗α(W (x)‖σ)= infσ∈S(H)

supP∈Pf (X )

∑x

P (x)D∗α(W (x)‖σ)

= infσ∈S(H)

supx∈X

D∗α(W (x)‖σ) Rényi radius

= supP∈Pf (X )

I∗α(W,P )

Constant composition coding

Pn(x) :=#{k : En(m)k = x}

nindep. of m

‖Pn − P‖1 −−−−−→n→+∞0

χ(W,P )

Dueck Körner, 1979; Mosonyi, Ogawa, 2018

supα>1

α− 1

α[R− χ∗α(W,P )] = sc(R,P )

χ∗α(W,P ) is the operationally relevant quantity

(and not I∗α(W,P ))

d(R) ≤ sup0<α<1

α− 1

α[R− χα(W,P )]

Dalai, Winter 2014

17 / 31

Page 51: Divergence radii and classical-quantum channel codinghhlee/Mosonyi.pdf · 2019. 5. 31. · Divergence radii and classical-quantum channel coding Milán Mosonyi Mathematical Institute,

Strong converse exponent

limn Pe,n

1

R = limn1n logMn

χ(W )

strong converse property

limn− 1n logPe,n

R = limn1n logMn

limn− 1n log(1− Pe,n)

χ(W )

direct exponentunknown

even classically

d(R) =?

strong converse exponent

Dueck Körner, 1979; Mosonyi, Ogawa, 2014

supα>1

α− 1

α[R− χ∗α(W )] = sc(R)

χ∗α(W ) = supP∈Pf (X )

χ∗α(W,P )

= supP∈Pf (X )

infσ∈S(H)

∑x

P (x)D∗α(W (x)‖σ)= infσ∈S(H)

supP∈Pf (X )

∑x

P (x)D∗α(W (x)‖σ)

= infσ∈S(H)

supx∈X

D∗α(W (x)‖σ) Rényi radius

= supP∈Pf (X )

I∗α(W,P )

Constant composition coding

Pn(x) :=#{k : En(m)k = x}

nindep. of m

‖Pn − P‖1 −−−−−→n→+∞0

χ(W,P )

Dueck Körner, 1979; Mosonyi, Ogawa, 2018

supα>1

α− 1

α[R− χ∗α(W,P )] = sc(R,P )

χ∗α(W,P ) is the operationally relevant quantity

(and not I∗α(W,P ))

d(R) ≤ sup0<α<1

α− 1

α[R− χα(W,P )]

Dalai, Winter 2014

17 / 31

Page 52: Divergence radii and classical-quantum channel codinghhlee/Mosonyi.pdf · 2019. 5. 31. · Divergence radii and classical-quantum channel coding Milán Mosonyi Mathematical Institute,

Strong converse exponent

limn Pe,n

1

R = limn1n logMn

χ(W )

strong converse property

limn− 1n logPe,n

R = limn1n logMn

limn− 1n log(1− Pe,n)

χ(W )

direct exponentunknown

even classically

d(R) =?

strong converse exponent

Dueck Körner, 1979; Mosonyi, Ogawa, 2014

supα>1

α− 1

α[R− χ∗α(W )] = sc(R)

χ∗α(W ) = supP∈Pf (X )

χ∗α(W,P )

= supP∈Pf (X )

infσ∈S(H)

∑x

P (x)D∗α(W (x)‖σ)= infσ∈S(H)

supP∈Pf (X )

∑x

P (x)D∗α(W (x)‖σ)

= infσ∈S(H)

supx∈X

D∗α(W (x)‖σ) Rényi radius

= supP∈Pf (X )

I∗α(W,P )

Constant composition coding

Pn(x) :=#{k : En(m)k = x}

nindep. of m

‖Pn − P‖1 −−−−−→n→+∞0

χ(W,P )

Dueck Körner, 1979; Mosonyi, Ogawa, 2018

supα>1

α− 1

α[R− χ∗α(W,P )] = sc(R,P )

χ∗α(W,P ) is the operationally relevant quantity

(and not I∗α(W,P ))

d(R) ≤ sup0<α<1

α− 1

α[R− χα(W,P )]

Dalai, Winter 2014

17 / 31

Page 53: Divergence radii and classical-quantum channel codinghhlee/Mosonyi.pdf · 2019. 5. 31. · Divergence radii and classical-quantum channel coding Milán Mosonyi Mathematical Institute,

Strong converse exponent

limn Pe,n

1

R = limn1n logMn

χ(W )

strong converse property

limn− 1n logPe,n

R = limn1n logMn

limn− 1n log(1− Pe,n)

χ(W )

direct exponentunknown

even classically

d(R) =?

strong converse exponent

Dueck Körner, 1979; Mosonyi, Ogawa, 2014

supα>1

α− 1

α[R− χ∗α(W )] = sc(R)

χ∗α(W ) = supP∈Pf (X )

χ∗α(W,P )

= supP∈Pf (X )

infσ∈S(H)

∑x

P (x)D∗α(W (x)‖σ)= infσ∈S(H)

supP∈Pf (X )

∑x

P (x)D∗α(W (x)‖σ)

= infσ∈S(H)

supx∈X

D∗α(W (x)‖σ) Rényi radius

= supP∈Pf (X )

I∗α(W,P )

Constant composition coding

Pn(x) :=#{k : En(m)k = x}

nindep. of m

‖Pn − P‖1 −−−−−→n→+∞0

χ(W,P )

Dueck Körner, 1979; Mosonyi, Ogawa, 2018

supα>1

α− 1

α[R− χ∗α(W,P )] = sc(R,P )

χ∗α(W,P ) is the operationally relevant quantity

(and not I∗α(W,P ))

d(R) ≤ sup0<α<1

α− 1

α[R− χα(W,P )]

Dalai, Winter 2014

17 / 31

Page 54: Divergence radii and classical-quantum channel codinghhlee/Mosonyi.pdf · 2019. 5. 31. · Divergence radii and classical-quantum channel coding Milán Mosonyi Mathematical Institute,

Strong converse exponent

limn Pe,n

1

R = limn1n logMn

χ(W )

strong converse property

limn− 1n logPe,n

R = limn1n logMn

limn− 1n log(1− Pe,n)

χ(W )

direct exponent

unknowneven classically

d(R) =?

strong converse exponent

Dueck Körner, 1979; Mosonyi, Ogawa, 2014

supα>1

α− 1

α[R− χ∗α(W )] = sc(R)

χ∗α(W ) = supP∈Pf (X )

χ∗α(W,P )

= supP∈Pf (X )

infσ∈S(H)

∑x

P (x)D∗α(W (x)‖σ)= infσ∈S(H)

supP∈Pf (X )

∑x

P (x)D∗α(W (x)‖σ)

= infσ∈S(H)

supx∈X

D∗α(W (x)‖σ) Rényi radius

= supP∈Pf (X )

I∗α(W,P )

Constant composition coding

Pn(x) :=#{k : En(m)k = x}

nindep. of m

‖Pn − P‖1 −−−−−→n→+∞0

χ(W,P )

Dueck Körner, 1979; Mosonyi, Ogawa, 2018

supα>1

α− 1

α[R− χ∗α(W,P )] = sc(R,P )

χ∗α(W,P ) is the operationally relevant quantity

(and not I∗α(W,P ))

d(R) ≤ sup0<α<1

α− 1

α[R− χα(W,P )]

Dalai, Winter 2014

17 / 31

Page 55: Divergence radii and classical-quantum channel codinghhlee/Mosonyi.pdf · 2019. 5. 31. · Divergence radii and classical-quantum channel coding Milán Mosonyi Mathematical Institute,

Strong converse exponent

limn Pe,n

1

R = limn1n logMn

χ(W )

strong converse property

limn− 1n logPe,n

R = limn1n logMn

limn− 1n log(1− Pe,n)

χ(W )

direct exponentunknown

even classically

d(R) =?

strong converse exponent

Dueck Körner, 1979; Mosonyi, Ogawa, 2014

supα>1

α− 1

α[R− χ∗α(W )] = sc(R)

χ∗α(W ) = supP∈Pf (X )

χ∗α(W,P )

= supP∈Pf (X )

infσ∈S(H)

∑x

P (x)D∗α(W (x)‖σ)= infσ∈S(H)

supP∈Pf (X )

∑x

P (x)D∗α(W (x)‖σ)

= infσ∈S(H)

supx∈X

D∗α(W (x)‖σ) Rényi radius

= supP∈Pf (X )

I∗α(W,P )

Constant composition coding

Pn(x) :=#{k : En(m)k = x}

nindep. of m

‖Pn − P‖1 −−−−−→n→+∞0

χ(W,P )

Dueck Körner, 1979; Mosonyi, Ogawa, 2018

supα>1

α− 1

α[R− χ∗α(W,P )] = sc(R,P )

χ∗α(W,P ) is the operationally relevant quantity

(and not I∗α(W,P ))

d(R) ≤ sup0<α<1

α− 1

α[R− χα(W,P )]

Dalai, Winter 2014

17 / 31

Page 56: Divergence radii and classical-quantum channel codinghhlee/Mosonyi.pdf · 2019. 5. 31. · Divergence radii and classical-quantum channel coding Milán Mosonyi Mathematical Institute,

Strong converse exponent

limn Pe,n

1

R = limn1n logMn

χ(W )

strong converse property

limn− 1n logPe,n

R = limn1n logMn

limn− 1n log(1− Pe,n)

χ(W )

direct exponentunknown

even classically

d(R) =?

strong converse exponent

Dueck Körner, 1979; Mosonyi, Ogawa, 2014

supα>1

α− 1

α[R− χ∗α(W )] = sc(R)

χ∗α(W ) = supP∈Pf (X )

χ∗α(W,P )

= supP∈Pf (X )

infσ∈S(H)

∑x

P (x)D∗α(W (x)‖σ)= infσ∈S(H)

supP∈Pf (X )

∑x

P (x)D∗α(W (x)‖σ)

= infσ∈S(H)

supx∈X

D∗α(W (x)‖σ) Rényi radius

= supP∈Pf (X )

I∗α(W,P )

Constant composition coding

Pn(x) :=#{k : En(m)k = x}

nindep. of m

‖Pn − P‖1 −−−−−→n→+∞0

χ(W,P )

Dueck Körner, 1979; Mosonyi, Ogawa, 2018

supα>1

α− 1

α[R− χ∗α(W,P )] = sc(R,P )

χ∗α(W,P ) is the operationally relevant quantity

(and not I∗α(W,P ))

d(R) ≤ sup0<α<1

α− 1

α[R− χα(W,P )]

Dalai, Winter 2014

17 / 31

Page 57: Divergence radii and classical-quantum channel codinghhlee/Mosonyi.pdf · 2019. 5. 31. · Divergence radii and classical-quantum channel coding Milán Mosonyi Mathematical Institute,

Strong converse exponent

limn Pe,n

1

R = limn1n logMn

χ(W )

strong converse property

limn− 1n logPe,n

R = limn1n logMn

limn− 1n log(1− Pe,n)

χ(W )

direct exponentunknown

even classically

d(R) =?

strong converse exponent

Dueck Körner, 1979; Mosonyi, Ogawa, 2014

supα>1

α− 1

α[R− χ∗α(W )] = sc(R)

χ∗α(W ) = supP∈Pf (X )

χ∗α(W,P )

= supP∈Pf (X )

infσ∈S(H)

∑x

P (x)D∗α(W (x)‖σ)= infσ∈S(H)

supP∈Pf (X )

∑x

P (x)D∗α(W (x)‖σ)

= infσ∈S(H)

supx∈X

D∗α(W (x)‖σ) Rényi radius

= supP∈Pf (X )

I∗α(W,P )

Constant composition coding

Pn(x) :=#{k : En(m)k = x}

nindep. of m

‖Pn − P‖1 −−−−−→n→+∞0

χ(W,P )

Dueck Körner, 1979; Mosonyi, Ogawa, 2018

supα>1

α− 1

α[R− χ∗α(W,P )] = sc(R,P )

χ∗α(W,P ) is the operationally relevant quantity

(and not I∗α(W,P ))

d(R) ≤ sup0<α<1

α− 1

α[R− χα(W,P )]

Dalai, Winter 2014

17 / 31

Page 58: Divergence radii and classical-quantum channel codinghhlee/Mosonyi.pdf · 2019. 5. 31. · Divergence radii and classical-quantum channel coding Milán Mosonyi Mathematical Institute,

Strong converse exponent

limn Pe,n

1

R = limn1n logMn

χ(W )

strong converse property

limn− 1n logPe,n

R = limn1n logMn

limn− 1n log(1− Pe,n)

χ(W )

direct exponentunknown

even classically

d(R) =?

strong converse exponent

Dueck Körner, 1979; Mosonyi, Ogawa, 2014

supα>1

α− 1

α[R− χ∗α(W )] = sc(R)

χ∗α(W ) = supP∈Pf (X )

χ∗α(W,P )

= supP∈Pf (X )

infσ∈S(H)

∑x

P (x)D∗α(W (x)‖σ)= infσ∈S(H)

supP∈Pf (X )

∑x

P (x)D∗α(W (x)‖σ)

= infσ∈S(H)

supx∈X

D∗α(W (x)‖σ) Rényi radius

= supP∈Pf (X )

I∗α(W,P )

Constant composition coding

Pn(x) :=#{k : En(m)k = x}

nindep. of m

‖Pn − P‖1 −−−−−→n→+∞0

χ(W,P )

Dueck Körner, 1979; Mosonyi, Ogawa, 2018

supα>1

α− 1

α[R− χ∗α(W,P )] = sc(R,P )

χ∗α(W,P ) is the operationally relevant quantity

(and not I∗α(W,P ))

d(R) ≤ sup0<α<1

α− 1

α[R− χα(W,P )]

Dalai, Winter 2014

17 / 31

Page 59: Divergence radii and classical-quantum channel codinghhlee/Mosonyi.pdf · 2019. 5. 31. · Divergence radii and classical-quantum channel coding Milán Mosonyi Mathematical Institute,

Strong converse exponent

limn Pe,n

1

R = limn1n logMn

χ(W )

strong converse property

limn− 1n logPe,n

R = limn1n logMn

limn− 1n log(1− Pe,n)

χ(W )

direct exponentunknown

even classically

d(R) =?

strong converse exponent

Dueck Körner, 1979; Mosonyi, Ogawa, 2014

supα>1

α− 1

α[R− χ∗α(W )] = sc(R)

χ∗α(W ) = supP∈Pf (X )

χ∗α(W,P )

= supP∈Pf (X )

infσ∈S(H)

∑x

P (x)D∗α(W (x)‖σ)= infσ∈S(H)

supP∈Pf (X )

∑x

P (x)D∗α(W (x)‖σ)

= infσ∈S(H)

supx∈X

D∗α(W (x)‖σ) Rényi radius

= supP∈Pf (X )

I∗α(W,P )

Constant composition coding

Pn(x) :=#{k : En(m)k = x}

nindep. of m

‖Pn − P‖1 −−−−−→n→+∞0

χ(W,P )

Dueck Körner, 1979; Mosonyi, Ogawa, 2018

supα>1

α− 1

α[R− χ∗α(W,P )] = sc(R,P )

χ∗α(W,P ) is the operationally relevant quantity

(and not I∗α(W,P ))

d(R) ≤ sup0<α<1

α− 1

α[R− χα(W,P )]

Dalai, Winter 2014

17 / 31

Page 60: Divergence radii and classical-quantum channel codinghhlee/Mosonyi.pdf · 2019. 5. 31. · Divergence radii and classical-quantum channel coding Milán Mosonyi Mathematical Institute,

Strong converse exponent

limn Pe,n

1

R = limn1n logMn

χ(W )

strong converse property

limn− 1n logPe,n

R = limn1n logMn

limn− 1n log(1− Pe,n)

χ(W )

direct exponentunknown

even classically

d(R) =?

strong converse exponent

Dueck Körner, 1979; Mosonyi, Ogawa, 2014

supα>1

α− 1

α[R− χ∗α(W )] = sc(R)

χ∗α(W ) = supP∈Pf (X )

χ∗α(W,P )

= supP∈Pf (X )

infσ∈S(H)

∑x

P (x)D∗α(W (x)‖σ)

= infσ∈S(H)

supP∈Pf (X )

∑x

P (x)D∗α(W (x)‖σ)

= infσ∈S(H)

supx∈X

D∗α(W (x)‖σ) Rényi radius

= supP∈Pf (X )

I∗α(W,P )

Constant composition coding

Pn(x) :=#{k : En(m)k = x}

nindep. of m

‖Pn − P‖1 −−−−−→n→+∞0

χ(W,P )

Dueck Körner, 1979; Mosonyi, Ogawa, 2018

supα>1

α− 1

α[R− χ∗α(W,P )] = sc(R,P )

χ∗α(W,P ) is the operationally relevant quantity

(and not I∗α(W,P ))

d(R) ≤ sup0<α<1

α− 1

α[R− χα(W,P )]

Dalai, Winter 2014

17 / 31

Page 61: Divergence radii and classical-quantum channel codinghhlee/Mosonyi.pdf · 2019. 5. 31. · Divergence radii and classical-quantum channel coding Milán Mosonyi Mathematical Institute,

Strong converse exponent

limn Pe,n

1

R = limn1n logMn

χ(W )

strong converse property

limn− 1n logPe,n

R = limn1n logMn

limn− 1n log(1− Pe,n)

χ(W )

direct exponentunknown

even classically

d(R) =?

strong converse exponent

Dueck Körner, 1979; Mosonyi, Ogawa, 2014

supα>1

α− 1

α[R− χ∗α(W )] = sc(R)

χ∗α(W ) = supP∈Pf (X )

χ∗α(W,P )

= supP∈Pf (X )

infσ∈S(H)

∑x

P (x)D∗α(W (x)‖σ)

= infσ∈S(H)

supP∈Pf (X )

∑x

P (x)D∗α(W (x)‖σ)

= infσ∈S(H)

supx∈X

D∗α(W (x)‖σ) Rényi radius

= supP∈Pf (X )

I∗α(W,P )

Constant composition coding

Pn(x) :=#{k : En(m)k = x}

nindep. of m

‖Pn − P‖1 −−−−−→n→+∞0

χ(W,P )

Dueck Körner, 1979; Mosonyi, Ogawa, 2018

supα>1

α− 1

α[R− χ∗α(W,P )] = sc(R,P )

χ∗α(W,P ) is the operationally relevant quantity

(and not I∗α(W,P ))

d(R) ≤ sup0<α<1

α− 1

α[R− χα(W,P )]

Dalai, Winter 2014

17 / 31

Page 62: Divergence radii and classical-quantum channel codinghhlee/Mosonyi.pdf · 2019. 5. 31. · Divergence radii and classical-quantum channel coding Milán Mosonyi Mathematical Institute,

Strong converse exponent

limn Pe,n

1

R = limn1n logMn

χ(W )

strong converse property

limn− 1n logPe,n

R = limn1n logMn

limn− 1n log(1− Pe,n)

χ(W )

direct exponentunknown

even classically

d(R) =?

strong converse exponent

Dueck Körner, 1979; Mosonyi, Ogawa, 2014

supα>1

α− 1

α[R− χ∗α(W )] = sc(R)

χ∗α(W ) = supP∈Pf (X )

χ∗α(W,P )

= supP∈Pf (X )

infσ∈S(H)

∑x

P (x)D∗α(W (x)‖σ)

= infσ∈S(H)

supP∈Pf (X )

∑x

P (x)D∗α(W (x)‖σ)

= infσ∈S(H)

supx∈X

D∗α(W (x)‖σ) Rényi radius

= supP∈Pf (X )

I∗α(W,P )

Constant composition coding

Pn(x) :=#{k : En(m)k = x}

nindep. of m

‖Pn − P‖1 −−−−−→n→+∞0

χ(W,P )

Dueck Körner, 1979; Mosonyi, Ogawa, 2018

supα>1

α− 1

α[R− χ∗α(W,P )] = sc(R,P )

χ∗α(W,P ) is the operationally relevant quantity

(and not I∗α(W,P ))

d(R) ≤ sup0<α<1

α− 1

α[R− χα(W,P )]

Dalai, Winter 2014

17 / 31

Page 63: Divergence radii and classical-quantum channel codinghhlee/Mosonyi.pdf · 2019. 5. 31. · Divergence radii and classical-quantum channel coding Milán Mosonyi Mathematical Institute,

Strong converse exponent

limn Pe,n

1

R = limn1n logMn

χ(W )

strong converse property

limn− 1n logPe,n

R = limn1n logMn

limn− 1n log(1− Pe,n)

χ(W )

direct exponentunknown

even classically

d(R) =?

strong converse exponent

Dueck Körner, 1979; Mosonyi, Ogawa, 2014

supα>1

α− 1

α[R− χ∗α(W )] = sc(R)

χ∗α(W ) = supP∈Pf (X )

χ∗α(W,P )

= supP∈Pf (X )

infσ∈S(H)

∑x

P (x)D∗α(W (x)‖σ)

= infσ∈S(H)

supP∈Pf (X )

∑x

P (x)D∗α(W (x)‖σ)

= infσ∈S(H)

supx∈X

D∗α(W (x)‖σ) Rényi radius

= supP∈Pf (X )

I∗α(W,P )

Constant composition coding

Pn(x) :=#{k : En(m)k = x}

nindep. of m

‖Pn − P‖1 −−−−−→n→+∞0

χ(W,P )

Dueck Körner, 1979; Mosonyi, Ogawa, 2018

supα>1

α− 1

α[R− χ∗α(W,P )] = sc(R,P )

χ∗α(W,P ) is the operationally relevant quantity

(and not I∗α(W,P ))

d(R) ≤ sup0<α<1

α− 1

α[R− χα(W,P )]

Dalai, Winter 2014

17 / 31

Page 64: Divergence radii and classical-quantum channel codinghhlee/Mosonyi.pdf · 2019. 5. 31. · Divergence radii and classical-quantum channel coding Milán Mosonyi Mathematical Institute,

Strong converse exponent

limn Pe,n

1

R = limn1n logMn

χ(W )

strong converse property

limn− 1n logPe,n

R = limn1n logMn

limn− 1n log(1− Pe,n)

χ(W )

direct exponentunknown

even classically

d(R) =?

strong converse exponent

Dueck Körner, 1979; Mosonyi, Ogawa, 2014

supα>1

α− 1

α[R− χ∗α(W )] = sc(R)

χ∗α(W ) = supP∈Pf (X )

χ∗α(W,P )

= supP∈Pf (X )

infσ∈S(H)

∑x

P (x)D∗α(W (x)‖σ)= infσ∈S(H)

supP∈Pf (X )

∑x

P (x)D∗α(W (x)‖σ)

= infσ∈S(H)

supx∈X

D∗α(W (x)‖σ) Rényi radius

= supP∈Pf (X )

I∗α(W,P )

Constant composition coding

Pn(x) :=#{k : En(m)k = x}

nindep. of m

‖Pn − P‖1 −−−−−→n→+∞0

χ(W,P )

Dueck Körner, 1979; Mosonyi, Ogawa, 2018

supα>1

α− 1

α[R− χ∗α(W,P )] = sc(R,P )

χ∗α(W,P ) is the operationally relevant quantity

(and not I∗α(W,P ))

d(R) ≤ sup0<α<1

α− 1

α[R− χα(W,P )]

Dalai, Winter 2014

17 / 31

Page 65: Divergence radii and classical-quantum channel codinghhlee/Mosonyi.pdf · 2019. 5. 31. · Divergence radii and classical-quantum channel coding Milán Mosonyi Mathematical Institute,

Strong converse exponent

limn Pe,n

1

R = limn1n logMn

χ(W )

strong converse property

limn− 1n logPe,n

R = limn1n logMn

limn− 1n log(1− Pe,n)

χ(W )

direct exponentunknown

even classically

d(R) =?

strong converse exponent

Dueck Körner, 1979; Mosonyi, Ogawa, 2014

supα>1

α− 1

α[R− χ∗α(W )] = sc(R)

χ∗α(W ) = supP∈Pf (X )

χ∗α(W,P )

= supP∈Pf (X )

infσ∈S(H)

∑x

P (x)D∗α(W (x)‖σ)= infσ∈S(H)

supP∈Pf (X )

∑x

P (x)D∗α(W (x)‖σ)

= infσ∈S(H)

supx∈X

D∗α(W (x)‖σ) Rényi radius

= supP∈Pf (X )

I∗α(W,P )

Constant composition coding

Pn(x) :=#{k : En(m)k = x}

nindep. of m

‖Pn − P‖1 −−−−−→n→+∞0

χ(W,P )

Dueck Körner, 1979; Mosonyi, Ogawa, 2018

supα>1

α− 1

α[R− χ∗α(W,P )] = sc(R,P )

χ∗α(W,P ) is the operationally relevant quantity

(and not I∗α(W,P ))

d(R) ≤ sup0<α<1

α− 1

α[R− χα(W,P )]

Dalai, Winter 2014

17 / 31

Page 66: Divergence radii and classical-quantum channel codinghhlee/Mosonyi.pdf · 2019. 5. 31. · Divergence radii and classical-quantum channel coding Milán Mosonyi Mathematical Institute,

Strong converse exponent

limn Pe,n

1

R = limn1n logMn

χ(W )

strong converse property

limn− 1n logPe,n

R = limn1n logMn

limn− 1n log(1− Pe,n)

χ(W )

direct exponentunknown

even classically

d(R) =?

strong converse exponent

Dueck Körner, 1979; Mosonyi, Ogawa, 2014

supα>1

α− 1

α[R− χ∗α(W )] = sc(R)

χ∗α(W ) = supP∈Pf (X )

χ∗α(W,P )

= supP∈Pf (X )

infσ∈S(H)

∑x

P (x)D∗α(W (x)‖σ)= infσ∈S(H)

supP∈Pf (X )

∑x

P (x)D∗α(W (x)‖σ)

= infσ∈S(H)

supx∈X

D∗α(W (x)‖σ) Rényi radius

= supP∈Pf (X )

I∗α(W,P )

Constant composition coding

Pn(x) :=#{k : En(m)k = x}

nindep. of m

‖Pn − P‖1 −−−−−→n→+∞0

χ(W,P )

Dueck Körner, 1979; Mosonyi, Ogawa, 2018

supα>1

α− 1

α[R− χ∗α(W,P )] = sc(R,P )

χ∗α(W,P ) is the operationally relevant quantity

(and not I∗α(W,P ))

d(R) ≤ sup0<α<1

α− 1

α[R− χα(W,P )]

Dalai, Winter 2014

17 / 31

Page 67: Divergence radii and classical-quantum channel codinghhlee/Mosonyi.pdf · 2019. 5. 31. · Divergence radii and classical-quantum channel coding Milán Mosonyi Mathematical Institute,

Strong converse exponent

limn Pe,n

1

R = limn1n logMn

χ(W )

strong converse property

limn− 1n logPe,n

R = limn1n logMn

limn− 1n log(1− Pe,n)

χ(W )

direct exponentunknown

even classically

d(R) =?

strong converse exponent

Dueck Körner, 1979; Mosonyi, Ogawa, 2014

supα>1

α− 1

α[R− χ∗α(W )] = sc(R)

χ∗α(W ) = supP∈Pf (X )

χ∗α(W,P )

= supP∈Pf (X )

infσ∈S(H)

∑x

P (x)D∗α(W (x)‖σ)= infσ∈S(H)

supP∈Pf (X )

∑x

P (x)D∗α(W (x)‖σ)

= infσ∈S(H)

supx∈X

D∗α(W (x)‖σ) Rényi radius

= supP∈Pf (X )

I∗α(W,P )

Constant composition coding

Pn(x) :=#{k : En(m)k = x}

nindep. of m

‖Pn − P‖1 −−−−−→n→+∞0

χ(W,P )

Dueck Körner, 1979; Mosonyi, Ogawa, 2018

supα>1

α− 1

α[R− χ∗α(W,P )] = sc(R,P )

χ∗α(W,P ) is the operationally relevant quantity

(and not I∗α(W,P ))

d(R) ≤ sup0<α<1

α− 1

α[R− χα(W,P )]

Dalai, Winter 2014

17 / 31

Page 68: Divergence radii and classical-quantum channel codinghhlee/Mosonyi.pdf · 2019. 5. 31. · Divergence radii and classical-quantum channel coding Milán Mosonyi Mathematical Institute,

Strong converse exponent

limn Pe,n

1

R = limn1n logMn

χ(W )

strong converse property

limn− 1n logPe,n

R = limn1n logMn

limn− 1n log(1− Pe,n)

χ(W )

direct exponentunknown

even classically

d(R) =?

strong converse exponent

Dueck Körner, 1979; Mosonyi, Ogawa, 2014

supα>1

α− 1

α[R− χ∗α(W )] = sc(R)

χ∗α(W ) = supP∈Pf (X )

χ∗α(W,P )

= supP∈Pf (X )

infσ∈S(H)

∑x

P (x)D∗α(W (x)‖σ)= infσ∈S(H)

supP∈Pf (X )

∑x

P (x)D∗α(W (x)‖σ)

= infσ∈S(H)

supx∈X

D∗α(W (x)‖σ) Rényi radius

= supP∈Pf (X )

I∗α(W,P )

Constant composition coding

Pn(x) :=#{k : En(m)k = x}

nindep. of m

‖Pn − P‖1 −−−−−→n→+∞0

χ(W,P )

Dueck Körner, 1979; Mosonyi, Ogawa, 2018

supα>1

α− 1

α[R− χ∗α(W,P )] = sc(R,P )

χ∗α(W,P ) is the operationally relevant quantity

(and not I∗α(W,P ))

d(R) ≤ sup0<α<1

α− 1

α[R− χα(W,P )]

Dalai, Winter 2014

17 / 31

Page 69: Divergence radii and classical-quantum channel codinghhlee/Mosonyi.pdf · 2019. 5. 31. · Divergence radii and classical-quantum channel coding Milán Mosonyi Mathematical Institute,

Strong converse exponent

sc(R,P ) := inf

{lim infn→+∞

− 1

nlogPs(W

⊗n, Cn) : lim infn→+∞

1

nlogMn ≥ R

},

sc(R,P ) := inf

{lim supn→+∞

− 1

nlogPs(W

⊗n, Cn) : lim infn→+∞

1

nlogMn ≥ R

},

Lemma: [Nagaoka 2000, Cheng et. al 2018, Mosonyi, Ogawa 2018]

For any R > 0,

supα>1

α− 1

α[R− χ∗α(W,P )] ≤ sc(R,P ).

Proof: Easy from the monotonicity of D∗α.

18 / 31

Page 70: Divergence radii and classical-quantum channel codinghhlee/Mosonyi.pdf · 2019. 5. 31. · Divergence radii and classical-quantum channel coding Milán Mosonyi Mathematical Institute,

Strong converse exponent

sc(R,P ) := inf

{lim infn→+∞

− 1

nlogPs(W

⊗n, Cn) : lim infn→+∞

1

nlogMn ≥ R

},

sc(R,P ) := inf

{lim supn→+∞

− 1

nlogPs(W

⊗n, Cn) : lim infn→+∞

1

nlogMn ≥ R

},

Lemma: [Nagaoka 2000, Cheng et. al 2018, Mosonyi, Ogawa 2018]

For any R > 0,

supα>1

α− 1

α[R− χ∗α(W,P )] ≤ sc(R,P ).

Proof: Easy from the monotonicity of D∗α.

18 / 31

Page 71: Divergence radii and classical-quantum channel codinghhlee/Mosonyi.pdf · 2019. 5. 31. · Divergence radii and classical-quantum channel coding Milán Mosonyi Mathematical Institute,

Strong converse exponent

Theorem: [Dueck, Körner 1979; Mosonyi, Ogawa 2014]

sc(R,P ) ≤ infV :X→S(H)

{D(V (P )‖W (P )) + |R− χ(V, P )|+

}

Proof idea: Tr(V ⊗n(En(k))− enaW⊗n(En(k))

)+

≥ Tr(V ⊗n(En(k))− enaW⊗n(En(k))

)Dn(k),

Ps(W⊗n, Cn)

≥ e−na{Ps(V

⊗n, Cn)− 1

Mn

Mn∑k=1

Tr(V ⊗n(En(k))− enaW⊗n(En(k))

)+

}.

19 / 31

Page 72: Divergence radii and classical-quantum channel codinghhlee/Mosonyi.pdf · 2019. 5. 31. · Divergence radii and classical-quantum channel coding Milán Mosonyi Mathematical Institute,

Strong converse exponent

Theorem: [Dueck, Körner 1979; Mosonyi, Ogawa 2014]

sc(R,P ) ≤ infV :X→S(H)

{D(V (P )‖W (P )) + |R− χ(V, P )|+

}Proof idea: Tr

(V ⊗n(En(k))− enaW⊗n(En(k))

)+

≥ Tr(V ⊗n(En(k))− enaW⊗n(En(k))

)Dn(k),

Ps(W⊗n, Cn)

≥ e−na{Ps(V

⊗n, Cn)− 1

Mn

Mn∑k=1

Tr(V ⊗n(En(k))− enaW⊗n(En(k))

)+

}.

19 / 31

Page 73: Divergence radii and classical-quantum channel codinghhlee/Mosonyi.pdf · 2019. 5. 31. · Divergence radii and classical-quantum channel coding Milán Mosonyi Mathematical Institute,

Strong converse exponent

Theorem: [Dueck, Körner 1979; Mosonyi, Ogawa 2014]

sc(R,P ) ≤ infV :X→S(H)

{D(V (P )‖W (P )) + |R− χ(V, P )|+

}Proof idea: Tr

(V ⊗n(En(k))− enaW⊗n(En(k))

)+

≥ Tr(V ⊗n(En(k))− enaW⊗n(En(k))

)Dn(k),

Ps(W⊗n, Cn)

≥ e−na{Ps(V

⊗n, Cn)− 1

Mn

Mn∑k=1

Tr(V ⊗n(En(k))− enaW⊗n(En(k))

)+

}.

19 / 31

Page 74: Divergence radii and classical-quantum channel codinghhlee/Mosonyi.pdf · 2019. 5. 31. · Divergence radii and classical-quantum channel coding Milán Mosonyi Mathematical Institute,

Strong converse exponent

Theorem: [Dueck, Körner 1979; Mosonyi, Ogawa 2014]

sc(R,P ) ≤ infV :X→S(H)

{D(V (P )‖W (P )) + |R− χ(V, P )|+

}Proof idea: Tr

(V ⊗n(En(k))− enaW⊗n(En(k))

)+

≥ Tr(V ⊗n(En(k))− enaW⊗n(En(k))

)Dn(k),

Ps(W⊗n, Cn)

≥ e−na{Ps(V

⊗n, Cn)− 1

Mn

Mn∑k=1

Tr(V ⊗n(En(k))− enaW⊗n(En(k))

)+︸ ︷︷ ︸

Tr(V ⊗n(x(n))−enrW⊗n(x(n)))+

}.

20 / 31

Page 75: Divergence radii and classical-quantum channel codinghhlee/Mosonyi.pdf · 2019. 5. 31. · Divergence radii and classical-quantum channel coding Milán Mosonyi Mathematical Institute,

Strong converse exponent

Theorem: [Dueck, Körner 1979; Mosonyi, Ogawa 2014]

sc(R,P ) ≤ infV :X→S(H)

{D(V (P )‖W (P )) + |R− χ(V, P )|+

}Proof idea: Tr

(V ⊗n(En(k))− enaW⊗n(En(k))

)+

≥ Tr(V ⊗n(En(k))− enaW⊗n(En(k))

)Dn(k),

Ps(W⊗n, Cn)

≥ e−na{Ps(V

⊗n, Cn)︸ ︷︷ ︸−→1

− 1

Mn

Mn∑k=1

Tr(V ⊗n(En(k))− enaW⊗n(En(k))

)+︸ ︷︷ ︸

Tr(V ⊗n(x(n))−enrW⊗n(x(n)))+

}.

[Hayashi 2009; Cheng et al. 2018]

Assume: χ(V, P ) > R

21 / 31

Page 76: Divergence radii and classical-quantum channel codinghhlee/Mosonyi.pdf · 2019. 5. 31. · Divergence radii and classical-quantum channel coding Milán Mosonyi Mathematical Institute,

Strong converse exponent

Theorem: [Dueck, Körner 1979; Mosonyi, Ogawa 2014]

sc(R,P ) ≤ infV :X→S(H)

{D(V (P )‖W (P )) + |R− χ(V, P )|+

}Proof idea: Tr

(V ⊗n(En(k))− enaW⊗n(En(k))

)+

≥ Tr(V ⊗n(En(k))− enaW⊗n(En(k))

)Dn(k),

Ps(W⊗n, Cn)

≥ e−na{Ps(V

⊗n, Cn)︸ ︷︷ ︸−→1

− 1

Mn

Mn∑k=1

Tr(V ⊗n(En(k))− enaW⊗n(En(k))

)+︸ ︷︷ ︸

Tr(V ⊗n(x(n))−enrW⊗n(x(n)))+︸ ︷︷ ︸

−→0

}.

[Hayashi 2009; Cheng et al. 2018] [Mosonyi, Ogawa 2018]

Assume: χ(V, P ) > R D(V (P )‖W (P ) < a

22 / 31

Page 77: Divergence radii and classical-quantum channel codinghhlee/Mosonyi.pdf · 2019. 5. 31. · Divergence radii and classical-quantum channel coding Milán Mosonyi Mathematical Institute,

Strong converse exponent

Theorem: [Dueck, Körner 1979; Mosonyi, Ogawa 2014]

sc(R,P ) ≤ infV :X→S(H)

{D(V (P )‖W (P )) + |R− χ(V, P )|+

}

= supα>1

α− 1

α

[R− χ[α(W,P )

]

23 / 31

Page 78: Divergence radii and classical-quantum channel codinghhlee/Mosonyi.pdf · 2019. 5. 31. · Divergence radii and classical-quantum channel coding Milán Mosonyi Mathematical Institute,

Strong converse exponent

Theorem: [Dueck, Körner 1979; Mosonyi, Ogawa 2014]

sc(R,P ) ≤ infV :X→S(H)

{D(V (P )‖W (P )) + |R− χ(V, P )|+

}= sup

α>1

α− 1

α

[R− χ[α(W,P )

]

23 / 31

Page 79: Divergence radii and classical-quantum channel codinghhlee/Mosonyi.pdf · 2019. 5. 31. · Divergence radii and classical-quantum channel coding Milán Mosonyi Mathematical Institute,

Pinching

• ∀W,P,R ∃ codes {Ck}k∈N with rate R s.t.

lim infk

1

klogPs(W

⊗k, Ck) ≥ − supα>1

α− 1

α

[R− χ[α(W,P )

]

• Let σm be a universal symmetric state on H⊗m

∀ ω ∈ Ssymm(H⊗m) : ω ≤ vm,dσm, vm,d ≤ (m+ 1)(d+2)(d−1)

2

[Hayashi 2002]

• pinched channel:

Wm : x 7→ Eσm(W (x1)⊗ . . .⊗W (xm)), x ∈ Xm

24 / 31

Page 80: Divergence radii and classical-quantum channel codinghhlee/Mosonyi.pdf · 2019. 5. 31. · Divergence radii and classical-quantum channel coding Milán Mosonyi Mathematical Institute,

Pinching

• ∀W,P,R ∃ codes {Ck}k∈N with rate R s.t.

lim infk

1

klogPs(W

⊗k, Ck) ≥ − supα>1

α− 1

α

[R− χ[α(W,P )

]

• Let σm be a universal symmetric state on H⊗m

∀ ω ∈ Ssymm(H⊗m) : ω ≤ vm,dσm, vm,d ≤ (m+ 1)(d+2)(d−1)

2

[Hayashi 2002]

• pinched channel:

Wm : x 7→ Eσm(W (x1)⊗ . . .⊗W (xm)), x ∈ Xm

24 / 31

Page 81: Divergence radii and classical-quantum channel codinghhlee/Mosonyi.pdf · 2019. 5. 31. · Divergence radii and classical-quantum channel coding Milán Mosonyi Mathematical Institute,

Pinching

• ∀W,P,R ∃ codes {Ck}k∈N with rate R s.t.

lim infk

1

klogPs(W

⊗k, Ck) ≥ − supα>1

α− 1

α

[R− χ[α(W,P )

]

• Let σm be a universal symmetric state on H⊗m

∀ ω ∈ Ssymm(H⊗m) : ω ≤ vm,dσm, vm,d ≤ (m+ 1)(d+2)(d−1)

2

[Hayashi 2002]

• pinched channel:

Wm : x 7→ Eσm(W (x1)⊗ . . .⊗W (xm)), x ∈ Xm

24 / 31

Page 82: Divergence radii and classical-quantum channel codinghhlee/Mosonyi.pdf · 2019. 5. 31. · Divergence radii and classical-quantum channel coding Milán Mosonyi Mathematical Institute,

Pinching

• ∀W,P,R ∃ codes {Ck}k∈N with rate Rm s.t.

lim infk

1

klogPs(W

⊗km , Ck) ≥ − sup

α>1

α− 1

α

[Rm− χ[α(Wm, P

⊗m)]

• Let σm be a universal symmetric state on H⊗m

∀ ω ∈ Ssymm(H⊗m) : ω ≤ vm,dσm, vm,d ≤ (m+ 1)(d+2)(d−1)

2

[Hayashi 2002]

• pinched channel:

Wm : x 7→ Eσm(W (x1)⊗ . . .⊗W (xm)), x ∈ Xm

25 / 31

Page 83: Divergence radii and classical-quantum channel codinghhlee/Mosonyi.pdf · 2019. 5. 31. · Divergence radii and classical-quantum channel coding Milán Mosonyi Mathematical Institute,

Pinching

• ∀W,P,R ∃ codes {Ck}k∈N with rate Rm s.t.

lim infm

1

klogPs(W

⊗km , Ck) ≥ − sup

α>1

α− 1

α

[Rm− χ[α(Wm, P

⊗m)]

• Construct codes {Cn}n∈N with rate R s.t.

lim infn

1

nlogPs(W

⊗n, Cn)

=1

mlim inf

m

1

klogPs(W

⊗km , Ck)

≥ − supα>1

α− 1

α

[R− 1

mχ[α(Wm, P

⊗m)

]≥ − sup

α>1

α− 1

α

[R− 1

mχ∗α(W⊗, P⊗m)

]− f(m)

additivity?= − sup

α>1

α− 1

α[R− χ∗α(W,P )]− f(m)︸ ︷︷ ︸

−−−−−→m→+∞

0

26 / 31

Page 84: Divergence radii and classical-quantum channel codinghhlee/Mosonyi.pdf · 2019. 5. 31. · Divergence radii and classical-quantum channel coding Milán Mosonyi Mathematical Institute,

Pinching

• ∀W,P,R ∃ codes {Ck}k∈N with rate Rm s.t.

lim infm

1

klogPs(W

⊗km , Ck) ≥ − sup

α>1

α− 1

α

[Rm− χ[α(Wm, P

⊗m)]

• Construct codes {Cn}n∈N with rate R s.t.

lim infn

1

nlogPs(W

⊗n, Cn)

=1

mlim inf

m

1

klogPs(W

⊗km , Ck)

≥ − supα>1

α− 1

α

[R− 1

mχ[α(Wm, P

⊗m)

]

≥ − supα>1

α− 1

α

[R− 1

mχ∗α(W⊗, P⊗m)

]− f(m)

additivity?= − sup

α>1

α− 1

α[R− χ∗α(W,P )]− f(m)︸ ︷︷ ︸

−−−−−→m→+∞

0

26 / 31

Page 85: Divergence radii and classical-quantum channel codinghhlee/Mosonyi.pdf · 2019. 5. 31. · Divergence radii and classical-quantum channel coding Milán Mosonyi Mathematical Institute,

Pinching

• ∀W,P,R ∃ codes {Ck}k∈N with rate Rm s.t.

lim infm

1

klogPs(W

⊗km , Ck) ≥ − sup

α>1

α− 1

α

[Rm− χ[α(Wm, P

⊗m)]

• Construct codes {Cn}n∈N with rate R s.t.

lim infn

1

nlogPs(W

⊗n, Cn)

=1

mlim inf

m

1

klogPs(W

⊗km , Ck)

≥ − supα>1

α− 1

α

[R− 1

mχ[α(Wm, P

⊗m)

]≥ − sup

α>1

α− 1

α

[R− 1

mχ∗α(W⊗, P⊗m)

]− f(m)

additivity?= − sup

α>1

α− 1

α[R− χ∗α(W,P )]− f(m)︸ ︷︷ ︸

−−−−−→m→+∞

0

26 / 31

Page 86: Divergence radii and classical-quantum channel codinghhlee/Mosonyi.pdf · 2019. 5. 31. · Divergence radii and classical-quantum channel coding Milán Mosonyi Mathematical Institute,

Pinching

• ∀W,P,R ∃ codes {Ck}k∈N with rate Rm s.t.

lim infm

1

klogPs(W

⊗km , Ck) ≥ − sup

α>1

α− 1

α

[Rm− χ[α(Wm, P

⊗m)]

• Construct codes {Cn}n∈N with rate R s.t.

lim infn

1

nlogPs(W

⊗n, Cn)

=1

mlim inf

m

1

klogPs(W

⊗km , Ck)

≥ − supα>1

α− 1

α

[R− 1

mχ[α(Wm, P

⊗m)

]≥ − sup

α>1

α− 1

α

[R− 1

mχ∗α(W⊗, P⊗m)

]− f(m)

additivity?= − sup

α>1

α− 1

α[R− χ∗α(W,P )]− f(m)︸ ︷︷ ︸

−−−−−→m→+∞

0

26 / 31

Page 87: Divergence radii and classical-quantum channel codinghhlee/Mosonyi.pdf · 2019. 5. 31. · Divergence radii and classical-quantum channel coding Milán Mosonyi Mathematical Institute,

Additivity

• Qα,z multiplicative =⇒ Dα,z additive =⇒

χα,z(W1 ⊗W2, P1 ⊗ P2) ≤ χα,z(W1, P1) + χα,z(W2, P2)

Iα,z(W1 ⊗W2, P1 ⊗ P2) ≤ Iα,z(W1, P1) + Iα,z(W2, P2)

by restricting the minimization to σ12 = σ1 ⊗ σ2.

27 / 31

Page 88: Divergence radii and classical-quantum channel codinghhlee/Mosonyi.pdf · 2019. 5. 31. · Divergence radii and classical-quantum channel coding Milán Mosonyi Mathematical Institute,

Additivity

Theorem (Mosonyi, Ogawa 2018)

If Dα,z monotone under CPTP and convex in the 2nd variable,

σ0 = W (P )0 then

(1) σ is a minimizer for χα,z i�

σ = EW,P,Dα,z(σ) :=∑x∈X

P (x)1

Qα,z(W (x)‖σ)

1−α2z W (x)

αz σ

1−α2z

)z

(2) σ is a minimizer for Iα,z i�

σ = EW,P,Qα,z(σ) :=1

Tr(. . .)

∑x∈X

P (x)(σ

1−α2z W (x)

αz σ

1−α2z

)z

Proof: Just take the derivative to be 0.

28 / 31

Page 89: Divergence radii and classical-quantum channel codinghhlee/Mosonyi.pdf · 2019. 5. 31. · Divergence radii and classical-quantum channel coding Milán Mosonyi Mathematical Institute,

Additivity

Theorem (Mosonyi, Ogawa 2018)

If Dα,z monotone under CPTP and convex in the 2nd variable,

σ0 = W (P )0 then

(1) σ is a minimizer for χα,z i�

σ = EW,P,Dα,z(σ) :=∑x∈X

P (x)1

Qα,z(W (x)‖σ)

1−α2z W (x)

αz σ

1−α2z

)z

(2) σ is a minimizer for Iα,z i�

σ = EW,P,Qα,z(σ) :=1

Tr(. . .)

∑x∈X

P (x)(σ

1−α2z W (x)

αz σ

1−α2z

)z

Proof: Just take the derivative to be 0.

28 / 31

Page 90: Divergence radii and classical-quantum channel codinghhlee/Mosonyi.pdf · 2019. 5. 31. · Divergence radii and classical-quantum channel coding Milán Mosonyi Mathematical Institute,

Additivity

Theorem (Mosonyi, Ogawa 2018)

If Dα,z monotone under CPTP and convex in the 2nd variable,

σ0 = W (P )0 then

(1) σ is a minimizer for χα,z i�

σ = EW,P,Dα,z(σ) :=∑x∈X

P (x)1

Qα,z(W (x)‖σ)

1−α2z W (x)

αz σ

1−α2z

)z

(2) σ is a minimizer for Iα,z i�

σ = EW,P,Qα,z(σ) :=1

Tr(. . .)

∑x∈X

P (x)(σ

1−α2z W (x)

αz σ

1−α2z

)z

Corollary: χα,z(W1 ⊗W2, P1 ⊗ P2) = χα,z(W1, P1) + χα,z(W2, P2)

Iα,z(W1 ⊗W2, P1 ⊗ P2) = Iα,z(W1, P1) + Iα,z(W2, P2)

Extends results by Beigi 2013 for Iα,z with z = α > 1;

Nakiboglu 2018 for classical.

29 / 31

Page 91: Divergence radii and classical-quantum channel codinghhlee/Mosonyi.pdf · 2019. 5. 31. · Divergence radii and classical-quantum channel coding Milán Mosonyi Mathematical Institute,

Additivity

Theorem (Mosonyi, Ogawa 2018)

If Dα,z monotone under CPTP and convex in the 2nd variable,

σ0 = W (P )0 then

(1) σ is a minimizer for χα,z i�

σ = EW,P,Dα,z(σ) :=∑x∈X

P (x)1

Qα,z(W (x)‖σ)

1−α2z W (x)

αz σ

1−α2z

)z

(2) σ is a minimizer for Iα,z i�

σ = EW,P,Qα,z(σ) :=1

Tr(. . .)

∑x∈X

P (x)(σ

1−α2z W (x)

αz σ

1−α2z

)zCorollary: χα,z(W1 ⊗W2, P1 ⊗ P2) = χα,z(W1, P1) + χα,z(W2, P2)

Iα,z(W1 ⊗W2, P1 ⊗ P2) = Iα,z(W1, P1) + Iα,z(W2, P2)

Extends results by Beigi 2013 for Iα,z with z = α > 1;

Nakiboglu 2018 for classical.

29 / 31

Page 92: Divergence radii and classical-quantum channel codinghhlee/Mosonyi.pdf · 2019. 5. 31. · Divergence radii and classical-quantum channel coding Milán Mosonyi Mathematical Institute,

Additivity

Theorem (Mosonyi, Ogawa 2018)

If Dα,z monotone under CPTP and convex in the 2nd variable,

σ0 = W (P )0 then

(1) σ is a minimizer for χα,z i�

σ = EW,P,Dα,z(σ) :=∑x∈X

P (x)1

Qα,z(W (x)‖σ)

1−α2z W (x)

αz σ

1−α2z

)z

(2) σ is a minimizer for Iα,z i�

σ = EW,P,Qα,z(σ) :=1

Tr(. . .)

∑x∈X

P (x)(σ

1−α2z W (x)

αz σ

1−α2z

)zCorollary: χα,z(W1 ⊗W2, P1 ⊗ P2) = χα,z(W1, P1) + χα,z(W2, P2)

Iα,z(W1 ⊗W2, P1 ⊗ P2) = Iα,z(W1, P1) + Iα,z(W2, P2)

Extends results by Beigi 2013 for Iα,z with z = α > 1;

Nakiboglu 2018 for classical. 29 / 31

Page 93: Divergence radii and classical-quantum channel codinghhlee/Mosonyi.pdf · 2019. 5. 31. · Divergence radii and classical-quantum channel coding Milán Mosonyi Mathematical Institute,

Additivity

Theorem (Mosonyi, Ogawa 2018)

If Dα,z monotone under CPTP and convex in the 2nd variable,

σ0 = W (P )0 then

(1) σ is a minimizer for χα,z i�

σ = EW,P,Dα,z(σ) :=∑x∈X

P (x)1

Qα,z(W (x)‖σ)

1−α2z W (x)

αz σ

1−α2z

)z

(2) σ is a minimizer for Iα,z i�

σ = EW,P,Qα,z(σ) :=1

Tr(. . .)

∑x∈X

P (x)(σ

1−α2z W (x)

αz σ

1−α2z

)z

Corollary: If W (x) ⊥x 6=y W (y) then W (P ) is a minimizer for χα,z

χα,z(W,P ) = H(P )

Corollary: If Dα,z is monotone under CPTP then χα,z(W,P ) ≤ H(P ).

30 / 31

Page 94: Divergence radii and classical-quantum channel codinghhlee/Mosonyi.pdf · 2019. 5. 31. · Divergence radii and classical-quantum channel coding Milán Mosonyi Mathematical Institute,

Additivity

Theorem (Mosonyi, Ogawa 2018)

If Dα,z monotone under CPTP and convex in the 2nd variable,

σ0 = W (P )0 then

(1) σ is a minimizer for χα,z i�

σ = EW,P,Dα,z(σ) :=∑x∈X

P (x)1

Qα,z(W (x)‖σ)

1−α2z W (x)

αz σ

1−α2z

)z

(2) σ is a minimizer for Iα,z i�

σ = EW,P,Qα,z(σ) :=1

Tr(. . .)

∑x∈X

P (x)(σ

1−α2z W (x)

αz σ

1−α2z

)zCorollary: If W (x) ⊥x 6=y W (y) then W (P ) is a minimizer for χα,z

χα,z(W,P ) = H(P )

Corollary: If Dα,z is monotone under CPTP then χα,z(W,P ) ≤ H(P ).

30 / 31

Page 95: Divergence radii and classical-quantum channel codinghhlee/Mosonyi.pdf · 2019. 5. 31. · Divergence radii and classical-quantum channel coding Milán Mosonyi Mathematical Institute,

Additivity

Theorem (Mosonyi, Ogawa 2018)

If Dα,z monotone under CPTP and convex in the 2nd variable,

σ0 = W (P )0 then

(1) σ is a minimizer for χα,z i�

σ = EW,P,Dα,z(σ) :=∑x∈X

P (x)1

Qα,z(W (x)‖σ)

1−α2z W (x)

αz σ

1−α2z

)z

(2) σ is a minimizer for Iα,z i�

σ = EW,P,Qα,z(σ) :=1

Tr(. . .)

∑x∈X

P (x)(σ

1−α2z W (x)

αz σ

1−α2z

)zCorollary: If W (x) ⊥x 6=y W (y) then W (P ) is a minimizer for χα,z

χα,z(W,P ) = H(P )

Corollary: If Dα,z is monotone under CPTP then χα,z(W,P ) ≤ H(P ).30 / 31

Page 96: Divergence radii and classical-quantum channel codinghhlee/Mosonyi.pdf · 2019. 5. 31. · Divergence radii and classical-quantum channel coding Milán Mosonyi Mathematical Institute,

Additivity

Theorem (Mosonyi, Ogawa 2018)

If Dα,z monotone under CPTP and convex in the 2nd variable,

σ0 = W (P )0 then

(1) σ is a minimizer for χα,z i�

σ = EW,P,Dα,z(σ) :=∑x∈X

P (x)1

Qα,z(W (x)‖σ)

1−α2z W (x)

αz σ

1−α2z

)z

(2) σ is a minimizer for Iα,z i�

σ = EW,P,Qα,z(σ) :=1

Tr(. . .)

∑x∈X

P (x)(σ

1−α2z W (x)

αz σ

1−α2z

)zCorollary: If W (x) ⊥x 6=y W (y) then W (P ) is a minimizer for χα,z

Iα,z ≤ 1

α− 1log∑

xP (x)Qα,z(W (x)‖W (P )) =

1

α− 1log∑

xP (x)P (x)1−α

<α<1

∑xP (x)

1

α− 1logP (x)1−α = H(P ) = χα,z(W,P )

31 / 31

Page 97: Divergence radii and classical-quantum channel codinghhlee/Mosonyi.pdf · 2019. 5. 31. · Divergence radii and classical-quantum channel coding Milán Mosonyi Mathematical Institute,

Additivity

Theorem (Mosonyi, Ogawa 2018)

If Dα,z monotone under CPTP and convex in the 2nd variable,

σ0 = W (P )0 then

(1) σ is a minimizer for χα,z i�

σ = EW,P,Dα,z(σ) :=∑x∈X

P (x)1

Qα,z(W (x)‖σ)

1−α2z W (x)

αz σ

1−α2z

)z

(2) σ is a minimizer for Iα,z i�

σ = EW,P,Qα,z(σ) :=1

Tr(. . .)

∑x∈X

P (x)(σ

1−α2z W (x)

αz σ

1−α2z

)zCorollary: If W (x) ⊥x 6=y W (y) then W (P ) is a minimizer for χα,z

Iα,z ≤ 1

α− 1log∑

xP (x)Qα,z(W (x)‖W (P ))

=1

α− 1log∑

xP (x)P (x)1−α

<α<1

∑xP (x)

1

α− 1logP (x)1−α = H(P ) = χα,z(W,P )

31 / 31

Page 98: Divergence radii and classical-quantum channel codinghhlee/Mosonyi.pdf · 2019. 5. 31. · Divergence radii and classical-quantum channel coding Milán Mosonyi Mathematical Institute,

Additivity

Theorem (Mosonyi, Ogawa 2018)

If Dα,z monotone under CPTP and convex in the 2nd variable,

σ0 = W (P )0 then

(1) σ is a minimizer for χα,z i�

σ = EW,P,Dα,z(σ) :=∑x∈X

P (x)1

Qα,z(W (x)‖σ)

1−α2z W (x)

αz σ

1−α2z

)z

(2) σ is a minimizer for Iα,z i�

σ = EW,P,Qα,z(σ) :=1

Tr(. . .)

∑x∈X

P (x)(σ

1−α2z W (x)

αz σ

1−α2z

)zCorollary: If W (x) ⊥x 6=y W (y) then W (P ) is a minimizer for χα,z

Iα,z ≤ 1

α− 1log∑

xP (x)Qα,z(W (x)‖W (P )) =

1

α− 1log∑

xP (x)P (x)1−α

<α<1

∑xP (x)

1

α− 1logP (x)1−α = H(P ) = χα,z(W,P )

31 / 31

Page 99: Divergence radii and classical-quantum channel codinghhlee/Mosonyi.pdf · 2019. 5. 31. · Divergence radii and classical-quantum channel coding Milán Mosonyi Mathematical Institute,

Additivity

Theorem (Mosonyi, Ogawa 2018)

If Dα,z monotone under CPTP and convex in the 2nd variable,

σ0 = W (P )0 then

(1) σ is a minimizer for χα,z i�

σ = EW,P,Dα,z(σ) :=∑x∈X

P (x)1

Qα,z(W (x)‖σ)

1−α2z W (x)

αz σ

1−α2z

)z

(2) σ is a minimizer for Iα,z i�

σ = EW,P,Qα,z(σ) :=1

Tr(. . .)

∑x∈X

P (x)(σ

1−α2z W (x)

αz σ

1−α2z

)zCorollary: If W (x) ⊥x 6=y W (y) then W (P ) is a minimizer for χα,z

Iα,z ≤ 1

α− 1log∑

xP (x)Qα,z(W (x)‖W (P )) =

1

α− 1log∑

xP (x)P (x)1−α

<α<1

∑xP (x)

1

α− 1logP (x)1−α

= H(P ) = χα,z(W,P )

31 / 31

Page 100: Divergence radii and classical-quantum channel codinghhlee/Mosonyi.pdf · 2019. 5. 31. · Divergence radii and classical-quantum channel coding Milán Mosonyi Mathematical Institute,

Additivity

Theorem (Mosonyi, Ogawa 2018)

If Dα,z monotone under CPTP and convex in the 2nd variable,

σ0 = W (P )0 then

(1) σ is a minimizer for χα,z i�

σ = EW,P,Dα,z(σ) :=∑x∈X

P (x)1

Qα,z(W (x)‖σ)

1−α2z W (x)

αz σ

1−α2z

)z

(2) σ is a minimizer for Iα,z i�

σ = EW,P,Qα,z(σ) :=1

Tr(. . .)

∑x∈X

P (x)(σ

1−α2z W (x)

αz σ

1−α2z

)zCorollary: If W (x) ⊥x 6=y W (y) then W (P ) is a minimizer for χα,z

Iα,z ≤ 1

α− 1log∑

xP (x)Qα,z(W (x)‖W (P )) =

1

α− 1log∑

xP (x)P (x)1−α

<α<1

∑xP (x)

1

α− 1logP (x)1−α = H(P )

= χα,z(W,P )

31 / 31

Page 101: Divergence radii and classical-quantum channel codinghhlee/Mosonyi.pdf · 2019. 5. 31. · Divergence radii and classical-quantum channel coding Milán Mosonyi Mathematical Institute,

Additivity

Theorem (Mosonyi, Ogawa 2018)

If Dα,z monotone under CPTP and convex in the 2nd variable,

σ0 = W (P )0 then

(1) σ is a minimizer for χα,z i�

σ = EW,P,Dα,z(σ) :=∑x∈X

P (x)1

Qα,z(W (x)‖σ)

1−α2z W (x)

αz σ

1−α2z

)z

(2) σ is a minimizer for Iα,z i�

σ = EW,P,Qα,z(σ) :=1

Tr(. . .)

∑x∈X

P (x)(σ

1−α2z W (x)

αz σ

1−α2z

)zCorollary: If W (x) ⊥x 6=y W (y) then W (P ) is a minimizer for χα,z

Iα,z ≤ 1

α− 1log∑

xP (x)Qα,z(W (x)‖W (P )) =

1

α− 1log∑

xP (x)P (x)1−α

<α<1

∑xP (x)

1

α− 1logP (x)1−α = H(P ) = χα,z(W,P )

31 / 31