156
p E o E E N prepared by ERSLI Consul on behalf of Enemalta re N VIR O ltants Ltd Corporat D e C ceiving, Tr O NM E En tion e limar a Combine Lique storage Delima iq il-Powe E NTA nvironme a Gas ed Cycle and efied Nat , and re- ara Powe er Station L I M ental Su Appendix T Volume Tw and P o Gas Turb tural Gas -gasifica er Statio n – Marsax PAC T urvey Rep Two wo o wer bine s tion faci on xlokk T S TA ports ilities A TE M 20 M ENT December 2 2013

Delimara Gas and Power - Welcome DPS_EIS_App02ii_E… · Delima iq il-Powe NTA vironme Gas ed Cycle and efied Nat, and re-ra Powe r Station ... disappears completely, leaving the

Embed Size (px)

Citation preview

pEoE

EN

prepared by ERSLI Consulon behalf of Enemalta

re

NVIRO

ltants Ltd Corporat

DeC

ceiving,

Tr

ONME

En

tion

elimaraCombine

Lique storage

Delima

iq il-Powe

ENTA

nvironme

a Gas ed Cycle

and efied Nat, and re-

ara Powe

er Station

L IM

ental SuAppendix T

Volume Tw

and PoGas Turb

tural Gas-gasifica

er Statio

n – Marsax

PACT

urvey RepTwo

wo

ower bine

s tion faci

on

xlokk

T STA

ports

ilities

ATEM

20

MENT

December 2

2013

Volumes Consultants Fields

One Archaeology Services Cooperative Cultural Heritage (Terrestrial)

Axiak, Victor Marine Water Bodies

Two Borg, John J Vertebrate Fauna

Borg, Joseph A & Evans, Julian Marine Ecology

Three Calleja, Christian (2 reports) Noise

Cassar, Louis F Land Use and Land Cover

Conrad, Elisabeth Landscape and Visual Assessment

Four Fedra, Kurt (3 reports) Air Dispersion

Formosa, Marvin Social Impact Assessment

Five Gambin, Timothy Marine Archaeology

Lanfranco, Sandro & Cassar, Louis F Terrestrial Ecology

Mamo, Julian & Cauchi, John P Health Impact Assessment

Six Meli, Anthony Agricultural Land

Scerri, Saviour Geology – Geomorphology – Hydrogeology – Hydrology – Soils

Seven Vaccari, Roberto (2 reports) Quantitative Risk Assessment

Report on the Vertebrate Fauna vis-à-vis Combined Cycle Gas Turbine and Liquefied Natural Gas receiving, storage,

and re-gasification facilities

Delimara Promontory, Marsaxlokk

Prepared by

John J. Borg Independent Consultant

Logistic Support:

12, Sir Arthur Borton Street Mosta, MST14

Malta

Telephone: (+356) 2143 1900 Fax: (+356) 21424 137

e‐mail: [email protected]

Ecoserv Report Reference: 110‐13_R

Revised version (14‐10‐13) of report dated July 2013

Ecoserv Ltd

Report on vertebrate fauna in the vicinity of Delimara promontory, in relation to the proposed CCGT and LNG power plant

CONTENTS 1. INTRODUCTION

1.1 Terms of Reference 1.2 Scope of this work 1.3 Sphere of influence 1.4 Competence of Consultant

2. STUDY METHODOLOGY 3. FIELD WORK 4. STUDY AREA 4.1 il‐Ballut 4.2 Delimara (Xrobb l‐Ghagin Peninsula) 5. ORNITHOLOGICAL IMPORTANCE 5.1 Bird Migration 5.2 Winter Visitors 5.3 Breeding Species 6. BREEDING BIRDS ACCOUNTS

Greater Short‐toed Lark Blue Rock Thrush Zitting Cisticola Sardinian Warbler Spectacled Warbler Spanish Sparrow Tree Sparrow

7. ANNOTATED LIST TO THE BIRDS OF IL-BALLUT AND DELIMARA PENINSULA Section II 8. Other Vertebrates: Mammals, Reptiles and Amphibians 8.1 Mammals 8.1a Introduction 8.1b Desk Study 8.1c Field Work 8.1d Terrestrial Fauna List and status 9. SPECIES ACCOUNT TO THE VERTEBRATE FAUNA Algerian Hedgehog Pygmy White‐toothed Shrew Lesser Horse‐shoe Bat

Maghrebian Bat

2

Ecoserv Ltd

Report on vertebrate fauna in the vicinity of Delimara promontory, in relation to the proposed CCGT and LNG power plant

Soprano Pipistrelle Kuhl’s Pipistrelle Grey Long‐eared Bat Weasel Wood Mouse Brown Rat Black Rat Western House Mouse Wild Rabbit Painted Frog Moorish Geckoe Turkish Geckoe Chameleon Maltese Wall Lizard Ocellated Skink Western Whip Snake Cat Snake

10. THREATS

10.1 Light Pollution 11. POLICY CONSIDERATIONS 11.1 International Legislation (Birds) 11.2 Conservation and Legal aspects (Bats) 12. SUMMARY OF IMPACTS BIBLIOGRAPHY

APPENDICES 1: List of Avian species reported from the Study Area 2: List of other vertebrates reported from the Study Area 3: Maps

3

Ecoserv Ltd

Report on vertebrate fauna in the vicinity of Delimara promontory, in relation to the proposed CCGT and LNG power plant

1.1 Terms of reference ERSLI Consultants Ltd (henceforth ‘ERSLI’) have commissioned Ecoserv Ltd (henceforth ‘Ecoserv’) to

prepare a report in relation to Environment Impact Assessment (EIA) on the Vertebrate fauna in

relation to the proposed Combined Cycle Gas Turbine (CCGT) and Liquid Natural Gas (LNG)

storage and regasification facility in the 'power station site' in Delimara (PA 0205/13).

This method statement (MS) is based on the ToR issued by MEPA. The following are addressed

in this report:

(i) 3.5 ‐ Ecology (Birds, Mammals including Bats, Amphibians and reptiles)

(ii) 4.1 ‐ Effects on the environmental aspects identified in Section 3

(iii) 5 ‐ Mitigation Measures, Residual Impacts and Monitoring Programme

4

Ecoserv Ltd

Report on vertebrate fauna in the vicinity of Delimara promontory, in relation to the proposed CCGT and LNG power plant

1.2 Scope of this work

The scope of this work is to present an up to date report on the Birds, Bats and where

possible other vertebrate species of the Delimara (Xrobb l‐Ghagin) Peninsula,

conservation issues and mitigation measures where possible.

1.3 Sphere of influence

The area covered in this study comprises the area known as il‐Il‐Ballutt ta’ Marsaxlokk

extending around the power station and on towards Delimara Point.

1.4 Competence of consultant

This report was prepared by John J. Borg:

• Senior Curator of the Natural History Unit (Heritage Malta);

• Member of the Society of Biologists (2013 ‐ )

• Licensed Bird Ringer (1981 ‐ )

• Researcher in the fields of Ornithology and vertebrates in general and author of over 50

scientific papers;

• Participated in various E.I.A.s and technical reports related to Ornithology and other

vertebrates; and

• Holds a number of posts in local and foreign scientific institutions.

5

Ecoserv Ltd

Report on vertebrate fauna in the vicinity of Delimara promontory, in relation to the proposed CCGT and LNG power plant

2. Study Methodology (Ornithology)

2.1 Desk Study:

This assessment is based on accumulated data obtained from long‐term observations on

resident as well as migrating species and from local publications including:

o Bird sightings complied by BirdLife Malta birdwatchers and published in the

society’s scientific journal il-Merill;

o The report “Coastal Zone Management Plan – Ornithology compiled by J. Sultana

& J.J. Borg 2000 and commissioned by MEPA; and

o Important Bird Areas of EU Importance in Malta (Borg & Sultana 2004).

o The Breeding Birds of Malta (Sultana et al 2011)

3. Field work

3.1 Four visits have been carried out on in the months of May and June 2013 to record

breeding behavior of the birds in the area and to reconfirm the presence of the

vertebrates observed in previous years.

3.2 The first visit was carried out on 17 May and the second on the 28 May.

3.3 Third and fourth visits were carried out on 13th and 26 June 2013.

3.4 The methodology

• Direct observations for birds were carried out during the daytime and late

evening on all four dates.

6

Ecoserv Ltd

Report on vertebrate fauna in the vicinity of Delimara promontory, in relation to the proposed CCGT and LNG power plant

Fig 1. The Area of Influence

Fig 2. Typical habitat: Various grades of agricultural land, scattered vegetation and rubble walls

7

Ecoserv Ltd

Report on vertebrate fauna in the vicinity of Delimara promontory, in relation to the proposed CCGT and LNG power plant

4. Study Area

4.1 Il‐Ballut 4.1a A coastal saline marshland developed in the sheltered corner of Marsaxlokk Bay

(see map in Figure 4). Marshland habitats support highly specialized floral species and

although several of them are common to all local salt‐marshes, each site has its own

particular characteristics and suite of species. During the summer months the water

here becomes progressively more brackish until it becomes hyper saline and finally

disappears completely, leaving the marsh dry until the following wet season. The area

attracts a considerable number of passerine birds as well as small numbers of waders

and other water birds during the spring migration. In autumn the number and diversity

of birds depends on the water level.

4.1b MEPA scheduled Il‐Il‐Ballutt ta’ Marsaxlokk as a Level 1 Area of Ecological

Importance and a Level 1 Site of Scientific Importance as per Government Notice No.

1069/06 in the Government Gazette dated 19 December 2006.

Fig. 3. Il‐Ballutt ta’Marsaxlokk

8

Ecoserv Ltd

Report on vertebrate fauna in the vicinity of Delimara promontory, in relation to the proposed CCGT and LNG power plant

Fig. 4 Shaded area shows the location of il‐Maghluq.

4.2 Delimara (Xrobb l‐Ghagin) Peninsula

4.1a The Delimara promontory is dominated by a rocky coastline made up of a

shallow and sloping coastline at sea‐level (Marsaxlokk bay) up to seacliffs of various

heights on the southern tip. The principal habitat was probably garrigue but this has

been greatly altered by human activates (agriculture, finch trapping sites, illegal

dumping).

4.1b The promontory was listed in the publication Localities with Conservation Value in

the Maltese Islands for its Great scenic beauty and important floral species (Schembri et

al 1987).

Il-Maghluq

9

Ecoserv Ltd

Report on vertebrate fauna in the vicinity of Delimara promontory, in relation to the proposed CCGT and LNG power plant

Fig 4. The western shore of the Delimara Peninsula

5. Ornithological Importance:

5.1 BIRD MIGRATION 5.1a Bird migration dominates the Maltese ornithological year, and in spring and

autumn a consistent movement of birds occurs through the islands. Large numbers are

frequently seen during adverse weather conditions. Most of the migrant species, other

than those birds that arrive during the night, head for the coast when they see land.

5.1b Migrating birds usually fly inland against the wind funneling through valleys that

run towards the coast. All of these valley mouths are important for migrants, especially

for those, which have been brought down by adverse weather conditions. Large

numbers of birds are usually seen when a period of adverse weather, such as head‐

winds, overcast or stormy weather, follow suddenly on a period of settled, fine weather

and more favorable winds.

10

Ecoserv Ltd

Report on vertebrate fauna in the vicinity of Delimara promontory, in relation to the proposed CCGT and LNG power plant

5.1c ‘Coasting’ by many migrant species is also noted to occur frequently during

migration. Whilst weather conditions affect the numbers of migrants, there is always a

consistent migration of birds through the islands both in spring and autumn.

5.1d Although valleys, rocky ridges and coastal areas seem to be most favored by bird

species of open country, on migration all species, even those which inhabit woodland

and other types of habitats are invariable recorded almost everywhere. The Maltese

Islands are in such a unique situation that migrating birds may be noted to occur along

the entire coast, even in developed areas.

5.2 WINTER VISITORS

5.2a When the autumn movement of trans‐saharan migrants comes to an end,

another set of European birds start arriving to spend the winter in the Mediterranean

basin. These species are regularly recorded in the Maltese Islands and many of them

stay for the entire winter until they return to European breeding grounds in March.

5.2b Birds such as Black‐necked Grebe Podiceps nigricollis, Great Cormorant

Phalacrocorax carbo and variety of duck species mainly Anas sp., Kingfisher Alcedo

atthis and several passerine species regularly visit the area of il‐Il‐Ballutt and the inshore

waters inside Marsaxlokk Bay.

5.2c The harbours and sheltered areas provide an ideal habitat for some of the

wintering species and provide shelter, particularly during strong north‐westerly winds

for gulls particularly Mediterranean Gull Larus melanocephalus, Black‐headed Gull

Cheirolophus ridibundus, Yellow‐legged Gull and Lesser Black‐backed Gull Larus fuscus as

well as various species of terns like the Gull‐billed Tern Gelochelidon nilotica, Sandwich

Tern Sterna sandvicensis and Black Tern Chlidonias niger.

11

Ecoserv Ltd

Report on vertebrate fauna in the vicinity of Delimara promontory, in relation to the proposed CCGT and LNG power plant

5.3. Breeding species

5.3a The Maltese Islands regularly hosts about 18 regular breeding species and

around 27 species which breed irregularly (Sultana et al 2011). The breeding bird atlas

for 2008 (Raine at al 2009) reports 31 species as breeding in 2008. The Delimara

penninsula is known to hold no less than seven breeding species, namely: Blue Rock

Thrush Monticola solitarius, Great Short‐toed Lark Calandrella brachydactyla, Zitting

Cisticola Cisticola juncidis, Sardinian Warbler Sylvia melanocephala, Spectacled Warbler

Sylvia conspicillata, Tree Sparrow Passer montanus and Spanish Sparrow Passer

hispaniolensis.

5.3b Garrigue is an ideal habitat for ground nesting birds such as Short‐toed Larks

Calandrella brachydactyla and Corn Buntings Emberiza calandra; both species build

their nest on the ground in the shade of a bush or large boulder. Both species have had

drastic declines in the last 30 years. The Corn Bunting has become extinct from the

south and central parts of Malta. A survey of breeding Short‐toed Larks of the south east

coast of Malta was carried out by D.Cachia in 1986‐87 which showed that numbers had

declined drastically when compared to previous years and only a handful of pairs where

present along the Xrobb l‐Ghagin peninsula (Cachia, 1990‐91). During the breeding bird

survey of 2008, breeding of Short‐toed Larks was not confirmed (Raine et al. 2009). A

single male STL was heard singing close to the Delimara Lighthouse during the diurnal

survey of 28 May (Pers. Obs).

5.3c The thick but sparse clumps of vegetation offer ideal nesting facilities for

Sardinian Warbler and Spectacled Warbler as well as the Zitting Cisticola which

constructs its nest in loose vegetation and long grasses. The Spanish Sparrow Passer

hispaniolensis nests in cracks and crevices in cliff faces but also in buildings.

12

Ecoserv Ltd

Report on vertebrate fauna in the vicinity of Delimara promontory, in relation to the proposed CCGT and LNG power plant

5.3d The National Bird, the Blue Rock Thrush builds its nest is narrow crevices in the

cliff‐face as well as in the fortification walls of Fort Delimara. The population here in

2013 was composed of two pairs.

5.3e No seabirds are known to breed along the Xrobb l‐Ghagin peninsula. The closest

colonies are situated at Benghisa Pt with both Scopoli’s and Yelkouan Shearwaters

breeding in crags and crevices along the cliff‐face.

13

Ecoserv Ltd

Report on vertebrate fauna in the vicinity of Delimara promontory, in relation to the proposed CCGT and LNG power plant

6. Breeding birds accounts Greater Short‐toed Lark Calandrella brachydactyla EU Birds’ Directive 79/409/EEC – Annex I species SPEC* Category 3 RDB Maltese Islands – Vulnerable*** *SPEC ‐ Species of European Conservation Concern **Category 3 ‐ Species whose global populations are not concentrated in Europe, but which

have an Unfavourable Conservation Status in Europe ***Vulnerable – Taxon is likely to become endangered in the near future if the factors

threatening it continue to operate (eg. Pesticides and human encroachment) The Greater Short‐toed Lark is a bird of open grounds, frequenting agricultural land and areas

of garrigue. The sand coloured plumage of the bird helps it to blend into its surroundings. It is

aground nesting bird laying 3‐5 eggs per nest. Until the early 1980s, prior to the development

boom, the Short‐toed Lark was reported as being a very common migrant and breeding

summer resident (Sultana & Gauci 1982). The increase of human activities in the countryside in

the last thirty years has greatly affected the breeding population.

The total breeding population in the Maltese Islands during the Breeding Bird Atlas of 2008 was

reported at 2039 to 5728 breeding pairs (Raine et al 2009).

The number of singing males in 2013 in the AoI was six.

The first birds start arriving in early March but nest building does not commence until the third

week of April. The nest is built in a shallow scrape in the ground in the shade of a bush or large

boulder. The young hatch after 13 days of incubation and fledge after another 10 days. The

Short‐toed Lark is double brooded, that is, it breeds twice each year. In August young birds flock

together and roost communally on the ground the islands. By early October all the Short‐toed

Larks would have left the islands.

14

Ecoserv Ltd

Report on vertebrate fauna in the vicinity of Delimara promontory, in relation to the proposed CCGT and LNG power plant

Fig. 5 Short‐toed Lark Calandrella brachydactyla ‐ Singing males spring 2013.

15

Ecoserv Ltd

Report on vertebrate fauna in the vicinity of Delimara promontory, in relation to the proposed CCGT and LNG power plant

Blue Rock Thrush Monticola solitarius RDB Maltese Islands – Vulnerable The Blue Rock Thrush is a resident species. It usually frequents the rocky coast, especially the

cliff sides. During the breeding season the adult birds frequently forage for small reptiles, snails,

grasshoppers, and other insects in the hinterland, often frequenting the rubble walls and rocky

outcrops there.

Nests are constructed in crevices and fissures in cliffs and fortifications, but also abandoned

buildings in the countryside. Nest building starts in March and four to five eggs are laid.

Incubation lasts 13 days and the chicks fledge the nest when 14 days old.

The Blue Rock Thrush is a double brooder; the first nest in March‐May and a second brood is

raised in summer from late June to mid‐July. In autumn the young birds have a tendency to

move inland. The Maltese population is estimated at 595‐1305 breeding pairs (Raine et al

2008). Only one confirmed nesting site was located, close to Fort Delimara but at least two

other pairs of Blue Rock Thrushes have been recorded along the cliffs in 2013 .

Fig 6 Breeding site for Blue Rock Thrush Monticola solitarius in 2013.

16

Ecoserv Ltd

Report on vertebrate fauna in the vicinity of Delimara promontory, in relation to the proposed CCGT and LNG power plant

Zitting Cisitcola Cisitcola juncidis The Zitting Cisticola is the smallest resident species; it started breeding in Malta in 1973 at

Simar and soon dispersed over the whole archipelago. Its favourite habitats are agricultural

land and valleys with long grasses.It feeds exclusively on insects, which is highly beneficial to

agriculture.

The bottle‐shaped nest, constructed out of spider webs and thin strands of grass is woven

amidst strands of grasses and small bushes. Six to eight eggs are usually laid in each brood.

Notwithstanding its small size, its presence hardly ever goes unnoticed. The “zip‐zip” calls of the

patrolling males are very much evident during the breeding season from January to July and

occasionally later, with one record in November. Males are polygamous with a single male

having up to four females in his territory.

Total breeding population in the Maltese Islands: 13,702‐19,544 breeding pairs.

During the spring visits of 2013, the number of calling males in the area was of five males.

Fig. 7 Zitting Cisticola Cisticola juncidis – Singing males in spring 2013

17

Ecoserv Ltd

Report on vertebrate fauna in the vicinity of Delimara promontory, in relation to the proposed CCGT and LNG power plant

Sardinian Warbler Sylvia melanocephala

This is a common resident species frequenting all types of habitats, including urban

environments, where it is frequently seen moving among low bushes close to human

habitations. It feeds on insects and small wild fruits. It is a very active and noisy species.

Weather permitting, breeding starts in February with the male birds singing while in flight.

Three to four eggs are laid and incubation lasts 13 days and the young fledge after 12 days. The

Sardinian Warbler breeds at least twice a year; sometimes three times. Males are highly

territorial and do not tolerate other males of the same species. Its scolding alarm call is audible

especially when someone or something ventures close the nest.

Total breeding population in the Maltese Islands in 2008 numbered from 12,736 – 16,998

breeding pairs (Raine et al 2009). No less than 16 males were recorded in spring 2013.

Fig. 8 Sardinian Warbler Sylvia melanocephala – Singing males

18

Ecoserv Ltd

Report on vertebrate fauna in the vicinity of Delimara promontory, in relation to the proposed CCGT and LNG power plant

Spectacled Warbler Sylvia conspicillata RDB Maltese Islands – Endangered*

• Endangered ‐ Taxon is in danger of extinction due to populations having become severely depleted or due to a drastic reduction in habitat

Formerly a common resident species, the Spectacled Warbler suffered a drastic decline in the

1980s. It is now considered a scarce resident breeder. This species forages among low lying

vegetation and feeds on insects and small invertebrates.

Breeding may start in late February. Males are highly territorial and may be frequently seen and

heard chasing other males away from their territory. The nest consists of a neat cup

constructed of vegetation and animal hair in a shallow bush. Three to five eggs are laid. Eggs

hatch after 12 days of incubation and the young leave the nest after another 12 days.

The total population in the Maltese Islands during the last Breeding Bird census in 2008 was at

691 – 1,823 breeding pairs (Raine et al 2009). Only two pairs were recorded in 2013; one pair

close to the Delimara Lighthouse and the other close to the east wall of the fort.

Fig. 9 Spectacled Warbler Sylvia conspicillata nests in 2013

19

Ecoserv Ltd

Report on vertebrate fauna in the vicinity of Delimara promontory, in relation to the proposed CCGT and LNG power plant

Spanish Sparrow Passer hispaniolensis The Spanish Sparrow is an abundant resident species that frequents all sorts of habitats.

It frequently occurs close to human habitations that it exploits for food. In urban areas it mainly

feeds on scraps, but it also feeds on seeds, insects, and other invertebrates.

The breeding season starts in February and can continue till early autumn. An untidy nest is

constructed in trees, buildings, electricity pylons, broken water pipes etc. Four broods may be

raised each year. Soon after the main breeding season (late summer) the Spanish Sparrow

congregates in large flocks, sometimes reaching several thousands, to roost communally in

large trees.

During the 2008 breeding bird census the total population for the Maltese Islands was

estimated at 110,910 – 306,170 pairs (Raine et al 2009). In the AoI breeding was noted in all

areas with all sorts of buildings from stone walls to crevices and other cavities in the power

station to rubble walls and rural buildings.

20

Ecoserv Ltd

Report on vertebrate fauna in the vicinity of Delimara promontory, in relation to the proposed CCGT and LNG power plant

Tree Sparrow Passer montanus

A rare and localized breeding resident present in small colonies close to human habitations as

well as along the bastions. Feeds primarily on insects. Unlike the larger Spanish Sparrow, where

males and females differ in their plumage, the sexes of the Tree Sparrow are identical.

The breeding season starts in February and continues up to early June. The nest is built in

narrow crevices in walls as well as in small holes or under loose roof slabs. May also nest inside

pipes, electricity pylons and trees.

The total breeding population of the Tree Sparrow in 2008 was estimated at 55‐110 pairs (Raine

et al 2009). During the spring of 2013 the breeding population in the AoI was of 4‐6 pairs inside

an abandoned room close to il‐Hofra.

Fig. 10 Tree Sparrow Passer montanus breeding site.

21

Ecoserv Ltd

Report on vertebrate fauna in the vicinity of Delimara promontory, in relation to the proposed CCGT and LNG power plant

Annotated list to the birds of the Il‐Ballutt and Delimara Peninsula

Order ANSERIFORMES Family Anatidae

Subfamily Anserinae Subfamily Anatinae

The inshore waters inside Marsaxlokk Bay are regularly frequented by waterfowl including rare

sightings of Mute Swan Cygnus olor and Greylag Goose Anser anser. Flocks of other waterfowl

such as Common Shelduck Tadorna tadorna, Garganey Anas querquedula, Teal A. crecca and

Wigeon A. penelope occur during the migration seasons.

Order GALLIFORMES Family Phasianidae

The only member from this family recorded in the area is the Common Quail Coturnix coturnix.

Common during the spring and autumn migration. Every year single birds attempt to breed but

they are systematically taken by hunters.

Order PODICIPEDIFORMES

Family Podicipedidae

Three species of grebes namely; Little Grebe Tachybaptus ruficollis, Great Crested Grebe

Podiceps cristatus and Black‐necked Grebe Podiceps nigricollis have been recorded in single

figures in the Marsaxlokk harbour.

22

Ecoserv Ltd

Report on vertebrate fauna in the vicinity of Delimara promontory, in relation to the proposed CCGT and LNG power plant

Order PROCELLARIIFORMES

Family Procellariidae Subfamily Calonectris

Subfamily Puffinus

Shearwaters are pelagic species and spend most of their lives out at sea. Although Malta holds

large breeding colonies of Scopoli’s Shearwater Calonectris diomedea and Yelkouan Shearwater

Puffinus yelkouan, the closest colonies are situated at Benghisa Point and extend westwards

towards Hal‐Far and beyond. Nevertheless, in the late afternoon from February to October one

can encounter “streams” of these birds sometimes amounting to 100 birds per minute flying

west towards the breeding colonies. Young birds of both species have been collected from the

Marsaxlokk bay (Birzebbuga, Free port area, Power station) after being disoriented and dazzled

by the bright lights.

Family Hydrobatidae

The Mediterranean Storm Petrel Hydrobates pelagicus melitensis breeds on Filfla and at

Ta’Cenc cliffs in Gozo, but it wanders great distances in search of food. It usually spends the day

far out at sea. Until 2001 there were just a handful of sightings from land of these birds but

with the increase of fish‐farming, sightings from land have become more frequent (Borg et al

2010). Three recently fledged birds were collected from near the Delimara Lighthouse after

being disoriented by bright lights (Pers Obs). Observations carried out near the Marsascala Tuna

farms have resulted in single, double and occasionally treble figures of Storm‐petrels visiting

the fish farms (Borg 2012).

23

Ecoserv Ltd

Report on vertebrate fauna in the vicinity of Delimara promontory, in relation to the proposed CCGT and LNG power plant

Order PELECANIFORMES

Family Sulidae The Northern Gannet Morus bassanus is a rare but annual winter visitor. Single birds are

annually seen inside the bay as well as offshore

Family Phalacrocoracidae

A frequent winter visitor the Great Cormorant Phalacrocorax carbo has been recorded from

both sides of the Delimara Peninsula. But, while along the eastern side it has always been

recorded flying, inside Marsaxlokk bay it has been seen swimming close to shore, with single

birds seen alighting on the rocks close to the Power station.

Order CICONIIFORMES Family Ardeidae

Subfamily Botaurinae Subfamily Ardeinae

Herons and Egrets are regularly encountered along the rocky shoreline during the migration

seasons. Eurasian Bittern Botaurus stellaris and Little Bittern Ixobrychus minutus, Night Heron

Nycticorax nycticorax, Squacco Heron Ardeola ralloides, Cattle Egret Bubulcus ibis, Little Egret

Egretta garzetta, Great White Egret Egretta alba, Grey Heron Ardea cinerea, and Purple Heron

Ardea purpurea have all been recorded along and near the Delimara Peninsula. Most of these

heron species have been noted coming low over the water and most continue to fly overland,

Squacco Herons and Little Egrets have been noted resting on the rocky shore on numerous

occasions.

24

Ecoserv Ltd

Report on vertebrate fauna in the vicinity of Delimara promontory, in relation to the proposed CCGT and LNG power plant

Family Threskiornithidae

Both the Glossy Ibis Plegadis falcinellus and the Eurasian Spoonbill Platalea leucorodia have

been recorded flying offshore as well as inshore passing over the Delimara Peninsula.

Order PHOENICOPTERIFORMES

Family Phoenicopteridae Single to double figures of Greater Flamingos Phoenicopterus ruber have been recorded almost

annually from the whole area.

Order FALCONIFORMES Family Accipitiridae

Various species of raptors are recorded during the spring and autumn migration, while the

majority of them continue to pass overhead, some species such as the Harriers and Falcons

regularly stop‐over to rest and feed. The AoI is well known for the number of harriers, mostly

Marsh Harrier Cirucus aeruginosus and Montagu’s Harrier Circus pygrargus, which regularly

roost in the fields during both migrations. Single Ospreys Pandion haeliaetus may occasionally

be seen hunting for fish in Marsaxlokk bay. Hobbies Falco subbuteo, Eleonora’s Falcon Falco

eleonorae, Kestrel Falco tinnunculus and Lesser Kestrels Falco naumanni are regularly recorded.

Order GRUIFORMES Family Rallidae

Il‐Ballutt provides good habitat for small rails such as Water Rail Rallus aquaticus and Spotted

Crake Porzana porzana, and Moorhen Gallinula chloropus where they feed on the ground

among vegetation. Offshore single Common Coots Fulica atra have been recorded from

September to March in most years.

25

Ecoserv Ltd

Report on vertebrate fauna in the vicinity of Delimara promontory, in relation to the proposed CCGT and LNG power plant

Family Gruidae

The Common Crane Grus grus recorded in single and double figures passing over mainly during

the autumn migration.

Order CHARADRIFORMES Family Charadriidae etc.

Waders are the most frequently recorded birds along the shallow coastline. A wide diversity of

wading species ranging in size from the tiny Little Stint Calidris minuta to Oystercatchers

Haematopus ostralegus , Avocet Recurvirostra avosetta and Curlews Numenius arquata have

been observed along the shore as well as inside il‐Il‐Ballutt. The latter site attracts mainly

Ringed Plover Charadrius hiaticula and Little Ringed Plover Charadrius dubius, Redshank Tringa

totanus and Green Sandpipers Tringa ochropus .

Family Stercorariidae

Single Pomarine Skua Stercorarius pomarinus and Great Skua Stercorarius skua are recorded

annually offshore.

Family Laridae

Most gulls are common during the winter months, such as Mediterranean Gull Larus

melanocephalus and Black‐headed Gull Chroicocephalus ridibundus. From November to March

one can see over 500 birds at any one time feeding offshore. The Slender‐billed Gull

Chroicocephalus genei, Audouin’s Gull Larus audouinii and Lesser Black‐backed Gull Larus fuscus

are summer and autumn visitors. While it can be absent for some years in other years the Little

Gull L. minutus has been recorded in single and double figures.

26

Ecoserv Ltd

Report on vertebrate fauna in the vicinity of Delimara promontory, in relation to the proposed CCGT and LNG power plant

The only resident species is the Yellow‐legged Gull Larus michahellis breeding mainly on Filfla

and a few scattered colonies in Malta and Gozo. The latter species is a frequent visitor to

Marsaxlokk bay.

Family Sternidae

The large and medium sized terns such as the Gull‐billed Tern Gelochelidon nilotica, Caspian

Tern Sterna caspia and Sandwich Tern Sterna sandvicensis, are usually recorded in single figures

from a few metres offshore to around 4km out at sea. Terns have the habit of patrolling the

coast moving up and down along particular stretches of coastline. Smaller terns such as Black

Tern Chlidonia niger and White‐winged Black Tern Chlidonia leucopterus form small to medium

sized flocks sometimes up to 100 birds. They are mostly recorded off the eastern coast on their

way to and from the Marsascala fish farms.

Order COLUMBIFORMES Family Columbidae

The Turtle Dove Streptopelia turtur is the most commonly recorded species in the area. In

recent years single Collared Doves Streptopelia decaocto have been attempting to breed, but

these birds were always brought down by hunters.

Order CUCULIFORMES Family Cuculidae

Two species of Cuckoos occur in the Maltese Islands. The Common Cuckoo Cuculus canorus is

the most frequently recorded while the Great Spotted Cuckoo Clamator glandarius is a very

rare visitor. Both species have been recorded in the study area.

27

Ecoserv Ltd

Report on vertebrate fauna in the vicinity of Delimara promontory, in relation to the proposed CCGT and LNG power plant

Order STRIGIFORMES

Family Tytonidae The Barn Owl Tyto alba is a very rare breeding visitor, formerly more common. Single birds

have been recorded in the study area. Breeding is not known to occur here.

Family Strigidae

The Short‐eared owl Asio flammaeus is the most common of the owl species, it occurs in both

spring and autumn where small numbers are seen. Single Long‐eared Owls Asio otus are also

sometimes recorded, it is a rare autumn visitor. The most commonly encountered owl in the

study area is the tiny Scops Owl Otus scops. This spring and autumn migrant sometimes arrive

in good numerbers, roosting in carob trees and other thick vegetation.

Order CAPRIMULGIFORMES Family Caprimulgidae

The European Nightjar Caprimulgus europaeus is a common spring and autumn migrant,

regularly reported from the study area during both migrations.

Order APODIFORMES Family Apodidae

The Common Swift Apus apus and the Pallid Swift Apus pallidus are the two species frequently

recorded in the area both in spring and autumn as well as during the summer months. The

larger Alpine Swit Apus melba is less common with single figures recorded in most years.

Order CORACIIFORMES Family Alcedinidae

Single Kingfishers Alcedo Atthis are seen along the rocky shoreline as well as inside the Maghluq

area from July to November with single birds overwintering in the area.

28

Ecoserv Ltd

Report on vertebrate fauna in the vicinity of Delimara promontory, in relation to the proposed CCGT and LNG power plant

Family Meropidae

Small to medium sized flocks of Bee‐eaters Merops apiaster are recorded during both

migrations. Single birds when not molested can be seen perched on the electicity wires and on

large trees.

Family Coraciidae

Single Rollers Corachias garrulus are recorded during both migration seasons but mostly during

autumn.

Family Upupidae

Hoopoes Upupa epops regularly frequent the area and single birds can be seen from February

to April and again but in smaller numbers from late August to late September.

Order PICIFORMES

Family Picidae

Subfamily Jynginae

The small Wryneck Jynx torquilla is the only member from the woodpecker family that visits the

Maltese Islands. It is a common passage migrant and scarce winter visitor. Single birds are

annually recorded from the area.

Order PASSERIFORMES

Family Alaudidae

No less than thirteen species of Larks have been recorded in the Maltese Islands, the most

common of these are the Skylark Alauda arvensis, Short‐toed lark and less common is the

Wood Lark Lullula arborea. All the rest are scarce or vagrants. Flocks of Skylarks are recorded

from the area during the autumn migration.

29

Ecoserv Ltd

Report on vertebrate fauna in the vicinity of Delimara promontory, in relation to the proposed CCGT and LNG power plant

Family Hirundinidae

The swallow and martins are some of the most obvious migrant species and two of these, the

Barn Swallow Hirundo rustica and House Martin Delichon urbicum are also scarce breeders. The

Sand Martin Riparia riparia is also common in both migrations. All three are commonly seen

during the spring and autumn migrations.

Family Motacillidae

The White Wagtail Motacilla alba is the most common visitor of the three species of wagtails

known to regularly visit the Maltese Islands. Large numbers overwinter in Malta with all the

wintering population flying to Valletta every evening to roost (Cachia & Raine 2XXX). Single

birds are seen along the roads and paths as well as in the Maghluq area. The Maghluq area also

attracts Yellow and Grey Wagtails Motacilla flava and M. cinrea. The former species during the

spring and autumn migrations while the latter during autumn and winter. The Pipits also form

part of this family and the more common species recorded in the area are: Meadow Pipit

Anthus pratensis (autumn and winter), Tree Pipit Anthus trivialis (Spring and autumn) and

Tawny Pipit Anthus campestris (spring and autumn). In smaller numbers one can also encounter

the Red‐throated Pipit Anthus cervinus.

Family Prunellidae

The Alpine Accentor Prunella collaris and the Dunnock Prunella modularis are the only two

species from this family to be recorded in the Maltese Islands. The former species is a very rare

visitor but the latter is a common autumn migrant and winter visitor.

30

Ecoserv Ltd

Report on vertebrate fauna in the vicinity of Delimara promontory, in relation to the proposed CCGT and LNG power plant

Family Turdidae

Around 30 species from this family are known to occur in the Maltese Islands. Some of which

are common visitors like the Robin Erithacus rubecula, Song Thrush Turdus philomelos,

Stonechat Saxicola torquata and others, while various species of Wheatears are less common.

The Northern Wheatear Oenanthe oenanthe and the Black‐eared Wheatear Oenanthe hispanica

are the more common.

Family Sylvidae

About forty species of warblers have been recorded from the Maltese Islands. The majority of

these are passage migrants but some, like the Zitting Cisticola, Cetti’s Warbler, Reed Warbler,

Sardinian Warbler and Spectacled Warbler are all breeders. Garden Warbler Sylvia borin,

Blackcap Sylvia atricapilla, Subalpine Warbler, Chiffchaff Phylloscopus collybita, Wood Warbler

Phylloscopus sibilatrix and Willow Warbler Phylloscopus trochilus are the most common species

encountered during migration.

Family Muscicapidae

Of the five species of Flycatchers recorded from the Maltese Islands, three are regular visitors

to the area, namely; Pied Flycatcher Ficedula hypoleuca, Collared Flycatcher Ficedula albicollis

and Spotted Flycatcher Muscicapa striata. The latter is a common passage migrant a breeding

visitor in small numbers, mainly along the central and western side of Malta.

Family Oriolidae

The Golden Oriole Oriolus oriolus is a common spring migrant with smaller numbers repassing

in autumn. Single figures are annually recorded from the whole area.

31

Ecoserv Ltd

Report on vertebrate fauna in the vicinity of Delimara promontory, in relation to the proposed CCGT and LNG power plant

Family Laniidae

Five species of Shrikes have been recorded in the Maltese Islands, the most common being the

Woodchat Shrike Lanius senator, a common spring and autumn passage migrant and a scarce

breeder. Single birds are seen during the migration seasons. The Red‐backed Shrike Lanius

collurio occurs in much smaller numbers.

Family Sturnidae

Flocks of Starlings Sturnus vulgaris occur each winter. They congregate in areas with olive trees

and other fruit bearing orchards. Because of the high intensity of bird shooting in the area,

these flocks are usually depleted or scared away.

Family Passeridae

Two of the three species of sparrows known to occur in the Maltese Islands, breed in the area,

the third: Rock Sparrow Petronia petronia has never been recorded from the area.

Family Fringillidae

As can be seen by the amount of trapping sites scattered along the whole Delimara peninsula,

the area is regularly frequented by several species of finches. The most notable being Linnet

Carduelis cannabina, Serin Serinus serinus and Greenfinch Carduelis chloris. The other species

are recorded in smaller numbers.

Family Emberizidae

The only resident species of Bunting, the Corn Bunting was known to breed in the area up to

the early 1980s but has since became extinct as a breeding bird from much of the southern part

of the island, the only known breeding sites are located close to the north and north‐western

side of Malta and on Gozo. Other species of buntings have been reported from the area with

the Ortolan Bunting Emberiza hortulana being the most frequent.

32

Ecoserv Ltd

Report on vertebrate fauna in the vicinity of Delimara promontory, in relation to the proposed CCGT and LNG power plant

SECTION II

8 Other Vertebrates (Mammals, Reptiles and Amphibians)

8.1 . Mammals

8.1a Introduction

The Maltese Islands hosts twenty‐one different species of terrestrial mammals. Over

fifty percent of which are bats; a group of mammals that has been present in the

Maltese Islands since at least the latter part of the Pleistocene, as shown by bone

remains excavated from Ghar Dalam (Storch 1970 and 1974). One species of shrew and

the Weasel are also remnants from the Ice Age. The remaining mammals have all been

introduced through human activities at various stages of time.

8.1b Desk Study

This report is mostly based on field observations and accumulated data carried out by

the author between 1987 and 2008. Two monthly visits were carried out during this

period where direct observations were made. Additionally, live traps and a bat detector

were regularly used to identify presence and abundance of nocturnal species. Dead

specimens were also collected and some information was provided by the various land

users. Various publications including the Central Mediterranean Naturalist (Nature

Trust) Various issues provided added information to the data collected in 2013.

8.1c Field Work (Material and methods)

Four visits have been carried out on in the months of May and June 2013 to record

breeding behavior of the birds in the area and to reconfirm the presence any of the

other vertebrates observed in previous years.

The first visit was carried out on 17 May and the second on the 28 May.

33

Ecoserv Ltd

Report on vertebrate fauna in the vicinity of Delimara promontory, in relation to the proposed CCGT and LNG power plant

Third and fourth visits were carried out on 13th and 26 June 2013.

• Longworth traps where setup on two occasions (17 May and 13 June) to record

the presence of terrestrial/non flying micro‐mammals.

• A Bat Detector was used during the evening of 17 May and 13 June to locate the

presence of flying bats.

• The study area was also surveyed on foot following a series of pre‐established

transect lines.

8.1d The Maltese Terrestrial Fauna is presented in tab 1:

Mammalia Pre 1980s 1987‐2010 2013

Insectivora Atelerix algirus fallax p p p

Suncus etruscus p p

Crocidura sicula calypso

Chiroptera Rhinolophus ferrum-equinum

R. hipposideros minimus p p

Miniopterus schreibersii

Myotis punicus p p

Eptesicus serotinus

Nyctalus noctula

Pipistrellus pygmaeus p

P. pipistrellus p

P. kuhlii p p

Hypsugo savii

Plecotus austriacus p

Tadarida teniotis

Carnivora Mustela nivalis p p p

Rodentia Apodemus sylvaticus p p

Rattus rattus p p p

R. Norvegicus p p p

Mus domesticus p p p

Lagomorpha Oryctolagus cuniculus p p p

Amphibia Anura Discoglossus pictus p p p

Reptilia Gekkonidae Tarentola mauretanica p p p

Hemidactylus turcicus p p p

34

Ecoserv Ltd

Report on vertebrate fauna in the vicinity of Delimara promontory, in relation to the proposed CCGT and LNG power plant

Mammalia Pre 1980s 1987‐2010 2013

Chamaeleontidae Chamaeleo chamaeleon p p

Lacertidae Podarcis filfolensis p p p

Scincidae Chalcides ocellatus p p p

Colubridae Hierophys viridiflavus p p p

Elaphe situala p

Tab 1. Maltese Terrestrial Fauna and presence in the Delimara Peninsula

Species Accounts to the Vertebrate Fauna

Order: Insectivora Gray, 1827 Sub‐order Erinaceomorpha

Family Erinaceidae Fischer, 1817 Genus Atelerix (Lereboullet, 1842)

Atelerix algirus (Lereboullet, 1842), Qanfud tal‐Ferq, Algerian Hedgehog

Morphometrics: The Algerian Hedgehog is a mammal of small dimensions with a body length

ranging between 225 and 275mm and a tail reaching a length of 20‐25mm.

Presence: The Algerian Hedgehog is present on Malta, Gozo and on Comino but is absent from

all the other smaller islands. Two colour morphs are recognised. One being a light coloured

shade and the other is of a darker colour. Both shades are frequently encountered but the

lighter shade appears to predominate.

Status: Frequent to common in most areas in Malta and Gozo, its status on Comino is not well

known. Healthy populations have been recorded in the Northwest part of Malta, especially

between Manikata and Rabat. A healthy population is known at Munxar in Gozo with up to

twenty individuals frequently counted near a rich food source. Actual numbers are unknown

but it may be on the decline due to increase in traffic along country lanes and the use of

pesticides in agriculture.

35

Ecoserv Ltd

Report on vertebrate fauna in the vicinity of Delimara promontory, in relation to the proposed CCGT and LNG power plant

Status in the study area: The population of the area is not known as there are very few road

fatalities when compared to other localities. Three individual specimens were observed by the

author in 2013. Singles near the Lighthouse, another close to the north walls of the fort and the

third along the road leading from il‐Ballut towards the power station.

Habitat: The preferred habitat is mainly dense vegetated land, marshlands, cultivated land and

valleys. It is also frequently encountered in urban and sub‐urban areas.

Ecology and Breeding Biology: Hedgehogs are primarily nocturnal but may also venture out in

broad daylight. In the Maltese Islands, they have no natural predators although the ever

increasing cat population may be cause of concern for the hedgehog. Hedgehogs live on the

surface of the ground and construct the nest and sleeping site with dried leaves. Because of our

mild winters, hedgehogs do not hibernate but may go into torpidity for short periods during

cold spells. During these period of sleep, the body temperature falls to that of their

surroundings and the heartbeat is also very much reduced.

The nest is constructed under thick vegetation, piles of wood or in rubble walls. Hedgehogs give

birth from May to October, most until mid September and females may produce up to two

litters each year, with each litter containing between 4‐5 young. After a gestation period of

about 28‐30 days, the young are born, blind but not naked. At birth the spines are not visible, as

they are covered by the swollen skin, but soon after birth the skin shrinks and the spines are

revealed, their eyes open when about 12 days old. They remain in the nest for a period of about

3 weeks, when mother takes out the family each night in search of food. All the young

conceived survive birth; unlike for example rabbits were they suffer a high embryo mortality

rate. However, if the mother is disturbed soon after birth, she may eat her offsprings. It is

thought that between 20‐30% of the young die in their first month of life.

Feeding & Diet: Feeds mainly on insects, molluscs and other invertebrates, occasionally preys

on small birds, micro‐mammals and immature snakes.

36

Ecoserv Ltd

Report on vertebrate fauna in the vicinity of Delimara promontory, in relation to the proposed CCGT and LNG power plant

Conservation: The main threat still appears to be road kills but the increase in feral cat

population is also having a drastic effect on the hedgehog population. Depletion of natural

habitat may also be affecting numbers. An unknown number of hedgehogs are still taken by

some people to be kept as pets.

Fig. 11 Algerian Hedgehog Atelerix algirus

37

Ecoserv Ltd

Report on vertebrate fauna in the vicinity of Delimara promontory, in relation to the proposed CCGT and LNG power plant

Sub‐order Soricomorpha Family Soricidae Fischer, 1817

Subfamily Crocidurinae Milne‐Edwards 1868‐1874 Genus Suncus Ehrenberg, 1832

Suncus etruscus (Savi, 1822) Bugeddum Zghir, Pygmy White‐toothed Shrew

Morphometrics: One of the smallest mammals in the world, and Malta’s smallest mammal.

Head and body length between 35‐52mm, tail 24‐30mm, hind foot 7‐8mm, weight 1‐5‐2.5g

(Borg 2003‐2004).

Presence: Present on Malta, not recorded from Gozo and the smaller islands.

Status in the Study Area – One freshly killed specimen found dead in June 2013 on the road

leading to the fort. Live trapping did not produce any positive results. One sighting, possibly this

species was seen at il‐Ballutt in 2010.

Habitat: Coastal as well as inland. Present in urban, sub‐urban as well as rural habitats from sea

level to the highest parts of Malta.

Ecology & Breeding Biology: Pairs form during the breeding season and tolerate juveniles for a

long time in the nest. During winter it becomes aggressive towards any conspecific. The lateral

flank glands, which give off strong musky odour, are especially developed in males during the

breading season. Births take place from early March to September. It is believed that all sub‐

adults reach sexual maturity after their first winter. The gestation period is of 26‐27 days (in

captivity), litter size 2‐5 with up to 5 litters per year (in captivity). Young are born blind and

naked weighing only 0.2 g. the eyes open on the 13th day and weaning age 20 days. After their

tenth day, the young are moved; if disturbed the female leads them by caravanning.

38

Ecoserv Ltd

Report on vertebrate fauna in the vicinity of Delimara promontory, in relation to the proposed CCGT and LNG power plant

Feeding & Diet: Active mainly at dawn and dusk, to a lesser extent also at night. Feeds mainly

on invertebrates up to the size of Grasshoppers.

Conservation Problems: Legally protected. Occasionally killed when mistaken for a mouse.

Frequently taken by cats, especially during the warmer months. It is very sensitive to

insecticides and herbicides.

Fig. 12 Suncus etruscus confirmed not‐confirmed

39

Ecoserv Ltd

Report on vertebrate fauna in the vicinity of Delimara promontory, in relation to the proposed CCGT and LNG power plant

Order : Chiroptera Blumenbach, 1774 Family Rhinolphidae Gray, 1825

Subfamily Rihinolophinae Gray, 1825 Genus : Rhinolophus Lacépéde, 1799

Rhinolophus hipposideros (Bechstein, 1800), Rinolofu Zghir, Lesser Horseshoe Bat

Morphometrics: The Lesser Horse‐shoe Bat is the smallest European Rhinolophid bat. The sub‐

species R.h.minimus present locally is smaller than its European congener. The head and body

length ranges around 32‐35mm, forearm length 34‐37mm, ear 11‐15mm, and it is 4 ‐5gm in

weight.

Presence: A widespread bat recorded from Malta and Gozo, usually in single figures but a large

winter roost of around 50 individuals is known from one locality in Malta (Borg et al 1997). Its

presence has been reported by Adams (1870), Gulia (1890, 1914), Despott (1927), Lanza (1959)

Van den Brink (1967), Lanfranco (1969), Savona‐Ventura (1984a, 1984b), Borg (1989), Borg et al

(1990), Borg et al (1997).

Status: Frequent and widely distributed, but highly vulnerable to disturbance. Numbers are on

the decline due to disturbance, use of pesticides in agriculture and reduced hunting areas.

Status in the Study Area – Single individuals (2‐4) heard flying (feeding) in the ditch

surrounding Delimara fort.

Subterranean habitats, in areas with high humidity, occasionally in buildings, roosting at

heights ranging from 0.5‐4 metres from the ground. While asleep every individual hangs freely

and separately from the other roosting bats. The individuals recorded feeding near the ditch

may be roosting inside the fort.

40

Ecoserv Ltd

Report on vertebrate fauna in the vicinity of Delimara promontory, in relation to the proposed CCGT and LNG power plant

Ecology & Breeding Biology: Males, which are first to arrive in the winter roosts are generally

more numerous than the females. One large winter roost is shared with Lesser Mouse‐Eared

and Grey Long‐Eared bats, but although using the same cave, they roost in three different

areas, away from visual contact of each another. Winter roosts are occupied between

September and March, when females move into the nurseries.

The female of this species sexually matures in its first year and mating occurs from late summer

to early autumn. Aerial nuptial chases have been observed where a male flies around the

female for a variable number of times then lands behind and over her. Unlike larger bat

species, where copulation is a lengthy matter, in the Lesser Horseshoe, it occupies only a short

matter of time. In other countries, nurseries are often shared with other species, in Malta this

bat has always been found alone. Only an estimated half or two thirds of the females in a

nursery give birth to a single offspring usually between mid‐May and early June. The young

open their eyes after 8‐10 days, and are completely independent at 5‐6 weeks. In exceptional

cases, this bat has been recorded to reach an age of twenty years, but the average life span is

of only four years.

Hunting & Diet: A very skilful and fairly fast flier, with almost whirring wing movements. Hunts

in valley bottoms, along vegetated walls and along hedges, amongst bushes and shrubs. Flies

very low to the ground at a height of around 5 meters. It is known to take prey from the

ground, rocks and off leaves, but also in flight. Diet includes mainly small nocturnal beetles,

moths and mosquitoes. The regular feeding spots are usually littered with insect remains.

Conservation Problems: Disturbance in winter roosts, loss of roosting sites, pesticides.

41

Ecoserv Ltd

Report on vertebrate fauna in the vicinity of Delimara promontory, in relation to the proposed CCGT and LNG power plant

Fig. 13 Rhinolophus hipposideros

42

Ecoserv Ltd

Report on vertebrate fauna in the vicinity of Delimara promontory, in relation to the proposed CCGT and LNG power plant

Family Vespertilionidae Gray, 1821

Subfamily Vespertilioninae Gray, 1821 Genus: Myotis Kaup, 1829

Myotis punicus (Felten, 1977), Farfett il‐lejl Widnet il‐Gurdien, Maghrebian Bat

Morphometrics: The Mouse‐eared bat present in the Maltese islands has long been a subject

of debate amongst researchers. Its larger size, compared to its European congener, Myotis

blythi oxygnathus has led to its confusion with the Greater Mouse‐Eared Bat Myotis myotis.

Distribution: This bat is restricted to Sardinia, Corsica and Malta. Also present in the Maghreb.

Presence: Found on Malta and Gozo, recent studies have shown that local inter‐island

movements occur frequently. Reported by Lanza (1959), Van den Brink (1967) and Lanfranco

(1969) as M.b. oxygnathus (Monticelli); by Strelkov (1972) as M.b.omari Thomas; by Felten et

al. (1977), Savona‐Ventura (1984a, 1984b), Borg (1987), Borg & Cachia‐Zammit (1988, 1994),

Zava & Borg (1989), Borg et al (1990), Borg at al (1997), Borg (1998).

Status: Uncommon and widely distributed, inter‐island/colony movements regular. A declining

species with over 50% of the population lost in the last ten years.

Status in the Study Area – Single specimens were recorded hunting in the Ballut area (outside

the wet area) and flying over some of the east fields. One specimen noted hunting between the

fort and the lighthouse on the night of the 26th June 2013. The Maghrebian Bat roosts in a

number of caves around the Marsaxlokk region mainly at Hal‐Far and the sea caves in the

Benghisa area. It is possible that the specimens recorded in the AoI may actually originate from

these latter roosts.

Habitat: In Malta it is essentially a cave dwelling bat, occasionally encountered also inside

abandoned or seldom used human habitations. Feeds in valleys, cultivated land and gardens.

43

Ecoserv Ltd

Report on vertebrate fauna in the vicinity of Delimara promontory, in relation to the proposed CCGT and LNG power plant

Ecology & Breeding Biology: Males are present in both winter roosts as well as in nurseries,

where females start arriving by the end of March. In some localities, such as Ghar Hasan, this

cave is used both a winter roost as well as a nursery. But in other cases, the winter roost and

nursery may be several kilometres distant from one another. The Maghrebian Bat roost by

hanging freely from the ceiling, but may also enter narrow cracks. The number of bats in a

roost varies from single individual males, to several tens of both sexes. No known roost exceeds

one hundred individuals. In winter roosts, the Maghrebian Bat has been found in the company

of Lesser Horseshoe bats and Grey Long‐eared bats, although in separate clusters.

Males wander more widely from one roost to another. Ringed individuals from roosts in Malta

have been re‐trapped on Gozo. Courtship takes place in late summer, and by early September,

pairs are already engaged in courting rituals. Sometimes up to four or five males have been

observed mounting a single female. One male may have a harem of females. In general, the

average ratio in Malta is of five females for every male. But in the two larger nurseries/roosts

this is much lower. Females mature in their second calendar year, when a single, naked pink

colored baby bat is born in late April or early May, depending on the weather.

Unlike most other bats, the young are left in a crèche and mother bat goes out hunting alone.

Some females remain with the young. The young first open their eyes when five or six days old

and by the third week of their life, they are completely covered with fur. Adult teeth fully

developed within 40 days from birth. They are able to fly when 20 days old and are

independent after around 40 days. At least 95% of all young born manage to leave the nursery.

The maximum age recorded for this species in Europe is 22 years.

One Maghrebian bat, ringed when already an adult, was over10 years of age when last caught

in 1998. The average life span of this bat is of 4‐5 years.

44

Ecoserv Ltd

Report on vertebrate fauna in the vicinity of Delimara promontory, in relation to the proposed CCGT and LNG power plant

Feeding & Diet: Emerges after dark, flight is slow and at low altitude. Picks off food from

ground and in mid‐air. Diet mainly consists of Orthoptera ‐ Acrididae, Gryllidae, Tettigoniidae

65% (Platycleis intermedia) most abundant, Coleoptera ‐ Tenebrionidae, Scarabaeidae 15%,

Lepidoptera ‐ Sphinggidae, Noctuidae 20% (Borg 1998).

Conservation problems: Due to its large size and roosting habits, makes it particularly prone to

attacks by vandals. At least two large nurseries have been destroyed in the late 1980’s and

early 1990’s. Human disturbance in winter roosts, illegal taking, target shooting and pesticides

are some of the causes contributing to the decline in numbers.

Fig. 14 Myotis punicus- contact points (Bat detector)

45

Ecoserv Ltd

Report on vertebrate fauna in the vicinity of Delimara promontory, in relation to the proposed CCGT and LNG power plant

Genus: Pipistrellus Kaup, 1829

Pipistrellus pygamaeus (Schreber, 1774), Pipistrell, Soprano Pipistrelle

Morphometrics: The smallest bat in Europe and in Malta. Head and body length 35‐44mm,

forearm 29.1‐32mm, ear 7.6‐10.2.

Presence: Present on Malta, Gozo and Comino, mainly in small colonies, but roosts/nurseries of

100+ encountered. Reported by Lanza (1959), Van den Brink (1967), Lanfranco (1969), Storch

(1970), Borg (1987), Borg et al (1990), Borg et al. (1997).

Status: Presently, the most numerous bat on the islands. Vulnerable and declining in numbers.

Status in the Study Area ‐ The Soprano Pipistrelle is the most common of all the five species

recorded in the area. It can be frequently observed flying along the narrow streets and along

paths. Single bats seasonally roost in narrow cracks and crevices in a number of buildings like

the fort as well as various structures in the area. It has been recorded present all year round.

Habitat: This is predominantly a house‐dwelling bat, found in cities, towns and villages, as well

as in wooded and vegetated areas. Roosting sites located in cracks in buildings and in narrow

ventilators. Several roosts may be used in a single season. Up to now it has never been found

hanging freely when asleep but always crammed in narrow crannies or cracks.

Ecology & Breeding Biology: Both males and females mature in their first year, although some

males may mature in their second year. Pipistrelles are territorial bats where males retain and

vigorously defend their territory in a roost, against other males, especially during the mating

season. The females visit the mating roosts only temporarily and one male may have up to 10

females. Nurseries are occupied from late March to September. The young are born in late

April. Naked and blind, the young first open their eyes when five days old and are able to fly at

46

Ecoserv Ltd

Report on vertebrate fauna in the vicinity of Delimara promontory, in relation to the proposed CCGT and LNG power plant

4 weeks of age. Females usually give birth to a single offspring but twins are not infrequent. By

late August, the adults abandon the nursery and followed later followed by the young, and by

early October most nurseries are deserted. The maximum age recorded in Europe is of 16

years, but they normally live between 4 to 5 years.

Feeding & Diet: Emerges early, sometimes even while the sun is still over the horizon. In late

autumn, may also be observed during the day. Flight is rapid and erratic, normally between 5‐

10 metres above ground, sometimes low over ground. Moves considerable distances from

roost to hunt. Feeds in all types of habitats, in autumn frequents damp valley bottoms, streets

where it has been noted feeding around street lamps, in vegetated and on cultivated land. May

feed throughout whole night, but frequently returns to the roost after only 1‐2 hours. Feeds

mainly on tiny insects, mosquitoes and small moths.

Conservation Problems: Highly vulnerable to disturbance, especially when encountered inside

or around human habitation, where roost entrances are frequently cemented. Used as target

practice by bird shooters. Pesticides are also responsible for decline in numbers.

Fig. 15 Pipistrellus pygmaeus – contact points (Bat detector)

47

Ecoserv Ltd

Report on vertebrate fauna in the vicinity of Delimara promontory, in relation to the proposed CCGT and LNG power plant

Pipistrellus kuhli (Kuhl, 1817), Pipistrell ta' Kuhl, Kuhl's Pipistrelle

Morphometrics: (Maltese Specimens) This species closely resembles the Soprano Pipistrelle

but is slightly larger in size. Head and Body length 40‐47mm, Forearm 29.1‐35.3, Ear 12‐13mm,

Weight 5‐10g.

Presence: Present on Malta, Gozo and on Comino. First mentioned by Gulia (1890) and by

Lanfranco (1969), both authors listed it as rare. Reported as frequent (Borg et al 1990, Borg et

al 1997).

Status: More common than previously thought. Usually found feeding in the company of P.

pipistrellus

Status in the Study Area: In the study area Kuhl’s Pipistrelle appears to be less numerous than

P. pygmaeus. It frequents the same habitats as P. pygmaeus. Single bats have been recorded

feeding throughout the year except on cold windy evenings.

Habitat: Similar to P. pygmaeus

Ecology & Breeding Biology: This bat shares the same habitat as those of the Soprano

Pipistrelle. Roosts singly or in very small colonies of less than 10 individuals, frequently sharing

roost with Soprano Pipistrelle. Frequents urban as well as rural areas, feeding in the lamp‐

lighted zones in the company of P. pygmaeus. Females sexually mature in their first calendar

year. Very frequently twins are born. Young bats are already in flight by early June. May live up

to eight years.

Feeding & Diet: Emerges in late dusk or complete darkness, flying at low altitudes above

ground, over water, in vegetated areas and around white light street lamps. Flight is rapid and

agile. Feeds on small flying insects.

Conservation Problems: Same as Soprano Pipistrelle.

48

Ecoserv Ltd

Report on vertebrate fauna in the vicinity of Delimara promontory, in relation to the proposed CCGT and LNG power plant

Fig. 16 Pipistrellus kuhlii – contact points (Bat detector)

Plecotus austriascus (Fischer, 1829), Farfett il‐Lejl Widnejh Kbar, Grey Long‐eared Bat

Morphometrics (Maltese Specimens) Head and body length 43.8‐49.9mm, forearm length

38.1‐42mm, Tragus width 5‐6.2mm, weight 7.9‐11gm.

Presence: Present on Malta, Gozo and Comino. Reported by Adams (1970), Gulia (1890, 1914),

Lanza (1959), Boffa (1966) and Van der Brink (1967). All listed it under Plecotus auritus.

Reported also by Borg (1987) Borg et al (1990), Borg et al (1997).

Status: Frequent and widely distributed, vulnerable to disturbance due to roosting habits.

Status in Study Area: No roosting sites of the Grey Long‐eared Bat Plecotus austriacus have

been discovered in the study area but single bats have been heard and seen feeding among

foliage of trees.

49

Ecoserv Ltd

Report on vertebrate fauna in the vicinity of Delimara promontory, in relation to the proposed CCGT and LNG power plant

Habitat: Frequents all types of habitat, from densely vegetated areas to sea cliffs. Roosts in

caves and other hypogea throughout the year and in autumn prefer human habitations,

especially from September and early October. Resistant to cold temperatures where it can be

found roosting in caves with temperatures between 8‐10°C. Normally solitary, two occasionally

encountered, but may also be in the company of Lesser Horse‐Shoe and Maghrebian Bats.

Hangs free from wall, but also in crevices.

Ecology & Breeding Biology: This is a sedentary species, distance between summer and winter

roosts less than 20km. Very little is known about their reproductive behavior. Mating occurs in

late summer, probably through to early spring. Nurseries are small usually 5‐10 females

together. One offspring, usually in late April or in early May. Leaves nursery by late August.

Young bats normally found inside human habitations in late summer.

Feeding & Diet: Emerges after dark, flight slow and fluttering, occasionally hovers, very agile in

confined spaces. Hunts mainly in thick vegetated areas also along cliff‐faces. Feeds mainly on

moths, caterpillars and spiders. Prey is picked off ground, gleaned off leaves or in mid air.

Conservation Problems: Use of pesticides and human disturbance.

Fig. 17 Plecotus austriacus – contact points (Bat detector)

50

Ecoserv Ltd

Report on vertebrate fauna in the vicinity of Delimara promontory, in relation to the proposed CCGT and LNG power plant

ORDER CARNIVORA Bowdich, 1821 Family Mustelidae Fischer, 1817 Genus: Mustela Linnaeus ,1758

Mustela nivalis Linnaeus, 1766, Ballotra, Weasel

Morphometrics: The smallest European carnivore. Males are distinctively much larger than

females. Head and body length 20‐31.5cm (males), 17.5‐18.0cm (females).

Presence: Although bone remains from the late Pleistocene have been unearthed from one

locality it is possible that the original stock of the present population was introduced by the

Romans in 55B.C. (Borg in prep). Found only on Malta, absent from Gozo and smaller islands.

Status: Rare, but widely distributed.

Status in Study Area: Observations of single specimens are known throughout the Delimara

peninsula and the area is believed to hold a rather healthy population. Usually seen close to

rubble walls and piles of rubble, mainly in late autumn and throughout spring. One specimen

encountered in May 2013, a possible male observed hunting close to the lighthouse.

Habitat: Found in all types of habitat, may also be encountered in urban and suburban areas.

Ecology & Breeding Biology: The weasel is both diurnal and nocturnally active. Its slender body

renders it agile and easily infiltrates into narrow cavities in pursuit of prey. It is also a very agile

climber. During spring, males are more active than females, the latter saving energy for

pregnancy by remaining in the nest feeding on stored food. Weasels have to eat every 24 hours

to avoid starvation. Normally a solitary species, no pair bond between adults, male does not

partake in rearing of young.

51

Ecoserv Ltd

Report on vertebrate fauna in the vicinity of Delimara promontory, in relation to the proposed CCGT and LNG power plant

The Weasel reaches sexual maturity after its first year of life. Breeding activity commences in

early spring and females give birth to 4‐6 young twice a year. The first litter is born in late

March or early April, unless food is scarce where breeding may fail altogether. When prey is

abundant, a second litter can be produced in July. Females from the first brood may become

pregnant at this time. The nest is either constructed in dry rubble walls or simply taking over a

rodent’s nest. The young become independent after 8‐9 weeks.

Feeding & Diet: The weasel is a carnivore, preying mainly on mice, rats, young rabbits, small

birds and their eggs.

Conservation Problems: Previously more common, declining in numbers, mainly due to loss of

habitat, increasing traffic in country lanes at nights and direct persecution mainly through illegal

shooting.

ORDER RODENTIA Bowdich, 1821 Sub‐Order: Myomorpha

Family: Muridae Gray, 1821 Subfamily : Murinae Murray, 1866

Genus : Apodemus Kaup, 1829

Apodemus sylvaticus (Linnaeus, 1758), Gurdien tal‐Kampanja, Wood Mouse

Morphometrics: Head‐body length 97‐110mm, males are slightly larger than females. Tail

length 69‐115mm, hind foot length 20‐24mm, Condylo‐basal length 22‐26mm. Weight 13‐27g

females considerably heavy during pregnancy.

Presence: Recorded on Malta and Gozo, not recorded from Comino.

Status: Frequent in rural areas in Malta and Gozo.

52

Ecoserv Ltd

Report on vertebrate fauna in the vicinity of Delimara promontory, in relation to the proposed CCGT and LNG power plant

Status in Study Area: This species has been recorded once in the area, One male was trapped

measured and released, near the south walls of the power station, in 2013 as part of this study.

Habitat: Woodlands, scrubland and agricultural land, also in rural and suburban areas. It is

highly adaptable to its surrounding environment.

Ecology & Breeding Biology: Nests consist of leaves and shredded grasses, often underground.

Excavates own burrow, often with one entrance plus nest and food chamber. Communal nests

in winter, possibly involving both sexes.

Feeding & Diet: Seeds, grasses and fruit.

Conservation Problems: Increase in the feral cat population.

Genus: Rattus Frisch, 1775 (Fischer, 1803)

Rattus norvegicus (Berkenhout, 1769), Far tal‐Kampanja, Brown Rat

Morphometrics: Head & body length 214‐291mm, Tail 170‐230mm, Hind foot 40‐45mm, Ear

18‐23mm.

Presence: Present on Malta, Gozo, Comino and Cominotto.

Status: Its status is considered as frequent but may be very common in some years where it

may reach pest proportions.

Status in Study Area: Common in fields and along rubble walls, frequently near food sources

(litter etc.)

53

Ecoserv Ltd

Report on vertebrate fauna in the vicinity of Delimara promontory, in relation to the proposed CCGT and LNG power plant

Habitat: Urban and suburban localities in places where human refuse can be found as well as

on agricultural land. Frequent in manure and rubbish dumps.

Ecology & Breeding Biology: Mainly nocturnal but may be seen also during daytime, especially

by young individuals. Daylight foraging may also suggest a very large population. May travel 3‐

4km each night usually keeping close to rubble walls but may also be seen crossing roads.

Changes roost every ten to fifteen days.

Large colonies develop from a single pair or from a pregnant female. Rattus norvegicus breeds

throughout the whole year and reproduction rate is increased if the population is decreased by

trapping or poisoning. Females are sexually mature in their 8‐12 weeks of life, gestation period

18‐22 days. Litter size 1 – 15 although average 7‐9. May have up to five litters per year. The

average lifespan is of 18 months with a maximum of 3 years.

Feeding & Diet: Scavenger as well as predatory habits in procuring prey. Feeds mainly at dusk

throughout the night till dawn. Not infrequently observed during daylight hours. It has a very

diversified diet including scraps of animal and vegetable origin. It is known to prey on small

mammals, birds and their eggs. Several species of ground and low nesting birds frequently fall

victim to this rat.

Conservation problems: None. The Brown rat is a species that reaches pest proportions,

especially in places where it has no natural enemies. Its presence in human environments has

important economic and sanitary implications: it destroys and pollutes foodstuffs, as well as a

vector of numerous infectious diseases of viral and bacterial origin able to affect both domestic

animals and man.

Rattus rattus (Linnaeus, 1758), Far Iswed, Black Rat

54

Ecoserv Ltd

Report on vertebrate fauna in the vicinity of Delimara promontory, in relation to the proposed CCGT and LNG power plant

Morphometrics: Head and body length 150‐240mm, tail length 115‐260mm. hind foot 30‐

38mm, ear 24‐27mm, weight 145‐280gm.

Presence: Present on all the major islands and some of the smaller ones including Fungus Rock.

A species whose presence on the islands coincides with the arrival of the first settlers in 7,000

B.P. (Before Present) as is shown by bone remains excavated from Neolithic sites.

Status: Very Common.

Status in Study Area: Frequent, especially near human habitations.

Habitat: Almost always near buildings, but may also lives on rocks, cliffs and boulder screes.

Present also in wooded areas.

Ecology & Breeding Biology: Mainly nocturnal with peak activity 2‐3 hours after sunset. Home

range appears to be small with very little wanderings, usually less than 50m from roost/nest.

May reach population density of 55 individuals per ha. Highly territorial and females are more

aggressive than males although dominant males are highly aggressive. They may chase away

larger animals from food source. A dominant male may have up to three subordinate females.

The breeding season is from late February to the end November. Females reach sexual maturity

in their 12‐16 week. The gestation period is of 21 days, litter size 1‐16 average 7 with 3‐5 litters

per year. The average lifespan in the wild is less than 18 months. .

Feeding & Diet: Omnivorous, but with a greater tendency to vegetable food than R. norvegicus.

Conservation Problems: None

55

Ecoserv Ltd

Report on vertebrate fauna in the vicinity of Delimara promontory, in relation to the proposed CCGT and LNG power plant

Genus: Mus Linnaeus, 1758

Mus domesticus Linnaeus 1758, Gurdien tal‐Imramma, Western House Mouse

Morphometrics: Head‐body 72.7mm (58‐85mm), Ear 11.2mm (09.‐14.2mm), tail 67.8mm (61‐

83mm), hind feet 15.3mm (15‐17mm), weight 18.1g (15‐20.8g)

Presence: Arrived through man’s activities. No remains have been found in Pleistocene

deposits. Bone remains have been found along remains left by Neolithic Man c.a. 7,400 years

ago.

Status: Widespread and very common.

Status in Study Area: Abundant throughout.

Habitat: An extremely versatile species, present in all types of habitat. Frequent in houses and

in the near vicinity; found also in stores, factories, abandoned houses, fields and scrubland.

Mostly in urban and sub urban areas, but remains from Barn owl pellets suggests also rural

areas.

Ecology & Breeding Biology: The House Mouse is active throughout the day but it is even more

so during the night. The construct tunnels where the nest is placed in the shelter of a rock or

detritus material. In houses they take shelter behind furniture and fridges, inside kitchen

cupboards and inside cracks in walls. Can become very territorial in years with high numbers. In

this case it is only the dominant males that may possess a territory and so therefore breed.

If food is available, breeding goes on uninterrupted throughout the year. Females give birth

from 5 to 7 young each time and reproduction may be repeated every three or four weeks.

56

Ecoserv Ltd

Report on vertebrate fauna in the vicinity of Delimara promontory, in relation to the proposed CCGT and LNG power plant

With the young attaining sexual maturity at the age of fifty days, one can imagine the rapid

demographic growth this species has in the absence of predators and an unlimited food supply.

In the Maltese Islands, the House Mouse’s natural predators are the diurnal and especially the

nocturnal raptors (falcons and owls) and Weasels. These predators play a fundamental role in

the demographic control of this rodent pest that are harmful to agriculture and conserved

products.

Feeding & Diet: The bulk of food is made up of more or less seeds, but the House Mouse may

utilize a great variety of food items; every imaginable food source procured by man can be

attacked and consequently damaged.

Conservation Problems ‐ None

ORDER LAGOMORPHA Brandt, 1855 Genus: Oryctolagus Lilljeborg, 1874

Oryctolagus cuniculus (Linnaeus, 1758), Fenek Selvagg, Wild Rabbit

Morphometrics: Head and body length 340‐500mm, tail length 40‐80mm, hind foot 75‐

95mm,ear 65‐70mm, weight 1200‐2500gm.

Presence: Arrived on the islands through man’s activities probably by the Phoenicians on their

return voyages from the Iberian Peninsula.

Status: Frequent to locally common on Malta and Gozo, common on Comino.

Status in Study Area: Common and in some years very common especially along the eastern

shoreline.

57

Ecoserv Ltd

Report on vertebrate fauna in the vicinity of Delimara promontory, in relation to the proposed CCGT and LNG power plant

Habitat: Mainly on sea‐cliff ledges, disturbed ground and garrigue.

Ecology & Breeding Biology: The rabbit is usually crepuscular and nocturnal but may also

forage during the day where there is no human interference.

Mating occurs throughout the year but most litters are born between February and September,

peak in April‐June. Females born early in the season are capable of breeding in the same year.

The early litters have a better chance of surviving winter. Females are sexually mature in about

3 months and males in their fourth month. Gestation period is of 28 to 33 days. The litter size is

of 3‐12, average 5. May have up to seven litters each year. The maximum lifespan is of 9 years.

Feeding & Diet: Feeds on a selection of leaves of nutritious species from a wide range of

vegetation including agricultural crops such as cereals.

Conservation Problems: Not threatened, but over‐hunting and occasional outbreaks of

Mixomytosis cause considerable decline in numbers.

Order AMPHIBIA

Family Anura

Genus Discoglossus

Discoglossus pictus Zring, Painted Frog

Present in small numbers in and around water reservoirs. Present also in rock pools during

winter.

58

Ecoserv Ltd

Report on vertebrate fauna in the vicinity of Delimara promontory, in relation to the proposed CCGT and LNG power plant

Order REPTILIA

Family Gekkonidae

Tarentola mauretanica Moorish Geckoe

Present in and around rubble walls and inside buildings, at night seen hunting near lamps

affixed to buildings

Hemidactylus turcicus Turkish Geckoe

Present near habitations. Common in the area of Fort Delimara area. Singles seen in various

parts close to used as well as abandoned structures.

Family Chamaeleontidae

Chamaeleo chamaeleon Kamalejont, Chameleon

This species was not recorded during the surveys but individuals frequenting the area assured

me that it exists there.

Family Lacertidae

Podarcis filfolensis Gremxula ta’Malta, Maltese Wall Lizard

Present along the whole peninsula, even in the Maghluq area.

Family Scincidae

Chalcides ocellatus Xahmet l‐Art, Ocellated Skink

One seen in the Maghluq and another close to the lighthouse.

Family Colubridae

Hierophys viridiflavus Serp Iswed, Western Whip Snake

Singles seen along much of the area from the coast up t the central part of the peninsula.

Elaphe situala Lifgha, Cat Snake

One specimen recorded during this survey close to the Delimara Fort.

59

Ecoserv Ltd

Report on vertebrate fauna in the vicinity of Delimara promontory, in relation to the proposed CCGT and LNG power plant

10. Threats

Considering that the area is already very much disturbed especially through the construction of

the Delimara Power station and by the roads leading to it, the current project which will take

place within the same footprint is not envisaged to affect much the vertebrate fauna of the

area. Any damage that may have been caused to the ecosystem of the area was made when the

original power station was constructed.

During the construction phase there may be some degree of disturbance to the vertebrate

fauna especially birds, breeding in the immediate vicinity of the construction site.

The main issue is light pollution (which is already a major concern here).

10.1 Light Pollution:

The use of light sources from land and at sea is of particular concern. It is known that light

interferes with the life style of birds and other biota including bats. In those areas where

electricity has been installed especially those close to seabird colonies, birds have completely

deserted the site. Such incidents occurred at Xlendi Bay in Gozo (Sultana & Gauci 1982), Hal Far

/ Wied Moqbol (Borg & Cachia Zammit 1998). Shearwaters are so susceptible to light that they

do not visit the colonies on moonlit nights.

Young birds departing on their maiden flight at night are regularly attracted to illuminated

areas after they leave their nests. The nearest breeding colonies are located at Benghisa

proceeding westwards through Hal‐Far and on towards Wied iz‐Zurrieq, where both Scopoli’s

and Yelkouan Shearwaters breed (Borg & Sultana 2002, Sultana & Borg 2002, Raine et al 2008,

Sultana et al 2011). Apart from the two breeding shearwaters, the lights at the mouth of

Marsaxlokk bay (including the Freeport) have attracted young Storm‐petrels from the Filfla

colony as well as the first documented record of the Manx Shearwater Puffinus puffinus in the

Maltese Islands (Sultana et al 2011 and Borg et al 1999).

60

Ecoserv Ltd

Report on vertebrate fauna in the vicinity of Delimara promontory, in relation to the proposed CCGT and LNG power plant

Birds and other animals found close to light sources are known to behave in an abnormal way;

several species of birds remain active during night time. One particular case was reported by

Attard‐Montalto (1999) for Spanish Sparrows. Also, it is not infrequent to hear Robins Erithacus

rubecula and Black Redstarts Phoenicurus ochrurus singing throughout the night when their

roost site is “bathed” in light (Pers obs). Light also disrupts the normal cycle of other

vertebrates as well as numerous species of invertebrates.

10.2 Mitigation Measures

The problem of artificial light spillage over an undesirable area can be addressed through a

number of lighting systems now available. Directional and/or shaded lights can be installed to

reduce the negative impacts generated by light spill off (Raine et al 2007). Lighting can also be

reduced to a minimal accepted level (Health and Safety issues) during the months of July

(Fledging period of the Yelkouan Shearwater) and September to the first two weeks of October

to cover the fledging period of the Scopoli Shearwater. The below figures (Fig 18) demonstrate

which types of lighting allow illumination above the horizontal and as such, cause light

pollution. Many of these designs are used as standard in Malta.

Figure 18. Inappropriate Lighting; (Bird Friendly Development Guidelines, Toronto)

61

Ecoserv Ltd

Report on vertebrate fauna in the vicinity of Delimara promontory, in relation to the proposed CCGT and LNG power plant

11. POLICY CONSIDERATIONS

Local legislation and policies

Environment Protection Act (CAP: 435 ‐ 2007)

The coastal cliffs were designated a Special Area of Conservation (SAC) and a

Specially Protected Area (SPA) forming part of the NATURA 2000 network of protected sites.

Legal Notice 68 of 1980 and subsequent amendments

Legal Notice 68 of 1980 and its amendments provide full protection to all breeding species in

the Maltese Islands.

The Short‐toed Lark is legally protected under the following; GN31/1911, GN208/1911,

GN262/1916, GN111/1932, GN448/1936, GN7/1937and LN68/1980.

The Blue Rock Thrush is protected locally under the following; GN31/1911,GN208/1911,

GN262/1916, GN111/1932, GN448/1936, GN7/1937, LN68/1980,; it is also listed in the Red

Data Book for the Maltese Islands as Vulnerable (V).

11.1 International legislation

Since Malta joined the European Union in May 2004 the EU legislation on Flora and Fauna (Birds

and Habitats directives) supersedes local legislation.

EU Birds Directive

The Short‐toed Lark is listed in Annex I of the Birds Directive of the European Union.

62

Ecoserv Ltd

Report on vertebrate fauna in the vicinity of Delimara promontory, in relation to the proposed CCGT and LNG power plant

Bern Directive

The Short‐toed Lark and the Blue Rock Thrush are included in Appendix II (Strictly Protected

Fauna) of the Bern Convention

International Union for the Conservation of Nature (IUCN) & BirdLife International (BLI) 2008

IUCN, the International Union for Conservation of Nature, helps the world find pragmatic

solutions to our most pressing environment and development challenges. It supports scientific

research, manages field projects all over the world and brings governments, non‐government

organizations, United Nations agencies, companies and local communities together to develop

and implement policy, laws and best practice.

BirdLife International is the Red List Authority for birds for the IUCN Red List. IUCN Red List

categories include: Critically Endangered (facing an extremely high risk of extinction in the wild),

Endangered (facing a very high risk of extinction in the wild), Vulnerable (facing a high risk of

extinction in the wild), Near Threatened (close to qualifying for Vulnerable) and Least Concern

(species not qualifying for the other categories, including widespread and abundant species).

Species are assigned to categories using criteria with quantitative thresholds for population

size, population trend, range size and other parameters.

11.2 Conservation & Legal aspects (BATS)

All bat species in the Maltese Islands are protected under the Flora, Fauna and Natural Habitats

Protection Regulations, 2006 (LN 311/06) which transposes the EU Habitats Directive

(92/43/EEC). In fact, all bat species are listed in Annex IV of the Habitats Directive which lists

‘Animal and Plant species of Community Interest in need of strict protection’.

The protection of such species is governed by Article 12 of the EU Habitats Directive which

states the following:

63

Ecoserv Ltd

Report on vertebrate fauna in the vicinity of Delimara promontory, in relation to the proposed CCGT and LNG power plant

1. Member States shall take the requisite measures to establish a system of strict protection for

the animal species listed in Annex IV (a) in their natural range, prohibiting:

(a) All forms of deliberate capture or killing of specimens of these species in the wild;

(b) Deliberate disturbance of these species, particularly during the period of breeding,

rearing, hibernation and migration;

(c) Deliberate destruction or taking of eggs from the wild;

(d) Deterioration or destruction of breeding sites or resting places.

2. For these species, Member States shall prohibit the keeping, transport and sale or exchange,

and offering for sale or exchange, of specimens taken from the wild, except for those taken

legally before this Directive is implemented.

3. The prohibition referred to in paragraph 1 (a) and (b) and paragraph 2 shall apply to all stages

of life of the animals to which this Article applies.

4. Member States shall establish a system to monitor the incidental capture and killing of the

animal species listed in Annex IV (a). In the light of the information gathered, Member States

shall take further research or conservation measures as required to ensure that incidental

capture and killing does not have a significant negative impact on the species concerned

Bat roosting sites are also protected under other international treaties:

* The 1979 Convention on the Conservation of European Wildlife and Natural Habitats (Bern

Convention): most of the bat species recorded from the Maltese Islands are listed in Appendix

II of this convention, which recommends the conservation of habitats of the wild flora and

fauna species listed in Appendix II.

64

Ecoserv Ltd

Report on vertebrate fauna in the vicinity of Delimara promontory, in relation to the proposed CCGT and LNG power plant

* The 1979 Convention on the Conservation of Migratory Species of Wild Animals (Bonn

Convention) ‐ The convention recommends “the maintenance of a network of habitats

appropriately disposed in relation to the migration routes”.

* EUROBATS: the UNEP agreement on the Conservation of Bats in Europe (1991). This

agreement recognizes the threat that there is to bats from habitat degradation and disturbance

of roosting sites and proposes the protection of those sites which are important form the

conservation status, including for shelter and protection, of bats. All bats species recorded in

the Maltese Islands are listed in Annex 1 of this agreement

65

Ecoserv Ltd

Report on vertebrate fauna in the vicinity of Delimara promontory, in relation to the proposed CCGT and LNG power plant

SUMMARY OF IMPACTS

Impact type and Source Impact type Light Pollution from land and sea

Specific intervention leading to impact

Un‐shaded white shades spilling over into the sea and beyond the area of influence

Project phase Construction/Installation works Yes Operations Yes

Impact Receptor Receptor type

Sensitivity and resilience toward impact

Construction/Installation works Operations

Effect and Scale of Impact Construction/Installation works Operations

Direct/Indirect Direct by disturbing the natural behaviour of the terrestrial fauna as well as disorientation to fledging seabirds from Benghisa and Hal‐Far

Direct by disturbing the natural behaviour of the terrestrial fauna as well as disorientation to fledging seabirds from Benghisa and Hal‐Far

Cumulative

Beneficial/Adverse

Severity

Physical/geographic extent

Short/Medium/Long Term

Temporary/Permanent if temporary indicate duration

Permanent if not addressed Permanent if not addressed

Reversible/Irreversible if reversible indicate ease of reversibility

Use of proper directional lamps and/or shading of lamps

Use of proper directional lamps and/or shading of lamps

Probability – Significance – Mitigation – Residual Impacts – Other Requirements Construction/Installation works Operations

Probability of impact occurring inevitable, likely, remote uncertain

Inevitable inevitable

Significance Overall Impact

Medium High

Proposed Mitigation Measures

Avoid works at night in July and late September – mid October

Use of proper directional lamps and/or shading of lamps

Significance Residual Impact

66

Ecoserv Ltd

Report on vertebrate fauna in the vicinity of Delimara promontory, in relation to the proposed CCGT and LNG power plant

Monitoring Monitoring programme to be formulated,

setup and implemented

Authorisations • Development Permission under the Environment and Development Planning Act (Cap 504)

• Development Permission under the Environment and Development Planning Act (Cap 504)

• Operations Permit under the Industrial Emissions (Integrated Pollution and Control) Regulations (SL504.54; LN10/03)

• Approval of major accident prevention policy document under the Control of Major Accident Hazard Regulations (SL424.19; LN37/03)

Criteria used to describe impacts

Beneficial/Adverse Level Criteria

High Disturbance to vertebrate fauna

Moderate Young Yelkouan and Scopoli’s Shearwaters are regularly distracted by bright lights. Marsaxlokk Bay, due to the Power Station and the opposite Free‐port attract fledging young towards them.

Low Neutral

Severity Level Criteria

High Disruption possibly leading to total desertion of area by all vertebrate groups

Moderate Low

Neutral

Probability of impact occurring Level Criteria

High Considering that the nearest breeding colonies of Yelkouan and Scopoli’s Shearwaters are at Hal‐Far and Benghisa, the probability of young birds being disoriented by lights is high. There is already an issue of light pollution by the Free Port which lies opposite the power station. Added lights from the power station area will increase the problem of disorientation by young seabirds.

Moderate Considering the fact that the area in question has been developed through by the construction of the power station and artificial lighting near the hinterland has been installed since the construction phase, any additional lights will have a significant impact on the fauna unless these are shaded and directional, thus leaving dark areas for shelter.

Low

67

Ecoserv Ltd

Report on vertebrate fauna in the vicinity of Delimara promontory, in relation to the proposed CCGT and LNG power plant

Probability of impact occurring Level Criteria

Neutral

Significance: Overall Impact Level Criteria

High Light Pollution will affect the vertebrate fauna. Mitigation measures addressing this issue can reduce the overall impact on the fauna of the site and surrounding area.

Moderate Low

Neutral

Significance: Residual Level Criteria

High Same as above. Shaded and directional lights should reduce the light pollution issue.

Moderate

Low

Neutral

68

Impa

ct ty

pe a

nd so

urce

Im

pact

rece

ptor

Ef

fect

and

Sca

le

Prob

abili

ty

of im

pact

oc

curr

ing

Ove

rall

impa

ct

sign

ifica

nce

Prop

osed

m

itiga

tion

mea

sure

s

Resi

dual

im

pact

si

gnifi

canc

e

Oth

er

requ

irem

ents

Im

pact

ty

pe

Spec

ific

inte

rven

tion

lead

ing

to

impa

ct

Proj

ect

phas

e Re

cep

tor

type

Sens

itivi

ty

and

resi

lienc

e to

war

d im

pact

Dire

ct

Indi

rect

Cu

mul

ativ

e

Bene

ficia

l Ad

vers

e

Seve

rity

Phys

ical

ge

ogra

phi

c ex

tent

of

impa

ct

Shor

t m

ediu

m

long

te

rm

Tem

pora

ry

Perm

anen

t Re

vers

ible

Irr

ever

sibl

e

cons

truc

tion

oper

atio

n de

com

mis

sion

ing

if

tem

pora

ry

indi

cate

du

ratio

n

if re

vers

ible

in

dica

te

ease

of

reve

rsib

ility

inev

itabl

e lik

ely

unlik

ely

rem

ote

unce

rtai

n

m

onito

ring

auth

oris

atio

ns

an s

o on

Ligh

t sp

illag

e Di

srup

tion

of n

orm

al

beha

viou

r in

vert

ebra

te

faun

a

Thro

ugho

ut a

ll ph

ases

Di

rect

im

pact

s on

th

e lo

cal

faun

a as

w

ell a

s on

fledg

ing

seab

irds

from

ne

arby

co

loni

es o

f Be

nghi

sa

and

Hal

‐Far

Adve

rse

H

igh

Imm

edia

te a

rea

as w

ell

as e

ast

coas

t of

Mar

saxl

okk

bay

Long

te

rm

Perm

anen

t Re

vers

ibl

e of

m

itiga

tion

mea

sure

s ar

e ta

ken

on th

e lig

htin

g un

its

inev

itabl

e M

oder

ate

to

high

Avoi

d lig

ht

spill

age

Noi

se

Aban

donm

ent

of a

rea

by

vert

ebra

te

faun

a

Thro

ugho

ut a

ll ph

ases

Di

rect

im

pact

s on

th

e lo

cal

faun

a

Adve

rse

Med

ium

Im

med

iat

e ar

ea

Long

te

rm

Perm

anen

t Re

vers

ibl

e on

ly if

lo

w n

oise

ge

nera

tor

s are

us

ed.

inev

itabl

e M

oder

ate

Lo

w n

oise

ge

nera

tors

Bibliography

Adams, A.L. 1870. Natural History and Archaeology of the Nile Valley and Malta. I‐ XVI, 1‐295, Edmonston & Douglas, Edinburgh.

Attard‐Montalto, J. 1999. Nocturnal activities in Spanish Sparrow Passer hispaniolensis. Il‐Merill

29: 27.

Boffa, C. 1966. The Islets of Comino and Filfla. Lux Press, Malta. Borg. J. 1988. Report on the Bat population of the Maltese Islands. ‐ p. 207‐209. In: Stebbings,

R.E./IUCN. The Conservation of European Bats. Christopher Helm, London. Borg, J.J. 1998. The Maghrebian Bat Myotis blythii punicus Felten,1977 in Malta. Notes

on Status, Morphometrics, Movements, and Diet (Chiroptera: Vespertilionidae). Naturalista Siciliano S.IV,XXII (3‐4) : 365‐374.

Borg, J.J. 2002. Bat Data Sheets for the Maltese Islands. Environment Protection

Directorate/MEPA.

Borg, J.J. 2003‐2004. Notes on the status, distribution and morphology of the pygmy white‐ toothed shrew Suncus etruscus (Savi, 1822) in Malta (Mammalia, Insectivora, Soricidae). Cent. Med. Nat. Vol.4 (1): 61‐64.

Borg, J. & R. Cachia‐Zammit.1988. Avian, Chiropteran and other remains in Barn Owl Tyto alba

pellets from Gozo. il-Merill 25 :12‐13. Borg, J. & R. Cachia‐Zammit. 1995. Diet of the Barn Owl Tyto alba in a rural area in Gozo. il-

Merill 28: 24‐25. Borg, J., M. Fiore, C. Violani & B. Zava. 1990. Observations on the Chiropterofauna of Gozo,

Maltese Islands. Boll. Mus. Reg. Sci. Nat. Torino, 8 (2): 501‐515. Borg, J.J. & P.M. Sammut. 2002. Note on the Diet of a Grey Long‐eared Bat Plecotus austriacus

(Fischer, 1829) from Mdina, Malta (Chiroptera, Vespertilionidae). Central Mediterranean Naturalist 3(4);171‐172.

Borg, J.J., J. Sultana, P. Heidrich & M. Wink. 1999. First record of the Manx Shearwater

Puffinus puffinus in Malta: evidence from morphometric data and DNA analysis. il-

Merill 29: 18‐20.

Borg. J.J. & Sultana, J. 2002. Status and Distribution of the Breeding Procellariiformes in Malta. Il-Merill 30: 10‐14.

Borg, J.J. & J. Sultana. 2003. Prensce of the Black Rat Rattus rattus on Fungus Rock (Maltese

Ecoserv Ltd

Report on vertebrate fauna in the vicinity of Delimara promontory, in relation to the proposed CCGT and LNG power plant

Islands). Central Mediterranean Naturalist 4(1): 105‐106.

Borg. J.J. & Sultana, J. 2004. Important Bird Areas of EU importance in Malta. BirdLife Malta,

RSPB, UK.

Borg, J.J. A. Raine & H. Raine. 2010. Records in Malta of European Storm‐petrels Hydrobates pelagicus melitensis during the breeding season away from known breeding sites. Il

-Merill 32: 11‐14. Borg, J.J., C. Violani & B. Zava. 1997. The Bat Fauna of the Maltese Islands. Myotis (35): 49‐65.

Cachia, D. 1990‐91. The distribution of the Short‐toed Lark Calandrella brachydactyla during the

breeding season in the eastern section of Malta. il-Merill 27: 5‐8. Despott, G. 1927‐1928. Annual Report on the working of the Museum Department – Report of

the Curator of the Natural History Section. Govt. Print. Office, Malta. Felten, H., F. Spitzenberger & G. Storch. 1977. Zur Kleinsaugerfauna West Anatoliens. Tiel IIIa –

Senckenbergiana boll. 58 (1‐2): 1‐44.

Gulia, G. 1858‐1859. Repertorio di Storia Naturale. Malta. Anglo‐Maltese. Gulia, G. 1890. Elenco dei Mammiferi Maltesi in. il Naturalista Maltese. 1(2): 2‐3. Gulia, G. 1914. Uno Sguardo alla Zoologia delle Isole Maltesi. IX Congress International di Zool.

tenu a Monaco du 25-30 Mars 1913. :545‐555. Lanfranco, G. 1969. “Vagrant Hedgehog in Malta” Sunday Times of Malta 16th Feb.1969. Lanfranco, G. 1969. Maltese Mammals (Central Mediterranean) Malta, 28pp.+ plts. I‐VIII. Lanfranco, G.G. & P.J. Schembri. 1989. Vertebrates other than birds. In (Schembri P.J. &

J.Sultana Eds.) Red Data Book for the Maltese Islands. Dept of Information, Malta. :129‐137.

Lanza, B. in. Toschi, A, & Lanza, B. 1959. Fauna d'Italia Vol IV, Mammalia

Generalita,Insectivora, Chiroptera; Bologna: Ed. Calderini. Malec, F. & Storch, G. 1972. Der Wanderigel, Erinaceus algirus Duvernoy & Lereboullet,

1842, von Malta und seine Beziehungen zum nordafrikanischen Herkunftsgebiet. Saugetierkundliche Mitteilungen 20 (1‐2).

Mitchell‐Jones, A.J., Amori, G., Bogdanowicz, W., Krystufek, B., Reijnders, P.J.H.,

71

Ecoserv Ltd

Report on vertebrate fauna in the vicinity of Delimara promontory, in relation to the proposed CCGT and LNG power plant

Spitzenberger, F., Stubbe, M., Thissen, J.B.M., Vohralik, V. & Zima, J. 1999. Atlas of European Mammals. The Academic Press, London.

MØller, A.P., Fiedler, W. & Berthold, P. 2006. Birds and Climate Change. Elsevier Ltd/Academic

Press. Raine, A., Sultana, J. & Gillings, S. 2009. Malta Breeding Bird Atlas 2008. BirdLife Malta, Malta. Raine, H., J.J. Borg, A. Raine, S. Bairner, M. Borg‐Cardona. 2007. Light Pollution and its effects on Yelkouan Shearwaters in Malta: causes and effects. BirdLife Malta. Savona‐Ventura, C. 1984a. Observations of the Genus Myotis in Maltese caves. Potamon

13: 77‐78. Savona‐Ventura, C. 1984b. A Study of the genus Myotis Kaup (1829) in Malta (Mammalia:

Chiroptera: Vespertilionidae). Central Mediterranean Naturalist. 1(3): 51‐54. Schembri, P.J., Lanfranco, E., Farrugia, A., Schembri, S. & Sultana, J. 1987. Localities with

Conservation Value in the Maltese Islands. Pub. Env Div. Ministry of Education.

Strelkov, P. 1972. Myotis blythi (Tomes 1857), distribution, geographical variability and differences from Myotis myotis (Borkhausen, 1797). Acta Theriol. Warszava. 17: 355‐ 380.

Storch, G. 1970. Holozane kleinsaugerfunde aus der Ghar Dalam‐Hohle, Malta (Mammalia, Insectivora, Chiroptera, Rodentia). Senckenbergiana boil. Frankfurt a. M., 51: 135‐145.

Storch, G. 1974. Quartare‐Fledermaus – Faunen von der insel Malta. Senckenbergiana lethaea

55 (1‐5): 407‐434. Sultana, J., Borg, J.J. Gauci, C. & Falzon, V. 2011. The Breeding Birds of Malta. BDL/BLM

Sultana, J. 2001. L‐Ghasafar ta’ Malta. Pubblikazzjoni Indipendenza. Sultana, J. & Borg, J.J. 2002. Coastal Zone Management Subject Plan – Ornithology Pp46. Malta

Environment and Planning Authority. Sultana, J. & Gauci, C. 1982. A New Guide to the Birds of Malta. The Ornithological Society,

Valletta. Van Den Brink, F.H. 1967. A Field Guide to the Mammals of Britain and Europe. Collins. London. Zava, B. & J. Borg. 1989. Sulla Presenza di Myotis blythi Tomes 1857 Nella Grotta Dei

Latitanti Di Santa Ninfa. I Gessi di Santa Ninfa. Ser II Vol 3: 173‐174.

72

Ecoserv Ltd

Report on vertebrate fauna in the vicinity of Delimara promontory, in relation to the proposed CCGT and LNG power plant

Common Name Latin Name EU Status Breeding Migrant Winter Visitor

Rare & Irregular/Vagrant

SWANS, GEESE & DUCKS (Anatidae)

1 Mute Swan Cygnus olor x 2 Bean Goose Anser fabalis x 3 White-Fronted Goose Anser albifrons x 4 Greylag Goose Anser anser x 5 Red-breasted Goose Branta ruficollis Annex 1 B.D. x 6 Egyptian Goose Alopochen aegyptiaca x 7 Ruddy Shelduck Tadorna ferruginea Annex 1 B.D. x 8 Common Shelduck Tadorna tadorna x x 9 Eurasian Wigeon Anas penelope x x 10 Falcated Duck Anas falcata x 11 Gadwall Anas strepera x 12 Baikal Teal Anas formosa x 13 Eurasian Teal Anas crecca x x 14 Mallard Anas platyrhynchos x x 15 Pintail Anas acuta x x 16 Garganey Anas querquedula x 17 Shoveler Anas clypeata x x 18 Marbled Teal Marmaronetta angustirostris Annex 1 B.D. x 19 Red-crested Pochard Netta rufina x 20 Common Pochard Aythya ferina x x 21 Ferruginous Duck Aythya nyroca Annex 1 B.D. x 22 Tufted Duck Aythya fuligula x 23 Greater Scaup Aythya marila x 24 Common Scoter Melanitta nigra x 25 Common Goldeneye Bucephala clangula x 26 Smew Mergellus albellus Annex 1 B.D. x 27 Red-breasted Merganser Mergus serrator x x 28 Goosander Mergus merganser x 29 White-headed Duck Oxyura leucocephala Annex 1 B.D. x

PARTRIDGES & PHEASANTS (Phasianidae)

30 Common Quail Coturnix coturnix VR x (Chukar Partridge) Alectoris chukar I (Common Pheasant) Phasianus colchicus I

DIVERS (Gaviidae)

31 Red-Throated Diver Gavia stellata Annex 1 B.D. x

GREBES (Podicipedidae)

32 Little Grebe Tachybaptus ruficollis VR x 33 Great Crested Grebe Podiceps cristatus x x 34 Black-necked Grebe Podiceps nigricollis x

SHEARWATERS & PETRELS (Procellariidae)

35 Scopoli`s Shearwater Calonectris diomedea Annex 1 B.D. x (SV) 36 Sooty Shearwater Puffinus griseus x 37 Manx Shearwater Puffinus puffinus x 38 Balearic Shearwater Puffinus mauretanicus Annex 1 B.D. x 39 Yelkouan Shearwater Puffinus yelkouan Annex 1 B.D. x (PR)

73

Ecoserv Ltd

Report on vertebrate fauna in the vicinity of Delimara promontory, in relation to the proposed CCGT and LNG power plant

STORM-PETRELS (Hydrobatidae)

40 European Storm-petrel Hydrobates pelagicus Annex 1 B.D. x (SV) 41 Leach's Storm-Petrel Oceanodroma leucorhoa Annex 1 B.D. x

GANNETS (Sulidae)

42 Northern Gannet Morus bassanus x

CORMORANTS (Phalacrocoracidae)

43 Great Cormorant Phalacrocorax carbo x 44 Shag Phalacrocorax aristotelis x 45 Pygmy Cormorant Phalacrocorax pygmaeus Annex 1 B.D.

PELICANS (Pelecanidae)

46 White Pelican Pelecanus onocrotalus Annex 1 B.D. x

HERONS (Ardeidae)

47 Eurasian Bittern Botaurus stellaris Annex 1 B.D. x 48 Little Bittern Ixobrychus minutus Annex 1 B.D. VR x 49 Night Heron Nycticorax nycticorax Annex 1 B.D. x 50 Squacco Heron Ardeola ralloides Annex 1 B.D. x 51 Cattle Egret Bubulcus ibis x 52 Western Reef Egret Egretta gularis x 53 Little Egret Egretta garzetta Annex 1 B.D. VR x x 54 Great White Egret Casmerodius albus Annex 1 B.D. x 55 Grey Heron Ardea cinerea x x 56 Purple Heron Ardea purpurea Annex 1 B.D. x

STORKS (Ciconiidae)

57 Black Stork Ciconia nigra Annex 1 B.D. x 58 White Stork Ciconia ciconia Annex 1 B.D. x

IBISES & SPOONBILLS (Threskiornithidae)

59 Glossy Ibis Plegadis falcinellus Annex 1 B.D. x 60 Eurasian Spoonbill Platalea leucorodia Annex 1 B.D. x

FLAMINGOS (Phoenicopteridae)

61 Greater Flamingo Phoenicopterus roseus Annex 1 B.D. x

VULTURES, HAWKS & EAGLES (Accipitridae)

62 Honey-buzzard Pernis apivorus Annex 1 B.D. x 63 Black Kite Milvus migrans Annex 1 B.D. x 64 Red Kite Milvus milvus Annex 1 B.D. x 65 White-Tailed Eagle Haliaeetus albicilla Annex 1 B.D. x 66 Egyptian Vulture Neophron percnopterus Annex 1 B.D. x 67 Griffon Vulture Gyps fulvus Annex 1 B.D. x 68 Short-Toed Eagle Circaetus gallicus Annex 1 B.D. x 69 Marsh Harrier Circus aeruginosus Annex 1 B.D. x 70 Hen Harrier Circus cyaneus Annex 1 B.D. x 71 Pallid Harrier Circus macrourus Annex 1 B.D. x 72 Montagu`s Harrier Circus pygargus Annex 1 B.D. x 73 Eurasian Sparrowhawk Accipiter nisus x 74 Common Buzzard Buteo buteo x 75 Long-legged Buzzard Buteo rufinus Annex 1 B.D. x 76 Rough-Legged Buzzard Buteo lagopus x 77 Lesser Spotted Eagle Aquila pomarina Annex 1 B.D. x 78 Booted Eagle Aquila pennata Annex 1 B.D. x 79 Golden Eagle Aquila chrysaetos Annex 1 B.D. x

OSPREY (Pandionidae)

80 Osprey Pandion halieatus Annex 1 B.D. x

FALCONS (Falconidae)

81 Lesser Kestrel Falco naumanni Annex 1 B.D. x 82 Common Kestrel Falco tinnunculus VR x x

74

Ecoserv Ltd

Report on vertebrate fauna in the vicinity of Delimara promontory, in relation to the proposed CCGT and LNG power plant

83 American Kestrel Falco sparverius x 84 Red-footed Falcon Falco vespertinus Annex 1 B.D. x 85 Merlin Falco columbarius Annex 1 B.D. x 86 Hobby Falco subbuteo x 87 Eleonora`s Falcon Falco eleonorae Annex 1 B.D. x 88 Sooty Falcon Falco concolor x 89 Lanner Falcon Falco biarmicus Annex 1 B.D. x 90 Saker Falcon Falco cherrug Annex 1 B.D. x 91 Peregrine Falcon Falco peregrinus Annex 1 B.D. VR x 92 Barbary Falcon Falco pelegrinoides x

RAILS & CRAKES (Rallidae)

93 Water Rail Rallus aquaticus x x 94 Spotted Crake Porzana porzana Annex 1 B.D. x x 95 Little Crake Porzana parva Annex 1 B.D. x x 96 Baillon's Crake Porzana pusilla Annex 1 B.D. x 97 Corn Crake Crex crex Annex 1 B.D. x 98 Moorhen Gallinula chloropus x x 99 Purple Gallinule Porphyrio porphyrio Annex 1 B.D. 100 Allen's Gallinule Porphyrula alleni x 101 American Purple Gallinule Porphyrula martinica x 102 Common Coot Fulica atra VR x x 103 Red-knobbed Coot Fulica cristata Annex 1 B.D. X

CRANES (Gruidae)

104 Common Crane Grus grus Annex 1 B.D. x 105 Demoiselle Crane Anthropoides virgo x

BUSTARDS (Otididae)

106 Little Bustard Tetrax tetrax Annex 1 B.D. x 107 Houbara Bustard Chlamydotis undulata Annex 1 B.D. x 108 Great Bustard Otis tarda Annex 1 B.D. x

OYSTERCATCHERS (Haematopodidae)

109 Oystercatcher Haematopus ostralegus x

STILTS & AVOCETS (Recurvirostridae)

110 Black-winged Stilt Himantopus himantopus Annex 1 B.D. VR x 111 Avocet Recurvirostra avosetta Annex 1 B.D. x

THICK-KNEES (Burhinidae)

112 Stone-curlew Burhinus oedicnemus Annex 1 B.D. x

COURSERS & PRATINCOLES (Glareolidae)

113 Cream-coloured Courser Cursorius cursor Annex 1 B.D. x 114 Collared Pratincole Glareola pratincola Annex 1 B.D. x

PLOVERS (Charadriidae)

115 Little Ringed Plover Charadrius dubius x x 116 Ringed Plover Charadrius hiaticula x 117 Kentish Plover Charadrius alexandrinus Annex 1 B.D. x 118 Greater Sand Plover Charadrius leschenaultii x 119 Caspian Plover Charadrius asiaticus x 120 Dotterel Charadrius morinellus Annex 1 B.D. x 121 Pacific Golden Plover Pluvialis fulva x 122 European Golden Plover Pluvialis apricaria Annex 1 B.D. x x 123 Grey Plover Pluvialis squatarola x 124 Spur-winged Lapwing Hoplopterus spinosus Annex 1 B.D. x 125 Sociable Lapwing Vanellus gregarius x 126 White-tailed Lapwing Vanellus leucurus x 127 Northern Lapwing Vanellus vanellus x x

SANDPIPERS, SNIPES & (Scolopacidae)

75

Ecoserv Ltd

Report on vertebrate fauna in the vicinity of Delimara promontory, in relation to the proposed CCGT and LNG power plant

PHALAROPES

128 Red Knot Calidris canutus x 129 Sanderling Calidris alba x 130 Little Stint Calidris minuta x x 131 Temminck`s Stint Calidris temminckii x 132 Pectoral Sandpiper Calidris melanotos x 133 Curlew Sandpiper Calidris ferruginea x 134 Purple Sandpiper Calidris maritima x 135 Dunlin Calidris alpina x x 136 Broad-billed Sandpiper Limicola falcinellus x 137 Buff-breasted Sandpiper Tryngites subruficollis x 138 Ruff Philomachus pugnax Annex 1 B.D. x 139 Jack Snipe Lymnocryptes minimus x 140 Common Snipe Gallinago gallinago x x 141 Great Snipe Gallinago media x 142 Woodcock Scolopax rusticola x x 143 Black-tailed Godwit Limosa limosa x 144 Bar-tailed Godwit Limosa lapponica Annex 1 B.D. x 145 Whimbrel Numenius phaeopus x 146 Slender-billed Curlew Numenius tenuirostris Annex 1 B.D. x 147 Eurasian Curlew Numenius arquata x 148 Upland Sandpiper Bartramia longicauda x 149 Spotted Redshank Tringa erythropus x 150 Common Redshank Tringa totanus x x 151 Marsh Sandpiper Tringa stagnatilis x 152 Greenshank Tringa nebularia x 153 Green Sandpiper Tringa ochropus x 154 Wood Sandpiper Tringa glareola Annex 1 B.D. x 155 Terek Sandpiper Xenus cinereus Annex 1 B.D. x 156 Common Sandpiper Actitis hypoleucos x x 157 Turnstone Arenaria interpres x 158 Red-necked Phalarope Phalaropus lobatus Annex 1 B.D. x 159 Grey Phalarope Phalaropus fulicarius x

SKUAS (Stercorariidae)

160 Pomarine Skua Stercorarius pomarinus x 161 Arctic Skua Stercorarius parasiticus x 162 Long-tailed Skua Stercorarius longicaudus x 163 Great Skua Stercorarius skua x

GULLS (Laridae)

164 Great Black-headed Gull Larus ichthyaetus x 165 Mediterranean Gull Larus melanochephalus Annex 1 B.D. x x 166 Little Gull Larus minutus Annex 1 B.D. x 167 Black-headed Gull Croicocephalus ridibundus x x 168 Slender-billed Gull Croicocephalus genei Annex 1 B.D. x 169 Audouin`s Gull Larus audouinii Annex 1 B.D. x 170 Common Gull Larus canus x 171 Lesser Black-backed Gull Larus fuscus x x 172 Yellow-legged Gull Larus michahellis x x x 173 Herring Gull Larus argentatus x 174 Glaucous Gull Larus hyperboreus x 175 Kittiwake Rissa tridactyla x

TERNS (Sternidae)

176 Little Tern Sternula albifrons Annex 1 B.D. x 177 Gull-billed Tern Gelochelidon nilotica Annex 1 B.D. x 178 Caspian Tern Hydroprogne caspia Annex 1 B.D. x

76

Ecoserv Ltd

Report on vertebrate fauna in the vicinity of Delimara promontory, in relation to the proposed CCGT and LNG power plant

179 Whiskered Tern Chlidonias hybrida Annex 1 B.D. x 180 Black Tern Chlidonias niger Annex 1 B.D. x 181 White-winged Black Tern Chlidonias leucopterus x 182 Sandwich Tern Sterna sandvicensis Annex 1 B.D. x x 183 Common Tern Sterna hirundo Annex 1 B.D. x 184 Roseate Tern Sterna dougallii Annex 1 B.D. x

AUKS (Alcidae)

185 Common Guillemot Uria aalge x 186 Razorbill Alca torda x 187 Little Auk Alle alle x 188 Puffin Fratercula arctica x

SANDGROUSE (Pteroclididae)

189 Black-bellied Sandgrouse Pterocles orientalis Annex 1 B.D. x 190 Pin-tailed Sandgrouse Pterocles alchata Annex 1 B.D. x

PIGEONS & DOVES (Columbidae)

191 Rock Dove Columba livia (x) x 192 Stock Dove Columba oenas x 193 Wood Pigeon Columba palumbus x x 194 Collared Dove Streptopelia decaocto Ix 195 Turtle Dove Streptopelia turtur VR x 196 Laughing Dove Streptopelia senegalensis x

CUCKOOS (Cuculidae)

197 Great Spotted Cuckoo Clamator glandarius x 198 Common Cuckoo Cuculus canorus VR x

BARN OWLS (Tytonidae)

199 Barn Owl Tyto alba E x

TYPICAL OWLS (Strigidae)

200 Eurasian Scops Owl Otus scops x x 201 Little Owl Athene noctua x 202 Long-eared Owl Asio otus x 203 Short-eared Owl Asio flammeus Annex 1 B.D. VR x x

NIGHTJARS (Caprimulgidae)

204 European Nightjar Caprimulgus europaeus Annex 1 B.D. x 205 Red-necked Nightjar Caprimulgus ruficollis x 206 Egyptian Nightjar Caprimulgus aegyptius x

SWIFTS (Apodidae)

207 White-throated Needletail Hirundapus caudacutus x 208 Alpine Swift Apus melba x 209 Common Swift Apus apus VR x 210 Pallid Swift Apus pallidus VR x 211 White-rumped Swift Apus caffer Annex 1 B.D. x 212 Little Swift Apus affinis x

KINGFISHERS (Alcedinidae)

213 Common Kingfisher Alcedo atthis Annex1 B.D. x x

BEE-EATERS (Meropidae)

214 Blue-Cheeked Bee-eater Merops superciliosus x 215 European Bee-eater Merops apiaster x

ROLLERS (Coraciidae)

216 European Roller Coracias garrulus Annex 1 B.D. x

HOOPOES (Upupidae)

218 Hoopoe Upupa epops x

WOODPECKERS (Picidae)

219 Wryneck Jynx torquilla x x 220 Green Woodpecker Picus viridis x

77

Ecoserv Ltd

Report on vertebrate fauna in the vicinity of Delimara promontory, in relation to the proposed CCGT and LNG power plant

LARKS (Alaudidae)

221 Bar-tailed Desert Lark Ammomanes cinctura x 222 Hoopoe Lark Alaemon alaudipes x 223 Dupont's Lark Chersophilus duponti Annex 1 B.D. x 224 Calandra Lark Melanocorypha calandra Annex 1 B.D. x 225 White-winged Lark Melanocorypha leucoptera x 226 Black Lark Melanocorypha yeltoniensis x 227 Short-toed Lark Calandrella brachydactyla Annex 1 B.D. x (SV) x 228 Lesser Short-toed Lark Calandrella rufescens x 229 Crested Lark Galerida cristata x 230 Wood Lark Lullula arborea Annex 1 B.D. x 231 Sky Lark Alauda arvensis x x 232 Shore Lark Eremophila alpestris x 233 Temminck's Lark Eremophila bilopha x

SWALLOWS & MARTINS (Hirundinidae)

234 Sand Martin Riparia riparia x 235 Crag Martin Ptyonoprogne rupestris x 236 Barn Swallow Hirundo rustica VR x x 237 House Martin Delichon urbicum VR x 238 Red-rumped Swallow Cecropis daurica x

PIPITS & WAGTAILS (Motacillidae)

239 Richard`s Pipit Anthus novaeseelandiae x 240 Tawny Pipit Anthus campestris Annex1 B.D. VR x 241 Olive-backed Pipit Anthus hodgsoni x 242 Tree Pipit Anthus trivialis x 243 Meadow Pipit Anthus pratensis x x 244 Red-throated Pipit Anthus cervinus x x 245 Water Pipit Anthus spinoletta x x 246 Rock Pipit Anthus petrosus x x 247 Yellow Wagtail Motacilla flava x 248 Grey Wagtail Motacilla cinerea VR x x 249 White Wagtail Motacilla alba x x

WAXWINGS (Bombycillidae)

250 Waxwing Bombycilla garrulus x

DIPPERS (Cinclidae)

251 Dipper Cinclus cinclus x

WRENS (Troglodytidae)

252 Wren Troglodytes troglodytes x

ACCENTORS (Prunellidae)

253 Dunnock Prunella modularis x x 254 Alpine Accentor Prunella collaris x

THRUSHES (Turdidae)

255 Rufous Bush Robin Cercotrichas galactotes x 256 Robin Erithacus rubecula VR x x 257 Thrush Nightingale Luscinia luscinia x 258 Common Nightingale Luscinia megarhynchos VR x 259 Siberian Rubythroat Luscinia calliope 260 Bluethroat Luscinia svecina Annex 1 B.D. x x 261 Black Redstart Phoenicurus ochruros x x 262 Common Redstart Phoenicurus phoenicurus x 263 Moussier`s Redstart Phoenicurus moussieri x 264 Whinchat Saxicola rubetra x 265 Common Stonechat Saxicola torquatus x x 266 Isabelline Wheatear Oenanthe isabellina x 267 Northern Wheatear Oenanthe oenanthe x x

78

Ecoserv Ltd

Report on vertebrate fauna in the vicinity of Delimara promontory, in relation to the proposed CCGT and LNG power plant

268 Pied Wheatear Oenanthe pleschanka Annex 1 B.D. x 269 Black-eared Wheatear Oenanthe hispanica VR x 270 Desert Wheatear Oenanthe deserti x

271 White-Crowned Black Wheatear Oenanthe leucopyga x

272 Black Wheatear Oenanthe leucura Annex 1 B.D. x 273 Rock Thrush Monticola saxatilis x 274 Blue Rock Thrush Monticola solitarus x 275 Siberian Thrush Zoothera sibirica x 276 Ring Ouzel Turdus torquatus x 277 Blackbird Turdus merula x x 278 Eyebrowed Thrush Turdus obscurus x 279 Fieldfare Turdus pilaris x x 280 Song Thrush Turdus philomelos x x 281 Redwing Turdus iliacus x x 282 Mistle Thrush Turdus viscivorus x

WARBLERS (Sylviidae)

283 Cetti's Warbler Cettia cetti x 284 Zitting Cisticola Cisticola juncidis x 285 Grasshopper Warbler Locustella naevia x 286 River Warbler Locustella fluviatilis x 287 Savi`s Warbler Locustella lusciniodes x 288 Moustached Warbler Acrocephalus melanopogon Annex1 B.D. x 289 Aquatic Warbler Acrocephalus paludicola Annex1 B.D. x 290 Sedge Warbler Acrocephalus schoenobaenus x 291 Paddyfield Warbler Acrocephalus agricola x 292 Blyth`s Reed Warbler Acrocephalus dumetorum x 293 Marsh Warbler Acrocephalus palustris x 294 Reed Warbler Acrocephalus scirpaceus x x 295 Great Reed Warbler Acrocephalus arundinaceus x 296 Eastern Olivaceous Warbler Hippolais pallida x 297 Western Olivaceous Warbler Hippolais opaca x 298 Icterine Warbler Hippolais icterina x 299 Melodious Warbler Hippolais polyglotta x 300 Blackcap Sylvia atricapilla VR x x 301 Garden Warbler Sylvia borin x 302 Barred Warbler Sylvia nisoria Annex 1 B.D. x 303 Lesser Whitethroat Sylvia curruca x 304 Orphean Warbler Sylvia hortensis x 305 African Desert Warbler Sylvia deserti x 306 Common Whitethroat Sylvia communis x 307 Spectacled Warbler Sylvia conspicillata x 308 Tristram's Warbler Sylvia deserticola x 309 Dartford Warbler Sylvia undata Annex 1 B.D. x 310 Marmora's Warbler Sylvia sarda Annex 1 B.D. x 311 Ruppell's Warbler Sylvia rueppelli Annex 1 B.D. x 312 Subalpine Warbler Sylvia cantillans x 313 Sardinian Warbler Sylvia melanocephala x x 314 Greenish Warbler Phylloscopus trochiloides x 315 Arctic Warbler Phylloscopus borealis x 316 Pallas's Leaf Warbler Phylloscopus proregulus x 317 Yellow-browed Warbler Phylloscopus inornatus x 318 Radde's Warbler Phylloscopus schwarzi x 319 Dusky Warbler Phylloscopus fuscatus x 320 Western Bonelli's Warbler Phylloscopus bonelli x

79

Ecoserv Ltd

Report on vertebrate fauna in the vicinity of Delimara promontory, in relation to the proposed CCGT and LNG power plant

321 Eastern Bonelli's Warbler Phylloscopus orientalis x 322 Wood Warbler Phylloscopus sibilatrix x 323 Common Chiffchaff Phylloscopus collybita x x 324 Willow Warbler Phylloscopus trochilus x 325 Goldcrest Regulus regulus x x 326 Firecrest Regulus ignicapilla x x

FLYCATCHERS (Muscicapidae)

327 Spotted Flycatcher Muscicapa striata x x 328 Red-breasted Flycatcher Ficedula parva Annex 1 B.D. x 329 Semi-collared Flycatcher Ficedula semitorquata Annex 1 B.D. x 330 Collared Flycatcher Ficedula albicollis Annex 1 B.D. x 331 Pied Flycatcher Ficedula hypoleuca x 332 Atlas Flycatcher Ficedula speculigera x

TITS (Paridae)

333 Blue Tit Parus caeruleus x 334 Great Tit Parus major x

WALLCREEPERS (Tichodromadidae)

335 Wallcreeper Tichodroma muraria x

PENDULINE TITS (Remizidae)

336 Penduline Tit Remiz pendulinus x

ORIOLES (Oriolidae)

337 Golden Oriole Oriolus oriolus x

SHRIKES (Laniidae)

338 Red-backed Shrike Lanius collurio Annex 1 B.D. x 339 Lesser Grey Shrike Lanius minor Annex 1 B.D. x 340 Great Grey Shrike Lanius excubitor x 341 Southern Grey Shrike Lanius meridionalis x 342 Woodchat Shrike Lanius senator VR x x 343 Masked Shrike Lanius nubicus Annex 1 B.D. x

CROWS (Corvidae)

344 Eurasian Jay Garrulus glandarius x 345 Western Jackdaw Corvus monedula E 346 Rook Corbus frugilegus x 347 Carrion Crow Corvus corone x 348 Hooded Crow Corvus cornix x 349 Common Raven Corus corax x

STARLINGS (Sturnidae)

350 Common Starling Sturnus vulgaris VR x x x 351 Spotless Starling Sturnus unicolor x 352 Rose-coloured Starling Sturnus roseus x

SPARROWS (Passeridae)

353 Spanish Sparrow Passer hispaniolensis x 354 Tree Sparrow Passer montanus x x 355 Rock Sparrow Petronia petronia x 356 Snowfinch Montifringilla nivalis x

VIREOS (Vireonidae)

357 Red-eyed Vireo Vireo olivaceus x

FINCHES (Fringillidae)

358 Common Chaffinch Fringilla coelebs x x x 359 Brambling Fringilla montifringilla x 360 European Serin Serinus serinus VR x x 361 Greenfinch Carduelis chloris VR x x 362 Goldfinch Carduelis carduelis x 363 Siskin Carduelis spinus x 364 Linnet Carduelis cannabina VR x x

80

Ecoserv Ltd

Report on vertebrate fauna in the vicinity of Delimara promontory, in relation to the proposed CCGT and LNG power plant

365 Lesser Redpoll Carduelis cabaret x 366 Common Redpoll Carduelis flammea x 367 Common Crossbill Loxia curvirostra x 368 Trumpeter Finch Bucanetes githaginea Annex 1 B.D. x 369 Common Rosefinch Carpodacus erythrinus x 370 Bullfinch Pyrrhula pyrrhula x

371 Hawfinch Coccothraustes coccothraustes x

BUNTINGS (Emberizidae)

372 White-throated Sparrow Zonotrichia albicolis x 373 Lapland Bunting Calcarius lapponicus x 374 Snow Bunting Plectrophenax nivalis x 375 Pine Bunting Emberiza leucocephalos x 376 Yellowhammer Emberiza citrinella x 377 Cirl Bunting Emberiza cirlus x 378 Rock Bunting Emberiza cia x 379 Ortolan Bunting Emberiza hortulana Annex 1 B.D. x 380 Cretzschmar's Bunting Emberiza caesia Annex 1 B.D. x 381 Yellow-breasted Bunting Emberiza aureola x 382 Rustic Bunting Emberiza rustica x 383 Little Bunting Emberiza pusilla x 384 Chestnut Bunting Emberiza rutila x 385 Reed Bunting Emberiza schoeniclus x 386 Black-headed Bunting Emberiza melanocephala x 387 Corn Bunting Emberiza calandra VR x 388 Rose-breasted Grosbeak Pheucticus ludovicianus x

KEY: Species in Bold have been recorded in the Area of Influence

I Introduced species to Malta

VR Very rare breeder (few records, not yearly)

SV Summer Visitor

PR Partial Resident

E Extirpated as a breeding species in Malta

116 species that pass through Malta are Annex 1

81

Ecoserv Ltd

Report on vertebrate fauna in the vicinity of Delimara promontory, in relation to the proposed CCGT and LNG power plant

82

Ecoserv Ltd

Report on vertebrate fauna in the vicinity of Delimara promontory, in relation to the proposed CCGT and LNG power plant

Fig. 19 Area surveyed in 2013. The red lines show the roads and footpaths from where observations

were carried out.

Fig 20 the south-west coast of the area (in front of the fort entrance)

83

Ecoserv Ltd

Report on vertebrate fauna in the vicinity of Delimara promontory, in relation to the proposed CCGT and LNG power plant

Fig 21 terraced land on the south-west coast

Fig 22. Entrance to Fort Delimara

84

Ecoserv Ltd

Report on vertebrate fauna in the vicinity of Delimara promontory, in relation to the proposed CCGT and LNG power plant

Fig 23. The East coast

JOHN J. BORG

2013

85

Ecoserv Ltd  Marine ecological studies at il‐Hofra z‐Zghira and Delimara, made in June ‐ July 2013 

– 68 –

8. REFERENCES 

AIS  Environmental  Ltd.,  2009.  Environmental  impact  statement  for  the  proposed  local  generating capacity  and  Delimara  Power  Station  ENV/3260/A/08  PA03152/05;  Volume  1  Coordinated Assessment. Malta: unpublished report. 

AIS Environmental Ltd and SLR Global Environmental Solutions. 2011. Prediction of the Spread and Dilution of Cooling Water  from Delimara Power Station. Extension  to  the Delimara Power Station: IPPC Permit. Consolidated Version Addendum 2. Malta: unpublished report. 

Axiak  V.,  2013. Delimara Gas  and  Power  Combined  Cycle Gas  Turbine  and  Liquefied Natural Gas receiving,  storage  and  regasification  facilities:  Environmental  Impact  Statement  ‐  Assessment  of Environmental Impacts on Water Quality of Proposed Project. Malta: unpublished report.  Borg J. A & Schembri P. J., 2003. Alignment of marine habitat data of the Maltese Islands to conform to  the  requirements of  the EU habitats directive.  In: Sant, M.  (Editor) Marine habitats data of  the Maltese Islands. Interactive CD. Floriana, Malta: Malta Environment and Planning Authority [Compact Diskette] 

Debono S. & Borg  J. A., 2006. Use of Posidonia oceanica as a bioindicator of ecological  status  for Maltese coastal waters. Biologia Marina Mediterranea 13 (4): 206 ‐ 209. 

Cachia  J.,  1995.  Studies  on  the  thermal  effluent  of  the Delimara  Power  Station. Unpublished  BSc dissertation, University of Malta. 

Ecoserv, 2006. Report of a survey for further development of the classification of ecological status for Maltese coastal waters using Posidonia oceanica descriptors, as part of the  intercalibration exercise (Water Framework Directive). Malta: unpublished report. 

Jones S., 1996. Further  studies on  the biological effects of  the  thermal effluent  from  the Delimara Power Station. Unpublished BSc dissertation, University of Malta. 

Gatt  N.,  2006.  Effects  of  the  thermal  effluent  from  the  Delimara  Power  Station  (Malta)  on  the seagrass Posidonia oceanica. Unpublished MSc dissertation, Heriot Watt University. 

MEPA/GAS  (Malta  Environment  and Planning Authority/Geological Assistance  and  Services), 2004. Baseline  survey  of  the  extent  and  character  of  Posidonia  oceanica  (L.)  Delile  meadows  in  the territorial waters of the Maltese Islands. Malta: unpublished report. 

Micallef M., 2001. Biological effects of the thermal effluent from the Delimara Power Station: a third study. Unpublished BSc dissertation, University of Malta. 

 

  

 Report on marine ecological studies at il‐Hofra z‐Zghira and Delimara, prepared for the Environment Impact Statement 

in connection with the proposed Combined Cycle Gas Turbine and Liquefied Natural Gas receiving, storage and 

regasification facilities at Delimara, Malta    

Prepared by         

12, Sir Arthur Borton Street Mosta, MST1881  

MALTA  

Telephone: (+356) 2143 1900 Fax: (+356) 21424 137 

e‐mail: [email protected] www.ecoserv.com.mt 

            

ECOSERV’S REPORT REFERENCE: 104‐13_R REVISED VERSION (30‐10‐13) OF REPORT DATED JULY 2013 

  

OCTOBER 2013  

SCIENTIFIC TEAM

JOSEPH A. BORG BSc MSc PhD (Plymouth) CBiol MSB

and

JULIAN EVANS

BSc (Hons) MSc

Ecoserv Ltd  Marine ecological studies at il‐Hofra z‐Zghira and Delimara, made in June ‐ July 2013 

– 2 –

Legal Notice 114 of 2007 Regulation 28: Identification of Consultants and Contributors 

Extract from Legal Notice: 

28  (1)  The environmental impact statement shall list the registration number and the names of the consultants and contributors responsible for the preparation of the environmental  impact statement,  environmental  survey  reports,  appendices, non‐technical  summary  and other components of the statement. 

  (2)  The  consultants  who  are  responsible  for  a  particular  analysis,  including  analysis  in  the environmental survey reports, shall be identified. 

  (3)  All consultants and contributors employed in the environmental impact assessment shall sign a declaration  stating  that  the particular  study  (or part  thereof) was  solely  carried out by them and that they take responsibility for any statement and conclusion contained therein. This signed declaration shall be  included with each environmental survey  report  included with the environmental impact statement. 

 Signed declaration in accordance with Sub‐regulation 28(3): This declaration is to be submitted with each environmental survey report forming part of the EIA. 

Attn: Director of Environment Protection (MEPA) 

We, JOSEPH A BORG and JULIAN EVANS who carried out the study (or part thereof) on Assessment of Environmental Impacts on marine ecology for the EIA for the proposed Delimara Gas and Power: Combined  Cycle Gas  Turbine  and  Liquefied Gas  Receiving,  Storage,  and  Regasification  Facilities, hereby declare that such study was solely carried out by us and take responsibility for any statement and conclusion contained therein.  

30 October 2013          

Date    Signatures 

   

Ecoserv Ltd  Marine ecological studies at il‐Hofra z‐Zghira and Delimara, made in June ‐ July 2013 

– 3 –

 

Non‐technical summary 

 

A marine ecological study was undertaken during June and July 2013 at two coastal sites ‐ Delimara and il‐Ħofra z‐Zgħira ‐ in relation to the proposed Combined Cycle Gas Turbine (CCGT) and Liquified Natural Gas (LNG) facilities at Delimara. The study forms part of the Environment Impact Statement (EIS) for the project.  

The marine ecological study was undertaken using direct observation by scientific SCUBA divers, with the main aims of producing maps showing the distribution of main benthic (bottom) habitats, and to establish  the  presence  of  any  habitats  and  species  that  are  protected  and/or  have  a  high conservation  value.  The  results  of  the  study  indicated  that,  overall,  the  shore  and  benthic  biotic assemblage, and  the demersal and pelagic  fauna  (including  fish)  recorded  from  the study area are typical of those occurring  in  local bays and  inlets.  In general, the benthic assemblages and habitats recorded from the two study sites are  influenced by the physical features of the seabed and water quality  characteristics.  In  parts  of  the  study  areas,  a mosaic  of  different  assemblage  types  was present, which results from the heterogeneity  in physical characteristics of the seabed. The benthic assemblages and demersal  fauna appeared  to be  in a better state  in  il‐Hofra z‐Zghira compared  to Delimara.  This was  especially  striking  in  the  case  of  seagrass  (Cymodocea  nodosa  and  Posidonia oceanica) habitats, which were in a much better state at il‐Hofra z‐Zghira compared to Delimara.  

One habitat type, Posidonia beds, was recorded from both study sites and is listed in Annex I of the Habitats Directive,  and  also  included  in  Schedule  I  of  the  local  Flora,  Fauna  and Natural Habitats Protection Regulations, 2006, and  is  therefore  considered a priority habitat. No Habitats Directive Annex II, IV and V species were recorded from the two study sites. Species that are protected and/or of conservation interest through international and local legislation other than the Habitats Directive and  the Flora, Fauna and Natural Habitats Protection Regulations, 2006, and which were  recorded from  one  or  both  study  sites,  are  the  following:  the  alga  Cystoseira  foeniculacea,  the  seagrasses Posidonia oceanica and Cymodocea nodosa, and the urchin Paracentrotus lividus.  

The  study  includes  an  assessment  of  the  potential  adverse  impacts  of  aspects  of  the  project construction and operational phases on the marine ecology of the two study sites. Most impacts are deemed  to  be  insignificant  (no  impact)  or  having  a  low  impact  level,  except  ones  resulting  from potential works related to deployment of the FSU/jetty, the pier connecting the  latter to the shore and  ancillary  structures,  which  may  have  a  moderate  impact.  The  assessment  of  impacts  also includes proposed measures  to mitigate  the  adverse  impacts,  and  indicates  any  residual  impacts. Finally, the study also  includes an assessment of the  impacts of the project on the ecological status (as per the EU’s Water Framework Directive) of MTC107 – the official code that refers to the coastal water body within which Marsaxlokk Bay and the il‐Hofra z‐Zghira are located. It was concluded that, for the  il‐Hofra z‐Zghira AoI, the overall  level of  impact will be  insignificant, while  for the Delimara AoI, the overall level of impact will be low during the construction phase and insignificant during the operational phase.  

 

 

Ecoserv Ltd  Marine ecological studies at il‐Hofra z‐Zghira and Delimara, made in June ‐ July 2013 

– 4 –

1. INTRODUCTION 

1.  ERSLI  Consultants  Ltd  (henceforth  ‘ERSLI’)  have  commissioned  Ecoserv  Ltd  (henceforth ‘Ecoserv’)  to  undertake  marine  ecological  studies  as  part  of  an  Environmental  Impact Statement  (EIS)  concerning  the  proposed  construction  of  a  Combined  Cycle  Gas  Turbine (CCGT) associated with facilities for receiving, storing and regasification of Liquefied Natural Gas  (LNG).  The  proposed  CCGT  and  LNG  facilities will  be  located  adjacent  to  the  existing Delimara Power Station (DPS) at Delimara. 

2.  The sections of the Malta Environment and Planning Authority (MEPA)’s Terms of Reference (ToR)  for  the  EIS  that  concern  the marine  ecological  studies  component,  and which were received on 11th July 2013, are the following: 

(i) 3.5 ‐ Ecology (including Marine Ecology) (ii) 4.1 ‐ Effects on the environmental aspects identified in Section 3 (iii) 4.2 ‐ Impacts related to Climate Change and Climate Change Adaptation (iv) 5.1 ‐  Mitigation Measures (v) 5.2 ‐ Residual Impacts (vi) 5.3 ‐ Additional Measures (vii) 5.5 ‐ Monitoring Programme 

Furthermore,  the present marine ecological  study  takes  into  consideration Note 10 of  the MEPA ToR, which states the following: 

Wherever any baseline studies  required by  these Terms of Reference  is covered by already‐existing data, such data should be used  in preference to unnecessary duplication of baseline studies, unless  the consultants or MEPA or both are of  the opinion  that  the existing data  is unavailable,  incorrect,  outdated,  unreliable,  insufficient,  or  otherwise  inadequate  for  the purpose of the EIA. 

3.  The  present  submission  constitutes  Ecoserv’s  report  on  the  marine  ecological  studies undertaken within  il‐Hofra z‐Zghira and Delimara  (Marsaxlokk Bay side), as per  the MEPA’s ToR; specifically the aspects listed in para 2 above. The present submission also comprises a revised version of our previous report bearing reference 104‐13 and dated August 2013; the revision  being made  in  view  that  the  project  plans  have  now  been  established  and  the options considered in the previous August 2013 report are no longer applicable. 

  

2.   DATA FROM RECENT LITERATURE 

Benthic assemblages and habitats  Surveys by AIS Environmental Ltd 

4.  The most recent marine environmental data for the  il‐Hofra z‐Zghira and Delimara area are those  generated  through  marine  environmental  studies  made  by  AIS  Environmental  Ltd (hereafter  ‘AIS’)  as  part  of  the  Environmental  Impact  Statement  for  planning  application PA3152‐05 (AIS, 2009). AIS’ surveys were carried out in 3 study areas as indicated in Figure 1. It appears that these marine surveys were undertaken sometime during 2008 and/or the first half of 2009, which means that the data are some 4 years old. The marine ecological surveys undertaken by AIS (2009) consisted of (i) benthic surveys aimed at mapping the distribution of main benthic habitats in the study areas, and (ii) collection of samples of biota from hard 

Ecoserv Ltd  Marine ecological studies at il‐Hofra z‐Zghira and Delimara, made in June ‐ July 2013 

– 5 –

substrata and soft sediments to characterise the flora and fauna present. As background to the present work, a brief overview of AIS’ (2009) findings follows. 

 

 Figure 1. Map showing the three zones (1, 2 and 3) within which marine ecological surveys were carried out by AIS (2009). Source: EIS coordinated assessment report by AIS Environmental Ltd dated October 2009.   

5.  The results of the benthic mapping surveys are shown in Figures 2 and 3. A total of six benthic assemblages were  recorded by AIS  (2009),  four of which are given Table 1. A  fifth benthic assemblage type, that of infralittoral muddy sediment recorded from within Marsaxlokk Bay, was  considered  (by AIS, 2009)  to be best described by  five EUNIS habitats:  (i)  lnfralittoral sandy  mud  (Code:  A5.33);  (ii)  [Sabella  pavonina]  with  sponges  and  anemones  on infralittoral  mixed  sediment  (Code:  A5.342);  (iii)  Mediterranean  communities  of superficial muddy sands in sheltered waters (Code: A5.28); (iv) lnfralittoral muddy  sand (Code: A5.24), and (v) Mediterranean communities of fine  sands  in very shallow waters (Code: A5.235). A sixth benthic assemblage type, that of the seagrass Cymodocea nodosa on  coarse  sand  and  considered  by  AIS  (2009)  to  be  closest  in  description  to  biocoenosis 111.3.3.2 of  the RAC/SPA  classification, was recorded from within il‐Hofra z‐Zghira. 

6.  No data on the mediolittoral zone is presented in AIS’ (2009) report. 7.  The  species  recorded  by  AIS  (2009)  in  association  with  the  various  infralittoral  benthic 

assemblages given above, the fish fauna, as well as the species presented in the lists from the scraping  and  sediment  samples,  are  typical  of  ones  that  occur  in  the  shallow  infralittoral waters (0 – 20 m) of local bays and inlets. 

8.  Based on the surveys by AIS  (2009), the only protected habitat present  in their study areas are the Posidonia oceanica meadows recorded from il‐Hofra z‐Zghira1. 

1  Listed  in Annex  I of  the Habitats Directive – 1120 Posidonia beds) and  included  in Schedule  I of  the Flora, Fauna and Natural Habitats Protection Regulations, 2006. 

Ecoserv Ltd  Marine ecological studies at il‐Hofra z‐Zghira and Delimara, made in June ‐ July 2013 

– 6 –

 Figure 2. Map showing the distribution of benthic habitats recorded from zones 1 and 2. Source: EIS coordinated assessment report by AIS Environmental Ltd dated October 2009. 

 

 Figure 3. Map  showing benthic habitats  recorded by Micallef  (2001), which was used  in  the EIS coordinated  assessment  report  by  AIS.  Source:  EIS  coordinated  assessment  report  by  AIS Environmental Ltd dated October 2009. 

Ecoserv Ltd  Marine ecological studies at il‐Hofra z‐Zghira and Delimara, made in June ‐ July 2013 

– 7 –

9.  The two seagrass species recorded by AIS (2009) from  il‐Hofra z‐Zghira ‐ Posidonia oceanica and Cymodocea nodosa are both protected2, while  the Rock Urchin Paracentrotus  lividus3, which was also recorded from their surveys is of conservation concern. 

 

Table 1 Marine benthic habitats recorded from  

il‐Hofra z‐Zghira and Marsaxlokk by AIS (2009) 

HABITATS DIRECTIVE  ANNEX 1 

EUNIS HABITAT CLASSIFICATION 

SCHEME 

BORG & SCHEMBRI (2003) AS ADAPTED FROM THE RAC/SPA 

HABITAT CLASSIFICATION SCHEME 

Locality (il‐Hofra z‐Zghira or M’Xlokk Bay) 

where recorded 

Posidonia Beds (Posidonion 

oceanicae – Code 1120) 1120) 

Posidonia beds (Posidonion oceanicae) 

Posidonia oceanicameadows 

Il‐Hofra z‐Zghira 

None  Infralittoral fouling seaweed communities (Code: A3.72) 

Biocoenosis of infralittoral algae 

M’Xlokk 

None  Infralittoral coarse sediment (Code: A5.12) 

Coarse sands with more or less mud 

Il‐Hofra z‐Zghira 

None  Mediterranean communities   of   infralittoral  algae   moderately exposed to wave action (Code: A3.23)  

Biocoenosis of infralittoral algae 

Il‐Hofra z‐Zghira and M’Xlokk 

  Data from other sources 

10.  As  far  as  the  present  authors  are  aware,  no  other  recent  data  are  available  for  the marine benthic assemblages off Delimara and il‐Hofra z‐Zghira (see Figure 4), except for data on Posidonia oceanica and benthic invertebrates collected by Ambiente / Consorzio per  il  Centro  Interuniversitario  di  Biologia Marina  ed  Ecologia  Applicata  Guido  Bacci (CIBM)  in  2012  from  water  body MTC107  (see  para  16  &  17  below)  as  part  of  an assignment  concerning  marine  environmental  monitoring  in  relation  to  the  Water Framework Directive (see para 14 – 17 below). However, the habitat map for Posidonia oceanica  produced  by  GAS/MEPA  (2004)  and  available  on  the  MEPA  Map  Server4 

2 listed in Schedule III “Animal and plant species of national interest whose conservation requires the designation of Special Areas of Conservation” of the ‘Flora, Fauna and Natural Habitats Protection Regulations, 2006. The Neptune grass Posidonia oceanica  is  also  listed  in Appendix  I of  the Bern Convention of which Malta  (and  the  European Union  as  a whole)  is  a signatory, and in Annex II (List of Endangered or Threatened Species) of the Protocol concerning Specially Protected Areas and Biological Diversity  in  the Mediterranean of  the Barcelona Convention,  to which Malta  (and  the European Union)  is party. The lesser Neptune grass Cymodocea nodosa is listed in Appendix I of the Bern Convention. 3 Listed in Annex III of the Protocol for Specially Protected Areas and Biodiversity in the Mediterranean and in Appendix III of the Bern Convention. 4 http://www.mepa.org.mt/mepa‐mapserver.

Ecoserv Ltd  Marine ecological studies at il‐Hofra z‐Zghira and Delimara, made in June ‐ July 2013 

– 8 –

indicates meadows of  this seagrass – growing on a soft sediment seabed  ‐ present off the DPS, just outside the boundary of the AIS study area (see the green shading in Figure 1).  

11.  Furthermore, as already indicated by AIS (2009), four studies (Cachia, 1995; Jones, 1996; Micallef, 2001; Gatt, 2006) were made at il‐Hofra z‐Zghira, all of which mainly addressed the  influence  of  the  DPS  thermal  effluent  on  the  seagrass  Posidonia  oceanica  and associated habitats. As summarised by AIS (2009), the findings from the four studies are similar and indicated that:  

‐ Within il‐Hofra z‐Zghira, water temperature decreased with increasing distance from the  thermal  effluent outfall  to  reach  ambient  values;  the water  temperature  in  il‐Hofra z‐Zghira was overall slightly  (some 1‐2oC) higher compared to  il‐Hofra  il‐Kbira (which served as reference site);  

‐ Dissolved oxygen  levels were marginally  lower at the thermal effluent outfall plume near the source, and overall also marginally lower in il‐Hofra z‐Zghira compared to il‐Hofra il‐Kbira (which served as reference site); 

‐ Salinity levels and conductivity values were marginally higher at the thermal effluent outfall plume near the source, and overall also marginally higher  in  il‐Hofra z‐Zghira compared to il‐Hofra il‐Kbira (which served as reference site); 

‐ Values of pH were marginally  lower at the thermal effluent outfall near the source, and  overall  also marginally  lower  in  il‐Hofra  z‐Zghira  compared  to  il‐Hofra  il‐Kbira (which served as reference site); 

‐ Values  of  Posidonia  oceanica  shoot  density,  as  well  as  those  of  P.  oceanica morphometric attributes (e.g.  leaf biomass, number of  leaves and  leaf  length) were lower in the vicinity of the thermal effluent outfall compared to those recorded from other  sites  within  il‐Hofra  z‐Zghira  and  within  il‐Hofra  il‐Kbira  (which  served  as reference site). 

 

12.  Micallef  (2001)  compared  the benthic  habitats map within  il‐Hofra  z‐Zghira  produced during his study with ones produced  for  the same  locality during previous studies and concluded  that  the  spatial  cover  of  P.  oceanica  had  decreased  in  the  vicinity  of  the thermal effluent outfall plume, and  that  the area previously occupied by  this seagrass became colonised by photophilic algae and the seagrass Cymodocea nodosa. Otherwise, no appreciable changes in the spatial distribution of P. oceanica or other benthic habitat types were recorded in the rest of the il‐Hofra z‐Zghira. 

 

13.  The most  recent  of  the  four  studies made  at  il‐Hofra  z‐Zghira,  that  by  Gatt  (2006), concluded that water quality at the site may have improved compared to previous years given  that  lower  values  of  P.  oceanica  leaf  epiphyte  weight  were  recorded  in  2006 compared to those recorded previously by Micallef (2001). Gatt (2006) also noted that for most of the P. oceanica attributes, values did not differ significantly between stations located  in  il‐Hofra  z‐Zghira  and  ones  located  in  il‐Hofra  il‐Kbira  (which  served  as reference  site).  Furthermore, Gatt  (2006)  noted  significant  differences  in  values  of  P. oceanica attributes between stations  located at a similar water depth within  il‐Hofra  il‐Kbira;  based  on  this  observation,  this worker  suggested  that  differences  in  values  P. oceanica attributes between stations  located at a similar water depth within  il‐Hofra z‐Zghira  recorded  from  studies made  prior  to  2006 may  not  necessarily  be  due  to  the thermal  effluent  present  in  the  inlet. Using  the  Ecological Quality  Ratio  proposed  by Debono  &  Borg  (2006)  for  assessing  the  ecological  status  of  coastal  water  bodies according  to  the Water  Framework Directive  (WFD), Gatt  (2006)  also  established  the ecological status of both il‐Hofra z‐Zghira and il‐Hofra il‐Kbira (which served as reference 

Ecoserv Ltd  Marine ecological studies at il‐Hofra z‐Zghira and Delimara, made in June ‐ July 2013 

– 9 –

site) as ‘good’, thereby showing that the former site does not have an inferior ecological status in spite of the thermal input. 

 Ecological status according to the Water Framework Directive 

14.  The overall objective of the Water Framework Directive5 (WFD) is for the EU Member States to achieve  ‘good status’  for all water bodies by 2015.  It  is mandatory that such a status be achieved, or  if  it results  that a water body has a  lower status,  to  take action  for  the water body  in  question  to  achieve  ‘good  status’.  The  WFD  considers  status  to  have  two components: ‘chemical status’ and ‘ecological status’, both of which should satisfy the ‘good status’ criteria specified by the Directive before a water body can be said to have achieved a ‘good  status’.  A  requirement  of  the WFD  Article  4,  Annex  V,  is  that Member  States  are required  to develop  classification  systems  for  the ecological  status of water bodies. These systems would enable classification of the status of their waters  in one of five classes (high, good, moderate, poor or bad), once monitoring  as  required by Article 8 of  the WFD  is  in place. 

15.  Assessment of  the  ‘ecological  status’ of water bodies,  as  required by  the WFD, has  to be based  on  the  status  of  a  number  of  biological,  and  physico‐chemical  quality  elements,  of which  the  biological  elements  are  given  the  greatest weighting.  The  values  obtained  for biological quality elements (BQE) of the water body then need to be compared to reference values for the same element found in the ‘type‐specific’ reference condition, that is, a water body of  the  same  type  (and  from  the  same  category)  that has  suffered no or  very minor disturbance  due  to  anthropogenic  activities.  Thus  the  ‘ecological  status’  is derived  from  a combination of  ratios of  the observed values of each biological  indicator  to  those  found  in the reference site; this ratio  is termed the  ‘ecological quality ratio (EQR)’. For coastal water bodies,  the WFD  specifically  recommends  the  following  four  BQE:  phytoplankton,  aquatic flora (algae and angiosperms), and benthic invertebrate fauna. 

 16.  The  MEPA,  which  oversees  Malta’s  WFD  monitoring  obligations,  has  been  working  on 

adopting the four BQE to monitor the ecological status of the designated nine Maltese costal water  bodies.  In  this  respect,  the MEPA’s most  recent  endeavour  is  tender  CT3024‐2011 ‘Service  Tender  for  the  Development  of  Environmental  Monitoring  Strategy  and Environmental Monitoring Baseline  Surveys’, which  includes  collection of data on  the  four BQE  and  establishment  of  the  ecological  status  of Malta’s  nine  designated water  bodies (MTC101 – MTC109;  see  Figure 4). Data on Posidonia oceanica and benthic  invertebrates, used to establish the ecological status of MTC107, within which the whole of Marsaxlokk Bay and the il‐Hofriet area are located, and collected and analysed by Ambiente / CIBM as part of work related to CT3024‐2011, were made available to the present authors by the MEPA. 

    17.  The data for P. oceanica available from CT3024‐2011 were collected from one station located 

not  far  from  il‐Hofra  z‐Zghira  and  three  stations  from  inside Marsaxlokk  Bay,  including  a station (CN07‐2)  located off the DPS (See Figure 5). Data on benthic  invertebrates available from CT3024‐2011 were collected from two stations located inside Marsaxlokk Bay (see table 2 and Figure 4). Tables 2 and 3 give the ecological status for MTC107 based on P. oceanica and benthic  invertebrates respectively. These data will be used to assess the  impacts of the proposed CCGT and LNG facilities (see para 146 ‐ 150) on the ecological status of MTC107. 

 

5 Directive 2000/60/EC of  the European Parliament and of  the Council of 23 October 2000 establishing a  framework  for Community action in the field of water policy. 

Ecoserv Ltd  Marine ecological studies at il‐Hofra z‐Zghira and Delimara, made in June ‐ July 2013 

– 10 –

Figure 4.   The  nine  designated  Maltese  coastal  water  bodies.  Source:  First Water  Catchment  Management  Plan  for  Malta  –  Technical  Document  1  – Characterisation and Designation of Coastal Waters, April 201.  

 

Table 2 Ecological Status for the four Posidonia oceanica monitoring stations within MTC107,  

established using the ‘Rapid Easy Index’ (PREI index). 

                EQR  Ecological status       

CN07 ‐ 1   0,856  HIGH   Reference  condition  (RC)  used  for each metric 

Malta

CN07 ‐ 2   0,509  MODERATE    Shoot density (shoots/m2)  456 CN07 ‐ 3   0,428  MODERATE    Shoot leaf surface (cm2/shoot)  292 CP07   0,763  GOOD    E/L  0 

        Lower limit minimum depth (m)  7         Lower limit maximum depth (m)  36 

 

Ecoserv Ltd  Marine ecological studies at il‐Hofra z‐Zghira and Delimara, made in June ‐ July 2013 

– 11 –

Table 3 Ecological Status for the two benthic invertebrates monitoring stations within MTC107,  

established using the ‘AMBI’ Index. 

STATION  AMBI  SITE POLLUTION COMMUNITY 

HEALTH ECOLOGICAL 

STATUS 

CN07‐3  2,053  Slightly polluted  Unbalanced  GOOD CP07  1,572  Slightly polluted  Unbalanced  GOOD 

  

 Figure 5. Aerial image showing Marsaxlokk Bay, il‐Hofra z‐Zghira and il‐Hofra il‐Kbira, as well as the locations of sampling stations used to collect data for Posidonia oceanica and benthic invertebrates as part of tender CT3024‐2011 (see tables 2 and 3). Image source: Google Earth. 

   

3. FIELD SURVEYS ‐ METHODOLOGY  

Benthic assemblages 

18.  The areas of study (AoS) considered in the present assignment are shown in Figures 3 and 4. In the case of il‐Hofra z‐Zghira (Figure 3), the AoS is the same one considered by AIS (2009). In  the  case of Delimara,  the AoS  (Figure 6)  is  larger  given  that  the  current project  entails development  and  activities  that may have  an  influence on  a  larger marine  area  than  that surveyed previously by AIS (2009). 

19.   The  main  surveying  technique  used  for  the  field  surveys  carried  out  comprised  direct observation of the shore  (i.e.  for the mediolittoral assemblages) through walk‐over surveys and underwater observations along transects laid on the seabed by scientific SCUBA divers to survey  the  infralittoral assemblages and habitats. The divers swam along  the  transects and recorded  the  occurrence,  type  and  area  of  bottom  covered  by  the  different  benthic assemblages. 

Ecoserv Ltd  Marine ecological studies at il‐Hofra z‐Zghira and Delimara, made in June ‐ July 2013 

– 12 –

20.  Data on pelagic  and demersal  fauna,  including  fish  fauna, present  in  the  study  area were collected along the same transects used to collect data on benthic assemblages and habitats. 

21.  During  the underwater  survey,  the  location and occurrence of  special habitats were noted wherever these were encountered. Particular attention was paid to habitats and species that are  protected  and/or  have  a  high  ecological/conservation  importance.  Characterisation  of the benthic assemblages was based on the scheme of Borg and Schembri (2003), which has been adapted for local use from the RAC/SPA classification system of Mediterranean marine benthic habitats. Although the benthic assemblages and most of the species were identified in  situ,  specimens  of  species  that  could  not  be  identified  in  the  field were  collected  for examination  in the  laboratory. Photographs of representative megabenthic flora and fauna, and of the main benthic assemblage types encountered during the survey, were taken using a digital underwater camera. All fieldwork was carried out during the period June – July 2013. 

 

 

3. RESULTS AND APPRAISAL 

22.  Ecoserv’s  report  reference  for analyses of benthic assemblages and water quality stated  in this  report  is 104‐13_R. The present  report  is a  revised version of  the previous submission bearing reference 104‐13 dated August 2013. 

 Physical Characteristics  Il‐Hofra z‐Zghira 

23.  Il‐Hofra z‐Zghira consists of roughly circular inlet with a relatively narrow mouth (see Figures 3  and  5).  The  shore  is mostly  natural,  except  for  the  concrete  structure  located  on  the southwestern  shore  where  the  DPS’  thermal  effluent  outlet  is  located,  and  considerably heterogeneous,  varying  from  a  steep  near‐vertical  rocky  shore  close  to  the mouth  of  the inlet, to gently sloping narrow rocky platforms and boulder shores in its inner parts. A small cobble/pebble beach  is present on  its western  side, around 100 m  from  the DPS’  thermal effluent outlet. A narrow boulder shore  is also present next to the cobble/pebble beach on the western side of the inlet. 

 24.  The  sublittoral  seabed  in  the  inlet  is  topographically  heterogeneous.  The  seabed  in  the 

shallower waters just below the shore consists of a 20 m – 40 m wide stretch of rocky bottom or accumulations of boulders. The central parts of the  inlet have a soft sediment bottom, a great part of which supports beds of the seagrass Posidonia oceanica, although patches with bedrock  and  boulders  are  present  in  places.  An  accumulation  of  stones  and  pebbles  is present just below the shore on the western side of the inlet. The maximum water depth was recorded at 18 m just off the  inlet’s mouth. The underwater visibility was good (circa 15 m) and no currents were recorded close to the seabed, apart from that generated by turbulence from the thermal effluent. 

 Delimara 

25.  The  study  area  at  Delimara  within  Marsaxlokk  Bay  comprises  a  strip  some  2  km  long, adjacent  the headland on which  the DPS  is  located  (see Figures 5 and 6). The shore  in  the northern part of the study area consists of a concrete wharf adjoining the road that extends to  the DPS site. A concrete  jetty, with accumulations of boulders along one of  the sides  to serve was wave breakers, extends perpendicularly  at a point approximately midway along 

Ecoserv Ltd  Marine ecological studies at il‐Hofra z‐Zghira and Delimara, made in June ‐ July 2013 

– 13 –

the concrete wharf. The remaining stretch of shore  is mostly natural bedrock, comprising a narrow horizontal platform  in places and a vertical cliff face  in others. Parts of the shore  in places  comprise  accumulations  of  boulders,  while  a  very  small  sandy  beach  and  a boulder/cobble beach are present close to the DPS. 

 26.  The  sublittoral  seabed  in  the  Delimara  study  area  is  topographically  heterogeneous.  The 

seabed below  the wharf  and  jetty  in  the  vicinity of  the DPS  comprises  a mixture of  rocky bottom and boulders of various sizes, while a strip with accumulations of small boulders and stones  is present below  the shore  in  the area between  the DPS and Fort Delimara. A wide bedrock platform is present below the shore in the southern parts of the study area. Directly below the shore and for some distance (few tens of metres  in places and up to a couple of hundred metres off the shore in the area below Fort Delimara) from it, the seabed consists of rocky substrata, namely bedrock and large boulders. The seabed in the rest of the study area comprises  soft  sediments,  except  where  living  or  dead matte  of  the  seagrass  Posidonia oceanica  is  present.  Accumulations  of  stones  and  pebbles  are  present  in  several  places, including below the shore where the DPS is located, and forming a narrow band adjacent the shore in the central parts of the study area. Two large areas with dead matte of the seagrass Posidonia oceanica are present  in the area surveyed: one  in the extreme northern part and the  other  located  off  the  shore  between  the  DPS  and  the  seabed  below  Fort  Delimara. Meadows of seagrass Posidonia oceanica, are present just within the boundary of the study area off the DPS. 

  

 Figure 6. Aerial  image showing the area of  influence (AoI) at Delimara that was considered for the present assignment. 

 27.  The maximum water depth was recorded at 26 m  in  the southwestern corner of  the study 

area. The underwater  visibility was good  (circa 10 m  ‐ 15 m)  in  the  southern parts of  the study area but decreased progressively on going from the central parts of the area surveyed to  its  northern  parts,  such  that  the  lowest  underwater  visibility was  down  to  1  –  2 m  in places. No currents were recorded close to the seabed by the scientific divers. 

 

Ecoserv Ltd  Marine ecological studies at il‐Hofra z‐Zghira and Delimara, made in June ‐ July 2013 

– 14 –

Biological characteristics 

Benthic assemblages and habitats 

28.  The main results of the present survey are presented as a map showing the occurrence and distribution of main benthic habitat types  in the areas surveyed (Figures 7 and 8).  It should be  emphasized  that  boundaries  between  different  benthic  assemblage  types  are  not necessarily  as  sharp  as  depicted  on  the map,  since  biotic  assemblages  and  habitats  often merge gradually into each other to form ecotones6 between adjacent assemblages that may extend over several metres. 

 Mediolittoral assemblages 

29.  The mediolittoral assemblages that occurred on the shore in the study area mainly belong to the  biocoenoses  of  mediolittoral  hard  beds  and  rocks,  as  described  in  the  RAC/SPA classification system of Mediterranean benthic marine habitats as modified for  local use by Borg  &  Schembri  (2003).  These  biocoenoses  were  best  developed  on  the  natural  rocky substrata and on the  larger boulders present  in the study areas, and  least on concrete and other artificial substrata, most probably due  to the reduced availability of crevices  in  these two  substratum  types  and  the different  slopes. A  biocoenosis of mediolittoral  stones  and cobbles occurred in some places, while a biocoenosis of mediolittoral sands occupied a small area in the vicinity of the DPS. 

 Il‐Hofra z‐Zghira 

30.  At  il‐Hofra  z‐Zghira,  the macroflora  associated with  the  biocoenoses  of mediolittoral  rock (Figures 9 and 10), where bedrock or very large boulders were present, mainly comprised the algae  Laurencia  papillosa,  Jania  spp.  (Figure  10),  ?  Cladophora  sp.  /  ?  Cladophoropsis  sp. (Figure 10), Padina pavonica, and Corallina elongata (in shaded places). The most abundant macrofauna  associated  with  this  biocoenosis  were  barnacles  Chthamalus  spp.,  limpets Patella spp., chitons Lepidochitona corrugata, the top‐shell Osilinus turbinatus and the shore crab Pachygraspus marmoratus (the latter occurring  in crevices). Where stones and pebbles were present (Figure 11), the corresponding biocoenosis did not have any macrophytes, but several macrofaunal  species  occurred,  of which  the most  abundant were  the  gastropods Gibbula spp. (but not Gibbula nivosa, which was not recorded from the study area), Phorcus sp.,  Osilinus  turbinatus,  the  hermit  crab  Clibanarius  erythropus,  and  the  shore  crab Pachygraspus marmoratus. 

 Delimara 

31.  At Delimara, the biocoenoses of mediolittoral hard beds and rocks were poorly developed on artificial  substrata  (specifically  the  concrete  wharf  and  jetty)  and  the  main  macroflora present consisted of an algal turf composed of low‐growing filamentous algae, Dictyota spp., ? Cladophora sp. / ? Cladophoropsis sp., Halopteris spp. and Jania sp. (see Figures 12 and 13).  The  associated macrofauna mainly  comprised  Chthamalus  spp.  (Figure  14),  the  top‐shell Osilinus  turbinatus,  the  shore  crab  Pachygraspus  marmoratus  (the  latter  occurring  in crevices), ascidians and the bryozoan Shizoporella sanguinea. The macroflora associated with the biocoenoses of mediolittoral rock, where bedrock or very  large boulders were present, mainly comprised the algae Dictyota spp., Halopteris spp., Jania spp., and Padina pavonica. The most abundant macrofauna associated with this biocoenosis were barnacles Chthamalus spp., limpets Patella spp., chitons Lepidochitona corrugata, the top‐shell Osilinus turbinatus, the  shore  crab Pachygraspus marmoratus  (the  latter occurring  crevices) and  the bryozoan 

6  An ecotone is the transitional area between two adjacent and different types of habitats, which may share the  characteristics of both.

Ecoserv Ltd  Marine ecological studies at il‐Hofra z‐Zghira and Delimara, made in June ‐ July 2013 

– 15 –

Shizoporella sanguinea. Sparse individuals of the vermetid mollusc Vermetus triqueter (Figure 15) were present in the area below Fort Delimara. Where stones and pebbles were present, the  corresponding  biocoenosis  did  not  have  any  macrophytes,  and  the  associated macrofauna was impoverished and mainly comprised the hermit crab Clibanarius erythropus (Figure 16). No macroepibiota was recorded from the small sandy beach located close to the DPS (Figure 17). 

 

 Figure 7. Map showing the distribution of the main marine benthic assemblages within the il‐Hofra z‐Zghira study area, based on field surveys from the present assignment. 

Ecoserv Ltd  Marine ecological studies at il‐Hofra z‐Zghira and Delimara, made in June ‐ July 2013 

– 16 –

 Figure 8.  Map  showing  the  distribution  of  the  main  marine  benthic assemblages within the Delimara study area based on field surveys from the present assignment. 

Ecoserv Ltd  Marine ecological studies at il‐Hofra z‐Zghira and Delimara, made in June ‐ July 2013 

– 17 –

 Figure  9.  Photograph  taken  at  il‐Hofra  z‐Zghira showing the biocoensosis of mediolittoral rock. 

 

 Figure  10.  As  in  Figure  9.  The  algae  visible  in  the photograph  are  ?  Cladophora  sp.  /  ?  Cladophoropsis sp. (green) and Jania sp. (pink).  

 

 Figure 11. Photograph taken at  il‐Hofra z‐Zghira showing the biocoensosis of mediolittoral  stones and pebbles. A narrow strip with Posidonia oceanica banquette is visible on the back shore. 

Ecoserv Ltd  Marine ecological studies at il‐Hofra z‐Zghira and Delimara, made in June ‐ July 2013 

– 18 –

 Figure 12. Photograph of the vertical face of the wharf at Delimara showing the biocoensoses of mediolittoral rock. Barnacles  Chthalamus  sp.  and  an  individual  Patella  are visible in the upper half of the photo, while the algae are ?  Cladophora  sp.  /  ?  Cladophoropsis  sp.  (green)  and Halopteris sp. (brown). 

 Figure 13. Photograph of the vertical fact of the wharf at Delimara showing the biocoensoses of mediolittoral rock. The algae visible in the photograph are ? Cladophora sp. / ? Cladophoropsis sp. (green) and Jania sp. (pink). 

 Figure 14. Photograph of the rocky shore at Delimara showing  the  biocoensoses  of mediolittoral  rock.  The main species visible  in  the photograph  is Chthalamus 

sp.; individual impets (Patella) are also visible. 

Ecoserv Ltd  Marine ecological studies at il‐Hofra z‐Zghira and Delimara, made in June ‐ July 2013 

– 19 –

 Figure 15. Photograph of the rocky shore at Delimara showing  the  biocoensoses  of  mediolittoral  rock.  A single  individual  of  the  vermetid  mollusc  Vermetus triqueter and several  individuals of  limpet Patella sp. are visible in the photo. 

 Figure 16. Photograph  taken at Delimara, showing  the biocoenosis of mediolittoral stones and pebbles. 

 Figure  17.  Photograph  of  the  shore  at  Delimara showing the biocoensoses of mediolittoral sands. 

 

 

 

Ecoserv Ltd  Marine ecological studies at il‐Hofra z‐Zghira and Delimara, made in June ‐ July 2013 

– 20 –

Infralittoral assemblages 

32.  A  total  of  six main  biocoenoses  and mosaics  thereof were  recorded  from  the  infralittoral zone in the areas surveyed: 

(i) Biocoenosis of infralittoral algae; (ii) Biocoenosis of infralittoral stones and pebbles; (iii) Biocoenosis of well sorted fine sands; (iv) Biocoenosis of superficially muddy sand in sheltered waters; (v) Biocoenosis of polluted harbour mud and sandy mud; (vi) Biocoenosis of Posidonia oceanica meadows; 

Biocoenoses  (i),  (ii),  (iii) and  (vi) occurred  in  il‐Hofra z‐Zghira, while  (i),  (ii),  (iv),  (v) and  (vi) occurred  within  the  Delimara  study  area.  A  description  of  each  biocoenosis  and  the constituent associations/facies for each of the two study areas follows. 

 Il‐Hofra z‐Zghira 

Biocoenosis of infralittoral algae 

33.  A biocoenosis of  infralittoral algae was present on the hard substrata, namely bedrock and large boulders, wherever these occurred  in the study area (Figure 7). The main associations recorded from this biocoenosis mainly consisted of the following associations: ‐ Association with Corallina elongata (Figure 18) (in shaded places) ‐ Association with Jania spp. (Figure 19) ‐ Association with Padina pavonica ‐ Association with Dictyopteris polypodioides (Figure19) ‐ Association with Cystoseira foeniculacea (Figure 20) ‐ Association with Sargassum vulgare ‐ Association with Dictyota linearis ‐ Association with Peyssonelia squamaria ‐ Association with Flabellia petiolata 

Algal species that were recorded from this biocoenosis but did not appear to form discrete associations  included    Dictyota  spp.,  Cladostephus  spongiosus,  Halopteris  spp.,  Amphiroa rigida, Taonia atomaria, Codium bursa and Haliptilon sp. 

 34.   The macobenthic  fauna associated with  this biocoenosis  included sponges Crambe crambe, 

Anchinoe  sp.,  Chondrilla  nucula,  and  Ircinia  variabilis;  the  anemone  Anemonia  viridis, bryozoans  (including  Schizoporella  sp.  and  Reptadeonella  sp),  hydroids  (including Aglaophenia  sp.), many  polychaetes,  including  sabellids  and  serpulids,  and  the  dogworm Hermodice  carunculata;  many  gastropods,  including  Hexaplex  trunculus,  holothurians Holothuria  spp.,  the  urchins  Arbacia  lixula  and  Paracentrotus  lividus,  and  the  tunicate Halocyntia papillosa. 

 

Biocoenosis of infralittoral stones and pebbles 

35.  A biocoenosis of infralittoral stones and pebbles was present in the western part of the study area  (Figure  7).  The  macroflora  recorded  on  some  of  the  stones  was  a  low  algal  turf. However, the larger stones supported some macroalgae, namely Padina pavonica, Halopteris spp.,  Jania  spp. and Dictyota  spp. The macrofauna associated with  this biocoenosis mainly comprised  cryptic  species,  with  the  most  abundant  being  gastropods,  including  trochid gastropods Gibbula  spp.  (but not Gibbula nivosa, which was not  recorded  from  the  study area), the crab Xantho sp. and the anomuran Pisida sp. 

  

Ecoserv Ltd  Marine ecological studies at il‐Hofra z‐Zghira and Delimara, made in June ‐ July 2013 

– 21 –

 Figure  18.  Photograph  taken  at  il‐Hofra  z‐Zghira showing  an  association  with  Corallina  elongata recorded from the biocoenosis of infralittoral algae. 

 

 Figure  19.  Photograph  taken  at  il‐Hofra  z‐Zghira showing an association with Jania spp. (present on the ledge  in the upper half of  the photo and Dictyopteris polypodioides  (green,  visible  in  lower  half  of  the photo). 

 Figure  20.  Photograph  taken  at  il‐Hofra  z‐Zghira showing an association with Cystoseira foeniculacea. 

 

Ecoserv Ltd  Marine ecological studies at il‐Hofra z‐Zghira and Delimara, made in June ‐ July 2013 

– 22 –

Biocoenosis of well sorted fine sands 

36.  A  biocoenosis  of well  sorted  fine  sands was  present  in  the  central  parts  of  the  inlet  and extended beyond  its mouth  (Figures 7 and 21). This biocoenosis was characterised by bare sediment that did not support macrophytes, except the seagrass Cymodocea nodosa, which formed  an  association  in places  (Figure 22).  The epifauna mainly  comprised  an occasional individual  of  the  hermit  crab  Pagurus  sp.  and  sea  cucumbers  of  the  genus  Holothuria. However, a rich burrowing infauna mainly comprising polychaetes, crustaceans and bivalves was evidently associated with  this biocoensosis, as  indicated by  the presence of numerous burrow  openings.  In  places,  patches with  the  biocoenosis  of  infralittoral  algae  and  of  the biocoenosis of P. oceanica meadows, were present  intermixed with the biocoenosis of well sorted fine sands (Figure 23). 

  

 Figure  21.  Photograph  taken  at  il‐Hofra  z‐Zghira showing  the  biocoenosis  of  well  sorted  sands.  The small  mound  visible  in  the  photo  is  made  by  the burrowing  activities  of  a  crustacean,  probably  a thalassinid shrimp. 

 

 Figure  22.  Photograph  taken  at  il‐Hofra  z‐Zghira showing association with Cymodocea nodosa recorded from the biocoenosis of well sorted fine sands. 

 

Ecoserv Ltd  Marine ecological studies at il‐Hofra z‐Zghira and Delimara, made in June ‐ July 2013 

– 23 –

 Figure  23.  Photograph  taken  at  il‐Hofra  z‐Zghira showing  a  mosaic  with  two  biocoenoses:  one  of Posidonia  oceanica meadows  and  the  other  of  well sorted  fine  sands  supporting  an  association  with Cymodocea nodosa. 

 

Biocoenosis of Posidonia oceanica meadows 

37.  A biocoenosis of  Posidonia  oceanica meadows occupied  a  large  part of  the  seabed  in  the study area (Figures 7, 23, 24 and 25).  In most places, this biocoenosis was characterised by dense  seagrass  meadows  that  appeared  to  be  in  a  good  state  (Figure  24).  Where  the biocoenosis of P. oceanica meadows abutted the biocoenosis of infralittoral algae (see Figure 25), patches with the  latter biocoenosis were present  interspersed with the former. Where the biocoenosis of P. oceanica meadows abutted  the biocoenosis of well sorted  fine sands (see  Figure  23),  patches  with  the  latter  biocoenosis  were  present  interspersed  with  the former. The biota associated with the P. oceanica meadows  included many species of algal epiphytes and sessile macrofauna (mostly hydroids, bryozoans and polychaetes) and motile macrofauna (comprising molluscs, polychaetes and crustaceans), as well as fish. 

 

 Figure  24.  Photograph  taken  at  il‐Hofra  z‐Zghira showing  the  biocoenosis  of  Posidonia  oceanica meadows.  The  fish  swimming  in  the  foreground  are Chromis chromis. 

 

Ecoserv Ltd  Marine ecological studies at il‐Hofra z‐Zghira and Delimara, made in June ‐ July 2013 

– 24 –

 Figure  25.  Photograph  taken  at  il‐Hofra  z‐Zghira showing  a  mosaic  with  two  biocoenoses:  one  of Posidonia  oceanica  meadows  and  the  other  of infralittoral algae. 

 

Delimara 

Biocoenosis of infralittoral algae 

38.  A biocoenosis of  infralittoral algae was present on the hard substrata, namely the concrete wharf and  jetty, and on bedrock and  large boulders, wherever  these occurred  in  the study area (Figure 8). The main associations recorded from this biocoenosis mainly consisted of the following associations: 

‐ Association with Jania spp.  ‐ Association with Padina pavonica ‐ Association with Halopteris sp. ‐ Association with Dictyopteris polypodioides  ‐ Association with Cladophora prolifera ‐ Association with Dictyota linearis ‐ Association with Halimeda tuna ‐ Association with Flabellia petiolata ‐ Association with Acetabularia acetabulum 

Other  algal  species  that were  recorded  from  this biocoenosis  but  did  not  appear  to  form discrete  associations  included  Dictyota  spp.,  Halopteris  spp.,  Amphiroa  rigida,  and Polysiphonia sp.  

39.  There were differences in the occurrence and state of health of algae that formed part of the associations  referred  to  above.  In  the  northern  parts  of  the  study  area,  the  predominant biocoenoses  were  an  association  with  Halimeda  tuna  (Figure  26),  which  in  places  was intermixed with the association of Flabellia petiolata, an association with Dictyota linearis, an association with Cladophora prolifera, an association with Jania sp., and an association with Acetabularia  acetabulum.  In  places,  the macroalgae  that  formed  these  associations were silted and appeared stressed (Figure 27). In the southern part of the study area, i.e. closer to the  mouth  of  Marsaxlokk  Bay,  the  predominant  associations  were  an  association  with Acetabularia acetabulum, an association with Dictyopteris polypodioides, an association with Dictyota linearis, and an association with Halopteris sp. An association with Padina pavonica (Figure 28) was present throughout the study area. 

 

Ecoserv Ltd  Marine ecological studies at il‐Hofra z‐Zghira and Delimara, made in June ‐ July 2013 

– 25 –

40.  The  biocoenosis  of  infralittoral  algae  also  occurred  on  dead matte  of  Posidonia  oceanica, wherever this occurred in the area surveyed, in particular within a large area in the northern part of the study area and another area present offshore below Fort Delimara. 

 41.   The macrobenthic  fauna  associated  with  this  biocoenosis  included  sponges  Anchinoe  sp. 

(Figure  29),  Ircinia  variabilis  (Figure  29)  and  Chondrilla  nucula  (Figure  30);  the  anemone anemonia viridis, bryozoans (including Schizoporella and Reptadeonella sp.), hydroids, many polychaetes,  including  sabellids,  serpulids and  the dogworm Hermodice  carunculata; many gastropods,  including  Stramonita  haemastoma  and  Hexaplex  trunculus,  an  ascidian Pyurdidae  sp.,  and  the  urchin  Paracentrotus  lividus  (present  in  the  southern  parts  of  the study area). 

 

 

 Figure 26. Photograph  taken at Delimara  showing an association with Halimeda tuna. 

 

 Figure  27.  Photograph  taken  at  Delimara  showing algae  (Padina  pavonica,  Dictyopteris  polypodioides and Dictyota  linearis) covered with silt and appearing stressed. 

Ecoserv Ltd  Marine ecological studies at il‐Hofra z‐Zghira and Delimara, made in June ‐ July 2013 

– 26 –

 Figure 28. Photograph  taken at Delimara  showing an association with the alga Padina pavonica. 

 Figure 29. Photograph taken at Delimara showing the sponge  Anchinoe  sp.  (dark  red),  the  sponge  Ircinia variabilis  (yellow‐grey)  and  the  alga  Dictyopteris polypodioides. 

 Figure  30.  Photograph  taken  at  Delimara  showing  a patch  with  the  sponge  Chondrilla  nucula  (brown‐green),  surrounded by  the  alga Padina pavonica  and an association with Dictyota linearis. 

  

Ecoserv Ltd  Marine ecological studies at il‐Hofra z‐Zghira and Delimara, made in June ‐ July 2013 

– 27 –

Biocoenosis of infralittoral stones and pebbles 

42.  A biocoenosis of infralittoral stones and pebbles occupied a large patch in the northern part of  the  study  area  and  a  long  strip  of  seabed  just  below  the  shore  in  the  vicinity  of DPS (Figures 8 and 31).  In places,  this biocoenosis was present as patches within a mosaic with patches of the biocoenosis of infralittoral algae and of superficially muddy sand in sheltered waters.    The macroflora  recorded on most of  the  stones was  a  low  algal  turf,  except  the larger ones which supported some macroalgae, namely Acetabularia acetabulum (Figure 32), Padina pavonica, Halopteris  spp.,  Jania  spp.  and Dictyota  spp.  The macrofauna  associated with  this  biocoenosis  mainly  comprised  cryptic  species,  with  the  most  abundant  being gastropods, including trochid gastropods Gibbula spp. (but not Gibbula nivosa, which was not recorded from the study area), the crab Xantho sp. and the anomuran Pisida sp. 

 

Biocoenosis of superficially muddy sand in sheltered waters 

43.  A biocoenosis of superficially muddy sand  in sheltered waters was present  in  the northern parts of the study area (Figure 8). This biocoenosis was devoid of macrophytes or epifauna, except  where  a  facies  with  the  seagrass  Cymodocea  nodosa  was  present  (Figure  33).  In places,  this  biocoenosis  was  present  as  patches  within  a  mosaic  with  patches  of  the biocoenosis of  infralittoral algae and of  infralittoral stones and pebbles. The macroepifauna associated with this biocoenosis appeared impoverished and mainly comprised holothurians (of  the  genus  Holothuria)  and  occasional  individuals  of  hermit  crabs  Pagurus  sp.  and Diogenes  pugilator.  However,  a  rich  burrowing  infauna  mainly  comprising  polychaetes, crustaceans and bivalves  is evidently associated with  this biocoensosis, as  indicated by  the numerous burrows openings. 

 

Biocoenosis of polluted harbour mud and sandy mud 

44.  A biocoenosis of polluted harbour mud and  sandy mud occupied a  large part of  the  study area (Figure 8). No macroflora was recorded on the bare muddy sediment that characterised this biocoenosis, except  in places where a facies with Cymodocea nodosa was present. The macroepifauna  associated  with  this  biocoenosis  appeared  impoverished  and  mainly comprised  the  hermit  crab Diogenes  pugilator. However,  a  rich  burrowing  infauna mainly comprising  polychaetes,  crustaceans  and  bivalves  is  evidently  associated  with  this biocoensosis, as  indicated by  the numerous burrow openings.  In places, patches with  shell gravel (Figure 34) formed a mosaic with this biocoenosis. 

 

 Figure 31. Photograph taken at Delimara showing the biocoenosis of infralittoral stones and pebbles. 

Ecoserv Ltd  Marine ecological studies at il‐Hofra z‐Zghira and Delimara, made in June ‐ July 2013 

– 28 –

 Figure  32.  Close‐up  view  of  the  biocoenosis  of infralittoral stones and pebbles. The alga visible in the photograph is Acetabularia acetabulum. 

 Figure 33. Photograph taken at Delimara showing the biocoenosis of superficially muddy sands  in sheltered waters,  with  a  facies  with  the  seagrass  Cymodocea nodosa. 

 

Biocoenosis of Posidonia oceanica meadows 

45.  A biocoenosis of Posidonia oceanica meadows was present off the DPS in the western part of the study area. The seagrass meadows that formed part of this biocoenosis appeared to be stressed,  as  evidenced  by  the  heavy  epiphytic  growth  on  the  canopy  and  the  distended leaves (Figure 35). Shoot density values recorded by Ambiente / CIBM from this meadow at a water depth of 9 m (see para 16 & 17) varied between a minimum of 61 and a maximum of 86; these values are considered on the low side for local meadows of the seagass at the given sampling depth and are further evidence of the stressed state of P. oceanica at the site. The biota associated with the P. oceanica meadows included many species of algal epiphytes and sessile macrofauna  (mostly  hydroids,  bryozoans  and  polychaetes)  and motile macrofauna (comprising molluscs, polychaetes and crustaceans). 

 

Ecoserv Ltd  Marine ecological studies at il‐Hofra z‐Zghira and Delimara, made in June ‐ July 2013 

– 29 –

 Figure  34.  Photograph  taken  at  Delimara  showing  a patch with  shell gravel which was  recorded  in places from  the  biocoenosis  of  polluted  harbour  mud  and sandy mud. 

 Figure 35. Photograph taken at Delimara showing the biocoenosis of Posidonia oceanica meadows. 

  

Demersal and pelagic fauna 46.  The  demersal  invertebrate  fauna  encountered  in  the  study  areas  mainly  comprised  an 

individual of  the  cuttlefish  Sepia officinalis, occasional  individuals of  the  common octopus Octopus  vulgaris  and  individuals  of  the  jellyfish  Pelagia  noctiluca.  Several  demersal  fish species were recorded during the surveys; a list of these together with details of the habitat from where they were recorded is presented in Table 4.  

 47.  Apart  from  the  fauna described above and  that  indicated  in Table 4, no other macroscopic 

pelagic species were encountered in the study area during the survey.       

Ecoserv Ltd  Marine ecological studies at il‐Hofra z‐Zghira and Delimara, made in June ‐ July 2013 

– 30 –

4. APPRAISAL OF RESULTS AND POLICY CONTEXT 

GENERAL 

Physical characteristics 48.  The  shore  and  seabed  in  the  study  areas  are  very  heterogeneous  and  include  bedrock, 

artificial substrata (including wharves and jetties), accumulations of boulders, cobble/pebble beaches, and a  small  sandy beach. Likewise,  the  sublittoral bottom  is very heterogeneous, and includes artificial substrata, rocky substrata, boulder fields, accumulations of cobbles and pebbles, biogenic substrata (dead Posidonia oceanica matte) and soft sediments. 

 49.  The underwater visibility was good at il‐Hofra z‐Zghira but poor to fair at Delimara. No strong 

currents were noted close to the seabed, but a current was present in il‐Hofra z‐Zghira due to turbulence from the thermal effluent discharge there. 

   

Biological characteristics 50.  Overall,  the  shore  and  benthic  biotic  assemblages,  and  the  demersal  and  pelagic  fauna 

(including fish) recorded from the study area are typical of those occurring in local bays and inlets.  In  general,  the  type  of  benthic  assemblages  and  habitat  types  that  occurred  was influenced by the physical features of the seabed and water quality characteristics.  In parts of the study areas, a mosaic of different assemblage types was present, which results from the heterogeneity in physical characteristics of the seabed. Overall, the benthic assemblages and  demersal  fauna  appeared  to  be  in  a  better  state  in  il‐Hofra  z‐Zghira  compared  to Delimara.  This  was  especially  striking  in  the  case  of  seagrass  (Cymodocea  nodosa  and Posidonia  oceanica)  habitats,  which  were  in  a  much  better  state  at  il‐Hofra  z‐Zghira compared to Delimara. 

  

POLICY CONTEXT 

51.  No part of the shore or the marine environment in the study areas is scheduled as an Area of Ecological  Importance  (AEI) or as a Site of Scientific  Importance  (SSI) as defined  in policies RCO 10 and RCO 11 of the Malta Structure Plan (MSP) (Malta Structure Plan, 1992a, b).  

52.  Neither of  the  two  study  areas  is  identified  as  a  candidate  ‘Marine Conservation Area’  in either MSP  Policy MCO1`  or  the  ‘Key  Diagram’  accompanying  the Malta  Structure  Plan. However, Delimara  Point  is  listed  as  a  candidate  ‘Marine  Conservation  Area’  (MSP  Policy MCO1). Since at present there are no actual or potential marine protected areas close to the study  area,  no  part  of  this  area  is  presently  likely  to  fall within  a marine  protected  area ‘buffer zone’ or ‘management area’. 

 

      

Ecoserv Ltd  Marine ecological studies at il‐Hofra z‐Zghira and Delimara, made in June ‐ July 2013 

– 31 –

Table 4. List of fish species recorded from the study area. 

Scientific name  Common name Habitat 

Serranus scriba  Painted comber  Biocoenosis of infralittoral algae 

Mullus surmuletus  Striped red mullet  Biocoenosis of well‐sorted fine sands 

Diplodus annularis  Annular sea bream  Biocoenosis of infralittoral algae 

Diplodus vulgaris  Common two‐banded sea bream  Biocoenosis of infralittoral algae 

Diplodus sargus  White sea bream  Biocoenosis of infralittoral algae 

Diplodus puntazzo  Sharp‐snout seabream  Biocoenosis of infralittoral algae 

Chromis chromis  Damselfish Biocoenosis of infralittoral algae and biocoenosis of Posidonia 

oceanica meadows 

Coris julis  Rainbow wrasse Biocoenosis of infralittoral algae and biocoenosis of Posidonia 

oceanica meadows 

Symphodus (= Crenilabrus) spp.  Wrasses  Biocoenosis of infralittoral algae 

Gobius spp.  Gobies 

Biocoenosis of infralittoral algae, biocoenosis of well‐sorted fine 

sands, and biocoenosis of superficially muddy sands in 

sheltered waters 

Blennius spp.  Blennies  Biocoenosis of infralittoral algae 

Parablennius spp.  Blennies  Biocoenosis of infralittoral algae 

Mugil cephalus  Flathead mullet 

Biocoenosis of infralittoral algae, biocoenosis of well‐sorted fine 

sands, and biocoenosis of superficially muddy sands in 

sheltered waters 

Scorpaena porcus  Black scorpionfish  Biocoenosis of infralittoral algae 

Thalassoma pavo  Ornate wrasse  Biocoenosis of infralittoral algae 

 

53.  One  habitat  type  that  is  listed  in  Schedule  I  of  the  Flora,  Fauna  and  Natural  Habitats Protection Regulations, 20067, occurs in both study areas: 

7  The  Flora,  Fauna  and  Natural  Habitats  Protection  Regulations,  2006  ((Legal  Notice  311  of  2006)  transpose  the requirements  of  the  European  Union’s  Habitats  Directive  to  local  legislation.  The  'Habitats  Directive'  is  the  European Union's Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. 

Ecoserv Ltd  Marine ecological studies at il‐Hofra z‐Zghira and Delimara, made in June ‐ July 2013 

– 32 –

1120  Posidonia beds* 

  The number refers to the codes given in Schedule I of the legislation and the asterisk signifies that  Posidonia  beds  are  a  ‘priority  habitat’8.  Schedule  I  (Natural  habitat  types  whose conservation requires the designation of Special Areas of Conservation) of the Flora, Fauna and Natural Habitats Protection Regulations, 2006 requires the competent authority (in this case, MEPA)  to  set  up  a  network  of  Special  Areas  of  Conservation  (called  the  National Ecological Network) for sites hosting the natural habitat types listed in Schedule I9. 

54.  One  species  of  alga  belonging  to  the  genus  Cystoseira  occurs  in  the  study  areas:  C. foeniculacea.  All  locally  occurring  species  of  Cystoseira10  are  protected  by  virtue  of  being listed  in  Schedule  III  “Animal  and  plant  species  of  national  interest  whose  conservation requires  the designation of Special Areas of Conservation” of  the Flora, Fauna and Natural Habitats Protection Regulations, 2006. 

55.  Both  species of  seagrasses  (Posidonia  oceanica  and Cymodocea  nodosa)  that occur  in  the study areas are  listed  in  Schedule  III  “Animal and plant  species of national  interest whose conservation requires the designation of Special Areas of Conservation” of the ‘Flora, Fauna and Natural Habitats Protection Regulations, 2006. The Neptune grass Posidonia oceanica  is also listed in Appendix I of the Bern Convention of which Malta (and the European Union as a whole)  is  a  signatory,  and  in  Annex  II  (List  of  Endangered  or  Threatened  Species)  of  the Protocol concerning Specially Protected Areas and Biological Diversity  in the Mediterranean of the Barcelona Convention, to which Malta  (and the European Union)  is party. The  lesser Neptune grass Cymodocea nodosa is listed in Appendix I of the Bern Convention. 

56.  The  only  faunal  species  recorded  from  the  study  areas  that  features  in  environmental protection legislation is the Rock Urchin Paracentrotus lividus, which is listed in Schedule VIII “Animal and plant species of national interest whose taking in the wild and exploitation may be  subject  to management measures” of  the  same  regulations. Additionally,  this  species  is listed  in  Annex  III  of  the  Protocol  for  Specially  Protected  Areas  and  Biodiversity  in  the Mediterranean11and in Appendix III of the Bern Convention12. 

Annexes  I and  II of  this Directive have been amended by Council Directive 97/62/EC of 27 October 1997. Annex  I of  the Habitats  Directive  lists  natural  habitats whose  conservation  requires  the  designation  of  Special  Areas  of  Conservation. Annex  II  lists species of plants and animals whose habitats must be protected for their survival. Annex  III  lists criteria for selecting  sites  eligible  for  consideration  as  "Sites  of  Community  Importance"  and  designation  as  Special  Areas  of Conservation, while Annex IV lists species of Union interest in need of strict protection. Annex V lists species of plants and animals  of  Union  interest whose  taking  from  the wild  and  exploitation  is  subject  to management,  and  Annex  VI  lists prohibited  methods  and  means  of  capture  and  killing  of  mammals  and  fish,  and  prohibited  modes  of  transport.  In anticipation  of  the  2004  enlargement  of  the  EU,  the  Annexes  of  the  Habitats  Directive were modified  by  the  Act  of Accession  signed  in Athens  on  16th April  2003,  to  take  into  account  the  expanded  geographical  area  of  the  EU15+10. Changes to the annexes due to accession of Bulgaria and Romania were made through Council Directive 2006/105/EC of 20 November 2006. 8 And correspondingly this habitat type is also listed as a ‘Priority habitat’ in Annex I of the Habitats Directive. 9  Correspondingly,  these  habitat  types  are  listed  in  Annex  I  (Natural  habitat  types  of  Community  interest  whose conservation requires the designation of Special Areas of Conservation) of the Habitats Directive as amended by the  ‘Act concerning the conditions of accession of the Czech Republic, the Republic of Estonia, the Republic of Cyprus, the Republic of Latvia, the Republic of Lithuania, the Republic of Hungary, the Republic of Malta, the Republic of Poland, the Republic of Slovenia and the Slovak Republic and the adjustments to the Treaties on which the European Union is founded’ [OJ L 236 of 23.9.2003  p.33  et  seq.]  and  by  ‘Council  Directive  2006/105/EC  of  20 November  2006  adapting  Directives  73/239/EEC, 74/557/EEC and 2002/83/EC in the field of environment, by reason of the accession of Bulgaria and Romania’ [(OJ L 363 of 20.12.2006, p. 368 et seq.]  10 Listed as Cystoseira spp. 11 Annex III of the Protocol for Specially Protected Areas and Biodiversity in the Mediterranean lists species whose exploitation is regulated. 12 Appendix III of the Bern Convention lists protected species of fauna that can be exploited.

Ecoserv Ltd  Marine ecological studies at il‐Hofra z‐Zghira and Delimara, made in June ‐ July 2013 

– 33 –

57.  A summary of the national and international protection status of the species of conservation importance mentioned in part 4 of this report is given below. 

 

Species  EPA 

Flora, Fauna and Natural 

Habitats Protection 

Reg

ulations, 2006 

Barcelona Convention 

Protocol for Specially 

Protected

 Areas and 

Biodiversity in

 the 

Med

iterranea

n. 

Bern Convention 

Convention on the 

Conservation of Eu

ropea

Wild

life and Natural 

Habitats 

EU ‘H

abitats’ 

Council D

irective 92/43/EEC

 

(as am

ended) 

Other 

Cystoseira spp.  Sch III  Only named species listed  

Only named species listed  —  — 

Cymodocea nodosa  Sch III  Ann II  App I  —  — Posidonia oceanica  Sch III  Ann II  App I  —  — Paracentrotus lividus  Sch VIII  Ann III  App III  —  —  

5. EVALUATION OF POTENTIAL IMPACTS ON MARINE ECOLOGY AND ECOLOGICAL STATUS

58.  The  following  assessment  is based on  information  supplied  to  the  present  consultants  by ERSLI Consultants Ltd in the form of the following documents: 

Project description statement (PDS) for the proposed development.  Document by Enemalta titled ‘Construction phase information’ (CPI).   Report by Kema DNV titled ‘New CCGT Plant at Delimara: intended activity and 

environmental emissions and impact’.  Report by Enemalta and DNV Kema titled ‘LNG Storage and Re‐gasification Plant – 

minimum functional specifications’.  Report by Enemalta titled ‘CCGT Plant ‐ Minimum Functional Specifications, produced by 

Enemalta’.  Report by Roberto Vaccari titled ‘Project for a new LNG regasification facility to be 

located in the Marsaxlokk Bay: QRA preliminary report’.  SALIENT ASPECTS OF THE PROPOSED DEVELOPMENT 

59.  The Delimara Power Station (DPS) currently supplies 452 MW, which amount to 73% of the current fossil fuel energy generation and operates using the following: 

‐ ‘Delimara  1‐ST’:  two  steam  turbine  generators  that were  commissioned  in  1992,  and which have  a capacity of 120 MW, and fired on heavy fuel oil. 

‐ ‘Delimara 2A‐GT’: two gas turbines that were commissioned  in 1996, and which have a capacity of 74 MW, and fired on gasoil; 

Ecoserv Ltd  Marine ecological studies at il‐Hofra z‐Zghira and Delimara, made in June ‐ July 2013 

– 34 –

‐ ‘Delimara 2B’: a combined cycle gas turbine (CCGT) comprising two gas turbines and one steam turbine that was commissioned in 1998, fired on gasoil, and delivering 110 MW 

‐ ‘Delimara  3’:  consisting  of  8  internal  combustion  engines  fired  on  heavy  fuel  oil  that were commissioned in 2012, and delivering 149 MW.  

60.  Malta’s  recent  energy  strategy  proposes  that,  to  reduce  the  cost  of  fossil  fuel  and environmental  impacts of  the DPS,  the  latter will  replace use of heavy  fuel oil with use of Liquefied  Natural  Gas  (LNG).  This  would  also  be  supplemented  with  200 MW  of  energy imported from Sicily via an Interconnector. To achieve conversion from fossil fuel to LNG, the the following development is proposed for the DPS:  Conversion of Delimara 3 to operate on natural gas;  Construction of a new 180‐220MW CCGT;  Construction of a Liquid Natural Gas (LNG) terminal. 

 61.  The chosen option for the locating the CCGT and LNG is one in which the CCGT will be located 

at Site A, a floating storage unit (FSU) will be permanently berthed at an offshore  jetty that will be deployed off Site B, and a regasification unit (RU) will be located at Site B (Figures 36 and 37).   

  

 Figure 36.  Schematic  layout  of  the  Delimara  Power  Station  complex  showing  the  two 

designated  sites  ‘A’  and  ‘B’  that will  be  developed. Adapted  from  Figure  2  in  the ‘Construction Phase Information’ document. 

 

 

Ecoserv Ltd  Marine ecological studies at il‐Hofra z‐Zghira and Delimara, made in June ‐ July 2013 

– 35 –

 

Figure 37.  Schematic  layout  of  the  project  in which  the  CCGT will  be  located  at  Site  A,  the floating storage unit will be  located next to an offshore  jetty and the regasification unit will be located on land, at the southernmost side of the Delimara Power Station complex. Drawing supplied by ERSLI to Ecoserv. 

Ecoserv Ltd  Marine ecological studies at il‐Hofra z‐Zghira and Delimara, made in June ‐ July 2013 

– 36 –

IMPACTS ON MARINE ECOLOGY 

62.  The present assessment of impacts will consider the following phases: (i) Construction phase (ii) Operational phase (iii) Phase involving decommissioning of Delimara 1 and changes to Delimara 3 

Furthermore, given that full details on the development were not yet available up to the time of writing  of  the  present  report,  resulting  in  a  degree  of  uncertainty,  the  ‘precautionary principle’ was applied and the worst case scenario was considered. 

63.  In making the present assessment of impacts, the procedure will be as follows: ‐ The main source of  impact will be  identified and described, and specifically established 

as adverse or beneficial. ‐ The likely severity and extent, as well as the receptors and sensitivity of the latter will be 

described. ‐ Any possible mitigation measures will be indicated.  ‐ The following criteria will be used to determine the level of overall impact: 

o Insignificant: no impact or change is predicted in space and time; o Low:  low  level of  impact that  is  localised  in space,  i.e. within the AoI, and occurring 

over a short time period of a few days to a few weeks, and which may be mitigated. o Moderate: moderate  level of  impact that may extend beyond the area of  influence 

and  occurring  over  a  longer  time  period  of  several months,  and  which may  not necessarily be mitigated. 

o High: high level of impact that may extend well beyond the area of influence, which will probably leave some permanent/residual effects, and which may not necessarily be mitigated. 

‐ The duration of the impact and residual effects will be considered. The above procedure will be adopted using the current environmental status as baseline. 

 

Construction phase 

64.  The development is expected to extend over a maximum period of 18 months. The following activities  and  interventions  are  likely  to  have  an  impact  on  shore  and marine  biota  and habitats: 

Site clearance, excavation, piling, concreting and construction of the CCGT on land at Site A and deployment of the re‐gasification facility (RF) , as well as excavation and trenching works on land that are required to connect the CCGT to the other components (RU etc.), and to connect the former to the existing distribution network. 

Deployment  of marine  structures,  namely  the  FSU,  jetty,  pier  and  laying  of  the  rock armour (the latter being located at the southernmost part of the DPS complex. 

Discharges  to  the marine  environment  and  other  disturbance  activities  resulting  from vessels and equipment used  in the sea that will support the construction works, as well as vessels, barges and equipment used  in the sea for deployment of the FSU, jetty, pier  and rock armour. 

The construction works will be carried out at Delimara but no such activity will be carried out at il‐Hofra z‐Zghira. Therefore, only the former site is deemed prone to the potential adverse impacts of the construction phase, as described below. 

 

 

Ecoserv Ltd  Marine ecological studies at il‐Hofra z‐Zghira and Delimara, made in June ‐ July 2013 

– 37 –

Site clearance, excavation, piling, concreting and construction/installation works 

Source of impact  Accidental and/or deliberate spillage of construction material and/or excavation waste.  Accidental and/or deliberate spillage of toxic substances and contaminants.  Disturbance from increased vessel traffic. 

65.   The CPI states  that works at Site A  in  relation  to construction of  the CCGT will necessitate piling. All piles will be cored with proprietary machinery. The resultant material will be loaded and carted away to an authorised dumping site. Concreting for this activity will be delivered either by ready‐mix trucks or through the assembly of an onsite batching plant. The former will require the transit of the ready‐mix trucks from the supplier’s yard to the site which will make use of distributor roads, which route will need to be approved through the final CMP prior to the commencement of construction works.  In the case of the onsite batching plant material  for  the  required mix will be  delivered by  trucks  to  site, making use of  the  route previously mentioned, stored on site in dedicated parcels with all necessary measures being taken for protection of the environment. On completion of the piling works,  levelling of the site will be undertaken by delivery of graded material,  spreading of  the  said material  and compaction  of  same.  Following  this  process  the  ground  slab  /  platform  will  be  cast.  On completion  of  these works  the  erection  of  the  steel  structure will  commence.  The  CCGT structure will most probably  involve the erection of the steel columns with roof beams and external cladding.  Intermediate  structures with concrete  slabs might be  required  to create access for high level equipment. The structure will be manufactured off site and delivered to site  either  by  barge  from  a  designated  facility  or  by  road  by  making  use  of  the  route mentioned  above.  In  the meantime,  the equipment  for  the CCGT will be delivered  to  site most  probably  by  ship  directly  to  Enemalta making  use  of  Enemalta’s  existing  jetty.  The material will be unloaded by crane and transported to its required location for installation. 

66.  The PDS refers to excavation waste which will need to be dealt with and which may include a portion of the mound which currently covers area B. Some of this waste may be disposed of in  authorised  landfills.  The  types,  sources,  and management  of wastes  anticipated  to  be generated during the construction of the proposed project facilities are: combustible wastes (such as scrap wood, cardboard, paper), and land clearing wastes. Bulky construction wastes, such as concrete, clean fill material, scrap metal, glass, and plastics will be generated during construction of the proposed project. Furthermore, hazardous waste, industrial solvents and other chemical wastes, grease trap pumpings,  lead acid storage batteries, and used oil, will be generated during the construction phase of the proposed project. 

 

Accidental and/or deliberate spillages of construction material and/or excavation waste 

67.  Although the works will take place on  land, the area  involved extends to the vicinity of the shore, such that there is a real potential for accidental or deliberate introduction of material resulting from the works into the marine environment. 

68.  Debris, spoil, rubble, raw building material stored on‐site, and concrete mixes and mortars may find their way into the marine environment. This may be due to deliberate or accidental spillage, or, more likely, due to transport by wind, water run‐off or strong wave action. 

69.  Run‐off has  the potential  to  transport all manner of material  from  large blocks of stone  to very fine suspended particles, depending on the severity of the run‐off event. The impact of transported material  will  depend  greatly  on  its  size:  at  one  extreme,  heavy  objects  will mechanically damage biota and cover  the  seabed; at  the other,  fine particles will  increase turbidity, decrease light penetration, and cover existing benthic assemblages. 

Ecoserv Ltd  Marine ecological studies at il‐Hofra z‐Zghira and Delimara, made in June ‐ July 2013 

– 38 –

70.  Settling of fine particles on marine bottoms that themselves consists of fine sediment is not expected to have any large impact; however, photosynthetic organisms, including algae and seagrasses  present  off  Delimara,  may  be  adversely  affected  by  a  reduction  in photosynthetically  active  radiation  reaching  the  bottom.  Dissolved  substances  and suspended particles in the water column, such as may potentially be introduced by runoff or strong wave  action,  can  result  in  turbid  conditions  through:  (i)  the  physical  presence  of suspended  particles  in  the water  column,  and  (ii)  as  a  result  of  an  increase  in  plankton populations due  to nutrient enrichment.  In either  case,  suspended particulate matter  and plankton attenuate  light by absorption and scattering so  that  the amount of  light  reaching the photosynthetic  tissues of attached algae and of  the  seagrasses present  is considerably reduced.  Dissolved  nutrients  may  cause  epiphytic  assemblages  on  the  seagrasses  to proliferate,  again  reducing  the  amount  of  light  that  reaches  the  plants’  photosynthetic tissues.  If  the  quantity  of  photosynthetically  active  radiation  reaching  the  photosynthetic tissues of seagrasses  is significantly reduced, the plants will show a decrease  in growth rate and in extreme situations, may finally die off altogether. Additionally, an increase in epiphyte load will  render  the  leaves  of  the  seagrasses more  susceptible  to  damage  by waves  and currents through an increase in mechanical resistance. 

71.  The increased turbidity is likely to result in a reduction in the pelagic and demersal fish fauna of the areas adjacent to the site of operations. 

72.  Fine particles will also be transported into the sea by wind. The most likely marine receptors include assemblages of photophilic algae growing on hard substrata, the seagrass meadows, as well as bare sediment. Receptors of conservation importance likely to be affected are the seagrasses Posidonia oceanica and Cymodocea nodosa. 

73.  The waters  inside Marsaxlokk Bay,  particularly  those  in  its  inner  reaches  and  at Delimara already  have  some  suspended  sediment  in  the  water  column,  as  evidenced  by  data  on turbidity and total suspended solids collected during water quality surveys made in the past (e.g. see Axiak, 2013), as well the observations by divers during fieldwork made as part of the present marine ecological surveys. Therefore, the biota present in the study area are already adapted to  life  in turbid water with some nutrients present. However, this also means that some species, namely the seagrasses Posidonia oceanica and Cymodocea nodosa are already stressed  such  that  further  stress  induced  through  further  sediment  loading  of  the water column may  result  in  larger  adverse  effects  than would otherwise be  experienced by  the plants had they been  in a better state of health, and which  in the worst case scenario may lead to their demise. 

74.  The amounts and rates of discharge of the materials referred to above will depend heavily on a number of factors and variables,  including the nature of works to be undertaken,  level of workmanship and supervision of works, application of precautionary measures, grain size of the spilled material, the hydrodynamic regime of the area, and the duration and time of year when the works are carried out (due to the indirect influence of rainfall, wave action and sea currents). The PDS  refers  to a number of  standards, guidelines and conventions which  the developer will be adopting to ensure good practice and which are expected to help mitigate adverse  impacts. Therefore, good practice and measures to reduce spillage  into the marine environment,  hence  ones  that  prevent  pollution  of  the  marine  environment,  will  be important to mitigate adverse impacts. 

75.  Taking the above into consideration, the overall level of impact is deemed Low to moderate. 

76.  With respect to the duration of impact and residual effects; the impacts will operate during clearance, excavation, piling, concreting and construction phase of the project. Inert material introduced to the marine environment will remain there for  long periods of time (decades) and will continue having a mechanical effect. Eventually this material is expected to become 

Ecoserv Ltd  Marine ecological studies at il‐Hofra z‐Zghira and Delimara, made in June ‐ July 2013 

– 39 –

incorporated within the existing sediment in the case of fine material on sediment bottoms, or  will  become  colonised  by marine  life,  in  the  case  of  larger  items,  as  seems  to  have happened with  stones,  boulders  and  other  debris  originated  from  dumped material  and anthropogenic items present in the marine area at Delimara. 

 

Accidental and deliberate spillage of toxic substances and contaminants 

77.  Although the works will take place on  land, the area  involved extends  in the vicinity of the shore, such that there  is a real potential for accidental or deliberate  introduction as well as washings, concrete that has not yet set, and spilled oil, fuel or other chemicals, This may be due to deliberate or accidental spillage, or, more likely, due to transport by wind and water run‐off.

78.  The  introduction  of  oil,  fuel  and  other  chemicals  and  substances,  whether  deliberate, accidental or indirect (e.g. with runoff following heavy rainfall) may have toxic effects on the marine flora and fauna, which could include reduction in reproductive potential and capacity, fertilisation success, development and physiological function. 

79.  The waters  inside Marsaxlokk Bay,  particularly  those  in  its  inner  reaches  and  at Delimara already have  some  contaminants,  as  evidenced  by data on water quality  collected during past surveys (e.g. see Axiak, 2013). Therefore, the biota present in the study area are already adapted  to  life  in  a  harbour  environment.  However,  this  also means  that  some  species, including  the  seagrasses  Posidonia  oceanica  and  Cymodocea  nodosa,  are  already  stressed such that further stress induced through pollution of the marine environment result in larger adverse effects than would otherwise be experienced by the plants had they been in a better state  of  health.  However,  it  is  not  envisaged  that  these  species  will  be  at  any  risk  of decimation as a result of such a potential adverse impact. 

80.  The  amounts  and  rates  of  potential  discharge  of  toxic  substances  and  contaminants will depend heavily on a number of  factors and variables,  including  the nature of works  to be undertaken,  level  of workmanship  and  supervision  of works,  application  of  precautionary measures, toxicity of substances and levels of contaminants, the hydrodynamic regime of the area, and the duration and time of year when the works are carried out (due to the indirect influence of rainfall, wave action and sea currents). The PDS refers to a number of standards, guidelines and conventions which the developer will be adhering to ensure good practice and which are expected to help mitigate adverse impacts. Therefore, good practice and measures to  reduce  spillage  into  the marine environment, hence ones  that prevent pollution of  the marine environment, will be important to mitigate adverse impacts. 

81.  Taking the above into consideration, the overall level of impact is deemed low unless there is large accidental or deliberate spillage. 

82.  With respect to the duration of impact and residual effects; the impacts will operate during clearance,  excavation,  piling,  concreting  and  construction  phase  of  the  project.  Any  toxic substances and contaminants  introduced to the marine environment will be rapidly flushed out or incorporated into the sediments, where they will remain there for long periods of time (decades or more). 

 

Disturbance from increased vessel traffic 

83.  Some  disturbance  is  expected  from  vessels  during  transportation  of  equipment  and components  to  be  used  in  construction  of  the  CCGT.  The  impact  of  such  disturbance  for marine vessels will be the same as detailed in para 109 ‐ 118 below. 

Ecoserv Ltd  Marine ecological studies at il‐Hofra z‐Zghira and Delimara, made in June ‐ July 2013 

– 40 –

Laying of  rock armour and deployment of marine  structures, namely  the  jetty,  the FSU and  the pier. 

Source of impact  Physical  alteration  of  the  seabed  through  laying  of  the  rock  armour  and  deployment  of 

offshore structures.  Introduction of fine particulate material.  Introduction of toxic substances and contaminants.  Changes to the hydrodynamic regime of the area. 

84.  As already stated in para 66 above, the PDS refers to excavation waste which will need to be dealt with and which may include a portion of the mound which currently covers area B. It is expected that this waste will be disposed of in authorised landfills. 

85.  A 390 m  long  jetty will be deployed offshore and the FSU will be deployed alongside  it (see Figure 37). The offshore  jetty will be  connected  to  the  shore by a pier,  some 300 m  long, which will serve to support the main fuel line and other necessary service lines. The jetty will include mooring  points  required  for  the  vessel  and will  be  constructed  by making  use  of cored piles down into the rock. The offshore geotechnical investigation has shown that rock is at a depth of 20 m, and  it  is assumed that piles will need to be taken down to an overall depth of  approximately  30 m.  The  foundation works  for  the  jetty may  involve use of  the following equipment:  Four barges  Four pilers (900mm diameter)  Concrete Pump  Four Ready mix trucks  Large water pumps  Two 25T mobile Cranes 

On  completion  of  the  foundation,  the  jetty  deck will  be  constructed.  The  deck will most probably be formed of semi precast elements, delivered to site by barges and put in place by making use of proprietary cranes also located on barges. On placing of the precast elements, concreting of the deck will be carried out. These works will involve the following equipment:  Four barges  Two 80T cranes  Concrete pumps  Four Ready Mix trucks 

86.  According to information provided by the client, during any one visit the LNG tanker will use the double bank method for re‐supply, side by side and parallel to the FSU. .The LNG tankers are  typically up  to 300 m  in  length  and with  a draft of up  to 12 m. Up  to  180,000 m3 of storage tanks may be required to store the LNG prior to regasification. This will be the largest single item within the LNG / re‐gasification facility.  

87.  Figure 38 shows an overlay of the project  layout relative to the benthic habitats  in the AoI. The area of seabed occupied by the FSU and jetty  is 11,230 m2, that occupied by the access pier  is 1,579 m2,  and  that occupied by  the  rock  armour  is 1,871 m2  The  rock  armour will extend seaward over a vertical distance of some 10 m from the shoreline and landward over a distance of around 5 m (see Figure 39). 

 

Ecoserv Ltd  Marine ecological studies at il‐Hofra z‐Zghira and Delimara, made in June ‐ July 2013 

– 41 –

 Figure  38.  Overlay  showing  the  location  of  the  FSU,  jetty,  pier  and  rock armourin  relation  to  the marine  benthic  assemblages  present within  the Delimara study area.  

Ecoserv Ltd  Marine ecological studies at il‐Hofra z‐Zghira and Delimara, made in June ‐ July 2013 

– 42 –

 Figure 39. Section drawing showing the rock armour that will be laid on the shore and just below it at Site B. Source: Electrogas Malta.   

Physical  alteration  of  the  seabed  through  laying  of  rock  armour  and  deployment  of  offshore structures 88.  All  presently  occurring marine  habitats  and  biota  in  the  area where  the  rock  armour will 

cover  the seabed, where  the  jetty and pier and associated mooring blocks will be  located, will be permanently obliterated. These are likely to be the bioceonoses of: infralittoral algae, infralittoral stones and pebbles, and polluted harbour mud and sandy mud (see Figure 38). 

89.  None of the biota of the bioceonoses of  infralittoral algae,  infralittoral stones and pebbles, and polluted harbour mud and sandy muds, which will be smothered or  influenced by  the added  material  and/or  substances  are  of  conservation  importance  and  therefore  the receptors that are likely to be affected do not include species of conservation concern. 

90.  Material  spilling  over  from  the  area  where  the  rock  armour  will  be  placed  and  where construction  of  the  jetty  and  pier will  be  undertaken,  into  adjacent  areas, will  obliterate benthic  assemblages  and  mechanically  damage  biota.  The  severity  of  these  effects  will depend  on  the  material  used  to  construct  the  structures  and  on  the  constructional methodology. For massive concrete structures and  large boulders,  the effect  is  likely  to be minimal.  

91.  The PDS  refers  to a number of standards, guidelines and conventions which  the developer will be adhering  to ensure good practice and which are expected  to help mitigate adverse impacts. Therefore, good practice and measures to reduce spillage into nearby areas, hence ones that prevent pollution of the marine environment, will be important to mitigate adverse impacts. 

92.  Taking the above into consideration, the overall level of impact is deemed moderate. 

Ecoserv Ltd  Marine ecological studies at il‐Hofra z‐Zghira and Delimara, made in June ‐ July 2013 

– 43 –

93.  With  respect  to  the  duration  of  impact  and  residual  effects;  decimation  of  the  benthic assemblages  present  within  the  footprint  of  the  rock  armour,  and  under  the  newly constructed  jetty  and  pier,  will  be  permanent.  However,  a  beneficial  effect  is  that  the boulders  used  for  the  rock  armour  and  the  constructed  submerged  structures will  create additional hard substrata  for sessile organisms, which  in  turn may attract other organisms, including  invertebrates  and  fish.  The  hard  structures  are  expected  to  be  colonised  by  a biocoenosis of infralittoral algae. 

 

Introduction of large amounts of fine particulate material 94.  Fine material from laying the rock armour and construction of the jetty and pier will disperse 

in  the water  column  and will  be  transported  to  adjacent  areas. Where  this material will finally  deposit  will  depend  greatly  on  the  hydrodynamic  regime  of  the  area.  Suspended matter  introduced  into  the water  column and  carried by  sea  currents will obliterate biota where  it settles  in  large quantities and will have adverse  impacts due  to smothering, even where  the  level of  sedimentation  is not high enough  to kill biota outright;  for example by clogging  the  gills  and  filter‐feeding  mechanisms  of  sessile  species.  Disturbance  and  the increased turbidity are likely to result in a reduction in the fish fauna of the areas adjacent to the marine construction sites. 

95.  Since the bottom  in the area where the works are envisaged to be made  is mostly polluted harbour mud  and  sandy mud,  the  biota  associated  with  this  habitat  is  likely  to  recover quickly  from  the  disturbance.  However,  sensitive  habitats  located  at  a  distance  from  the envisaged  works  area,  such  as  algae  and  seagrasses,  may  be  adversely  affected  by  a reduction  in photosynthetically active  radiation  reaching  the bottom due  to  the  increased turbidity, which may result from dissolved substances and suspended particles  in the water column.  In  the  case  of  dissolved  substances,  these may  lead  to  an  increase  in  plankton populations due  to nutrient enrichment.  In either  case,  suspended particulate matter  and plankton attenuate  light by absorption and scattering so  that  the amount of  light  reaching the photosynthetic  tissues of attached algae and of  the  seagrasses present  is considerably reduced.  Furthermore,  dissolved  nutrients  may  cause  epiphytic  assemblages  on  the seagrasses  to  proliferate,  again  reducing  the  amount  of  light  that  reaches  the  plants’ photosynthetic  tissues.  If  the  quantity  of  photosynthetically  active  radiation  reaching  the photosynthetic tissues of seagrasses is significantly reduced, the plants will show a decrease in  growth  rate  and  in  extreme  situations, may  finally  die  off  altogether.  Additionally,  an increase  in  epiphyte  load  will  render  the  leaves  of  the  seagrasses  more  susceptible  to damage by waves and currents through an  increase  in mechanical resistance. These effects are particularly of concern given the presence of the two seagrass species Posidonia oceanica and Cymodocea nodosa, which are receptors of conservation importance. 

96.  The extent of the affected area will depend on many factors most of which are unknown, but which  include the size and amount of particles that enter  into suspension, and where  they are  transported and deposited.   Other  important  factors  include  the  level of workmanship and supervision of works, application of precautionary measures, the hydrodynamic regime of the area, and the duration and time of year when the works are carried out (due to the indirect  influence  of  wave  action  and  sea  currents).  The  waters  inside  Marsaxlokk  Bay, particularly those in its inner reaches and at Delimara already have suspended solids, hence reduced transparency, as evidenced by data on water quality collected from surveys made in the past (e.g. see Axiak, 2013). Dredging activities, which generate a great deal of suspended matter  in the water column, are occasionally carried out  in the eastern part of Marsaxlokk. Therefore, the biota present in the study area are already adapted to some turbid conditions. However, this also means that some species, including the seagrasses Posidonia oceanica and Cymodocea  nodosa,  are  already  stressed  in  such  an  environment  and  that  further  stress 

Ecoserv Ltd  Marine ecological studies at il‐Hofra z‐Zghira and Delimara, made in June ‐ July 2013 

– 44 –

induced through substantial  increases  in turbidity of the water column may result  in  larger adverse effects –  including potential demise  ‐ than would otherwise be experienced by the plants had they been in a better state of health. 

97.  The PDS  refers  to a number of standards, guidelines and conventions which  the developer will be adhering to ensure good practice, namely ones that prevent pollution of the marine environment,  and which  are  expected  to  help mitigate  adverse  impacts.  Therefore,  good practice and measures to reduce spillage  into the marine environment will be  important to mitigate adverse impacts. 

98.  Taking the above into consideration, the overall level of impact is deemed low to moderate. 

99.  With respect to the duration of impact and residual effects; these will depend on the amount of particulate matter introduced into the marine environment and the extent to which such material  is transported by physical environmental factors. However,  it  is envisaged that the presence of particulate matter originating from the works will cease shortly after cessation of the deployment/construction activities. Eventually  the  fine material  is expected  to become incorporated within the existing sediment on soft sediment bottoms. 

 

Introduction of toxic substances and contaminants 

100.  Release  of  toxic  substances  from  sediments  resulting  from  disturbance  during deployment/construction of the offshore structures may have negative effects on the marine flora and fauna, resulting in toxic effects on the marine flora and fauna, which could be acute or chronic. 

101.  It  is not envisaged  that any  toxic  substances will originate  from  the boulders and material used  for  the  rock  armour,  hence  no  negative  effects  on  the marine  flora  and  fauna  are predicted. 

102.  In any case, the waters  inside Marsaxlokk Bay, particularly those  in  its  inner reaches and at Delimara  already  have  some  contaminants,  as  evidenced  by  the  available  data  on water quality  (Axiak,  2013).  Furthermore,  sites with Marsaxlokk Bay, more  specifically  the  areas located  in  the  vicinity  of  the Malta  Freeport,  are  dredged  regularly.  Therefore,  the  biota present  in  the  study  area  are  already  adapted  to  life  in  a  harbour  environment  where potential contaminants released from the sediments during dredging activities or introduced accidentally by vessels and other harbour equipment and disturbance due  to are present. However, this also means that some species, including the seagrasses Posidonia oceanica and Cymodocea  nodosa  are  already  stressed  such  that  further  stress  induced  through  further introduction of contaminants may result  in  larger adverse effects than would otherwise be experienced  by  the  plants  had  they  been  in  a  better  state  of  health.  However,  it  is  not envisaged that these species will be at any risk of decimation as a result of such a potential adverse impact. 

103.  The  amounts  and  rates  of  potential  discharge  of  toxic  substances  and  contaminants will depend heavily on  a number of  factors  and  variables,  including  the nature of engineering works  to  be  undertaken,  level  of  workmanship  and  supervision  of  works,  application  of precautionary  measures,  toxicity  of  substances  and  levels  of  contaminants,  the hydrodynamic  regime of  the area, and  the duration and  time of year when  the works are carried out (due to the indirect influence of rainfall, wave action and sea currents). The PDS refers  to  a  number  of  standards,  guidelines  and  conventions which  the  developer will  be adhering  to  ensure  good  practice,  namely  ones  that  prevent  pollution  of  the  marine environment, which are expected to help mitigate adverse impacts. Therefore, good practice and measures to reduce spillage  into the marine environment will be  important to mitigate adverse impacts. 

Ecoserv Ltd  Marine ecological studies at il‐Hofra z‐Zghira and Delimara, made in June ‐ July 2013 

– 45 –

104.  Taking the above into consideration, the overall level of impact is deemed low, unless there is some major accident, in which case the significance of impact is deemed moderate to high. 

105.  With respect to the duration of impact and residual effects; the impacts will operate during deployment  of  the  rock  armour  and  construction  of  the  offshore  structures.  Any  toxic substances and contaminants  introduced to the marine environment will be  flushed out or incorporated  into  the  sediments, where  they will  remain  there  for  long  periods  of  time (decades or more). 

 

Changes to the hydrodynamic regime of the area 

106.  Changes  to  the current shore  through deployment of  the  rock armour and construction of the  jetty  and  pier,  as  well  as  the  presence  of  the  FSU, may  change  the  existing  water circulation patterns, which  in  turn may have  a  variety of effects,  including  changes  in  the pattern of  sedimentation on  the bottom, which may  cause a  change  in  the distribution of benthic assemblages.  

107.  According to a modelling study undertaken by Svasek Hydraulics (Rotterdam), the following were  concluded  with  respect  to  potential  changes  in  water  movement  and  circulatory patterns within Marsaxlokk Bay: • The proposed offshore  jetty and associated structures (Figure 39)   will not result  in an 

appreciable change to the water movement patterns already present in the eastern and northern parts of the bay, although some additional stagnation may occur between the shore connection of the jetty and the DPS cooling water intake. 

• Using either of ‘open’ (piled) or ‘closed’ (solid) jetty construction designs, will not result in any appreciable change to the water movement patterns already present within the bay.  

108.  Taking the above into consideration, the overall level of impact is deemed insignificant. 

 

Discharges to the marine environment and other disturbance activities resulting from vessels and equipment used in the sea that will support the construction works, as well as vessels, barges and equipment  used  in  the  sea  for  laying  the  rock  armour,  construction  of  the  offshore  jetty  and associated structures. 

Source of impact  Disturbance  and  pollution  by  vessels, machinery  and  equipment  used  for  laying  the  rock 

armour, and for construction of the jetty and pier and deployment of the FSU.  

 Disturbance and pollution by vessels, machinery and equipment used  for  laying the rock armour, and for construction of the jetty and pier and deployment of the FSU 109.  Oil,  fuel and other  chemicals and  substances originating  from  the equipment used  for  the 

works, as well as from vessels present in the area to support the works may cause pollution of  the  area,  resulting  in  toxic  effects  on  the marine  flora  and  fauna, which  could  include reduction  in  reproductive  potential  and  capacity,  fertilisation  success,  development  and physiological function. 

110.  The PDS refers to the potential introduction of shipboard waste and sanitary waste. Sanitary waste  originating  from  the  vessels may  increase  nutrient  levels  in  the water  column  and contribute  to  the susceptibility  to eutrophication episodes, particularly  if  these are already contaminated with  sewage  or  other  organic matter,  as  is  the  case within  the  inner  and central parts of Marsaxlokk Bay.   

Ecoserv Ltd  Marine ecological studies at il‐Hofra z‐Zghira and Delimara, made in June ‐ July 2013 

– 46 –

111.  Vessel  activity  necessary  to  support  the  required  works,  including  transport  of  heavy machinery,  fuel  and  units  to  construct  the  CCGT  and  LNG  storage  tanks,  is  expected  to increase.  This will  lead  to  general  disturbance;  vessels  navigating  in  the  area will  create currents, including water movement generated by propeller action, that re‐suspend bottom sediment, resulting in increased turbidity. Such disturbance and the increased turbidity may lead  to  the  effects  already  described  in  para  94  ‐  99  above  and  to  all  the  other  impacts associated  with  re‐suspended  sediments  discussed  above.  Furthermore,  since  sediment contains  adsorbed nutrients  and  toxic  substances  that  are  released on  re‐suspension,  the activity  of  vessels/machinery/equipment may  increase  the  nutrient  concentration  of  the water column and contribute to the susceptibility of the waters to eutrophication episodes, particularly if these are already contaminated with sewage or other organic matter, as is the case within  the  inner and  central parts of Marsaxlokk Bay, while  the  introduction of  toxic substances could have potential acute or chronic effects on the marine biota. 

112.  Floating vessels and barges will shade an area of the seabed that will be larger than the area of  the vessels/barges  themselves since  the shadow cast will depend on  the position of  the sun  in the sky, which will vary with time of day. This effect, however,  is not  likely to  impact marine  biota  and  off  Delimara  unless  the  floating  vessels/barges  will  be  located  on  the seagrass meadows for long periods of time (weeks and months). 

113.  Anchors  and/or  moorings  deployed  by  the  vessels  and  barges  will  disturb  the  benthic assemblages  and  potentially  decimate  some  benthic  fauna.  Anchoring  over  the  seagrass habitat will lead to destruction of plants from areas impacted by the anchor and chain where the latter rests on the seabed. 

114.  Any vessels arriving from outside the Mediterranean and entering Maraxlokk Bay may serve as vectors  for alien species. However, numerous vessels enter and exit the bay, specifically the Malta  Freeport, on  a daily basis,  such  that  the  risk of  introduction of  alien  species  is greater for such ships. 

115.  The waters  inside Marsaxlokk Bay,  particularly  those  in  its  inner  reaches  and  at Delimara already have  some contaminants, as evidenced by  the data on water quality  from  surveys carried  out  in  the  past  (e.g.  see  Axiak,  2013).  Furthermore,  Marsaxlokk  Bay  is  already subjected  to  considerable  vessel  traffic  and  activities.  Disturbance  resulting  from  the currents produced by moving vessels and propeller action, as well as anchoring is widespread in  the bay  including  the  study area. Several vessels are also moored permanently  for  long periods (several hours to days) in the bay, thereby producing some shading effect. Therefore, the benthic present  in the study area are already adapted to  life  in a harbour environment where some pollution, disturbance due to dredging activities are present. However, this also means that some species, namely the seagrasses Posidonia oceanica and Cymodocea nodosa are  already  stressed  such  that  further  stress  induced  through  pollution  of  the  marine environment  result  in  larger  adverse  effects  than would otherwise be  experienced by  the plants had  they been  in  a better  state of health. However,  it  is not  envisaged  that  these species will be at any risk of decimation as a result of such a potential adverse impact. 

116.  The  amounts  and  rates  of  potential  discharge  of  toxic  substances  and  contaminants will depend heavily on a number of factors and variables, including maintenance level of vessels, machinery and equipment used, level of workmanship and supervision of works, application of  precautionary  measures,  potential  toxicity  of  substances  and  levels  released,  the hydrodynamic  regime of  the area, and  the duration and  time of year when  the works are carried out (due to the indirect influence of rainfall, wave action and sea currents). The PDS refers  to  a  number  of  standards,  guidelines  and  conventions which  the  developer will  be adhering  to  ensure  good  practice,  namely  ones  that  prevent  pollution  of  the  marine environment,  and which  are  expected  to  help mitigate  adverse  impacts.  Therefore,  good 

Ecoserv Ltd  Marine ecological studies at il‐Hofra z‐Zghira and Delimara, made in June ‐ July 2013 

– 47 –

practice and measures to reduce spillage  into the marine environment will be  important to mitigate  adverse  impacts.  An  important  mitigation  is  prohibition  of  vessel  navigation, stoppage or anchoring on the seagrass meadows present off the DPS. 

117.  Taking the above into consideration, and assuming that there will be no anchoring by vessels on the seagrass meadows, the overall level of impact is deemed low unless there is a major accident, in which case, the significance of impact is deemed moderate to high. 

118.  With respect to the duration of impact and residual effects; the impacts will operate during laying of the rock armour, construction of the  jetty and pier and associated structures, and deployment of  the FSU.   Any  toxic substances and contaminants  introduced  to  the marine environment will be rapidly flushed out or incorporated into the sediments, where they will remain there for long periods of time (decades or more). 

 

Operational phase 

119.  The PDS states that the new generating plant will be connected to the electricity distribution network at the 132kV switchboard at Delimara Power Station. The connection will generally be regulated by the Network Code. Enemalta may provide auxiliary electrical supplies to the new plant, depending on availability. The existing station utilises a ‘once through’ direct sea water cooling system and it is anticipated that the main cooling water infrastructure may be utilised by the new plant. Under this system, cooling water is taken from Marsaxlokk Bay and discharged on  the other side of Delimara peninsula at  il‐Ħofra  ż‐Żgħira. The possibility  that cooling may be provided via an Air Condensed Cooler (ACC), or a mechanical or natural draft cooling  tower were also considered, but are not  favoured  for  the  following reasons:  (i)  the ACC  will  have  a  large  physical  footprint  and  reduced  effectiveness  in  hot  weather,  (ii) aesthetic  aspects;  the  large  structure  which  would  be  visually  intrusive,  and  (iii)  noise disturbance;  the  ACC will  lead  to  increased  noise  levels.  Furthermore,  the  power  station would be likely to suffer a loss of efficiency. 

120.  The PDS also states that all fuel to be consumed by the CCGT Plant will be supplied through the LNG Plant. The CCGT Plant shall operate at base load. As such it is assumed that the new CCGT Plant may consume up to 1,467 MMBTU (~44,459 m3) of natural gas per hour at steady state operation. A maximum daily capacity of up to 35,212 MMBTU (~1,067,025 m3) may be assumed. The actual amounts are dependent on air pressure, temperature and humidity. In addition to this, gas will be supplied to Delimara 3 by the LNG Plant. At base load this would consume up to 1,089 MMBTU (~33,086 m3) of natural gas per hour. This would equate to a maximum daily capacity of 26,204 MMBTU (~794,065 m3) over a 24 hour period. In reality it is  unlikely  that  Delimara  3  and  the  new  CCGT  will  both  operate  at  base  load  for  any significant period of time. In fact Delimara 3 is expected to have a utilisation rate of less than 50%,  resulting  in  an  average  daily  natural  gas  consumption  of  less  than  13,102 MMBTU (~397,033 m3). This means that the expected average daily natural gas consumption would be up to about 48,314 MMBTU (~1,464,058 m3). This equates to approximately 2,440 m3 of LNG per day13. The stated m3 volumes of gas are assumed to have a Lower Heat Value of ca. 0.033 MMBTU/m3 of natural gas at atmospheric pressure. 

121.  Modern gas‐fired CCGT power stations operate normally at very  low rates of emissions and additional abatement  technology may not be  required. However  in  the event  that  there  is the need  to  reduce  the nitrogen oxides  (NOx)  levels of  the  flue gas emissions,  this  can be achieved  by  use  of  appropriate  abatement  technology.  Such  abatement  technology  could make use of reagents such as urea or ammonia. This type of NOx abatement is currently used at the DPS. 

13 One metre cubed LNG equates to approximately 600m3 of natural gas. 

Ecoserv Ltd  Marine ecological studies at il‐Hofra z‐Zghira and Delimara, made in June ‐ July 2013 

– 48 –

122.  The LNG plant will provide the natural gas (NG) to be used by the new CCGT, as well as for the converted Delimara 3, which is currently fired on Heavy Fuel Oil (HFO). LNG is natural gas which has been converted to liquid by cooling to a very low temperature (ca ‐162oC) for ease of  storage  and  transport.  LNG  is  transported  in  special  carriers, which will  be  unloaded, stored and eventually regasified prior to being used as fuel. Unloading of the LNG  is usually carried out through an unloading arm, with the LNG kept at ‐160 oC.  There will be a vapour return  arm  leading  back  to  the  carrier.  The  LNG  is  then  stored  in  special  cryogenic  tanks which are equipped with facilities to minimize boil‐off, and to capture such evaporated gas to possibly  re‐condense  it  and  return  it  to  storage.  Regasification  involves  the  step‐wise warming  of  the  LNG  through  the  use  of  seawater.  The  ambient  thermal  conditions  of seawater  will  be  sufficient  to  cause  re‐gasification.  Such  seawater  will  subsequently  be discharged into the marine environment at a temperature below ambient or may be used as part of the process cooling water system. The NG will then be pumped for combustion and subsequent energy generation. It appears that the annual number of tanker calls would be 5, and the duration of the stay would be an average of 48 hours. 

123.  The regasification unit will be installed onshore (see Figure 37). 

124.  The following activities are likely to have an impact on shore and marine biota and habitats:  Operational discharges and accidental spillage from the LNG operations.  Disturbance and potential discharges from vessels at Delimara.  Operational discharges from the CCGT to il‐Hofra z‐Zghira area. 

  Operational discharges and accidental spillage from the LNG operations Source of impact 

Wastewater streams  Accidental spillage of LNG 

 Wastewater streams 125.  A number of wastewater streams are expected  to be generated by  the LNG. These  include 

seawater  to warm up  the  LNG  for  regasification, which may be used  at  the  rate of  some 1,500 m3/h. The seawater will then be discharged below ambient temperature in the vicinity of  the current DPS cooling water  inlet. The  temperature drop between  the sea water  inlet and the discharge  is approximately  ‐5°C. Other wastewater streams that will be discharged into the marine environment include ballast water and bilge water, which may be discharged from the FSU, boiler washings from the regasification unit, water discharge from the LNG unit fire‐fighting system (only during occasional servicing). Other wastes which will be generated but  not  discharged  to  the  marine  environment  include  floor  washings  and  sanitary wastewaters from the FSU. The LNG plant will have emissions of methane, which will need to be  limited and monitored. Some of the methane, as well as other flue gases may end up  in the marine environment, albeit  in small amounts. However, the plant will be equipped with facilities for continuous monitoring of methane. The PDS indicates that operation of the LNG Plant  will  involve  transport,  storage  and  use  of  gasoil,  use  of  oil/water  separators,  and storage of chemicals and other substances such as  lubricating and hydraulic oils. Given that several substances, including the LG, will be stored in large volumes, there is always the risk of accidental spillage  into the marine environment, which would be a  large scale one  in the case of a major accident, with a predicted moderate Impact. 

126.  Release of toxic substances and contaminants present in the wastewater streams may have acute  or  chronic  effects  on  the marine  flora  and  fauna, which  could  include  reduction  in reproductive  potential  and  capacity,  fertilisation  success,  development  and  physiological function. 

Ecoserv Ltd  Marine ecological studies at il‐Hofra z‐Zghira and Delimara, made in June ‐ July 2013 

– 49 –

127.  The waters  inside Marsaxlokk Bay,  particularly  those  in  its  inner  reaches  and  at Delimara already have  some contaminants, as evidenced by  the data on water quality  from  surveys carried out  in the past (e.g. see Axiak, 2013). Therefore, the biota present  in the study area are  already  adapted  to  life  in  a  harbour  environment  where  some  pollution  is  present. However, this also means that some species, namely the seagrasses Posidonia oceanica and Cymodocea nodosa are already stressed such that further stress induced through pollution of the  marine  environment  result  in  larger  adverse  effects  than  would  otherwise  be experienced  by  the  plants  had  they  been  in  a  better  state  of  health.  However,  it  is  not envisaged  that  these species will be at any  risk of decimation as a  result of potential  toxic substances  and  contaminants  that may  be  present  in  the wastewater  steams,  as  long  as there  will  be  no  major  accident,  in  which  case,  the  significance  of  impact  is  deemed moderate to high. 

128.  The  amounts  and  rates  of  potential  toxic  substances  and  contaminants  released  via wastewater streams will depend heavily on a number of factors and variables, including the level  of  workmanship  and  supervision  of  works,  application  of  precautionary  measures, toxicity of substances and  levels of contaminants present, and the hydrodynamic regime of the area. The PDS  refers  to a number of  standards, guidelines and  conventions which  the developer will be adhering  to ensure good practice, namely ones  that prevent pollution of the  marine  environment,  and  which  are  expected  to  help  mitigate  adverse  impacts. Therefore,  good  practice  and measures  to  reduce  pollution will  be  important  to mitigate adverse impacts. 

129.  Taking the above into consideration, the overall level of impact is deemed low during normal operational phases and moderate to high in the case of a major accident. 

130.  With  respect  to  the  duration  of  impact  and  residual  effects;  the  impacts will  be  present throughout the operational phase. Any toxic substances and contaminants introduced to the marine environment will be  rapidly  flushed out or  incorporated  into  the sediments, where they will remain there for long periods of time (decades or more) 

 

Accidental spillage of LNG 

131.  Accidental  spillage  to  the  marine  environment  resulting  from  the  LNG  operations  may involve  the  LNG  tankers  or  the  FSU  unit.  An  accident  may  result  from  rupture  of  the cryogenic  lines  running  along  the  jetty, which  could  potent.  This will  introduce  liquefied natural gas in substantial quantities into the marine environment. 

132.  Since the effects of introduction of LNG to the marine environment on marine biota are not known, it is difficult to assess potential adverse impacts of the substance on marine ecology. Furthermore, any potential adverse effects from spillage of LNG will depend on the amount released, which  in  turn will depend on preventive measures  and on  response  time  in  the eventuality  of  an  accident.  The  PDS  refers  to  a  number  of  standards,  guidelines  and conventions which the developer will be adhering to ensure good practice, namely ones that prevent  pollution  of  the marine  environment,  and  which  are  expected  to  help mitigate adverse impacts. Therefore, good practice and measures to reduce potential spillage will be important to mitigate adverse impacts. 

133.  Taking the above into consideration, the overall level of impact is deemed low. 

134.  With  respect  to  the  duration  of  impact  and  residual  effects;  the  impacts will  be  present during  spillage.  Any  toxic  substances  and  contaminants  introduced  to  the  marine environment will be rapidly flushed out or incorporated into the sediments, where they will remain there for long periods of time (decades or more). 

Ecoserv Ltd  Marine ecological studies at il‐Hofra z‐Zghira and Delimara, made in June ‐ July 2013 

– 50 –

 

Disturbance and potential introduction of contaminants from increased vessel traffic at Delimara. Source of impact 

Disturbance and pollution 

 

Disturbance and pollution 

135.  A small number of vessels, albeit  large – the LNG tankers – will enter the Delimara area to supply the LNG. The same assessment of impact as given above in para 109 to 119 applies. 

 

Operational discharges from the CCGT to il‐Hofra z‐Zghira area 

Source of impact  Thermal and chemical pollution 

 

Thermal and chemical pollution 

136.  A  modelling  study  by  AIS‐SLR  (2011)  reported  that,  prior  to  2011,  cooling  waters  were discharged by the DPS to il‐Hofra z‐Zghira at the rate of 29,500 m3/h. With the commissioning of Delimara 3, the study predicted an increase in discharge of cooling waters to 43,000 m3/h, and that  the  temperature will be 8oC above ambient sea temperature. Other results of the study were as follows: ‐ Il‐Hofra  z‐Zghira  is  characterised by a  low energy environment  the  flow dynamics are 

dominated by the thermal discharge; ‐ The  surface  sea  temperature outside  il‐Hofra  z‐Zghira was up  to 1.5oC above ambient 

sea  temperature, with  the  sea  temperature  at  the mouth  of  the  bay  being was  2oC above ambient sea temperature. 

‐ Within  the  inlet,  the  sea  temperature  at  the  thermal  effluent  outlet was  8oC  above ambient sea temperature; 

‐ Excluding the area in the immediate vicinity of the thermal effluent outlet, the  highest sea temperatures occurred in the western and northern parts of the inlet; 

‐ The  sea  temperature of  the water  column  just above  the  seabed were highest  in  the western and northern parts of the inlet; 

‐ Under conditions of strong winds and wave action, vertical mixing of the water column within  the  inlet  increased,  resulting  in warmer  surface water mixing with  that  at  the bottom. 

137.  On completion of the project, discharge of cooling water from the CCGT to il‐Hofra z‐Zghira is expected  to be  reduced  from  the  current estimated 43,100m3/h  to 29,600 m3/h.  It  is also predicted  that the temperature of the  thermal effluent will remain unaltered, and that the rate of addition of biocides and the type of same will remain unaltered. 

138.  Recent data on water quality within il‐Hofra z‐Zghira, collected during the period March 2012 to April 2013 as part of compliance with IPPC Directive, (CD 96/61/EC concerning integrated pollution prevention and control), as well as data collected by Ecoserv in June 2013, indicate that the impacts of potential chemicals present in the thermal effluent on water quality and sediments within  the  inlet  are minimal,  and  that  this may  be  due  to  the  high  dispersive conditions within il‐Hofra z‐Zghira (Axiak, 2013). 

139.  Taking the above into consideration, as well as data from the review of studies carried out in il‐Hofra  z‐Zghira  (see para 11  ‐ 13 above), and  the observations  from  the present baseline ecological survey,  it  is evident  that  the occurrence and distribution, as well as  the state of 

Ecoserv Ltd  Marine ecological studies at il‐Hofra z‐Zghira and Delimara, made in June ‐ July 2013 

– 51 –

marine benthic assemblages and habitats,  including seagrass meadows, present  in the  inlet has remained stable over the past six years or so, and since no increases in the temperature of the thermal effluent or changes  in physico‐chemical characteristics of same are expected with implementation of the project, the overall level of impact is deemed low. Based on the information  provided,  no worst‐case  scenario  is  forseen  for  il‐Hofra  iz‐Zghira. However,  if such a scenario does happen, then the significance of impact will be moderate to high. 

140.  With  respect  to  the  duration  of  impact  and  residual  effects;  the  impacts will  be  present throughout the operational phase. Any toxic substances and contaminants introduced to the marine environment will be  rapidly  flushed out or  incorporated  into  the sediments, where they will remain there for long periods of time (decades or more). 

 

Phase involving decommissioning of Delimara 1 and changes to Delimara 3 

Source of impact  Thermal and chemical pollution 

141.  The Delimara 1 unit of  the DPS  currently uses 21,000 m3/h of  cooling water  that  is being discharged at il‐Hofra z‐Zghira. Decommissioning will lead to a cessation of such discharge. 

142.  Conversion of Delimara 3  from using HFO  to using NG will not  lead  to  any  change  in  the discharge rate of cooling water for this unit, nor will there be any changes in the amount and type of biocides used  in  the effluent. The conversion  is expected  to  lead  to a  reduction  in atmospheric emissions, hence  fallout and potential addition of contaminants to the marine environment.  

143.  Taking the above  into consideration,  it  is envisaged that the overall  impact will be positive (beneficial).  

144.  With  respect  to  the  duration  of  impact  and  residual  effects;  the  impact will  be  present throughout the operational phase.  

 

IMPACTS ON ECOLOGICAL STATUS OF MTC107 

145.  Apart  from  identifying  the  various  coastal water  bodies  and  giving  some  details  on  their physico‐chemical and ecological characteristics in the context of WFD and the required target to  achieve  ‘good  ecological  status’  for  such water  bodies  by  2015,  the Water  Catchment Management  Plan  (WCMP)  for  the  Maltese  Islands  identifies  MTC107,  which  includes Marsaxlokk Bay and Hofra  z‐Zghira, as being within an area having waters of  intermediate depth that are exposed, and which is at risk from pollution originating from point sources as well as diffuse ones, and from hydromorphological pressures.  In  line with the Urban Waste Water Treatment Directive14, MTC107 has also been designated as an Urban Waste Water Sensitive  Zone,  which  means  that  any  discharges  must  comply  with  specific  emission standards. Marsaxlokk  Bay  has  been  designated  as  a  heavily modified water  body, which means  that  according  to WFD  requirements  it  not  expected  to  achieve  ‘good  ecological status’, but should have ‘Good Ecological Potential’.  Such classification makes allowance for the fact that Marsaxlokk Bay  is essentially a harbour and  is susceptible to adverse chemical and ecological  impacts resulting from harbour activities. Under such classification, the WFD requires  establishment of objectives  to  enable management of pressures  and  so  that  any 

14 A Directive aimed at protecting  waters  from  adverse  environmental  impacts  that  may  result  from  wastewater discharges from urban and industrial conglomerates.

Ecoserv Ltd  Marine ecological studies at il‐Hofra z‐Zghira and Delimara, made in June ‐ July 2013 

– 52 –

potential  adverse  ecological  impacts  can  be  appropriately mitigated without  undermining benefits. 

146.  Given  the presence of  several  industrial discharges present  in Marsaxlokk Bay,  the WCMP report identifies the area (MTC107) as having ‘bad’ chemical status. As no assessment of the ecological  status  had  been  made  up  to  the  time  of  writing  of  the  WCMP  report,  the ecological  status  for  this  water  body  had  yet  to  be  established.    this  had  not  yet  been established  then.  In  the  meantime,  as  detailed  in  para  16  &  17  above,  some  work  on establishing  the  ecological  status  of MTC107  has  already  been  carried  out  using  benthic invertebrates and the seagrass Posidonia oceanica as BQE. The results of work made to date indicate the following ecological status for MT107 (see also Tables 2 and 3): ‐ The area in the vicinity of il‐Hofra z‐Zghira (but not exactly within the inlet) is classified as 

having: o High ecological status (based on us of P. oceanica as BQE) 

‐ The marine area within Marsaxlokk Bay, hence including the area off the DPS is classified as having: o Moderate ecological status (based on use of P. oceanica as BQE); and o Good ecological status (based on use of benthic invertebrates as BQE); 

Preliminary work by Ecoserv (2006) on development and application of an index for using P. oceanica  to  establish  the  ecological  status  of Maltese  coastal waters  had  determined  the ecological  status  of Marsaxlokk  Bay  as  ‘moderate’, which  is  in  exact  agreement with  the ecological status determined for the same area in 2012. The location of the sampling station used by Ecoserv (2006) is very close to that used in the 2012 assessment.  

147.  One problem with using data on BQE collected from specific stations within a given coastal water body  is that the determined ecological status will reflect more the status of the area where  the sampling station  is  located, rather  than of  the whole coastal water body. This  is can  be  clearly  seen  from  the  three  different  classes  of  ecological  status  determined  for MTC107  using  the  same  BQE  ‐  P.  oceanica;  see  Table  2.  Therefore,  for  the  present assessment, i.e. determination of the impacts of the development on the ecological status of MTC107,  predictions  will  be  made  with  respect  to  the  ecological  status  that  has  been determined for specific locations within this coastal water body, namely those given in Tables 2 and 3, and shown in Figure 5. 

148.  For the il‐Hofra z‐Zghira AoI, on the basis of: the available data on the ecological status of the area,  the present  review of previous ecological  studies and  surveys made  in  the  inlet and comparison with  the  findings  from  the  present marine  ecological  study,  and  the  present assessment of impacts on marine ecology, the overall level of impact is deemed insignificant. Furthermore, this would apply to both the construction and operational phases. 

149.  For the Delimara AoI, prediction of the  impact of the development on the ecological status there is very difficult and with a low level of confidence given that any potential impacts will depend heavily on a number of factors and variables, including the present lack of detail on the exact nature of the works to be undertaken, the level of workmanship and supervision of works,  application  of  precautionary  procedures,  the  hydrodynamic  regime  of  the  area, duration of the works and time of year when the works are carried out (due to the  indirect influence of rainfall, wave action and sea currents) and mitigation measures, if any, that will be adopted. Furthermore, the possibility of cumulative effects as a result of other factors and activities within Marsaxlokk Bay that are unrelated to the present development  is very real yet  very difficult  to  assess. However, on  the basis of:  the  available data on  the ecological status  of  the  area,  the  findings  from  the  present  marine  ecological  study,  and  present assessment of  impacts on marine ecology, the overall  level of  impact  is deemed  low during the construction phase and insignificant during the operational phase. 

Ecoserv Ltd  Marine ecological studies at il‐Hofra z‐Zghira and Delimara, made in June ‐ July 2013 

– 53 –

6. SUMMARY OF IMPACTS 

CONSTRUCTION/INSTALLATION WORKS  Impact type and Source 

Impact type  Spillage of construction material and/or excavation waste

Specific intervention  leading to impact 

Accidental and/or deliberate spillage 

Project phase  Construction/Installation works 

Impact Receptor 

Receptor type  Pelagic, demersal and benthic biotic assemblages 

Sensitivity and resilience toward impact 

Low to moderate sensitivity and moderate to high resilience 

Effect and Scale of Impact 

Direct/Indirect  Direct and indirect 

Cumulative  May be cumulative if adverse impacts resulting from a different source/project prevail within the general area, i.e. from outside or within the AoI 

Beneficial/Adverse  Adverse 

Severity  Low to moderate 

Physical/geographic extent   

Within AoI unless there is major accidental or deliberate spillage, in which case the extent may be beyond the AoI 

Short/Medium/Long Term 

Throughout construction/installation phase 

Temporary/Permanent 

if temporary indicate duration 

Temporary – throughout construction/installation phase 

Reversible/Irreversible if reversible indicate ease of reversibility 

Reversible – ease of reversibility depends on severity 

Probability – Significance – Mitigation – Residual Impacts – Other Requirements 

Probability of impact occurring 

(inevitable, likely, remote uncertain) 

Uncertain 

Significance Overall Impact 

Low to moderate 

Proposed  Mitigation Measures 

Good practice and measures to reduce spillage into the marine environment, namely measures to reduce pollution of the marine environment. Good workmanship and supervision. Adherence to standards, guidelines and conventions. 

Significance Residual Impact  

Low 

Monitoring  Monitoring water quality  

Ecoserv Ltd  Marine ecological studies at il‐Hofra z‐Zghira and Delimara, made in June ‐ July 2013 

– 54 –

Impact type and Source 

Impact type  Spillage of toxic substances and contaminants

Specific intervention  leading to impact 

Accidental and/or deliberate spillage 

Project phase  Construction/Installation works 

Impact Receptor 

Receptor type  Pelagic, demersal and benthic biotic assemblages 

Sensitivity and resilience toward impact 

Low sensitivity and high resilience 

Effect and Scale of Impact 

Direct/Indirect  Direct 

Cumulative  May be cumulative if adverse impacts resulting from a different source/project prevail within the general area, i.e. from outside or within the AoI 

Beneficial/Adverse  Adverse 

Severity  Low unless there is major accidental or deliberate spillage, in which case the severity is predicted to be moderate to high 

Physical/geographic extent   

Within AoI unless there is major accidental or deliberate spillage, in which case the extent may be beyond the AoI 

Short/Medium/Long Term 

Throughout construction/installation phase 

Temporary/Permanent 

if temporary indicate duration 

Temporary – throughout construction/installation phase 

Reversible/Irreversible if reversible indicate ease of reversibility 

Reversible – ease of reversibility depends on severity 

Probability – Significance – Mitigation – Residual Impacts – Other Requirements 

Probability of impact occurring 

(inevitable, likely, remote uncertain) 

Uncertain 

Significance Overall Impact 

Low unless there is major accidental or deliberate spillage, in which case the significance of impact is predicted to be moderate to high. 

Proposed  Mitigation Measures 

Good practice and measures to reduce spillage into the marine environment, namely measures to reduce pollution of the marine environment. Good workmanship and supervision. Adherence to standards, guidelines and conventions. 

Significance Residual Impact  

Low unless there is major accidental or deliberate spillage, in which case the significance of residual impact is predicted to be moderate. 

Monitoring  Monitoring water quality 

 

Ecoserv Ltd  Marine ecological studies at il‐Hofra z‐Zghira and Delimara, made in June ‐ July 2013 

– 55 –

Impact type and Source 

Impact type  Disturbance from increased vessel traffic

Specific intervention  leading to impact 

Vessel activity 

Project phase  Construction/Installation works 

Impact Receptor 

Receptor type  Pelagic, demersal and benthic biotic assemblages 

Sensitivity and resilience toward impact 

Low sensitivity and high resilience 

Effect and Scale of Impact 

Direct/Indirect  Direct 

Cumulative  May be cumulative if adverse impacts resulting from a different source/project prevail within the general area, i.e. from outside or within the AoI 

Beneficial/Adverse  Adverse 

Severity  Low 

Physical/geographic extent   

Within AoI  

Short/Medium/Long Term 

Throughout construction/installation phase 

Temporary/Permanent 

if temporary indicate duration 

Temporary – throughout construction/installation phase 

Reversible/Irreversible if reversible indicate ease of reversibility 

Reversible – high ease of reversibility 

Probability – Significance – Mitigation – Residual Impacts – Other Requirements 

Probability of impact occurring 

(inevitable, likely, remote uncertain) 

Inevitable 

Significance Overall Impact 

Low 

Proposed  Mitigation Measures 

Good practice and measures to reduce spillage into the marine environment, namely measures to reduce pollution of the marine environment. Good workmanship and supervision. Adherence to standards, guidelines and conventions 

Significance Residual Impact  

Low 

Monitoring  Monitoring water quality  

 

 

 

 

 

Ecoserv Ltd  Marine ecological studies at il‐Hofra z‐Zghira and Delimara, made in June ‐ July 2013 

– 56 –

Impact type and Source 

Impact type  Physical alteration of the seabed

Specific intervention  leading to impact 

Laying of the rock armour and deployment of offshore structures on the seabed 

Project phase  Construction/Installation works 

Impact Receptor 

Receptor type  Predominantly benthic biotic assemblages but demersal and pelagic assemblages will also be a receptor 

Sensitivity and resilience toward impact 

Moderate sensitivity and no resilience as impact involves decimation 

Effect and Scale of Impact 

Direct/Indirect  Direct 

Cumulative  May be cumulative for demersal and pelagic assemblages within AoI and for benthic assemblages outside the AoI if adverse impacts resulting from a different source/project prevail within the general area, i.e. from outside or within the AoI 

Beneficial/Adverse  Adverse 

Severity  Moderate 

Physical/geographic extent   

Within footprint of the area where the seabed has been altered, and potentially beyond due to potential spillage of material to adjacent areas 

Short/Medium/Long Term 

Throughout construction/installation phase and long term for places where the seabed has been altered 

Temporary/Permanent 

if temporary indicate duration 

Permanent  

Reversible/Irreversible if reversible indicate ease of reversibility 

Irreversible for places where the seabed has been altered 

Probability – Significance – Mitigation – Residual Impacts – Other Requirements 

Probability of impact occurring (inevitable, likely, remote uncertain) 

Inevitable 

Significance Overall Impact 

Moderate 

Proposed  Mitigation Measures 

Good practice and measures to reduce spillage beyond the footprint of the area where the seabed will be altered through laying of the rock armour and deployment of offshore structures. Good workmanship and supervision. Adherence to standards, guidelines and conventions, namely ones to reduce pollution of the marine environment. 

Significance Residual Impact  

Moderate 

Monitoring  On‐site monitoring by qualified personnel during the works and environmental monitoring as detailed in section 7 of the present report 

 

Ecoserv Ltd  Marine ecological studies at il‐Hofra z‐Zghira and Delimara, made in June ‐ July 2013 

– 57 –

Impact type and Source 

Impact type  Introduction of large amounts of fine particulate material

Specific intervention  leading to impact 

Laying of the rock armour and deployment of offshore structures on the seabed 

Project phase  Construction/Installation works 

Impact Receptor 

Receptor type  Demersal, pelagic and benthic biotic assemblages 

Sensitivity and resilience toward impact 

Low to moderate sensitivity and moderate resilience 

Effect and Scale of Impact 

Direct/Indirect  Direct and indirect 

Cumulative  May be cumulative if adverse impacts resulting from a different source/project prevail within the general area, i.e. from outside or within the AoI 

Beneficial/Adverse  Adverse 

Severity  Low to moderate 

Physical/geographic extent   

Within AoI and  potentially beyond 

Short/Medium/Long Term 

Throughout construction/installation phase 

Temporary/Permanent if temporary indicate duration 

Temporary; throughout construction/installation phase 

Reversible/Irreversible if reversible indicate ease of reversibility 

Reversible; high ease of reversibility 

Probability – Significance – Mitigation – Residual Impacts – Other Requirements 

Probability of impact occurring (inevitable, likely, remote uncertain) 

Likely 

Significance Overall Impact 

Low to moderate  

Proposed  Mitigation Measures 

Good practice and measures to reduce the introduction of large amounts of particulate matter into the marine environment 

Significance Residual Impact  

Low 

Monitoring  On‐site monitoring by qualified personnel during the works and environmental monitoring as detailed in section 7 of the present report  

Ecoserv Ltd  Marine ecological studies at il‐Hofra z‐Zghira and Delimara, made in June ‐ July 2013 

– 58 –

Impact type and Source 

Impact type  Introduction of toxic substances and contaminants

Specific intervention  leading to impact 

Laying of rock armour and deployment of offshore structures 

Project phase  Construction/installation works 

Impact Receptor 

Receptor type  Demersal, pelagic and benthic biotic assemblages 

Sensitivity and resilience toward impact 

Low sensitivity and high resilience 

Effect and Scale of Impact 

Direct/Indirect  Direct 

Cumulative  May be cumulative if adverse impacts resulting from a different source/project prevail within the general area, i.e. from outside or within the AoI 

Beneficial/Adverse  Adverse 

Severity  Low 

Physical/geographic extent   

Within AoI and  potentially beyond 

Short/Medium/Long Term 

Throughout construction/installation phase 

Temporary/Permanent if temporary indicate duration 

Temporary; throughout construction/installation phase 

Reversible/Irreversible if reversible indicate ease of reversibility 

Reversible; high ease of reversibility 

Probability – Significance – Mitigation – Residual Impacts – Other Requirements 

Probability of impact occurring (inevitable, likely, remote uncertain) 

Uncertain – depending on the presence and level of potential toxic substances that may be released into the marine environment. 

Significance Overall Impact 

Low 

Proposed  Mitigation Measures 

Ensuring that no toxic substances are released into the marine environment. 

Significance Residual Impact  

Low 

Monitoring  Monitoring water quality 

 

 

Ecoserv Ltd  Marine ecological studies at il‐Hofra z‐Zghira and Delimara, made in June ‐ July 2013 

– 59 –

Impact type and Source 

Impact type  Changes to the hydrodynamic regime of the area

Specific intervention  leading to impact 

Laying of the rock armour and deployment of offshore structures on the seabed 

Project phase  Construction/Installation works 

Impact Receptor 

Receptor type  Demersal, pelagic and benthic biotic assemblages 

Sensitivity and resilience toward impact 

Insignificant for the jetty construction, and probably low sensitivity and high resilience for small alteration of the shore resulting from laying of rock armour. 

Effect and Scale of Impact 

Direct/Indirect  Indirect 

Cumulative  May be cumulative if adverse impacts resulting from a different source/project prevail within the general area, i.e. from outside or within the AoI 

Beneficial/Adverse  Insignificant for the jetty construction, and probably low sensitivity and high resilience for small alteration of the shore resulting from laying of rock armour. Following completion of the works, beneficial effects are expected though colonisation of new hard substrata. 

Severity  Insignificant for the jetty construction, and probably low sensitivity and high resilience for small alteration of the shore resulting from laying of rock armour. 

Physical/geographic extent   

Within AoI and  potentially beyond 

Short/Medium/Long Term 

Throughout construction/installation phase 

Temporary/Permanent if temporary indicate duration 

Permanent 

Reversible/Irreversible if reversible indicate ease of reversibility 

Irreversible 

Probability – Significance – Mitigation – Residual Impacts – Other Requirements 

Probability of impact occurring (inevitable, likely, remote uncertain) 

Remote 

Significance Overall Impact 

Insignificant 

Proposed  Mitigation Measures 

None 

Significance Residual Impact  

Insignificant 

Monitoring  None 

 

Ecoserv Ltd  Marine ecological studies at il‐Hofra z‐Zghira and Delimara, made in June ‐ July 2013 

– 60 –

Impact type and Source 

Impact type  Disturbance  and  pollution  by  vessels, machinery  and  equipment  used  for  landreclamation,  potential  dredging,  and  construction  of  the  jetty  and  potentiallyassociated structures (FSU or FRSU) 

Specific intervention  leading to impact 

Vessel activity and use of machinery/equipment 

Project phase  Construction/Installation works 

Impact Receptor 

Receptor type  Demersal, pelagic and benthic biotic assemblages 

Sensitivity and resilience toward impact 

Low sensitivity and high resilience 

Effect and Scale of Impact 

Direct/Indirect  Direct 

Cumulative  May be cumulative if adverse impacts resulting from a different source/project prevail within the general area, i.e. from outside or within the AoI 

Beneficial/Adverse  Adverse 

Severity  Low 

Physical/geographic extent   

Within AoI unless there is a major accident 

Short/Medium/Long Term 

Throughout construction/installation phase 

Temporary/Permanent if temporary indicate duration 

Temporary; throughout construction/installation phase 

Reversible/Irreversible if reversible indicate ease of reversibility 

Reversible; high ease of reversibility 

Probability – Significance – Mitigation – Residual Impacts – Other Requirements 

Probability of impact occurring (inevitable, likely, remote uncertain) 

Likely 

Significance Overall Impact 

Low 

Proposed  Mitigation Measures 

Good practice and measures to reduce disturbance and pollution. Good workmanship and supervision. Adherence to standards, guidelines and conventions 

Significance Residual Impact  

Low 

Monitoring  Monitoring water quality 

 

Ecoserv Ltd  Marine ecological studies at il‐Hofra z‐Zghira and Delimara, made in June ‐ July 2013 

– 61 –

OPERATIONAL PHASE 

Impact type and Source 

Impact type  Wastewater streams

Specific intervention  leading to impact 

LNG operations 

Project phase  Operations 

Impact Receptor 

Receptor type  Demersal, pelagic and benthic biotic assemblages 

Sensitivity and resilience toward impact 

Low sensitivity and high resilience 

Effect and Scale of Impact 

Direct/Indirect  Direct 

Cumulative  May be cumulative if adverse impacts resulting from a different source/project prevail within the general area, i.e. from outside or within the AoI 

Beneficial/Adverse  Adverse 

Severity  Low 

Physical/geographic extent   

Within AoI  

Short/Medium/Long Term 

Throughout operational phase 

Temporary/Permanent if temporary indicate duration 

Permanent; throughout operational phase 

Reversible/Irreversible if reversible indicate ease of reversibility 

Reversible; high ease of reversibility 

Probability – Significance – Mitigation – Residual Impacts – Other Requirements 

Probability of impact occurring (inevitable, likely, remote uncertain) 

Likely 

Significance Overall Impact 

Low during normal operational phases and moderate to high in the case of a major accident. 

Proposed  Mitigation Measures 

Good practice and measures to reduce the introduction of toxic substances and contaminants into the marine environment. Good operational procedures and supervision. Adherence to standards, guidelines and conventions 

Significance Residual Impact  

Low 

Monitoring  Monitoring water quality 

 

Ecoserv Ltd  Marine ecological studies at il‐Hofra z‐Zghira and Delimara, made in June ‐ July 2013 

– 62 –

Impact type and Source 

Impact type  Accidental spillage of LNG

Specific intervention  leading to impact 

LNG operations 

Project phase  Operations 

Impact Receptor 

Receptor type  Demersal, pelagic and benthic biotic assemblages 

Sensitivity and resilience toward impact 

Unknown 

Effect and Scale of Impact 

Direct/Indirect  Direct 

Cumulative  May be cumulative if adverse impacts resulting from a different source/project prevail within the general area, i.e. from outside or within the AoI 

Beneficial/Adverse  Adverse 

Severity  Low 

Physical/geographic extent   

Within AoI  

Short/Medium/Long Term 

Throughout operational phase 

Temporary/Permanent if temporary indicate duration 

Permanent; throughout operational phase 

Reversible/Irreversible if reversible indicate ease of reversibility 

Reversible; high ease of reversibility 

Probability – Significance – Mitigation – Residual Impacts – Other Requirements 

Probability of impact occurring (inevitable, likely, remote uncertain) 

Remote 

Significance Overall Impact 

Low 

Proposed  Mitigation Measures 

Good practice and measures to reduce spillage of LNG into the marine environment. Good operational procedures and supervision. Adherence to standards, guidelines and conventions 

Significance Residual Impact  

Low 

Monitoring  None 

 

Ecoserv Ltd  Marine ecological studies at il‐Hofra z‐Zghira and Delimara, made in June ‐ July 2013 

– 63 –

Impact type and Source 

Impact type  Disturbance and pollution

Specific intervention  leading to impact 

Vessel activity 

Project phase  Operations 

Impact Receptor 

Receptor type  Demersal, pelagic and benthic biotic assemblages 

Sensitivity and resilience toward impact 

Low sensitivity and high resilience 

Effect and Scale of Impact 

Direct/Indirect  Direct 

Cumulative  May be cumulative if adverse impacts resulting from a different source/project prevail within the general area, i.e. from outside or within the AoI 

Beneficial/Adverse  Adverse 

Severity  Low 

Physical/geographic extent   

Within AoI  

Short/Medium/Long Term 

Throughout operational phase 

Temporary/Permanent if temporary indicate duration 

Permanent; throughout operational phase 

Reversible/Irreversible if reversible indicate ease of reversibility 

Reversible; high ease of reversibility 

Probability – Significance – Mitigation – Residual Impacts – Other Requirements 

Probability of impact occurring (inevitable, likely, remote uncertain) 

Likely 

Significance Overall Impact 

Low 

Proposed  Mitigation Measures 

Good practice and measures to reduce disturbance and pollution. Good workmanship and supervision. Adherence to standards, guidelines and conventions 

Significance Residual Impact  

Low 

Monitoring  Monitoring water quality 

 

Ecoserv Ltd  Marine ecological studies at il‐Hofra z‐Zghira and Delimara, made in June ‐ July 2013 

– 64 –

Impact type and Source 

Impact type  Thermal and chemical pollution

Specific intervention  leading to impact 

Thermal effluent 

Project phase  Operations 

Impact Receptor 

Receptor type  Demersal, pelagic and benthic biotic assemblages 

Sensitivity and resilience toward impact 

Low sensitivity and high resilience 

Effect and Scale of Impact 

Direct/Indirect  Direct 

Cumulative  May be cumulative if adverse impacts resulting from a different source/project prevail within the general area, i.e. from outside or within the AoI 

Beneficial/Adverse  Adverse 

Severity  Low 

Physical/geographic extent   

Within AoI  

Short/Medium/Long Term 

Throughout operational phase 

Temporary/Permanent if temporary indicate duration 

Permanent; throughout operational phase 

Reversible/Irreversible if reversible indicate ease of reversibility 

Reversible; high ease of reversibility 

Probability – Significance – Mitigation – Residual Impacts – Other Requirements 

Probability of impact occurring (inevitable, likely, remote uncertain) 

Inevitable 

Significance Overall Impact 

Low 

Proposed  Mitigation Measures 

Good practice and measures to keep levels of thermal and chemical pollution to a minimum. Good workmanship and operational procedures. Adherence to standards, guidelines and conventions 

Significance Residual Impact  

Low 

Monitoring  Monitoring water quality and benthic assemblages 

 

Ecoserv Ltd  Marine ecological studies at il‐Hofra z‐Zghira and Delimara, made in June ‐ July 2013 

– 65 –

CRITERIA USED TO DESCRIBE IMPACTS 

Beneficial/Adverse 

Level  Criteria 

High  Large impact expected to extend well beyond the area of influence and which may not necessarily be mitigated. 

Moderate   Impact may extend beyond the area of influence considered in the ecological studyand  occurring  over  a  longer  time  period  of  several months,  and which may  notnecessarily be mitigated. 

Low  Impact is localised in space and occurring over a short time period of a few days toa few weeks, and which may be mitigated. 

Insignificant  No impact or change is predicted in space and time.

 

Severity 

Level  Criteria 

High  Impact  will  result in  large  and  widespread  (within  a  large  part  of  the  AoI  andpossibly beyond ) adverse effects on biota, including decimation 

Moderate   Impact  will  result  in  considerable  adverse  effects  on  biota,  possibly  includingdecimation, within  a  small  part  of  the  AoI.  Biota  in  other  parts  of  the  AoI  and beyond will not be affected adversely, or if so will not be decimated and eventuallyrecover. 

Low  Impact will possibly but not necessarily result  in decimation of some biota withinvery small part of the AoI. Biota  in other parts of the AoI and beyond will not be affected adversely. 

Insignificant  No adverse impact on the biota.

 

Probability of impact occurring 

Level  Criteria 

High  Large impact is highly probable and cannot be avoided if the development is to bemade.  Mitigation  measures  may  reduce  the  level  of  impact  but  this  may  stillremain high. 

Moderate   Some impact is probable and cannot be avoided if the development is to be made.Mitigation measures may  reduce  the  level  of  impact  but  this may  still  remainmoderate. 

Low  Low  impact  will  occur  but  which  can  be  avoided  by  implementing  mitigationmeasures 

Insignificant  No impact will occur

 

Significance: Overall Impact 

Level  Criteria 

High  Large  impact  that  is expected  to extend well beyond  the area of  influence, may leave permanent effects in space and time, at least in some area/s, and which maynot necessarily be mitigated. 

Moderate   Some impact which is not expected to extend beyond the area of influence, may ormay  not  leave  some  permanent  effects  in  space  and  time,  and which may  be mitigated but not fully so. 

Low  Small impact is restricted to a very small area/s within the area of influence, is notexpected to leave permanent effects in space and occurring over a short time, andwhich may be mitigated. 

Insignificant  No impact or change is predicted in space and time.

 

Ecoserv Ltd  Marine ecological studies at il‐Hofra z‐Zghira and Delimara, made in June ‐ July 2013 

– 66 –

Significance: Residual 

Level  Criteria 

High  Large  impact or  its effects that will have permanent effects or which may prevailfor a very long period following the development works 

Moderate   Some  impact  that  will  possibly  have  some  permanent  or  long  term  effectsfollowing the development works 

Low  Low impact which will not leave any permanent or long term effects following thedevelopment  works  –  impact  will  prevail  only  during  the  holding  of  the development works 

Insignificant  No residual effects

    

7. MONITORING PROGRAMME

150.  The proposed monitoring programme has three objectives: 

(i) On‐site monitoring by a qualified environmental biologist using direct observation to detect as early as possible potential large adverse impacts that may result from: a. Major accidents  involving  spillage of material  (whether  toxic or  inert)    into  the 

marine environment; b. Inadvertent  introduction of  large amounts of  fine particulate material  into  the 

marine environment; c. Other sources of potential adverse  impacts,  including direct physical damage be 

vessel activity (e.g. anchoring) to seagrass habitat and other receptors.  

(ii) Monitoring of the ecological status to detect potential changes that may result from the  development.  For  this,  it  is  appropriate  to  adopt  the  same  BQE,  i.e.  benthic invertebrates,  Posidonia  oceanica  and  phytoplankton,  for  which  data  are  already available from the national exercise on  implementation of monitoring  in relation to the WFD. Furthermore, it is proposed that all stations within MTC107 for which such data  are  available, will  be monitored,  as  this will  allow  comparison  of  the  results obtained  from  different  stations,  hence  spatial  comparison  over  the  spatial  level. Monitoring should be carried out as per  the standard procedures  for monitoring  in relation to the WFD adopted by Malta. 

(iii) Monitoring  physico‐chemical  and  biological  attributes  to  enable  early  detection  of potential  adverse  impacts  on  the  marine  ecology  of  the  areas.  The  proposed monitoring attributes are as follows: 

a. General water quality parameters in the water column, including: Temperature Salinity Turbidity Dissolved oxygen Intestinal enterococci E. coli Chlorophyll a Nitrates 

Ecoserv Ltd  Marine ecological studies at il‐Hofra z‐Zghira and Delimara, made in June ‐ July 2013 

– 67 –

Phosphates Biological Oxygen Demand Chemical Oxygen Demand Total Suspended Solids Sulphates Metals: ‐  Arsenic ‐  Cadmium ‐  Chromium ‐  Copper ‐  Lead ‐  Mercury ‐  Nickel ‐  Zinc C10‐13‐chloroalkanes Brominated diphenylethers (Pentabromodiphenylether (indicator)) Di(2‐ethylhexyl)phthalate (DEHP) Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclohexane Pentachlorobenzene Total Polyaromatic hydrocarbons: ‐  Benzo(a)pyrene ‐  Benzo(b)fluoranthene ‐  Benzo(k)fluoranthene ‐  Benzo(g,h,i,)perylene ‐  Indeno(1,2,3‐cd)pyrene Total Organotins (TBT, MBT, DBT) Chloroform 

It  is  proposed  that  monitoring  of  the  above  attributes  will  be  made  at  a minimum of  two  stations off  the Delimara area and  two  stations  in  il‐Hofra  z‐Zghira and at two reference sites (which will serve for both putatively impacted sites. 

b. Sediment granulometry It  is proposed  that monitoring of  this attribute will be made at a minimum of two stations off the Delimara area and at two reference sites (which will serve for both putatively impacted sites. 

c. Benthic biological attributes, namely: ‐ Biological characteristics of the seabed using underwater videography along 

shore normal transects off the DPS and within il‐Hofra z‐Zghira ‐ Spatial extent of seagrass habitat present off  the DPS and within  il‐Hofra z‐

Zghira ‐ Standard  seagrass  attributes,  including  shoot  density  and  shoot 

morphometric attributes, namely leaf length, leaf biomass, number of leaves and leaf epiphyte load. 

 

 

 

Ecoserv Ltd  Marine ecological studies at il‐Hofra z‐Zghira and Delimara, made in June ‐ July 2013 

– 68 –

8. REFERENCES 

AIS  Environmental  Ltd.,  2009.  Environmental  impact  statement  for  the  proposed  local  generating capacity  and  Delimara  Power  Station  ENV/3260/A/08  PA03152/05;  Volume  1  Coordinated Assessment. Malta: unpublished report. 

AIS Environmental Ltd and SLR Global Environmental Solutions. 2011. Prediction of the Spread and Dilution of Cooling Water  from Delimara Power Station. Extension  to  the Delimara Power Station: IPPC Permit. Consolidated Version Addendum 2. Malta: unpublished report. 

Axiak  V.,  2013. Delimara Gas  and  Power  Combined  Cycle Gas  Turbine  and  Liquefied Natural Gas receiving,  storage  and  regasification  facilities:  Environmental  Impact  Statement  ‐  Assessment  of Environmental Impacts on Water Quality of Proposed Project. Malta: unpublished report.  Borg J. A & Schembri P. J., 2003. Alignment of marine habitat data of the Maltese Islands to conform to  the  requirements of  the EU habitats directive.  In: Sant, M.  (Editor) Marine habitats data of  the Maltese Islands. Interactive CD. Floriana, Malta: Malta Environment and Planning Authority [Compact Diskette] 

Debono S. & Borg  J. A., 2006. Use of Posidonia oceanica as a bioindicator of ecological  status  for Maltese coastal waters. Biologia Marina Mediterranea 13 (4): 206 ‐ 209. 

Cachia  J.,  1995.  Studies  on  the  thermal  effluent  of  the Delimara  Power  Station. Unpublished  BSc dissertation, University of Malta. 

Ecoserv, 2006. Report of a survey for further development of the classification of ecological status for Maltese coastal waters using Posidonia oceanica descriptors, as part of the  intercalibration exercise (Water Framework Directive). Malta: unpublished report. 

Jones S., 1996. Further  studies on  the biological effects of  the  thermal effluent  from  the Delimara Power Station. Unpublished BSc dissertation, University of Malta. 

Gatt  N.,  2006.  Effects  of  the  thermal  effluent  from  the  Delimara  Power  Station  (Malta)  on  the seagrass Posidonia oceanica. Unpublished MSc dissertation, Heriot Watt University. 

MEPA/GAS  (Malta  Environment  and Planning Authority/Geological Assistance  and  Services), 2004. Baseline  survey  of  the  extent  and  character  of  Posidonia  oceanica  (L.)  Delile  meadows  in  the territorial waters of the Maltese Islands. Malta: unpublished report. 

Micallef M., 2001. Biological effects of the thermal effluent from the Delimara Power Station: a third study. Unpublished BSc dissertation, University of Malta.