13
Computation of the complete acoustic field with Finite-Differences algorithms. Adan Garriga Carlos Spa Vicente López Forum Acusticum Budapest 31/08/2 005

Computation of the complete acoustic field with Finite-Differences algorithms. Adan Garriga Carlos Spa Vicente López Forum Acusticum Budapest31/08/2005

Embed Size (px)

Citation preview

Page 1: Computation of the complete acoustic field with Finite-Differences algorithms. Adan Garriga Carlos Spa Vicente López Forum Acusticum Budapest31/08/2005

Computation of the complete acoustic field with Finite-Differences algorithms.

Adan GarrigaCarlos Spa

Vicente López

Forum Acusticum Budapest 31/08/2005

Page 2: Computation of the complete acoustic field with Finite-Differences algorithms. Adan Garriga Carlos Spa Vicente López Forum Acusticum Budapest31/08/2005

31/08/2005Forum Acusticum Budapest

La UPF a Ca l’Aranyó

Parc Barcelona Media

Summary:Summary:

• INTRODUCTION

• STATEMENT OF THE PROBLEM

• FINITE-DIFFERENCES ALGORITHMS: The MacCormack Method

• 2D AND 3D RESULTS: APPLICATIONS

• CONCLUSIONS AND FUTURE WORK

Contents

Page 3: Computation of the complete acoustic field with Finite-Differences algorithms. Adan Garriga Carlos Spa Vicente López Forum Acusticum Budapest31/08/2005

31/08/2005Forum Acusticum Budapest

Parc Barcelona Media

• Goal: Simulate the propagation of sound waves in 3D virtual environments. Physical renderization of sound fields.

Introduction

• Why?: New emerging multimedia technologies applications: digital cinema, video games, virtual reality, communications, music…

• Real Time: Many applications require renderization of the acoustic field in real time. Balance between accuracy and time of computation.

Page 4: Computation of the complete acoustic field with Finite-Differences algorithms. Adan Garriga Carlos Spa Vicente López Forum Acusticum Budapest31/08/2005

31/08/2005Forum Acusticum Budapest

La UPF a Ca l’Aranyó

Statement of the Problem

• Characterization of the acoustic field (4 quantities):

– Pressure of the fluid (air): P

– Three components of the air velocity: u

• Classical linear equations for the acoustic field:

Page 5: Computation of the complete acoustic field with Finite-Differences algorithms. Adan Garriga Carlos Spa Vicente López Forum Acusticum Budapest31/08/2005

31/08/2005Forum Acusticum Budapest

La UPF a Ca l’Aranyó

Parc Barcelona Media

Finite-Differences

Numerical Methods:Numerical Methods:

Numerical Methods can be divided in two groups:

• Geometrical-based methods. Decomposition of the sound field in elementary waves: Image Source , Ray-Tracing, Beam-Tracing…

• Physical-Based methods. Exact numerical solution of the differential equations: Boundary Elements (BE), Finite Elements (FE) and Finite Differences (FD).

Page 6: Computation of the complete acoustic field with Finite-Differences algorithms. Adan Garriga Carlos Spa Vicente López Forum Acusticum Budapest31/08/2005

31/08/2005Forum Acusticum Budapest

La UPF a Ca l’Aranyó

Why FD?Why FD?

• They give an accurate physical solution for the acoustic field

• For multimedia applications both the sound source and the

receiver can move around. Therefore, we need to compute

the sound field in the whole space at each time.

• Easy to implement in different geometries.

• Easy to parallelize.

Finite-Differences

Page 7: Computation of the complete acoustic field with Finite-Differences algorithms. Adan Garriga Carlos Spa Vicente López Forum Acusticum Budapest31/08/2005

31/08/2005Forum Acusticum Budapest

Numerical EquationsNumerical Equations

Finite-Differences

11

22

Page 8: Computation of the complete acoustic field with Finite-Differences algorithms. Adan Garriga Carlos Spa Vicente López Forum Acusticum Budapest31/08/2005

31/08/2005Forum Acusticum Budapest

La UPF a Ca l’Aranyó

Numerical Parameters:Numerical Parameters:

• Air density: 1,21 Kg/m

• The speed of sound: c = 330 m/s

• Space discretization: x = 0,01 m (valid for =100-1500 Hz)

• Time discretization: t = 0,00002 s

• Number of float operations per second for a square room of

2 X 2 meters: N=56 GFLOPS REAL TIME !

2D Results

3

Page 9: Computation of the complete acoustic field with Finite-Differences algorithms. Adan Garriga Carlos Spa Vicente López Forum Acusticum Budapest31/08/2005

31/08/2005Forum Acusticum Budapest

2D Results

Page 10: Computation of the complete acoustic field with Finite-Differences algorithms. Adan Garriga Carlos Spa Vicente López Forum Acusticum Budapest31/08/2005

31/08/2005Forum Acusticum Budapest

2D Results

Page 11: Computation of the complete acoustic field with Finite-Differences algorithms. Adan Garriga Carlos Spa Vicente López Forum Acusticum Budapest31/08/2005

31/08/2005Forum Acusticum Budapest

La UPF a Ca l’Aranyó

3D Results:3D Results:

• For the same quality results, the number of floating point

operations per second (FLOPS) is: N = 16 TFLOPS.

• Only supercomputers work at this speed. NOT AT REAL TIME!

3D Results and Applications

Applications:Applications:

• 1D or 2D Real-Time rendering sound applications.

• 3D Non-Real-Time applications: digital cinema (RACINE)

Page 12: Computation of the complete acoustic field with Finite-Differences algorithms. Adan Garriga Carlos Spa Vicente López Forum Acusticum Budapest31/08/2005

31/08/2005Forum Acusticum Budapest

La UPF a Ca l’Aranyó

Conclusions:Conclusions:

• We have found upper bounds for high quality

rendering of acoustic fields.

• For 1D and 2D applications, the algorithm works at

Real-Time for frequencies = 100-1500 Hz.

Conclusions

Page 13: Computation of the complete acoustic field with Finite-Differences algorithms. Adan Garriga Carlos Spa Vicente López Forum Acusticum Budapest31/08/2005

31/08/2005Forum Acusticum Budapest

La UPF a Ca l’Aranyó

Future Work

Future Work:Future Work:

• For 3D applications we have to reduce the number

of FLOPS: we have to introduce approximations.

• We are developing new hybrid algorithms: using

geometric-based algorithms for high frequencies.