86
Composition Types of volcanoe Distributio V o l c a n o Types of deposit Part I

Composition Types of volcanoes Distribution V o l c a n o Types of deposits Part I

Embed Size (px)

Citation preview

Page 1: Composition Types of volcanoes Distribution V o l c a n o Types of deposits Part I

Composition

Types of volcanoes

Distribution

Vo l c a noTypes of deposits

Part I

Page 2: Composition Types of volcanoes Distribution V o l c a n o Types of deposits Part I

Volcano: A mound of material that is extrudedextruded to the Earth’s surface from a ventvent that is connected to a magma magma chamberchamber via a feeder conduitconduit. COPY THIS DIAGRAM

Page 3: Composition Types of volcanoes Distribution V o l c a n o Types of deposits Part I

The nature of the extruded material (and the volcano itself) depends on the properties of the magma.

Volcanoes are classified according to their form.

The form of a volcano depends on the type of material that it is made up of.

Magma: Molten rock within the Earth.

Magma is called lava when it reaches the surface.

Page 4: Composition Types of volcanoes Distribution V o l c a n o Types of deposits Part I

SiOSiO22 content content controls the viscosity viscosity of a magma.

The composition of magma determines the type of rock that forms when it cools and its behavior during an eruption.

Main controls on behavior:

chemical compositionchemical composition (silica dioxide - SiO2 - content)

and

gas contentgas content (water vapor and CO2).

Viscosity: a measure of how easily a fluid flows. Water has a low viscosity, molasses has a much higher viscosity.

Page 5: Composition Types of volcanoes Distribution V o l c a n o Types of deposits Part I

There are three basic types of magma:

The names are based on the rock type that forms when the magma crystallizes.

Basaltic Magma

Andesitic Magma

Rhyolitic Magma

Viscosity, in turn, controls the amount of gas that can be Viscosity, in turn, controls the amount of gas that can be trapped in the magmatrapped in the magma.

The greater the viscosity the more gasgreater the viscosity the more gas in the magma.

Page 6: Composition Types of volcanoes Distribution V o l c a n o Types of deposits Part I

Overall, the behaviour of the magma determines the type of volcano that develops:

Low SiO2 magmas, with little gas and low viscosity, flows readily through their vents and across the land surface when the lava escapes the vents (Hawaii shield volcanoes)

High SiO2 magmas, gaseous and with high viscosity, tend to plug their vents until the force of escaping magma blows the vent clear; such magmas cause explosive volcanoes (Typical composite/stratovolcanoes)

Page 7: Composition Types of volcanoes Distribution V o l c a n o Types of deposits Part I

Types of volcanic deposits(photos from USGS)

Volcanoes also vary in terms of the types of deposits that they produce.Lava: Hot (up to 1200 degrees C), fluid, molten rock that flows along the land surface. There are 2 types and they have Hawaiian names: PAHOEHOE, Aa

Page 8: Composition Types of volcanoes Distribution V o l c a n o Types of deposits Part I

Low viscosity lava can flow like viscous water, including forming lava falls.

Page 9: Composition Types of volcanoes Distribution V o l c a n o Types of deposits Part I

Pahoehoe: Lava with a ropelike surface texture due to partial cooling as the lava flowed. Relatively hot, low viscosity lava.

Page 10: Composition Types of volcanoes Distribution V o l c a n o Types of deposits Part I

Pahoehoe

Page 11: Composition Types of volcanoes Distribution V o l c a n o Types of deposits Part I

A thick deposit of pahoehoe lava

Page 12: Composition Types of volcanoes Distribution V o l c a n o Types of deposits Part I

Aa: Blocky, rough lava flow. Due to high viscosity lava that flowed pushing chunks of solid and semi-solid blocks.

www.volcanovideo.com/Movies/p8vdclp.htm

Page 13: Composition Types of volcanoes Distribution V o l c a n o Types of deposits Part I

Pillow lava: A form of closed lava tube (with a bulbous end) that forms when a lava flows into water (e.g., a lake or ocean) and cools very rapidly.

Pyroclastic Flow : Debris formed by a volcanic explosion. Results when magma is very viscous.

Tephra: The general term for all pyroclastic material that is ejected from a volcano. Different terms apply according to the size of the tephra. (syn. Ejecta)

http://oceanexplorer.noaa.gov/explorations/04fire/background/volcanism/media/pillow_lava_video.html

Page 14: Composition Types of volcanoes Distribution V o l c a n o Types of deposits Part I

Ash: tephra that is finer than 2 mm in diameter.

Page 15: Composition Types of volcanoes Distribution V o l c a n o Types of deposits Part I

Lapilli: from 2 mm to 64 mm in diameter.

Blocks: hard fragments greater than 64 mm in diameter.

Page 16: Composition Types of volcanoes Distribution V o l c a n o Types of deposits Part I

Bombs: soft, partially melted fragments greater than 64 mm in diameter.

Page 17: Composition Types of volcanoes Distribution V o l c a n o Types of deposits Part I

Ash fall: Fallout of very fine ash from the air.

Volcanic ash fall during mid-day with the eruption of Mount Pinatubo in the Philippines.

Page 18: Composition Types of volcanoes Distribution V o l c a n o Types of deposits Part I

Ash flow: Pyroclastic debris that flows downslope.

Lahar: A water saturated slurry of ash and other volcanic debris that flows downslope.

Page 19: Composition Types of volcanoes Distribution V o l c a n o Types of deposits Part I

Nuée Ardente (glowing cloud): A hot, gaseous cloud of ash that flows down slope.

http://volcano.und.nodak.edu/vwdocs/volc_images/img_mt_pelee.html

Flow speeds can reach 160 km/hr and temperatures can exceed 600 degrees C.

Page 20: Composition Types of volcanoes Distribution V o l c a n o Types of deposits Part I

Classification of volcanoes

The processes and deposits dictate the morphology of volcanoes.

Three types of volcano:

Volcanoes are classified according to their morphology (shape).

Page 21: Composition Types of volcanoes Distribution V o l c a n o Types of deposits Part I

Shield volcanoes: dominated by lava flows through fissures not a central vent. Slow flows not explosions.

Photograph by J.D. Griggs on January 10, 1985http://hvo.wr.usgs.gov/maunaloa/

Mauna Loa Volcano in Hawaii – the world’s largest volcano.

Page 22: Composition Types of volcanoes Distribution V o l c a n o Types of deposits Part I

Cinder cones: dominated by explosive pyroclastics.

http://volcanoes.usgs.gov/Products/Pglossary/CinderCone.html

Forms an isolated conical mound of tephra.

Photograph by J.P. Lockwood on 1 December 1975

Page 23: Composition Types of volcanoes Distribution V o l c a n o Types of deposits Part I

Stratovolcanoes/composite: mixture of lavas and pyroclastics. Most violent and most famous.

http://volcanoes.usgs.gov/Products/Pglossary/stratovolcano.html

Mount Mageik volcano, Alaska

Photograph by R. McGimsey on 15 July 1990

Page 24: Composition Types of volcanoes Distribution V o l c a n o Types of deposits Part I

Shield Volcanoes

Dominated by fluid, high temperature, low viscosity basaltic magma.

Low, dome-shaped profile, like an inverted shield.

http://geoimages.berkeley.edu/GeoImages/Johnson/Landforms/Volcanism/ShieldVolcano.html

Page 25: Composition Types of volcanoes Distribution V o l c a n o Types of deposits Part I

Typical slopes approximately 15 degrees.

Lava flows downslope, away from a central vent or a series of vents.

Many shield volcanoes have a central caldera:

USGS

Calderas form after an eruption when the surface collapses.

Each caldera is located at the site of a former eruption.

Page 26: Composition Types of volcanoes Distribution V o l c a n o Types of deposits Part I

Hawaiian Islands and Iceland are built from shield volcanoes.

Mauna Loa is the largest volcano on Earth.

It makes up most of the island of Hawaii.

The volcano rises 4,170 m above sea level.

It covers an area of 5,271 km2.

Total volume of rock: 80,000 km3

Page 27: Composition Types of volcanoes Distribution V o l c a n o Types of deposits Part I
Page 28: Composition Types of volcanoes Distribution V o l c a n o Types of deposits Part I

Began to form 700,000 to 1,000,000 years ago when lava began to flow to the sea floor.

Eruptions reached the surface 400,000 years ago.

Its great weight depresses the underlying crust by 8 km.

Page 29: Composition Types of volcanoes Distribution V o l c a n o Types of deposits Part I

Low viscosity lava forms fountains of lava flowing from vents near the volcano summit.

Page 30: Composition Types of volcanoes Distribution V o l c a n o Types of deposits Part I

The lava flows easily down the gentle slopes….reaching the ocean during some eruptions.

Page 31: Composition Types of volcanoes Distribution V o l c a n o Types of deposits Part I

Where the lava is relatively cool eruptions form small cinder cones on the volcanoes surface.

Page 32: Composition Types of volcanoes Distribution V o l c a n o Types of deposits Part I

Dominated by viscous, gaseous magmas

Cinder Cones

Mount Edziza, British Columbia

Relatively cool basaltic magmas or andesitic magmas predominate.

Page 33: Composition Types of volcanoes Distribution V o l c a n o Types of deposits Part I

Internally constructed entirely of layers of pyroclastic deposits (blocks, bombs, lapilli).

Slopes are steep, at angle of repose.

Angle of repose: the natural maximum angle that a pile of loose, unconsolidated material will form.

Page 34: Composition Types of volcanoes Distribution V o l c a n o Types of deposits Part I

Typical angles: 30 to 40 degrees.

Range from several metres to over 300 m in height.

Commonly associated with old shield volcanoes with a relatively cool, basaltic magma.

Page 35: Composition Types of volcanoes Distribution V o l c a n o Types of deposits Part I

The Cinder Cone named Paricutin volcano began to erupt in a corn field in Mexico in 1943 and continued until 1952.The farmer had noticed a fissure (vent) had opened in the field one morning and from it was pouring black ash.

In the first year the volcano grew to 336 m (almost 1 metre per day).

Rate of growth decreased steadily; by 1952 the volcano was 424 m in height.

Page 36: Composition Types of volcanoes Distribution V o l c a n o Types of deposits Part I

Volcanoes that alternate between periods of lava flows (constructive phase) and periods of explosive eruptions (destructive phase).

Commonly called “composite volcanoes” because they are made up of both lava and pyroclastic deposits.

Steep slopes.

Stratovolcanoes

© Noemi Emmelheinz 2001

Page 37: Composition Types of volcanoes Distribution V o l c a n o Types of deposits Part I

The constructive phase often ends with a destructive phase – an explosive eruption.

May lay dormant for thousands of years.

Can grow to thousands of metres high during constructive lava flow phases.

On average, andesitic magmas with a high gas content.

Gases add great pressure when the feeder conduit becomes plugged, contributing to the explosive power.

Actually, a mix of basaltic and rhyolitic magmas in many cases.

Page 38: Composition Types of volcanoes Distribution V o l c a n o Types of deposits Part I

Mt. St. Helens Before

Mt. St. Helens After

Page 39: Composition Types of volcanoes Distribution V o l c a n o Types of deposits Part I

Extensive ash falls and ash flows are commonly produced during explosive phases. YouTube - Mount St. Helens Erupting

YouTube - Mt. St. Helens Eruption and Harry TrumanYouTube - Harry Truman Mt. St. Helens

Page 40: Composition Types of volcanoes Distribution V o l c a n o Types of deposits Part I

After an eruption a large caldera remains.

Crater Lake is a caldera that remains following an explosive eruption 7,700 years ago.

The eruption was 42 times more powerful than Mt. St. Helens.

Page 41: Composition Types of volcanoes Distribution V o l c a n o Types of deposits Part I

Styles of Volcanic Eruption

Eruption style is determined by the explosiveness and the height of the column of tephra.

USGS

Page 42: Composition Types of volcanoes Distribution V o l c a n o Types of deposits Part I

Eruptions dominated by lava flows.

Any explosions are of a small scale.

Hawaiian Eruptions

No significant ash column.

Page 43: Composition Types of volcanoes Distribution V o l c a n o Types of deposits Part I

Caused by the release of volcanic gases, and they normally occur every few minutes.

Strombolian eruptions

Tephra ranges from ash to bombs.

Intermittent explosion or fountaining of basaltic lava from a single vent or crater.

Page 44: Composition Types of volcanoes Distribution V o l c a n o Types of deposits Part I

Vulcanian Eruptions

Periodic eruptions (decades apart) that are moderate explosions.

Ejecta are hard (not melted).

Andesitic, gaseous magmas.

Page 45: Composition Types of volcanoes Distribution V o l c a n o Types of deposits Part I

Similar to Vulcanian Eruptions but include hot gas clouds (Nuees Ardentes)

Pelean Eruptions

Page 46: Composition Types of volcanoes Distribution V o l c a n o Types of deposits Part I

Plinian Eruptions

Form a plume of tephra that extends upwards to the stratosphere (>11 km high). ICELAND disrupted air travel for a month a few years ago?Dust can remain in the stratosphere for years and significantly cool the Earth.

Very explosive volcanic eruptions; long periods between eruptions.Involve a very viscous, rhyolitic magma.

Page 47: Composition Types of volcanoes Distribution V o l c a n o Types of deposits Part I

Ultraplinian Eruptions

Very explosive eruptions that eject approximately 100 km3 or more of tephra and produce ash columns exceeding 25 km in height.

Phreatic Eruptions

Eruptions of tephra and large volumes of steam produced when water makes contact with the magma.

Water flashes to steam and causes a very violent eruption.

Page 48: Composition Types of volcanoes Distribution V o l c a n o Types of deposits Part I

The Distribution of volcanoes

Page 49: Composition Types of volcanoes Distribution V o l c a n o Types of deposits Part I

Along the oceanic ridges (Iceland)

Parallel to oceanic trenches (subduction zones in Pacific Ring Of Fire)

Over hot spots originating from the mantle (Hawaii)

The vast majority of volcanoes are located:

Page 50: Composition Types of volcanoes Distribution V o l c a n o Types of deposits Part I

Volcanoes along trenches

Examples: Japan, most Pacific Islands, Caribbean Islands, west coast of North and South America.

Page 51: Composition Types of volcanoes Distribution V o l c a n o Types of deposits Part I

2/3 of all volcanoes are along the Ring of Fire that surrounds the Pacific Ocean.

Page 52: Composition Types of volcanoes Distribution V o l c a n o Types of deposits Part I

Volcanoes result from magma rising off the melting subducted plate in subduction zones

The composition of the magma is andesitic (melted basaltic crust plus sediment carried on the crust).

Magma is very gaseous, particularly enriched with water vapor.

Stratovoclanoes are constructed from feeder conduits extending to the surface.

Page 53: Composition Types of volcanoes Distribution V o l c a n o Types of deposits Part I

Granitic (rhyolitic) intrusions are also formed, becoming trapped within the volcanic pile overlying the region of subduction.

Potential for very explosive eruptions.

Page 54: Composition Types of volcanoes Distribution V o l c a n o Types of deposits Part I

Mt. Fuji, Japan: very beautiful and symmetrical

A stratovolcano/composite that has erupted 16 times since 781 AD.

The most recent eruption was in 1707-1708

0.8 cubic km of ash, blocks, and bombs were ejected during that eruption.

(Greater than Mt. St. Helens and there were no fatalities).

Page 55: Composition Types of volcanoes Distribution V o l c a n o Types of deposits Part I

Similar situation on the west coast of North and South America.

Volcanoes formed by intrusion into the mountain chains that result from compressive forces between oceanic and continental crust.

Page 56: Composition Types of volcanoes Distribution V o l c a n o Types of deposits Part I

Ojos del Salado, Chile – The world’s highest volcano.

Perched at 6,887 metres above sea level.

A stratovolcano that has not erupted in historic time.

Page 57: Composition Types of volcanoes Distribution V o l c a n o Types of deposits Part I

Massif Central, France• The Massif Central is an elevated region in

south-central France, consisting of mountains and plateaux.

• Subject to volcanism that has subsided in the last 10,000 years. It is situated in the middle of southern France and it covers 15 percent of the country. THEY ARE NOW EXTINCT!

Page 58: Composition Types of volcanoes Distribution V o l c a n o Types of deposits Part I

• The bestselling author Simon Winchester examines the enduring and world-changing effects of the catastrophic eruption off the coast of Java of the earth’s most dangerous volcano, Krakatoa.Krakatoa.

• The legendary annihilation in 1883 of the volcano-island of Krakatoa (the name has since become a byword for a cataclysmic disaster) was followed by an immense tsunami that killed nearly 40,000 people. Beyond the purely physical horrors of an event that has only very recently been properly understood, the eruption changed the world in more ways than could possibly be imagined. Dust swirled round die planet for years, causing temperatures to plummet and sunsets to turn vivid with lurid and unsettling displays of light. Pumice that resembled icebergs floated in the Indian and Pacific Oceans.

• The effects of the immense waves were felt as far away as France. Barometers in Bogota and Washington, D.C., went haywire. Bodies were washed up in Zanzibar. The sound of the island’s destruction was heard in Australia and India and on islands thousands of miles away. Most significant of all (in view of today’s new political climate) the eruption helped to trigger in Java a wave of murderous anti-Western militancy among fundamentalist Muslims: one of the first outbreaks of Islamic-inspired killings (at the time, Indonesia was the Dutch East Indies).

Page 59: Composition Types of volcanoes Distribution V o l c a n o Types of deposits Part I
Page 60: Composition Types of volcanoes Distribution V o l c a n o Types of deposits Part I

Volcanoes in Canada?

There are many inactive volcanoes in the Canadian Rocky Mountains.

None are erupting at the present time.

At least three have erupted over the past several hundred years.

Page 61: Composition Types of volcanoes Distribution V o l c a n o Types of deposits Part I

Oceanic Ridge Volcanoes-like Iceland

Most volcanic activity is under water.

Basaltic pillow lavas dominate the submerged volcanoes.

Intrusion of material from the magma chamber creates new oceanic crust as the sea floor spreads.

Page 62: Composition Types of volcanoes Distribution V o l c a n o Types of deposits Part I

Shield volcanoes occur where volcanic activity extends to the surface (e.g., Iceland).

Iceland is growing by volcanic expansion of the ridge.

Page 63: Composition Types of volcanoes Distribution V o l c a n o Types of deposits Part I

Hekla Volcano, Iceland in the distant background.

Hekla covers about 80% of Iceland and its volume is approx. 12 cubic km.

Hekla erupted four times in the 20th century, the last time in 1991.

Page 64: Composition Types of volcanoes Distribution V o l c a n o Types of deposits Part I

Unlike the Hawaiian Island shield volcanoes most of Iceland’s lava flows issue from linear fissures: fissure eruptions rather than vent eruptions.

Page 65: Composition Types of volcanoes Distribution V o l c a n o Types of deposits Part I

Vatnaolder Volcano forms a single peak with the classic shield form.

Page 66: Composition Types of volcanoes Distribution V o l c a n o Types of deposits Part I

Cinder cones also form on the older portions of the island, away from the most active area that runs along the middle of the oceanic ridge.

Page 67: Composition Types of volcanoes Distribution V o l c a n o Types of deposits Part I

Very small cinder cones, called spatter cones form where small fountains of very fluid basaltic lava extrude material to the surface for relatively short periods of time.

Page 68: Composition Types of volcanoes Distribution V o l c a n o Types of deposits Part I

Some Icelandic volcanoes are buried beneath glaciers.

Page 69: Composition Types of volcanoes Distribution V o l c a n o Types of deposits Part I

In 1973 the Eldfell volcano erupted on the island of Heimaey

Photos from the USGS.

Page 70: Composition Types of volcanoes Distribution V o l c a n o Types of deposits Part I
Page 71: Composition Types of volcanoes Distribution V o l c a n o Types of deposits Part I
Page 72: Composition Types of volcanoes Distribution V o l c a n o Types of deposits Part I

Over three months the island grew substantially and the harbor was greatly improved.

Page 74: Composition Types of volcanoes Distribution V o l c a n o Types of deposits Part I

Volcanoes and Hot Spots

Hot Spot: a point on the crust immediately above a hot plume within the mantle.

Heat from the mantle (and some magma) rises to the hot spot.

Rising mantle material termed a mantle plume.

Page 75: Composition Types of volcanoes Distribution V o l c a n o Types of deposits Part I

Hot spots can occur beneath oceanic or continental crust.

Mechanism first proposed by J. Tuzo Wilson (a Canadian geophysicist) to illustrate that plates actually move.

Page 76: Composition Types of volcanoes Distribution V o l c a n o Types of deposits Part I

The Hawaiian Islands consist of eastern active volcanic islands and inactive volcanic islands to the northwest that are moving over a hot spot/crack in the earth’s crust

Page 77: Composition Types of volcanoes Distribution V o l c a n o Types of deposits Part I

Further northwest of the islands are seamounts (underwater mountains that are submerged islands).

Page 78: Composition Types of volcanoes Distribution V o l c a n o Types of deposits Part I

Just southeast of Hawaii is an undersea volcano known as Loihi. That means in the future there will be a new Hawaiian Island forming over the Hot Spot

http://www.biosbcc.net/ocean/marinesci/02ocean/hwgeo.htm

Page 79: Composition Types of volcanoes Distribution V o l c a n o Types of deposits Part I

Until 1996 Loihi was thought to be an inactive seamount.

It began erupting in 1996 and the eruptions were preceded by a cluster of small earthquakes indicating the movement of magma.

Page 80: Composition Types of volcanoes Distribution V o l c a n o Types of deposits Part I

http://www.biosbcc.net/ocean/marinesci/02ocean/hwgeo.htm

The modern active island rests close to the hot spot and its shield volcanoes are fed from the magma that the hot spot generates.

Page 81: Composition Types of volcanoes Distribution V o l c a n o Types of deposits Part I

The Pacific plate is moving towards the northwest.

The volcanic islands have been successively “pushed off” the hot spot by plate movement.

Page 82: Composition Types of volcanoes Distribution V o l c a n o Types of deposits Part I

As the crust moves it ages, becomes cooler and more dense, causing it to subside.

The seamounts are old islands that have subsided to below sea level.

Page 83: Composition Types of volcanoes Distribution V o l c a n o Types of deposits Part I

The seamounts represent even older islands that have been pushed further from the hot spot.

Page 84: Composition Types of volcanoes Distribution V o l c a n o Types of deposits Part I

Recent studies suggest that the Hawaiian Hot Spot has moved over time.

Page 85: Composition Types of volcanoes Distribution V o l c a n o Types of deposits Part I

• Volcano Finder | World Map of Volcanoes | Volcano Lookup | World famous volcanoes | Volcano Names

Page 86: Composition Types of volcanoes Distribution V o l c a n o Types of deposits Part I

GEYSERS• Volcanoes that only eject geothermal heated

water. They even use them to heat homes in Iceland.

• Most famous one is Old Faithful in Yellowstone Park

• Old Faithful Geyser – YouTube• The Blue Lagoon Iceland – YouTube• Iceland geyser – YouTube• The Rock That Floats on Water: Pumice! -

YouTube