Cnsr2011 Fdhymsh Presentation (1)wer gewe gewg secvesvc

Embed Size (px)

Citation preview

  • 7/29/2019 Cnsr2011 Fdhymsh Presentation (1)wer gewe gewg secvesvc

    1/19

    Survey of Free Space

    Optical (FSO)Communications

    Opportunities in Next

    Generation Cellular

    Networks

    Frdric Demers, Halim Yanikomeroglu &

    Marc St-Hilaire

    Presented at the

    Communication Networks and Services Research

    Conference4 May 2011

  • 7/29/2019 Cnsr2011 Fdhymsh Presentation (1)wer gewe gewg secvesvc

    2/19

    2

    Outline

    Motivation & Key Characteristics of FSO systems

    Channel model and path loss overview

    Recent advances in FSO communications Full Optical FSO systems

    Hybrid RF/FSO systems

    Mobile FSO systems

    Indoor diffuse FSO systems

    Applications within Next Generation Cellular Networks

    Conclusions

  • 7/29/2019 Cnsr2011 Fdhymsh Presentation (1)wer gewe gewg secvesvc

    3/19

    3

    Motivation & key characteristics

    RF spectrum scarcity vs increasing throughput

    requirements

    A single FSO channel can offers Tb/s throughput

    wirelessly Free space optical spectrum is license free and

    nearly unlimited (very dense reuse)

    FSO systems are generally very difficult tointercept

    Effective range limited by weather and eye-

    safety considerations

  • 7/29/2019 Cnsr2011 Fdhymsh Presentation (1)wer gewe gewg secvesvc

    4/19

    4

    Channel model

    Factors affecting light propagation throughthe atmosphere

    Physical composition of atmosphere

    Changes in refractive indices

    Aerosol particles

  • 7/29/2019 Cnsr2011 Fdhymsh Presentation (1)wer gewe gewg secvesvc

    5/19

    5850 nm 1550 nm

    Channel model

  • 7/29/2019 Cnsr2011 Fdhymsh Presentation (1)wer gewe gewg secvesvc

    6/19

    6

    Channel model

    Channel effects:

    Absorption

    Diffraction

    Rayleigh scattering (atmospheric

    gases molecules)

    Mie scattering (aerosol particles)

    Atmospheric (refractive) turbulence: Scintillation

    Beam wander

    Weather

  • 7/29/2019 Cnsr2011 Fdhymsh Presentation (1)wer gewe gewg secvesvc

    7/19

    7

    Channel model

  • 7/29/2019 Cnsr2011 Fdhymsh Presentation (1)wer gewe gewg secvesvc

    8/19

    8

    Path loss, RF

    Typical RF attenuation (e.g. 2 GHz, 15 dBi antenna gains)

    Avg path loss in free space -> 68 dB @ 1km , 118 dB @ 10 km

    Avg path loss in mobile radio (n=3.4, d0=100 m) -> 82 dB/km, 146

    dB @ 10 km

    2

    0mobile-radio

    0

    4n

    d dPL d

  • 7/29/2019 Cnsr2011 Fdhymsh Presentation (1)wer gewe gewg secvesvc

    9/19

    9

    Path loss, FSO

    0,

    , , , ,0

    x

    N x t dx

    I t x I t e

    Beer-Lambert Law

    AbsorptionRaleigh Scattering

    Mie Scattering

    Intensity of transmitter

    Intensity of light at pointxand time t

    Space time distribution of species

    a R M

    M. Bass, "Atmospheric optics," in Handbook of Optics ,Third

    Edition ed., vol. 5, M. Bass, Ed. McGraw-Hill, pp. 3.3., 2010.

  • 7/29/2019 Cnsr2011 Fdhymsh Presentation (1)wer gewe gewg secvesvc

    10/19

    10

    Path loss, FSO

    36

    0 2

    7.53 101 77 1 7733 10

    p qn

    T T

    0Tn n n r r

    Refractive index of air

    Temperature Humidity

    Pressure

    Point in space Stochastic component

  • 7/29/2019 Cnsr2011 Fdhymsh Presentation (1)wer gewe gewg secvesvc

    11/19

    11

    Path loss, RF vs FSO

    Typical RF attenuation (e.g. 2 GHz, 15 dBi antenna gains)

    Avg path loss in free space -> 68 dB @ 1km , 118 dB @ 10 km

    Avg path loss in mobile radio (n=3.4, d0=100 m) -> 82 dB/km, 146

    dB @ 10 km

    Typical optical attenuation (e.g. 1550 nm or 194 THz)

    clear atmospheric conditions -> 0.2 dB/km

    urban (because of dust) -> 10 dB/km

    Rain -> 2-35 dB/km

    Snow -> 10-100 dB/km

    light fog -> 120 dB/km

    dense fog -> 300 dB/km

    maritime fog -> 480 dB/km

  • 7/29/2019 Cnsr2011 Fdhymsh Presentation (1)wer gewe gewg secvesvc

    12/19

    12

    Full Optical FSO

    No requirement for

    electrical-optical

    conversion

    Easy extension of

    RF-over-fibre links

    Wavelength division

    multiplexing

    K. Kazaura, K. Wakamori, M. Matsumoto, T. Higashino, K. Tsukamoto

    and S. Komaki, "RoFSO: A universal platform for convergence of fiber

    and free-space optical communication networks," CommunicationsMagazine, IEEE, vol. 48, pp. 130-137, 2010.

  • 7/29/2019 Cnsr2011 Fdhymsh Presentation (1)wer gewe gewg secvesvc

    13/19

    13

    Hybrid RF/FSO

    I. I. Kim and E. Korevaar, "Availability of free space optics (FSO) and

    hybrid FSO/RF systems," Optical Wireless Communications IV, EJ

    Korevaar, Eds. , Proc. SPIE, vol. 4530, pp. 84-95, 2001.

    FSO is most affected by fog, RF by

    rain

    RF links complements FSO to

    achieve carrier class availability

    (99.999%)

    Lower throughput in adverse

    weather

  • 7/29/2019 Cnsr2011 Fdhymsh Presentation (1)wer gewe gewg secvesvc

    14/19

    14

    J. Akella, C. Liu, D. Partyka, M. Yuksel, S. Kalyanaraman and P. Dutta,

    "Building blocks for mobile free-space-optical networks," in Wireless

    and Optical Communications Networks, 2005. WOCN 2005. Second

    IFIP International Conference on, pp. 164-168, 2005.

    Mobile FSO Systems

    Tightly packed LED

    transceivers around

    spherical device

    Able to maintain optical

    link in motion

    Experiment rather

    simplistic

  • 7/29/2019 Cnsr2011 Fdhymsh Presentation (1)wer gewe gewg secvesvc

    15/19

    15

    Indoor Diffuse Optical Wireless

    R. J. Green, H. Joshi, M. D. Higgins and M. S. Leeson,

    "Recent developments in indoor optical wireless systems,"

    IET Communications, vol. 2, pp. 3, 2008

    Non Line-of-Sight optical

    communications

    Multipath interference an

    issue, limiting throughput

    Hybrid narrow-beam

    designs provide both

    bandwidth and coverage

  • 7/29/2019 Cnsr2011 Fdhymsh Presentation (1)wer gewe gewg secvesvc

    16/19

    Next Generation Cellular Networks

    Densification of access points (eNodeB)

    Shorter hops

    Suitability to mesh connectivity

    Heterogeneous access points

    Relaying

    Distributed antennas

    Coordinated Multi-Point Transmission &Reception (CoMP)

    Self-Organizing Networks

  • 7/29/2019 Cnsr2011 Fdhymsh Presentation (1)wer gewe gewg secvesvc

    17/19

    17

    p-eNB

    relay

    eNB

    p-eNB

    eNB

    relay

    Next Generation Cellular Networks

    MME SAE

    GW

    aGW

    aGW

    PDN

    GW

    Evolved Packet CoreEvolved UMTS Terrestrial Access Network (E-UTRAN)

    UE

    Indoor AP

    UE

  • 7/29/2019 Cnsr2011 Fdhymsh Presentation (1)wer gewe gewg secvesvc

    18/19

    18

    Conclusions

    Radio frequencies alone will not suffice to providethe required throughput to the end-users

    Next generation networks will require a denserinfrastructure to cater to mobile user needs

    This denser infrastructure will shorten hopsbetween base stations and ease theestablishment of mesh connectivity

    These architectural changes open the door to anincreased reliance upon FSO communication

    systemsPHY layer is not dead!

  • 7/29/2019 Cnsr2011 Fdhymsh Presentation (1)wer gewe gewg secvesvc

    19/19

    19

    Main references

    1. J. Akella, C. Liu, D. Partyka, M. Yuksel, S. Kalyanaraman and P. Dutta, "Building blocks formobile free-space-optical networks," in Wireless and Optical Communications Networks, 2005.WOCN 2005. Second IFIP International Conference on, 2005, pp. 164-168. Available:http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.143.6352&rep=rep1&type=pdf

    2. M. Bass, "Atmospheric optics," in Handbook of Optics ,Third Edition ed., vol. 5, M. Bass, Ed.McGraw-Hill, 2010, pp. 3.3.

    3. R. J. Green, H. Joshi, M. D. Higgins and M. S. Leeson, "Recent developments in indoor opticalwireless systems," IET Communications, vol. 2, pp. 3, 2008. Available:http://www.ieeexplore.ieee.org.proxy.library.carleton.ca/stamp/stamp.jsp?tp=&arnumber=4446618

    4. K. Kazaura, K. Wakamori, M. Matsumoto, T. Higashino, K. Tsukamoto and S. Komaki,"RoFSO: A universal platform for convergence of fiber and free-space optical communicationnetworks," Communications Magazine, IEEE, vol. 48, pp. 130-137, 2010. Available:

    http://www.ieeexplore.ieee.org.proxy.library.carleton.ca/stamp/stamp.jsp?tp=&arnumber=5402676

    5. I. I. Kim and E. Korevaar, "Availability of free space optics (FSO) and hybrid FSO/RFsystems," Optical Wireless Communications IV, EJ Korevaar, Eds. , Proc. SPIE, vol. 4530,pp. 84-95, 2001. Available:http://www.ece.mcmaster.ca/~hranilovic/woc/resources/local/spie2001b.pdf