Classical Control

Embed Size (px)

Citation preview

  • 7/27/2019 Classical Control

    1/192

    Classical Control

    Topics covered:

    Modelin . ODEs. Linearization.

    Laplace transform. Transfer functions.Block diagrams. Masons Rule.

    Time res onse s ecifications.

    Effects of zeros and poles.

    Stability via Routh-Hurwitz. -

    PID controllers and Ziegler-Nichols tuning procedure.

    Actuator saturation and integrator wind-up.

    Root locus.

    Frequency response--Bode and Nyquist diagrams.

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 1

    .

    Design of dynamic compensators.

  • 7/27/2019 Classical Control

    2/192

    Classical Control

    Text: Feedback Control of Dynamic Systems, , . . , . . . -

    Prentice Hall 2002.

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 2

  • 7/27/2019 Classical Control

    3/192

    What is control?

    Model Relation between gas pedal and speed:10 mph change in speed per each degree rotation of gas pedal

    Disturbance Slope of road:5 mph change in speed per each degree change of slope

    w

    oc agram or e cru se con ro p an :

    Slope(degrees)

    0.5)5.0(10 wuy =

    -

    10

    Control(degrees)

    Output speed(mph)

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 3

  • 7/27/2019 Classical Control

    4/192

    What is control?

    w

    pen- oop cru se con ro :

    r

    0.5

    PLANT

    10

    -

    10 wr

    ol

    )5.0(10

    .

    =1/10 yolReference

    (mph)wr 5=

    r

    wyr

    wyre

    ol

    olol 5

    ==

    %69.7,51,6500,65

    =======

    olol

    ol

    eewr

    ewr

    mph

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 4

    rrol w en:

    1- Plant is known exactly2- There is no disturbance

  • 7/27/2019 Classical Control

    5/192

    What is control?

    w

    ose - oop cru se con ro :

    ru = 20

    0.5wuycl )5.0(10 =

    PLANTc

    -

    10wr

    201

    5

    201

    200=

    1/10+yclr -

    wryre clcl201201

    +==

    551

    %5.0%201

    10,65 ==== clewr

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 5rr

    e clcl201201

    [%] +=

    =.

    65201201, ==== clewr

  • 7/27/2019 Classical Control

    6/192

    What is control?

    Feedback control can help:

    disturbance rejection changing dynamic behavior

    LARGE gain is essential but there is a STABILITY limit

    the errors due to disturbances and uncertainties withoutmaking the system become unstable is what much of feedback

    First step in this design process: DYNAMIC MODEL

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 6

  • 7/27/2019 Classical Control

    7/192

    Dynamic Models

    MECHANICAL SYSTEMS: maF= Newtons law

    xvxbuxm

    &&&&

    ==

    velocity

    xva &&& == acceleration

    mbsUmvmv o

    oeUueVv sto

    sto +==+ == ,& rans er unc ons

    dt

    d

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 7

  • 7/27/2019 Classical Control

    8/192

    Dynamic Models

    MECHANICAL SYSTEMS: F= Newtons law

    2

    sin Tlmgml c=

    +=

    &

    &&angular velocity

    2

    == &&& angular acceleration

    &&&& 2sin2sin mllmllcc =+=+ Linearization

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 8

  • 7/27/2019 Classical Control

    9/192

    Dynamic Models

    2ml

    T

    l

    c=+ &&

    =1x 21 xx =&Reduce to first order equations:

    &=2x 212ml

    Tx

    l

    gx c+=&

    uxgxT

    ux

    x c

    +

    =

    010

    ,1 & State Variable

    lmx 2

    =&

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 9

    JuHxy +=

  • 7/27/2019 Classical Control

    10/192

    Dynamic Models

    ELECTRICAL SYSTEMS:

    Kirchoffs Current Law (KCL):

    e a ge ra c sum o currents enter ng a no e s zero at

    every instant

    Kirchoffs Voltage Law (KVL)

    The algebraic sum of voltages around a loop is zero atevery instant

    Resistors:

    iR iC iL+ + +

    )()()()( GvtitRitv RRRR ==

    Capacitors:

    vR vC vL )0()(1)()()(0

    CCCC

    C vdiC

    tvdt

    dvCti +==

    Inductors:

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 10+==

    t

    LLLL

    L idv

    L

    ti

    dt

    tdiLtv

    0

    )0()(1

    )()(

    )(

  • 7/27/2019 Classical Control

    11/192

    Dynamic Models

    ELECTRICAL SYSTEMS:

    OP AMP:

    +ip+= vvv npO ),(

    RI

    RO

    i

    iOvO

    vp

    + ==

    = np vv

    - p- n

    -n

    vnnp

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 11

  • 7/27/2019 Classical Control

    12/192

    Dynamic Models

    ELECTRICAL SYSTEMS:

    R2KCL:

    R1 Cv1

    vO IOO v

    CRv

    CRdtdv

    12

    11 =

    +-

    ( ) ( ) ==t

    IOO dvCR

    vtvR0

    1

    2 )(1

    0)( OC

    Kv1 vO

    RCK

    1=

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 12

    Inverting integrator

  • 7/27/2019 Classical Control

    13/192

    Dynamic Models

    ELECTRO-MECHANICAL SYSTEMS: DC Motor

    armature currenttorque

    me

    at

    Ke &=

    =

    shaft velocityemf

    += TbJ mmm &&&

    0=+++ edt

    diLiRv aaaa

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 13

    Obtain the State Variable Representation

  • 7/27/2019 Classical Control

    14/192

    Dynamic Models

    HEAT-FLOW:

    1

    Temperature DifferenceHeat Flow

    R1

    21

    =

    &C

    Thermal resistanceThermal capacitance

    ( )IoI

    I TTRRC

    T

    +=21

    &

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 14

  • 7/27/2019 Classical Control

    15/192

    Dynamic Models

    FLUID-FLOW:

    &

    Mass rate Mass Conservation aw

    outin

    Outlet mass flowIn et mass ow

    ( )outin wwA

    hhAm ==

    1&&&

    A: area of the tank

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 15

    h: height of water

  • 7/27/2019 Classical Control

    16/192

    Linearization

    ( )uxfx ,=&Dynamic System:

    oouxf ,0 = Equilibrium

    == oo ,

    ( )uuxxfx oo ++= ,&Taylor Expansion

    ff &

    ux oooo uxuxoo ,,,

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 16

    oooo uxux ux ,,

    , uxx +

  • 7/27/2019 Classical Control

    17/192

    Linearization

    uGFx +&

    mn uufG

    xxfF

    1

    1

    11

    1

    1

    , =

    =

    MM

    L

    MM

    L

    oo

    oo

    oo

    oo

    uxm

    nnux

    uxn

    nnux

    u

    f

    u

    f

    x

    f

    x

    f

    ,1

    ,

    ,1

    ,

    LL

    Example: Pendulum with friction 0sin =++ gk &&&

    =

    10&

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 17m

    x

    l ox

    1cos

  • 7/27/2019 Classical Control

    18/192

    Laplace Transform

    Functionf(t) of time

    Piecewise continuous and exponential orderbtKetf

  • 7/27/2019 Classical Control

    19/192

    Laplace transform examples

    After Oliver Heavyside (1850-1925)

    =+====

    sje

    s

    e

    dtedtetusF

    stst

    Exponential function

    After Oliver Exponential (1176 BC- 1066 BC)

    +

    + >+

    =+

    ===0 0 0

    )( if1

    )(

    ss

    edtedteesF

    tstsstt

    Delta (impulse) function (t)

    sdtets st allfor1==

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 19

    0

  • 7/27/2019 Classical Control

    20/192

    Laplace Transform Pair Tables

    Si nal Waveform Transformimpulse

    step

    )(t 1

    1)(tu

    ramp

    ex onential

    21

    s1

    )(ttu

    t

    damped ramp

    +s

    2)(

    1

    +s)(tu

    tte

    sine

    cosine

    22 +s

    22s

    ( ) )(sin tut

    ( ) )(cos tut

    damped sine

    22)(

    ++s( ) )(sin tutte

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 20

    22)( ++s

    ( ) )(cos tutte

  • 7/27/2019 Classical Control

    21/192

    Laplace Transform Properties

    sFsFtttftf +=+=+ LLL

    Linearity: (absolutely critical property)

    ( )ssFdf

    t = )( LIntegration property:

    )0()()(

    =

    fssF

    dt

    tdfLDifferentiation property:

    )0()0()(22

    )(2=

    fsfsFsdt

    tfdL

    )0()0()0()()( )(21 =

    mmm

    m

    m

    ffsfssFdt

    tfdLmsL

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 21

  • 7/27/2019 Classical Control

    22/192

    Laplace Transform Properties

    = t

    Translation properties:

    -

    { } 0)()()( >= asFeatuatf as forL

    t-domain translation:

    Initial Value Property: )(lim)(lim0

    ssFtfst +

    =

    Final Value Property: )(lim)(lim ssFtf =

    If all poles ofF(s) are in the LHP

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 22

  • 7/27/2019 Classical Control

    23/192

    Laplace Transform Properties

    )()}({a

    Fa

    atf =LTime Scaling:

    sdF )(

    ds

    =

    Convolution: )()(})()({0

    sGsFdtgft

    = L

    j+1

    j j=

    2

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 23

  • 7/27/2019 Classical Control

    24/192

    Laplace Transform

    Exercise: Find the Laplace transform of the following waveform

    )24 +s

    ( )42

    +

    =

    ssExercise: Find the Laplace transform of the following waveform

    ( )dxxtuetft

    t

    0

    4 4sin5)()( +=

    ( )( )2

    3

    164

    8036)(

    ++

    ++=

    sss

    sssF

    ( )tudt

    tetuetf t40

    5)(5)(

    +=

    ( )240

    20010)(

    +

    +=

    s

    ssF

    xerc se: Find the Laplace transform of the following waveform

    22 TtuTtutut +=( )eA

    sTs 21

    =

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 24

    s

  • 7/27/2019 Classical Control

    25/192

    Laplace transforms

    Linearsystem

    ain) Complex frequency domain

    (s domain)

    Differential

    equation

    Laplace

    transform L

    Algebraic

    equationin(t

    do

    Classical

    techni ues

    Algebraic

    techni uese

    dom

    Res onse Inverse La lace Res onse

    Ti

    signal transform L-1 transform

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 25

    The diagram commutes

    Same answer whichever way you go

  • 7/27/2019 Classical Control

    26/192

    Solving LTI ODEs via Laplace Transform

    ( ) ( ) ( ) ( ) ubububyayay mmm

    m

    n

    n

    n

    01

    101

    1 +++=+++

    LL

    Initial Conditions:

    ( )

    ( ) ( )

    ( )

    ( ) ( )0,,0,0,,011 uuyy mn KK

    kk 1

    Recall j

    j

    jkk

    ksfs

    dt

    =

    =

    0

    )1( )0()(sL

    111 imin

    =

    +

    =

    =

    =

    =

    =

    ji

    j

    jiim

    i

    ij

    i

    j

    jiin

    i

    i

    n

    j

    jjnnsusUsbsysYsasysYs

    1

    0

    )1(

    0

    1

    0

    )1(1

    0

    1

    0

    )1( )0()()0()()0()(

    011

    1

    0

    )1(

    00

    )1(

    0

    011

    1

    011

    1)0()0(

    )()(asasas

    subsyasU

    asasas

    bsbsbsbsY

    n

    n

    n

    j

    j

    ji

    ii

    j

    j

    ji

    ii

    n

    n

    n

    m

    m

    m

    m

    ++++

    +++++

    ++++=

    =

    ==

    =

    LL

    L

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 26

    For a given rational U(s) we get Y(s)=Q(s)/P(s)

  • 7/27/2019 Classical Control

    27/192

    Laplace Transform

    Exercise: Find the Laplace transform V(s)

    tdv

    3)0( =

    =+

    v

    uv

    dt ( ) 66)(

    +

    +

    =sss

    sV

    Exercise: Find the Laplace transform V(s)

    ( )( )( ) 12

    321

    5)(

    +

    +++=

    sssssV

    '

    5)(3)(

    4)( 2

    2

    ==

    =++ etvdt

    tdv

    dt

    tvd t

    ,

    What about v t?

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 27

  • 7/27/2019 Classical Control

    28/192

    Transfer Functions

    ( ) ( ) ( ) ububyayay mmn

    n

    n

    01

    101

    1 ++=+++

    LL

    Assume all Initial Conditions Zero:

    1m

    011011 ssssasasas mn +++=++++

    LL

    InputOutput

    )()(

    )()(

    1

    011

    1

    011

    m

    n

    n

    n

    m

    bsbsbsY

    sUsA

    sUasasas

    sY

    +++

    =++++

    =

    L

    L

    )())((

    )(

    21

    011

    1

    m

    nn

    n

    m

    zszszs

    asasassUs

    ++++==

    L

    L

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 28

    )())(( 21 npspsps L

  • 7/27/2019 Classical Control

    29/192

    Rational Functions

    We shall mostly be dealing with LTs which are rational

    functions ratios of polynomials ins

    )( 0111

    011

    nn

    nn

    mm

    asasasa

    bsbsbsb

    sF ++++

    ++++

    =

    L

    L

    )())(( 21

    21

    n

    m

    pspspsK

    =L

    L

    Kis the scale factor or (sometimes) gain

    A strictly proper rational function has n>m

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 29

    n mproper ra ona unc on as

  • 7/27/2019 Classical Control

    30/192

    Residues at simple poles

    Functions o a comp ex varia e wit iso ate ,finite order poles have residues at the poles

    )())(()( 2121 nm

    kkkzszszsKsF

    ++

    +

    =

    = L

    L

    L

    2121 nn

    sksksk )()()( 21 n

    iipspsps

    sps

    = LL

    )()(lim spsk ips

    ii

    = Residue at a simple pole:

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 30

  • 7/27/2019 Classical Control

    31/192

    Residues at multiple poles

    rr

    rm

    s

    k

    s

    k

    s

    k

    s

    zszszsKsF

    )())(()(

    22121

    ++

    +

    =

    = LL

    rjsFrpsjr

    ds

    jr

    dpsjr

    k ii

    j L1,)()(lim)!(

    1 =

    =

    31

    522

    +

    +

    s

    ssExample:

    31

    3

    21

    1

    1

    2

    +

    +

    +

    +

    =sss

    3)52()1(

    lim 3

    23=++

    sss 1)52()1(lim 3

    23=

    ++

    sssd 2)52()1(lim

    !21

    3

    23

    2

    2=

    ++

    sssd

    31252 2 ss +

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 31

    ( ) ( ) ( )1111 323tutte

    ssss+=

    +

    ++

    +=

    +

  • 7/27/2019 Classical Control

    32/192

    Residues at complex poles

    Compute residues at the poles )()(lim sasas

    Bundle complex conjugate pole pairs into second-order terms if

    you want

    but you will need to be careful

    ( )[ ]222 2))(( ++=+ ssjsjs Inverse Laplace Transform is a sum of complex exponentials

    The answer will be real

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 32

  • 7/27/2019 Classical Control

    33/192

    Inverting Laplace Transforms in Practice

    We have a table of inverse LTs

    Write F(s) as a partial fraction expansion

    F(s) = bmsm

    + bm1sm1

    +L+ b1s + b0ans

    n + an1sn1 +L+ a1s + a0

    = K 1 2 L m

    (s p1)(s p2)L(s pn )

    = 1 + 2 + 31 + 32 + 33 + ...+

    q

    Now appeal to linearity to invert via the table

    s p1 s p2 s p3 s p3 s p3 s pq

    Surprise! Nastiness: computing the partial fraction expansion is best

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 33

    done by calculating the residues

  • 7/27/2019 Classical Control

    34/192

    Example 9-12

    Find the inverse LT of)52)(1(

    )(2 +++

    =sss

    ssF

    *

    21211)(221

    jsjsssF ++++++=

    5

    10

    1522

    )3(20)()1(

    1lim

    1sss

    ssFs

    sk =

    =++

    +=+

    =

    4255521)21)(1(

    )()21(21

    lim2

    ej

    jsjss

    ssFjs

    jsk ==

    +=++++

    =++

    =

    )(252510)( 4)21(4)21( tueeetf jtjjtjt

    ++= ++

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 34

    )()

    4

    52cos(21010 tutee tt

    ++=

  • 7/27/2019 Classical Control

    35/192

    Not Strictly Proper Laplace Transforms

    Find the inverse LT of34

    )(2 ++

    =ss

    ssssF

    Convert to polynomial plus strictly proper rational function Use polynomial division 2

    2)(+

    ++=s

    ss

    5.05.0

    2

    34

    +++=

    ++

    s

    ss

    Invert as normal

    )(5.05.0)(2)()( 3 tueetdt

    tdtf tt

    +++=

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 35

  • 7/27/2019 Classical Control

    36/192

    Block Diagrams

    Series:1G 2G

    21GGG =

    1G+Parallel:

    2G+

    21 GGG +=

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 36

  • 7/27/2019 Classical Control

    37/192

    Block Diagrams

    +)(sR )(s )(sC

    Reference input

    -

    )(sB GEC=

    Output

    = ee ac s gna

    )1()1(

    GHRGRCGHGHCGRC

    +==+=

    )1()1( GHREGHHGEE +==+=

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 37

    Rule: Transfer Function=Forward Gain/(1+Loop Gain)

  • 7/27/2019 Classical Control

    38/192

    Block Diagrams

    +)(sR )(s )(sC

    Reference input

    +

    )(sB GEC=

    Output

    = ee ac s gna

    )1()1(

    GHRGRCGHGHCGRC

    ==+=

    )1()1( GHREGHHGEE ==+=

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 38

    Rule: Transfer Function=Forward Gain/(1-Loop Gain)

  • 7/27/2019 Classical Control

    39/192

    Block Diagrams

    Moving through a branching point:

    G

    )(sR )(sC

    G

    )(sR )(sC

    G/1

    ss

    Movin throu h a summin oint:

    +)(sR )(sC +)(sR )(sC

    +

    )(sB

    +

    G

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 39

    )(sB

  • 7/27/2019 Classical Control

    40/192

    Block Diagrams

    Example:

    +)(sR )(sC+

    1

    -

    -

    212321

    321

    1 GGHGGHGGG

    ++)(sC)(sR

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 40

  • 7/27/2019 Classical Control

    41/192

    Masons Rule

    4

    +)(sU )(sY+

    6

    ++ +

    +

    + +

    7

    4nodes branches

    Signal Flow Graph

    sU sY1H 2H 3

    6

    1 2 3 4

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 415H 7H

    l

  • 7/27/2019 Classical Control

    42/192

    Masons Rule

    a : a sequence o connec e ranc es n e rec on o esignal flow without repetitionLoop: a closed path that returns to its starting node

    == GsY

    sG1)(

    is

    pathforwardiththeofgain=iG

    gains)loop(all

    tdeterminansystemthe

    =

    =

    -1

    touchnotdothatloopsthreepossibleallofproductsgain

    +

    L

    )(

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 42

    pathforwardiththetouchnotdoesthatgraphtheofparttheforofvalue =i

    M R l

  • 7/27/2019 Classical Control

    43/192

    Masons Rule

    4H

    6H

    )(sU )(sY1H 2 3H1 2 3 4

    5

    73515674736251

    6244321

    1)(

    )(

    HHHHHHHHHHHHHHsU

    sY

    ++

    =

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 43

    I l R

  • 7/27/2019 Classical Control

    44/192

    Impulse Response

    )()()(0

    tudtu =

    Diracs delta:

    Integration is a limit of a sum

    By superposition principle, we only need unit impulse response

    ( )th Response at tto an impulse applied at

    ytu

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 44

    0=

    I l R

  • 7/27/2019 Classical Control

    45/192

    Impulse Response

    h )(ty)(tut-domain:

    Impulse response

    dthuty)()()( 0

    =

    )()()()( thtyttu ==

    =

    the impulse response of the system.

    0

    )(sY)(sUs-domain:

    )()()( sUssY = )()(1)()()( ssYsUttu === Impulse response

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 45

    The system response is obtained by multiplying the transferfunction and the Laplace transform of the input.

    Ti R P l

  • 7/27/2019 Classical Control

    46/192

    Time Response vs. Poles

    Real pole: eths

    s

    =+= )()(ImpulseResponse

    0> Stable ns a e

    1

    = Time Constant

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 46

    Time Response vs Poles

  • 7/27/2019 Classical Control

    47/192

    Time Response vs. Poles

    Real pole:

    t

    ethssH

    =+= )()( ImpulseResponse

    = Time Constant

    tetyss

    sY

    =+

    = 1)(1

    )( StepResponse

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 47

    Time Response vs Poles

  • 7/27/2019 Classical Control

    48/192

    Time Response vs. Poles2

    Complex poles:

    2

    22 2)(

    ++= nnn

    sssH mpu se

    Response

    ( ) ( )222 1 ++=

    nn

    n

    s

    :

    :

    n Undamped natural frequency

    Damping ratio

    ( )( ))(

    dd

    n

    jsjssH

    +++=

    ( ) 222

    d

    n

    s

    ++=

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 48

    21, == ndn

    Time Response vs Poles

  • 7/27/2019 Classical Control

    49/192

    Time Response vs. Poles

    ( )teths

    sH dtnn

    sin)(1

    )(2222

    2

    =

    ++=

    ImpulseResponse

    0

    0

    Stable

    Unstable

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 49

    Time Response vs Poles

  • 7/27/2019 Classical Control

    50/192

    Time Response vs. Poles

    ( )teth

    ssH d

    tnn

    sin1

    )(1

    )(2222

    2

    =

    ++=

    ImpulseResponse

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 50

    Time Response vs Poles

  • 7/27/2019 Classical Control

    51/192

    Time Response vs. Poles

    ( ) ( )( ) ( )

    +=

    ++= ttety

    sssY d

    d

    d

    t

    nn

    n

    sincos1)(1

    1)(

    222

    2

    Step

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 51

    Time Response vs Poles

  • 7/27/2019 Classical Control

    52/192

    Time Response vs. Poles

    Complex poles:22 2

    )(

    ++

    =nn

    n

    sssH

    ( ) ( )222 1

    ++= nn

    n

    s

    s :022

    +=

    :

    Undam ed

    ( ) ( )nns 1:12

    222 ++< Underdamped

    ( )[ ] ( )[ ]nnn

    ss 11:1 22 +++>

    =

    Overdamped

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 52

    Time Response vs Poles

  • 7/27/2019 Classical Control

    53/192

    Time Response vs. Poles

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 53

    Time Domain Specifications

  • 7/27/2019 Classical Control

    54/192

    Time Domain Specifications

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 54

    Time Domain Specifications

  • 7/27/2019 Classical Control

    55/192

    Time Domain Specifications

    1- The rise time tr is the time it takes the system toreach the vicinity of its new set point- s

    transients to decay3- The overshoot Mp is the maximum amount the

    sys em overs oo s na va ue v e y s navalue

    4- The peak time t is the time it takes the system toreach the maximum overshoot point

    8.1

    n

    r

    n

    p

    1 2=

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 55

    n

    sp te

    .==

    Time Domain Specifications

  • 7/27/2019 Classical Control

    56/192

    Time Domain Specifications

    Design specification are given in terms of

    spr ,,,

    These s ecifications ive the osition of the oles

    dn ,,

    Example: Find the pole positions that guarantee

    sec3%,10sec,6.0

  • 7/27/2019 Classical Control

    57/192

    p

    Additional poles:1- can be neglected if they are sufficiently to the left

    .2- can increase the rise time if the extra pole is withina factor of 4 of the real part of the complex poles.

    Zeros:1- a zero near a pole reduces the effect of that pole in

    e me response.2- a zero in the LHP will increase the overshoot if thezero is within a factor of 4 of the real part of the

    complex poles (due to differentiation).3- a zero in the RHP (nonminimum phase zero) will

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 57

    response to start out in the wrong direction.

    Stability

  • 7/27/2019 Classical Control

    58/192

    y

    011

    1

    011

    )()(

    asasasbsbsbsb

    sRsY

    n

    n

    nmm

    ++++++++=

    LL

    )())(()( 21

    21

    n

    m

    pspsps

    zszszsK

    sR

    s

    =

    L

    L

    )()()()( 2

    2

    1

    1

    n

    n

    pspspssR ++

    +

    = L

    Impulse response:

    )(1)( 21 nkkk

    sYsR +++== L21 npspsps

    tp

    n

    tptp nekekekty +++= L21 21)(

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 58

    Stability

  • 7/27/2019 Classical Control

    59/192

    y

    pnppnekekekty +++= L

    2121)(

    t

    tK=

    i< 0Re

    )(011

    ++++=

    asasassa n

    n

    n LCharacteristic polynomial:

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 59

    =saarac er s c equa on:

    Stability

  • 7/27/2019 Classical Control

    60/192

    y

    Necessary condition for asymptotical stability (a.s.):

    iai

    > 0

    Use this as the first test!

    022 =+ ss

    i ,

    Example:

    0)1)(2( =+ ss

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 60

    Rouths Criterion

  • 7/27/2019 Classical Control

    61/192

    Necessary and sufficient condition

    Do not have to find the roots !

    Rouths Array:

    n

    n

    aaas

    aas1

    421

    L

    L n

    a Depends on whether

    n is even or odd

    n

    n

    cccs

    bbbs

    3213

    3212

    L,, 7613541

    2321

    1a

    aaab

    a

    aaab

    a

    aaab

    =

    =

    =

    n

    dds 214

    M

    L

    L,,

    31312121

    1

    315121

    21311

    cbbccbbc

    bbaabc

    bbaabc

    =

    =

    ==

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 61

    nasMM

    ,,11 cc

    Rouths Criterion

  • 7/27/2019 Classical Control

    62/192

    How to remember this?

    Rouths Array:

    Ln =

    L

    2

    2322211

    131211

    mmms

    n

    n

    ,

    ,

    12,2

    ,

    =

    am jj

    jj

    L

    L

    4342413

    333231

    mmmsn

    31,11,1

    1,21,2

    = +

    +

    imm

    mm

    mjii

    jii

    1,1

    ,

    mi

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 62

    Rouths Criterion

  • 7/27/2019 Classical Control

    63/192

    The criterion:

    The system is asymptotically stableif and only if all the elements in the first

    u u rr y r v

    The number of roots with positive realparts is equal to the number of signchanges in the first column of the Routh

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 63

    Rouths Criterion - Examples

  • 7/27/2019 Classical Control

    64/192

    Example 1: 0212 =++ asas

    032213 =+++ asasasExample 2:

    Example 3: 044234 23456 =++++++ ssssss

    0)6(5 23 =+++ kskssExample 4:

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 64

    Rouths Criterion - Examples

  • 7/27/2019 Classical Control

    65/192

    Example: Determine the range of K over which thesystem is stable

    +)(sR )(sY1+s

    - 61 + sss

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 65

    Rouths Criterion

  • 7/27/2019 Classical Control

    66/192

    Special Case I: Zero in the first columnWe replace the zero with a small positive constant>0 and proceed as before. We then apply the

    stability criterion by taking the limit as 0

    Example: 010842 234 =++++ ssss

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 66

    Rouths Criterion

  • 7/27/2019 Classical Control

    67/192

    Special Case II: Entire row is zeroThis indicates that there are complex conjugate pairs.If the ith row is zero, we form an auxiliary equation

    from the previous nonzero row:

    L+++= + 331

    21

    11 )(iii ssssa

    Where are the coefficients of the i+1 th row in thearray. We then replace the ith row by the coefficients

    of the derivative of the auxiliary polynomial.

    Example: 02010842 2345 =+++++ sssss

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 67

    Properties of feedback

  • 7/27/2019 Classical Control

    68/192

    Disturbance Rejection:

    r ++

    w

    o

    wArKy o +=

    +

    wClosed loop

    c-

    wry c+

    ++

    =1

    1

    1

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 68

    Properties of feedback

  • 7/27/2019 Classical Control

    69/192

    Disturbance Rejection:

    oose con ro s. . or w= ,yr

    ==1

    O en loo :

    rwryKc =+>> 01

    o

    Closed loop:

    Feedback allows attenuation of disturbance withoutaving access to it wit out measuring it !!!

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 69

    : g ga n s angerous or ynam c response

    Properties of feedback

  • 7/27/2019 Classical Control

    70/192

    Sensitivity to Gain Plant Changes

    r ++

    w

    o

    oo AK

    r

    yT =

    =

    +

    wClosed loop

    c-

    cc

    K

    AK

    r

    yT

    +==

    1

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 70

    Properties of feedback

  • 7/27/2019 Classical Control

    71/192

    Sensitivity to Gain Plant Changes

    TTo =Open loop:

    o

    o

    cc

    c

    T

    T

    AAKAT

    T =

  • 7/27/2019 Classical Control

    72/192

    P Controller:

    pKsC =)(-

    )(sG

    .1)(

    ,)()(1)(

    sE

    sGsCsR

    =

    +=

    )()(),()( ssUtetu pp == Step Reference:

    )0(1)(1lim)(lim)(

    00 GKssGKsssEe

    ssR

    ppss

    ss +=

    +===

    = )0(0e pss

    Plant has a pole at the origin

    True when:

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 72

    results in underdamped (or even unstable) transients.

    PID Controller

  • 7/27/2019 Classical Control

    73/192

    P Controller: Example (lecture06_a.m)

    +)(sR )(sY)(s )(sUp

    - 12 ++ ss

    11

    )()(2

    Kss

    AK

    sGK

    sGK

    sR

    sY pp

    +++

    =

    +

    =

    12 += pn AK0

    11==

    9 Underdamped transient for large proportional gain

    12 =n

    122 + ppn

    K

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 73

    9 Steady state error for small proportional gain

    PID Controller

  • 7/27/2019 Classical Control

    74/192

    s

    KKsC Ip +=)(

    -

    +)(sR )(sY)(sG)(s )(sU

    ,)()(1

    )()(

    )(

    )(

    sGsC

    sGsC

    sR

    sY

    +=

    Kt

    .

    )()(1

    1

    )(

    )(

    sGsCsR

    sE

    +

    =

    ,0

    ss

    seeu pIp

    ==

    1111

    Step Reference:

    )(1m

    )(1mm

    000=

    ++

    =

    ++

    === sG

    s

    KK

    ssG

    s

    KK

    ssses

    sI

    p

    sI

    p

    ssss

    It does not matter the value of the proportional gain

    Plant does not need to have a pole at the origin. The controller has it!

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 74

    Note that this is valid even forKp=0 as long asKi0

    PID Controller

  • 7/27/2019 Classical Control

    75/192

    PI Controller: Example (lecture06_b.m)

    I+)(sR )(sY)(s )(sU

    sp

    - 12 ++ ss

    KsK

    sGK

    K

    sY

    Ip

    +

    + )(

    AKsAKsssG

    s

    KK

    sR IpIp

    ++++=

    ++

    = )1()(1

    )( 23

    DANGER: for largeKi the characteristic equation has roots in the RHP

    23

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 75

    p

    Analysis by Rouths Criterion

    PID Controller

  • 7/27/2019 Classical Control

    76/192

    PI Controller: Example (lecture06_b.m)

    0123 =++++ KsKss

    Necessary Conditions: 0,01 >>+ KK IpThis is satisfied because 0,0,0 >>> Ip KK

    Rouths Conditions:

    AKs p3 11 + >+ 01 AKAK Ip

    AKAKs

    s

    Ip

    I

    1 1 +KK P

    1+

    o180)(

    )(1)(:0

    sLK

    sL

    KsLK

    Phase condition

    Magnitude condition

    1

    =

    ==

    K

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 992

    8145.5

    =

    Kis 0481

  • 7/27/2019 Classical Control

    100/192

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 100

    -as function of the gain K ROOT LOCUS

    Root Locus by Phase Condition

    Example: K+)(sR )(sY( )( )845 12 +++ + ssss s)(s )(sU

  • 7/27/2019 Classical Control

    101/192

    p- ( )( )845 +++ ssss

    s 1+=( )

    s

    ssss

    1

    845 2

    +=

    +++

    iso 31+=

    belongs to the locus?

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 101

    Root Locus by Phase Condition

  • 7/27/2019 Classical Control

    102/192

    o43.108o87.36

    o45o90

    o70.78

    oooooo 18070.784587.3643.10890 +++ is 31+= belon s to the locus!

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 102

    Note: Check code lecture09_a.m

    Root Locus by Phase Condition

  • 7/27/2019 Classical Control

    103/192

    iso 31+=

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 103

    -as function of the gain K ROOT LOCUS

    Root Locus==

    when Kvaries from 0 to (positive Root Locus) or

  • 7/27/2019 Classical Control

    104/192

    (p )

    from 0 to - (negative Root Locus)

    0)()(1

    )(0)(1 =+==+ sKbsasLsKL

    Basic Properties:

    Number of branches = number of open-loop poles

    RL begins at open-loop poles

    0)(0 == saK

    en s a open- oop zeros or asymp o es

    >

    ===0

    0)(0)(mns

    sbsLK

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 104

    RL symmetrical about Re-axis

    Root Locus

    Rule 1: The n branches of the locus start at the poles ofL(s)d f h b h d h f

  • 7/27/2019 Classical Control

    105/192

    and m of these branches end on the zeros ofL(s).

    m: order of the numerator ofL(s)

    Rule 2: The locus is on the real axis to the left of and oddnumber of poles and zeros.In other words an interval on the real axis belon s to theroot locus if the total number of poles and zeros to the rightis odd.This rule comes from the phase condition!!!

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 105

    Root Locus

    Rule 3: As K, m of the closed-loop poles approach thel d f th h t t

  • 7/27/2019 Classical Control

    106/192

    open-loop zeros, and n-m of them approach n-m asymptotes

    1,,1,0,)12( =+=mnlll K

    and centered at

    1,,1,0,11 =

    =

    = mnlab Kzerospoles

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 106

    Root Locus

    Rule 4: The locus crosses the jaxis (looses stability) wherethe Routh criterion shows a transition from roots in the left

  • 7/27/2019 Classical Control

    107/192

    half-plane to roots in the right-half plane.

    Example:

    )54()(

    2 ++=

    sssssG

    5,20 jsK ==

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 107

    Root Locus

    Example: 4673

    1)( 234 ++++

    += ssss

    ssG

  • 7/27/2019 Classical Control

    108/192

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 108

    Root Locus

    Design dangers revealed by the Root Locus:

  • 7/27/2019 Classical Control

    109/192

    -

    instability due to asymptotes.

    4673)(

    234 ++++=

    sssssG

    Nonminimum phase zeros: They attract closed loop polesinto the RHP

    1

    1)( 2 ++

    = ss

    s

    sG

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 109

    Note: Check code lecture09_b.m

    Root Locus

    Vietes formula:

  • 7/27/2019 Classical Control

    110/192

    - ,

    poles is constant

    = polesloopclosed1a

    nn

    nnmm

    mm

    asasas

    bsbsbs

    sa

    sbsL

    ++++++++

    ==

    11

    1

    11

    1

    )(

    )()(

    L

    L

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 110

    Phase and Magnitude of a Transfer Function

    011

    1

    011)( asasas

    bsbsbsbsG n

    n

    n mm ++++++++

    =

    L

    L

  • 7/27/2019 Classical Control

    111/192

    )())(()(

    21

    21

    n

    m

    pspsps

    zszszsKsG

    =L

    L

    e ac ors , s-zj an s-pk are comp ex num ers:

    zjiz mjerzs == K1,)(

    K

    pkip

    kk pkerps == L1,)(

    e=zm

    zz

    Kiz

    m

    izizi ererer

    L21 21

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 111

    pn

    ppip

    n

    ipip ererer L21 21

    =

    Phase and Magnitude of a Transfer Functionzzz

    pn

    pp

    mK

    ipipipmi

    ererer

    ererereKsG = L

    L

    21

    21

    21

    21)(

  • 7/27/2019 Classical Control

    112/192

    n ererer 21( )

    ( )pnpp

    zm

    zz

    K

    ippp

    izm

    zzi

    errr

    errr

    eK

    +++

    +++

    = L

    L

    L

    L

    21

    21

    21

    ( ) ( )[ ]pnppzmzzKippp

    zm

    zz

    errr

    K +++++++= LL

    L

    L212121

    Now it is easy to give the phase and magnitudeof the transfer function:

    n21

    pn

    pp

    z

    m

    zz

    rrr

    rrrKsG = L

    L

    21

    21 ,)(

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 112

    ( ) ( )pnppzmzzKsG +++++++= LL 2121)(

    Phase and Magnitude of a Transfer Function

    Example:

    ( )( ) )20(51

    .)(

    +++=

    ssssG

  • 7/27/2019 Classical Control

    113/192

    z

    rsG 1=iss o 57 +==

    ppp z

    pr3zr1

    pr2pr1 ( )pppzsG

    rrr

    3211

    321

    )( ++=

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 113

    Root Locus- Magnitude and Phase Conditions

    { } { })()()(1 sL numdenrootszerosRL +=+=when Kvaries from 0 to (positive Root Locus) or

  • 7/27/2019 Classical Control

    114/192

    (p )

    -

    ( ) ( )[ ]

    p

    n

    ppz

    m

    zzpKi

    ppp

    z

    m

    zz

    pmp errr

    rrrKsss

    zszszsKsL

    +++++++

    =

    =LL

    L

    L

    L

    L21212121

    )())(()(

    1

    nn

    L 1)( 21 ==

    ppp

    zm

    zz

    p

    rrrKsL

    => Ks:( ) ( ) oLL

    L180)( 2121

    21

    =+++++++= pnppz

    mzzK

    n

    psL

    =< sLK 1)(:0 LL 1

    )(21

    21

    == pnpp

    zm

    zz

    p Krrr

    rrr

    KsL

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 114

    oLL 0)( 2121 =+++++++=p

    nppz

    mzzpsL

    Root Locus

    Selecting Kfor desired closed loop poles on Root Locus:

  • 7/27/2019 Classical Control

    115/192

    o ,characteristic equation for some value ofK

    Then we can obtain K as

    sL o )( =

    1=

    1

    )( o

    K

    s

    =

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 115

    o

    Root Locus

    Example:( )( )51

    1)()(++

    ==ss

    sGsL

  • 7/27/2019 Classical Control

    116/192

    ( )( )51 ++ ss

    54314351143 ++++=++==+= iissis

    ( ) ( ) 204242 2222 =++=

    so

    Using MATLAB:

    sys=tf(1,poly([-1 -5]))so=-3+4i

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 116

    [K,POLES]=rlocfind(sys,so)

    Root Locus1

    ( )( )51 ++ ss57 +=o is

    o =

  • 7/27/2019 Classical Control

    117/192

    06.421 ==Kos

    57 is +=

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 117

    When we use the absolute value formula we are assumingthat the point belongs to the Root Locus!

    Root Locus - Compensators

    Example: ( )( )511

    )()( ++== sssGsL

  • 7/27/2019 Classical Control

    118/192

    Can we place the closed loop pole at so=-7+i5 only varying K?NO. We need a COMPENSATOR.

    1==1==( )( )51 ++ ss( )( )51 ++ ss

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 118

    The zero attracts the locus!!!

    Root Locus Phase lead compensator

    Pure derivative control is not normally practical because of theamplification of the noise due to the differentiation and must

  • 7/27/2019 Classical Control

    119/192

    zpzs

    sD >+

    = ,)(Phase lead

    COMPENSATOR

    When we study frequency response we will understand whywe call Phase Lead to this compensator.

    ( )( )zp

    ssps

    zssGsDsL >

    ++++

    == ,51

    1)()()(

    How do we choose z and p to place the closed loop poleat so=-7+i5?

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 119

    Root Locus Phase lead compensatorzs + 1

    Phase lead( )( )ssps +++

    ,

    51

  • 7/27/2019 Classical Control

    120/192

    COMPENSATOR

    o19.140o80.111o04.21

    ?1z

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 120

    oooooo 03.9303.45304.2180.11119.1401801 ==+++=z 735.6= z

    LL 1802121 =+++++++= nmps

    Root Locus Phase lead compensator

    Example:

    ( )( )5120

    .)()()(

    +++==

    ssssGsDs

  • 7/27/2019 Classical Control

    121/192

    COMPENSATOR

    117=

    +=so

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 121

    Root Locus Phase lead compensator

    Selecting z and p is a trial an error procedure. In general:

    The zero is laced in the nei hborhood of the closed-

  • 7/27/2019 Classical Control

    122/192

    The zero is laced in the nei hborhood of the closedloop natural frequency, as determined by rise-time orsettling time requirements.

    The poles is placed at a distance 5 to 20 times thevalue of the zero location. The pole is fast enough toavoid modifying the dominant pole behavior.

    Noise suppression (we want a small value for p) Compensation effectiveness (we want large value forp)

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University122

    Root Locus Phase lag compensator

    Example:

    ( )( )5120

    .)()()(

    +++==

    ssssGsDs

  • 7/27/2019 Classical Control

    123/192

    ( )( )

    2

    000

    10735.651

    1

    20

    735.6lim)()(lim)(lim

    =+++

    +===

    sss

    ssGsDsLK

    sssp

    What can we do to increase Kp? Suppose we want Kp=10.

    ( )( )zp

    sss

    s

    ps

    zssGsDsL

    +

    = ,)(Phase lag compensator:

    We will see why we call phase lead and phase lag to

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University126

    Frequency Response

    We now know how to analyze and design systems via s-domainmethods which yield dynamical information e responses are escr e y e exponen a mo es

  • 7/27/2019 Classical Control

    127/192

    e responses are escr e y e exponen a mo es

    The modes are determined by the poles of the response Laplace

    Transform

    We next will look at describing cct performance via frequency

    This guides us in specifying the system pole and zeropositions

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University127

    Sinusoidal Steady-State Response

    ons er a s a e rans er unc on w a

    sinusoidal input:

    22

  • 7/27/2019 Classical Control

    128/192

    22 +s

    The Laplace Transform of the response has poles Where the natural modes lie

    These are in the open left half plane Re(s)

  • 7/27/2019 Classical Control

    129/192

    Transform2222

    sincos)(

    +

    ++

    =ss

    sU

    esponse rans orm

    N

    s

    k

    s

    k

    s

    k

    s

    k

    s

    ksUsGsY

    ++

    +

    +

    ++

    == L21

    *

    )()()(

    Response Signal

    L* 21 tptptptjtj Nekekekekket +++++=

    forced response natural response

    Sinusoidal Steady State Response

    44444 344444 2144 344 21

    responsenaturalresponseforced

    t

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 129

    tjtjSS ekkety

    += *)( 0

    Sinusoidal Steady-State Response

    Calculating the SSS response to Residue calculation

    )cos()( += tAtu

    mm sssss ==

  • 7/27/2019 Classical Control

    130/192

    2

    sincos)(

    sincos))((lim

    mm

    js

    jsjs

    j

    AjGss

    s

    AjssG

    sssss

    =

    +

    =

    Si nal calculation

    ))(()(2

    1

    2

    1)( jGjj ejGAejAG +==

    js

    k

    js

    kLtyss

    ++

    =

    )(

    *1

    ( )Ktk

    eekeek tjKjtjKj

    +=

    +=

    cos2

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 130

    ( ))(cos)()( jGtjGAtyss ++=

    Sinusoidal Steady-State Response

    Response to is ))(cos()(

    )cos()(

    jGtAjGy

    ttu

    ss ++=

    +=

  • 7/27/2019 Classical Control

    131/192

    Output frequency = input frequency

    Out ut am litude = in ut am litude G Output phase = input phase + G(j)

    T e Frequency Response o t e trans er unct on s s g venby its evaluation as a function of a complex variable ats=j We speak of the amplitude response and of the phase response

    They cannot independently be varied

    Bodes relations of analytic function theory

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 131

    Frequency Response

    Find the steady state output forv1(t)=Acos(t+)sL

    +

    V ( ) R V2(s)

  • 7/27/2019 Classical Control

    132/192

    _V1(s) RV2(s)

    -

    ompu e e s- oma n rans er unc on s

    Voltage divider

    RsL

    RsT

    +=)(

    =

    +=

    RLjT

    LR

    RjT

    122

    tan)(,)(

    )(

    Compute the steady state output

    ( )[ ]RLtRtv SS /tancos)( 12 +=

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 132

    R +

    Bode Diagrams

    Bode Diagram

    0

    Log-log plot of mag(T), log-linear plot of arg(T) versus

    )

    -

    B

  • 7/27/2019 Classical Control

    133/192

    agn

    itude(dB)

    -15

    -10

    itude(dB

    -25

    -20

    0

    Mag

    e(deg)

    -45(deg)

    Pha

    -90

    Phas

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 133

    Frequency (rad/sec)

    10 10 10

    Frequency Response

    )cos()( += ttu )(sG ))(cos()( jGtAjGyss ++=

  • 7/27/2019 Classical Control

    134/192

    Stable Transfer Function

    After a transient, the output settles to a sinusoid with anamplitude magnified by and phase shifted by .)( jG )( jG

    Since all signals can be represented by sinusoids (Fourierseries and transform), the quantities and are)( jG )( jG

    .

    Bode developed methods for quickly finding and)( jG )( G

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 134

    .

    Frequency Response

    Find the steady state output forv1(t)=Acos(t+)sL

    +

    V (s) R V2(s)

  • 7/27/2019 Classical Control

    135/192

    _V1(s) R 2( )

    -

    ompu e e s- oma n rans er unc on s

    Voltage divider

    RsL

    RsT

    +=)(

    =

    +=

    RLjT

    LR

    RjT

    122

    tan)(,)(

    )(

    Compute the steady state output

    ( )[ ]RLtRtv SS /tancos)( 12 +=

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 135

    R +

    Frequency Response - Bode Diagrams

    Bode Diagram

    0

    Log-log plot of mag(T), log-linear plot of arg(T) versus

    )

    -

    dB

  • 7/27/2019 Classical Control

    136/192

    agn

    itude(dB)

    -15

    -10

    itude(d

    -25

    -20

    0

    Mag

    e(deg)

    -45(deg)

    Pha

    -90

    Phas

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 136

    Frequency (rad/sec)

    10 10 10

    [ ] [ ] Hzffrad === ,2sec,/

    Bode Diagrams

    )())(()( 21

    21

    n

    m

    pspsps

    zszszs

    KsG

    = LL

  • 7/27/2019 Classical Control

    137/192

    ( ) ( )[ ]pn

    ppzm

    zzK

    i

    z

    m

    zz

    rrr +++++++= LLL212121

    The magnitude and phase ofG(s) when s=j is given by:

    pn

    p rrr L21

    z

    m

    zz rrr=

    L21

    Nonlinear in the magnitudes

    pn

    ppzm

    zzK

    pn

    p

    jG

    rrr

    +++++++= LL

    L

    2121

    21

    )(

    ,

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 137

    Linear in the phases

    Bode Diagrams

    )(log20)( jGjGdB

    =

    zzz

  • 7/27/2019 Classical Control

    138/192

    ?)()( 21 ==dBppp

    zm

    zz

    jGrrr

    rrrKjG

    L

    L

    ( ) ( )pnppzmzmz rrrrrrKsG log20log20log20log20log20log20log20)(log20 211 +++++++= LL

    By properties of the logarithm we can write:

    Linear in the magnitudes (dB)

    The magnitude and phase ofG(s) when s=j is given by:

    zzzK

    dB

    p

    ndB

    p

    dB

    p

    dB

    z

    mdB

    z

    dB

    z

    dBdB rrrrrrKsG +++++++= LL 2121)(

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 138

    nm = LL 2121

    Linear in the phases

    Bode Diagrams

    1)()( ===

    RjT

    RsT

    1 +++ Ls

  • 7/27/2019 Classical Control

    139/192

    1

    +R

    Expressing the magnitude in dB:

    +=

    +=

    22

    1log101log201log20)(R

    L

    R

    LjT

    dB

    Asymptotic behavior:

    ( )

    log20log20/log20/log20)(: ==

    dBdB L

    R

    LRLRjT

    dB

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 139

    LINEAR FUNCTION in log!!! We plot as a function of log.dB

    jG )(

    Bode Diagrams

    A cutoff frequency occurs when the gain is reduced from its

    Decade: Any frequency range whose end points have a 10:1 ratio

    max mum pass an va ue y a ac or :21

  • 7/27/2019 Classical Control

    140/192

    1 =2 AXAXAX

    Bandwith: frequency range spanned by the gain passband

    Lets have a look at our example:

    == 1)(01 jT

    ==

    +2/1)(/

    12 jTLR

    R

    L

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 140

    s s a ow-pass ter ass an ga n=1, uto requency=R/L

    The Bandwith is R/L!

    General Transfer Function (Bode Form)q2

    ( ) ( ) ( ) nn

    nm

    o

    jj

    jjKjG +++=121

    The magnitude (dB) (phase) is the sum of the magnitudes (dB)

  • 7/27/2019 Classical Control

    141/192

    g ( ) (p ) g ( )(phases) of each one of the terms. We learn how to plot each term,

    we learn how to plot the whole magnitude and phase Bode Plot.

    Classes of terms:

    -

    2-o

    ( ) ( )mjjG =-

    4-

    ( ) ( )njjG 1+= q 2

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 141

    nn

    j

    ++

    = 12

    General Transfer Function: DC gain

    ( ) oKjG =

    =Magnitude and Phase:

    oB

  • 7/27/2019 Classical Control

    142/192

    ( ) >

    =

    00 oK

    jG

    if

    35

    40

    180

    200

    o10=sG

    20

    25

    30

    tude(dB)

    100

    120

    140

    se

    (deg)

    10

    15Magni

    40

    60

    80Pha

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 142

    10-1

    100

    101

    102

    0

    Frequency (rad/sec)10

    -110

    010

    110

    20

    Frequency (rad/sec)

    General Transfer Function: Poles/zeros at origin

    ( ) ( )

    mjjG =

    dB

  • 7/27/2019 Classical Control

    143/192

    ( )

    mjG =sGm 11 ==

    10

    20

    -20

    0s

    01 =G

    -10

    0

    nitude(dB)

    -60

    -40

    ase(deg)

    -30

    -20Mag

    -100

    -80Ph

    dec

    dB

    m 20

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 143

    10-1

    100

    101

    102

    -40

    Frequency (rad/sec)10

    -110

    010

    110

    2-120

    Frequency (rad/sec)

    General Transfer Function: Real poles/zeros

    ( ) ( )

    n

    jjG 1+=

  • 7/27/2019 Classical Control

    144/192

    ( ) 22

    1log10 += nj

    G dB

    ( ) ( ) 1tan= njG

    Asymptotic behavior:

    log20)(

    0)(

    /1

    /1

    +

    >>

    >

  • 7/27/2019 Classical Control

    145/192

    -5

    B)

    ( )

    1+

    =s

    sG

    dBn 3 dec

    dBn 20

    -20

    -15

    -

    agnitude(

    -30

    -25M

    dBnjG

    dBjG

    dB

    dB

    ==

    3)/1(

    0)0(

    10-1 100 101 102 103-40

    -35

    Fre uenc rad/sec

    dBnGdB

    = )sgn()(

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 145

    General Transfer Function: Real poles/zeros

    0

    10 10/1,1 == n

    -10( )

    1=sG

  • 7/27/2019 Classical Control

    146/192

    -20( )

    1+

    =s

    sG

    -50

    -40

    -

    hase(deg

    o

    o0)0( = jG-80

    -70

    -60

    o

    90)( =

    =

    njG

    nj

    10-1

    100

    101

    102

    103-100

    -90

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 146

    General Transfer Function: Complex poles/zerosq2

    ( ) nn

    jj

    jG ++=12

    222

    Magnitude and Phase:

  • 7/27/2019 Classical Control

    147/192

    ( )

    +

    = 22

    21log10dB qjG

    1 /2 n

    nn

    22 /1 nAsymptotic behavior:

    lo402

    0)(

    +

    n >> n

    General Transfer Function: Complex poles/zeros

    0

    20

    05.0,1,1 === nqdB

    q 2

    -20 ( )1102

    =sGdB

  • 7/27/2019 Classical Control

    148/192

    20

    dB

    )

    ( )11.02 ++ ss

    dec

    dBq 40

    -60

    -

    Magnitude

    -100

    -80

    ( )dBqjGdBjG

    dBdBn

    dB

    +==

    3)(0)0(

    10

    -1

    10

    0

    10

    1

    10

    2

    10

    3-120

    Frequency (rad/sec)

    qdB

    = sgn

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 148

    2

    2

    112)()(

    ==== nrdBdBr

    AX

    dBqjGjG

    General Transfer Function: Complex poles/zeros

    0

    20 05.0,1,1 === nq

    -20 ( )1102

    =sG

  • 7/27/2019 Classical Control

    149/192

    -40

    ( )11.02 ++ ss

    -100

    -80

    -

    hase(deg)

    o0)0( = jGo

    -160

    -140

    -120

    o180)(901

    ==

    qjGqj

    10-2

    10-1

    100

    101

    102-200

    -180

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 149

    Frequency Response

    ( ) ( )5.02000 += ssGExample:

  • 7/27/2019 Classical Control

    150/192

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 150

    Frequency Response: Poles/Zeros in the RHP

    Same .

    )( jG.

    An unstable pole behaves like a stable zero

  • 7/27/2019 Classical Control

    151/192

    An unstable pole behaves like a stable zero

    An unstable zero behaves like a stable pole

    1=Exam le:

    2s

    but can be computed and used for control design.

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 151

    First order LOW PASS

    +=ssT )(

    KjT )(

  • 7/27/2019 Classical Control

    152/192

    +=

    j

    jT )(

    Gain and Phase:

    )(

    22

    +=jT

    an=

    > 00

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 152

  • 7/27/2019 Classical Control

    153/192

    0)(,)0( == TK

    T

    ===

    += c

    TKKjT

    2

    )0(

    2)(

    22Cutoff frequency

    KjT

    >)(

    === c

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 153

    cB = Bandwith

    First order LOW PASS

    )(1

    22

    +=jT

    an=

  • 7/27/2019 Classical Control

    154/192

    o45)1(tan)( 1 ==

    = KK

    o90)( >>

  • 7/27/2019 Classical Control

    155/192

    +=

    j

    jT )(

    Gain and Phase:

    )(

    22

    +=

    o

    jT

    an+=

    > 00

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 155

  • 7/27/2019 Classical Control

    156/192

    KTT == )(,0)0(

    =

    ==

    += c

    TKKjT

    2

    )(

    2)(

    22Cutoff frequency

    KjT

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 156

    =

    First order HIGH PASS

    )(

    1

    22

    +

    =

    o

    jT

  • 7/27/2019 Classical Control

    157/192

    o

    oo 45)1(tan90)( 1 +=+= KK

    K+ >

    )(tan90)( 1o

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 157

    First Order BANDPASS

    +

    +

    ==2

    2

    1

    121 )()()(

    ss

    sTsTsT

    = 21)(

    KjK

    jT

  • 7/27/2019 Classical Control

    158/192

    +

    +=)(

    jT

    = 21)(

    KK

    jT

    +

    +

    21

    21

    21

    21)(

    KKjT

  • 7/27/2019 Classical Control

    159/192

    2

    12

  • 7/27/2019 Classical Control

    160/192

    2222

    2

    )(

    2

    )(oooo j

    jjT

    ss

    ssT

    ++

    =

    ++

    =

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 160

    :

    :

    o a ura requency

    Damping Ratio

    Second Order BANDPASS

    2222 2)(2)( oooo j

    jjTss

    ssT

    ++=++=

    K

  • 7/27/2019 Classical Control

    161/192

    K

    =

    KjT

    oo

    =

  • 7/27/2019 Classical Control

    162/192

    / oK

    2

    )(

    2

    2)(

    22

    /)(

    2MAXo

    jTjT

    jjT o

    o

    ==+

    ==

    !!s!frequenciecutofftheareofrootsThe

    2= o

    o

    2

    2

    1

    1 ++=oC 21

    2

    = CCo Center Frequency

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 162

    2 = oC 12 CC

    Second Order LOWPASS

  • 7/27/2019 Classical Control

    163/192

    2222

    2

    )(

    2

    )(oooo j

    jT

    ss

    sT

    ++

    =

    ++

    =

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 163

    :

    :

    o a ura requency

    Damping Ratio

    Second Order LOWPASS

    2222 2)(2)( oooo jjTsssT ++=++=

    )0()( TK

    jT =

  • 7/27/2019 Classical Control

    164/192

    2)0()(

    TjTo

    >

    o

    o

    ==22

    )0(/)(

    TKjT oo ==

    21)0()( === TjT

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 164

    12

    Second Order HIGHPASS

  • 7/27/2019 Classical Control

    165/192

    22

    2222 2)(

    2)(

    oooo jjT

    ss

    ssT

    ++

    =++

    =

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 165

    :

    :

    o a ura requency

    Damping Ratio

    Second Order HIGHPASS

    22

    2

    22

    2

    2)(2)( oooo j

    K

    jTss

    Ks

    sT

    ++

    =++=

    2K

  • 7/27/2019 Classical Control

    166/192

    T 2

    )()( == >>

    TKjTo

    oo

    o

    o

    K

    ==2

    )(

    )(

    ==TK

    jT o

    )()( === oTjT

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 166

    112

    Frequency Response

    )cos()( += ttu )(sG ))(cos()( jGtAjGyss ++=

    Stable Transfer Function

  • 7/27/2019 Classical Control

    167/192

    )()()( jGjejGjG = BODE plots

    { } { })(Im)(Re)( jGjjGjG += NYQUIST plots

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 167

    Frequency Response

    { } { } )()()(Im)(Re)( jGjejGjGjjGjG =+=

    They are two way to represent the same information

  • 7/27/2019 Classical Control

    168/192

    { })(Im jGj

    )( jG

    )( jG

    { })(Re jG

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 168

    Frequency Response

    Find the steady state output forv1(t)=Acos(t+)

    sL+

    _V1(s) RV2(s)

    -

  • 7/27/2019 Classical Control

    169/192

    ompu e e s- oma n rans er unc on s

    Voltage divider

    RsL

    RsT

    +=)(

    =+= RLjTLR

    RjT

    122 tan)(,)()(

    Compute the steady state output

    ( )[ ]RLtRtv SS /tancos)( 12 +=

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 169

    R +

    Frequency Response - Bode Plots

    Bode Diagram

    0

    Log-log plot of mag(T), log-linear plot of arg(T) versus

    )

    gnitude(dB)

    -15

    -10

    -

    itude(dB

    10)(

    +=

    ssG

  • 7/27/2019 Classical Control

    170/192

    a

    =-25

    -20

    0

    Mag

    e(deg)

    -45(deg)

    Pha

    -90

    Phas

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 170

    Frequency (rad/sec)

    10 10 10

    [ ] [ ] Hzfrad === ,2sec,/

    Frequency Response Nyquist Plots

    L

    222)(

    LRLjRLjRLjRjT

    +

    =

    +=

    +=

    =

    +=

    RLR

    22an,

    )(

    { } { } 222222

    2 RLjT

    RjT

    ==

  • 7/27/2019 Classical Control

    171/192

    { } { } 222222 )(Im,)(Re

    01:0 TT 1=T-

    o90)(,0)(: jTjT 0)(

    L

    jjT2-

    { } == 0)(Re jT3-

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 171

    { } === ,00)(Im jT4-

    Frequency Response - Nyquist Plots

    )(Re)(Im jGjG vs.

    10)(

    +=

    ssG

  • 7/27/2019 Classical Control

    172/192

    =

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 172

    Nyquist Diagrams

    General procedure for sketching Nyquist Diagrams:

    Find G(j0)

    Find G(j)

  • 7/27/2019 Classical Control

    173/192

    Fin * suc t at Re G(j*) =0; Im G(j*) is t eintersection with the imaginary axis.

    =

    intersection with the real axis.

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 173

    Frequency Response - Nyquist Plots

    ( )21

    1

    )( += sssGExample:

    ( )( ) ( )2

    2

    2

    2

    2

    22

    12

    1

    1

    1

    1

    1

    1)(

    +=

    ==

    jjjjG

  • 7/27/2019 Classical Control

    174/192

    2111 ++

    = G 2:0 -

    2- 01

    )(:3

    jjG

    { } == 0)(Re jG3-

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 174

    4- { } === ,10)(Im jG 2)1(Re =jG

    Frequency Response - Nyquist Plots

    ( )21

    1

    )( += sssGExample:

  • 7/27/2019 Classical Control

    175/192

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 175

    Nyquist Plots based on Bode Plots

    ( )2

    1

    )(

    +

    =ss

    sG

    dec20

    dec

    dB60

  • 7/27/2019 Classical Control

    176/192

    dec

    o90o180

    oo 90270 =

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 176

    Nyquist Stability Criterion

    )(sG-

    +)(sU )(sY

    When is this transfer function Stable?

  • 7/27/2019 Classical Control

    177/192

    NYQUIST: The closed loop is asymptotically stable if thenumber of counterclockwise encirclements of the point-

    number of poles ofG(s) with positive real parts (unstablepoles)

    Corollary: If the open-loop system G(s) is stable, then theclosed-loop system is also stable provided G(s) makes noencirclement of the point (-1+j0).

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 177

    Nyquist Stability Criterion

    1335

    1)(

    234

    ++++

    =ssss

    sG

    1332

    1)(

    234

    ++++

    =ssss

    sG

  • 7/27/2019 Classical Control

    178/192

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 178

    Nyquist Stability Criterion

    )(sG-

    +)(sU )(sY

    When is this transfer function Stable?

    K

  • 7/27/2019 Classical Control

    179/192

    NYQUIST: The closed loop is asymptotically stable if thenumber of counterclockwise encirclements of the point-

    number of poles ofG(s) with positive real parts (unstablepoles)

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 179

    Neutral Stability

    )(sKG-

    +

    21)( =sG

    Root locus condition:

  • 7/27/2019 Classical Control

    180/192

    o180)(,1)( == sGsKG

    RL condition hold for s=jo,

    Stability: At o180)( = jG

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 180

    1)( >

    +

    +

    = TsTs

    sD

  • 7/27/2019 Classical Control

    191/192

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 191

    Frequency Response Phase Lag Compensators

    1. Determine the open-loop gain Kthat will meet the PMrequirement without compensation.

    . raw e o e p o o e uncompensa e sys em wcrossover frequency from step 1 and evaluate the low-frequency gain.

    3 Determine to meet the low frequency gain error

  • 7/27/2019 Classical Control

    192/192

    3. Determine to meet the low frequency gain errorrequirement.

    4. Choose the corner frequency=1/T

    (the zero of the

    compensator) to be one decade below the new crossoverfrequency .

    5. The other corner frequency (the pole of the compensator)

    is then =1/ T.

    Classical Control Prof. Eugenio Schuster Lehigh UniversityClassical Control Prof. Eugenio Schuster Lehigh University 192

    6. Iterate on the design