17
Classical Control for Quantum Computers Mark Whitney, Nemanja Isailovic, Yatish Patel, John Kubiatowicz U.C. Berkeley

Classical Control for Quantum Computers

  • Upload
    jennis

  • View
    47

  • Download
    2

Embed Size (px)

DESCRIPTION

Classical Control for Quantum Computers. Mark Whitney, Nemanja Isailovic, Yatish Patel, John Kubiatowicz U.C. Berkeley. Quantum Computing is Hard. Qubit decoherence Physical isolation from environment Error correction correcting error correction! Decoherence-free subspaces. - PowerPoint PPT Presentation

Citation preview

Classical Control for Quantum Computers

Mark Whitney, Nemanja Isailovic, Yatish Patel, John Kubiatowicz

U.C. Berkeley

Quantum Computing is Hard

• Qubit decoherence– Physical isolation from environment– Error correction correcting error correction!– Decoherence-free subspaces

Quantum Computing is Harder!

• Complex physical interactions = complex pulse sequences

• Nanoscale geometries– Atomic interactions on the order of 10nm

• Cold operating temperatures– 1 Kelvin reduces thermal noise

• These issues make control circuitry difficult!

• Must account for in QC design

Skinner-Kane Si based computer

• Silicon substrate• Qubit =

phosphorus ion spin + donor electron spin

• A-gate– Hyperfine interaction– Electron-ion spin swap

• S-gate– Electron shuttling

• Global magnetic field– Spin precession– Universal set of gates

Si substrate

A-GATE

S-GATE

S-GATE

P ion P ion

electron electron

global B

measurementSETs

A-GATE

Quantum wires

• Ions are stationary– Qubits are moved by swapping

• Alternating swap gives us “wires”– Some qubits move right, some left

• Quantum wires seem more complicated than classical…

S A S S A S S S S S SA A. . . . . .1 2 3 42 1 4 30 4 1 504 5 1

S A S S A S

Swap cell

• A lot of steps for two qubits!

e1- e2

-e2-e1

- e2-e2

-

e2-

Electron-ion spin swap

e2- e2

- e2-e1

- e2-e1

- e2-e1

- e1-

e1-

Electron-ion spin swap

e1-e1

-e1- e2

-e1-

P ion 1 P ion 2

S A S S A S S S S S SA A. . . . . .

Swap Cell Control

• What a mess! Long pulse sequence…

e1-

e2-

S1

A1

S2

S3

A2

S4

e1-e1

-

e2-

e2-

e2-

e1-

e1-

e2-

e1-

e2-

e1-

e2-

e1-

e2-

e1-

e2-

e1-

e2-

e1-

e2-

e1-

e2-

e1-

e2- e2

-

e1-

S1

S2

S3

A1

S4

A2

24

24

Step 1 2 3 4 5 6 7 8 9 10E

lect

rod

es11 12 13 14

Electron-ion spin swap

Time

Co

ntr

ol

sig

na

ls

Electrons are too close

Pulse Sequence for 2-D• 2-D layout (mentioned

in Kane ’00) moves electrons in parallel– Simpler control– Better electron

separation

• Control signals still complicated!– S-gate cascade– A-gate sequence

S1S2S3

A1,A2

24

A1 A2

S1 S3

S3 S2S1

S2

e1-

e1-

e1-

e1-

e2-e2

-

e2- e2

-

. . .. . .

Pulse Characteristics• Clock rate

– Electron-ion interaction period: 88.3ps -> 11.3GHz clock rate

• Voltage swing– Slower qubit manipulation– Lower voltage swing = lower voltage

differential

• Slew rate– A-/S-gates must charge in clock period

. . .

e-

. . .. . .

e-

. . .. . .

e-

Qubit layout• voltage swing (Vmax) adjusts dqubit

– Tuned for desired error rate• slew rate and clock period adjusts dSi

– Lowers electrode to back gate capacitance• Other technologies? (SOI)• Pulse characteristics effect quantum datapath

0V

0V

dSi

Gate Electrodes Vmax

dqubit

Single-electron transistors (SETs)

• CMOS does not work at 1K operating temperature• SETs work well at low temperatures• Electrons move 1-by-1 through tunnel junction onto

quantum dot and out other side• Low drive current (~5nA) and voltage swing (~40mV)

– Affects our error and slew rates

Tunnel Junction

VDD

VDD

Control Input

Island

CLOAD

Y. Takahashi et. al.

Swap control circuit

• S-/A-gate pulse sequences complex

• What would a circuit schematic look like?

S1S2S3

A1,A2

24

A1 A2

S1 S3

S3 S2S1

S2

e1-

e1-

e1-

e1-

e2-e2

-

e2- e2

-

. . .. . .

5-bit counter

01234

Reset

Enable

8-bit counter

Reset

1

2

3

4

5

6

7

0

D D D D D D D

D D D D D D D

S1a S1b

S1c S1d

S2a

S2b

S3a S3b

S3c S3d

S4a

S4b

TD

S1a

S1b

S1c

S1d

S1 on

S3a

S3b

S3c

S3d

S3 on

S2a

S2bS2 on

S4a

S4bS4 on

Aa

S1 on

S2 on

S3 on

S4 on

Aa

Aon

Swap control circuit II

Off-on A-gate pulse subsequence (2 off, 254 on)A-gate pulse repeats 24 times

• Can this even be built with SETs?

S-gate pulse cascade

Large!

• Control circuit area, ~10um2

– Aggressive process, 30nm feature size

– Minimal design

• Swap cell area, ~0.068um2

• Will not fit!

S1S2S3

A1,A2

24

A1 A2

S1 S3

S3 S2S1

S2

e1-

e1-

e1-

e1-

e2-e2

-

e2- e2

-

. . .. . .

In SIMD we trust?• Large control circuit/small swap cell ratio = SIMD• Like clock distribution network• Clock skew at 11.3GHz?• Error correction?

SwapControl

A

A

S1

S3

S3

S2

S1

S2

A S3

S2

S1

S2

A S3

S2

S1

S2

A S3

S2

S1

S2

A

A

S1

S3

S3

S2

S1

S2

A S3

S2

S1

S2

A S3

S2

S1

S2

A S3

S2

S1

S2

.

.

.

.

.

.

.

.

.

.

.

.

Why on-chip?• Why not run many wires

in from outside?• Error correction

complicates– Requires conditional

swapping

1000 qubits

* 336 swaps/lvl 1 ECC

* 4 signals/qubit in swap

= 1344000 wires!

• ECC could mean trouble for SIMD in general

1,000,000 wire bus!

Conclusions

• Pulse sequences for quantum gates are complex!

• All quantum computing technologies require complex pulse sequences

• Must keep control circuit in mind for large-scale integration