96
1 Classical Control Topics covered: Modeling. ODEs. Linearization. Laplace transform. Transfer functions. Block diagrams. Mason’s Rule. Time response specifications. Effects of zeros and poles. Stability via Routh-Hurwitz. Feedback: Disturbance rejection, Sensitivity, Steady-state tracking. PID controllers and Ziegler-Nichols tuning procedure. Actuator saturation and integrator wind-up Classical Control – Prof. Eugenio Schuster – Lehigh University Classical Control – Prof. Eugenio Schuster – Lehigh University 1 Actuator saturation and integrator wind up. Root locus. Frequency response--Bode and Nyquist diagrams. Stability Margins. Design of dynamic compensators. Classical Control Text: Feedback Control of Dynamic Systems, 4 th Edition, G.F. Franklin, J.D. Powel and A. Emami-Naeini Prentice Hall 2002. Classical Control – Prof. Eugenio Schuster – Lehigh University Classical Control – Prof. Eugenio Schuster – Lehigh University 2

Classical Control - Lehigh University › ~eus204 › teaching › ME450_MRC › ...Classical Control – Prof. Eugenio Schuster – Lehigh University 18 • There is a need to worry

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

  • 1

    Classical Control

    Topics covered:

    Modeling. ODEs. Linearization. Laplace transform. Transfer functions. pBlock diagrams. Mason’s Rule. Time response specifications. Effects of zeros and poles. Stability via Routh-Hurwitz. Feedback: Disturbance rejection, Sensitivity, Steady-state tracking. PID controllers and Ziegler-Nichols tuning procedure. Actuator saturation and integrator wind-up

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 1

    Actuator saturation and integrator wind up.

    Root locus. Frequency response--Bode and Nyquist diagrams. Stability Margins.Design of dynamic compensators.

    Classical Control

    Text: Feedback Control of Dynamic Systems,4th Edition, G.F. Franklin, J.D. Powel and A. Emami-NaeiniPrentice Hall 2002.

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 2

  • 2

    What is control?

    Model → Relation between gas pedal and speed:10 mph change in speed per each degree rotation of gas pedalDisturbance → Slope of road:

    For any analysis we need a mathematical MODEL of the system

    0.5

    w

    Block diagram for the cruise control plant:

    )50(10

    5 mph change in speed per each degree change of slope

    Slope(degrees)

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 3

    u +

    -10 y

    Control(degrees)

    Output speed(mph)

    )5.0(10 wuy −=

    What is control?

    w

    Open-loop cruise control:

    PLANT 10ru =

    0.5

    u +

    -10 yol

    Reference(mph)

    wr

    wrwuyol

    5

    )5.010

    (10

    )5.0(10

    −=

    −=

    −=

    1/10r

    10

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 4

    (mph)

    rw

    ryre

    wyre

    olol

    olol

    500[%]

    5

    =−

    =

    =−=%69.7,51,65

    00,65==⇒==

    =⇒==

    olol

    ol

    eewrewr

    mph

    OK when:1- Plant is known exactly2- There is no disturbance

  • 3

    What is control?

    w

    Closed-loop cruise control:

    PLANT( )clyru −= 20

    0.5

    u +

    -10 ycl

    wr

    wuycl

    2015

    201200

    )5.0(10

    −=

    −=

    1/10r -

    +

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 5

    rw

    ryre

    wryre

    clcl

    clcl

    2015

    2011[%]

    2015

    2011

    +=−

    =

    +=−=

    %69.0655

    2015

    20111,65

    %5.0%20110,65

    =+=⇒==

    ==⇒==

    cl

    cl

    ewr

    ewr

    What is control?

    Feedback control can help:

    • reference following (tracking)• disturbance rejectiondisturbance rejection• changing dynamic behavior

    LARGE gain is essential but there is a STABILITY limit

    “The issue of how to get the gain as large as possible to reduce the errors due to disturbances and uncertainties without making the system become unstable is what much of feedback

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 6

    making the system become unstable is what much of feedback control design is all about”

    First step in this design process: DYNAMIC MODEL

  • 4

    Dynamic Models

    MECHANICAL SYSTEMS:

    xbuxm &&& =

    maF = Newton’s law

    xvaxv

    xbuxm

    &&&

    &

    ===

    −=velocity

    acceleration

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 7

    mbsm

    UV

    muv

    mbv

    o

    oeUueVv sto

    sto +

    =⎯⎯⎯⎯⎯ →⎯=+==

    1,

    & Transfer Function

    sdtd→

    Dynamic Models

    MECHANICAL SYSTEMS: αIF = Newton’s law

    2 sin Tlmgml +−= θθ&&

    2

    sin

    mlI

    Tlmgml c

    =

    ==

    =

    +

    θωαθω

    θθ

    &&&

    & angular velocity

    angular acceleration

    moment of inertia

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 8

    2sin2sin mlT

    lg

    mlT

    lg cc =+⎯⎯ →⎯=+ ≈ θθθθ θθ &&&& Linearization

  • 5

    Dynamic Models

    2mlT

    lg c=+ θθ&&

    Reduce to first order equations:

    θθ&=

    =

    2

    1

    xx

    212

    21

    mlTx

    lgx

    xx

    c+−=

    =

    &

    &

    Tx ⎤⎡⎥⎤

    ⎢⎡⎤⎡ 0101 State Variable

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 9

    uxlgx

    mlTu

    xx

    x c ⎥⎦

    ⎤⎢⎣

    ⎡+

    ⎥⎥⎦⎢

    ⎢⎣−=⇒≡⎥⎦

    ⎤⎢⎣

    ⎡≡

    10

    0, 22

    1 & State VariableRepresentation

    General case:

    JuHxyGuFxx+=+=&

    Dynamic Models

    ELECTRICAL SYSTEMS:

    Kirchoff’s Current Law (KCL):

    The algebraic sum of currents entering a node is zero at every instantevery instant

    Kirchoff’s Voltage Law (KVL)

    The algebraic sum of voltages around a loop is zero at every instant

    iR iC iL)()()()( tGvtitRitv RRRR =⇔=

    Resistors:

    C it

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 10

    iR

    vR vC

    iC

    vL

    L+ + +

    )0()(1)()()(0

    C

    t

    CCC

    C vdiCtv

    dttdvCti +=⇔= ∫ ττ

    ∫ +=⇔=t

    LLLL

    L idvLti

    dttdiLtv

    0

    )0()(1)()()( ττ

    Capacitors:

    Inductors:

  • 6

    Dynamic Models

    ELECTRICAL SYSTEMS:

    ∞→−= AvvAvO )(

    OP AMP:

    +-

    RIRO

    A(vp-vn)

    +

    -

    ip

    in

    iO vO

    vn

    vp

    +

    +

    + 0==

    =

    np

    np

    ii

    vv

    ∞→AvvAv npO ),(

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 11

    To work in the linear mode we need FEEDBACK!!!

    Dynamic Models

    ELECTRICAL SYSTEMS:

    R C

    R2

    dv 11

    KCL:

    ( ) ( ) ∫−=⇒∞=t

    IOO dvCRvtvR

    02)(10)( μμOC

    +-

    R1 Cv1 vO IO

    O vCR

    vCRdt

    dv

    12

    11−=

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 12

    Inverting integrator

    Kv1 vO∫

    ∫CR 01

    RCK 1−=

  • 7

    Dynamic ModelsELECTRO-MECHANICAL SYSTEMS: DC Motor

    atiKT =

    armature currenttorque

    meKe θ&=

    shaft velocityemf

    += TbJ θθ &&&

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 13

    0=+++−

    +−=

    edtdiLiRv

    TbJ

    aaaa

    mmm θθ

    Obtain the State Variable Representation

    Dynamic ModelsHEAT-FLOW:

    ( )TTR

    q 1 21 −=

    Temperature DifferenceHeat Flow

    qC

    T

    R1

    =&

    Thermal resistanceThermal capacitance

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 14

    ( )IoI

    I TTRRCT −⎟⎟

    ⎞⎜⎜⎝

    ⎛+=

    21

    111&

  • 8

    Dynamic ModelsFLUID-FLOW:

    outin wwm −=&

    Mass rate Mass Conservation law

    Outlet mass flowInlet mass flow

    ( )outin wwhhAm −=⇒= ρ1&&&

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 15

    ( )outinAρρ

    A: area of the tankρ: density of fluidh: height of water

    Linearization

    ( )uxfx ,=&Dynamic System:

    ( )oo uxf ,0 = Equilibrium( )oof

    Denote oo uuuxxx −=−= δδ ,

    ( )uuxxfx oo δδδ ++= ,&Taylor Expansion

    ff ∂∂

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 16

    ( ) uufx

    xfuxfx

    oooo uxuxoo δδδ

    ,,,

    ∂∂

    +∂∂

    +≈&

    ⇒∂∂

    ≡∂∂

    ≡oooo uxux u

    fGxfF

    ,,, uGxFx δδδ +≈&

  • 9

    Linearization

    ffff 1111⎥⎤

    ⎢⎡

    ∂∂

    ∂∂

    ⎥⎤

    ⎢⎡

    ∂∂

    ∂∂

    LL

    uGxFx δδδ +≈&

    oo

    oo

    oo

    oo

    uxm

    nn

    m

    ux

    uxn

    nn

    n

    ux

    uf

    uf

    uu

    ufG

    xf

    xf

    xx

    xfF

    ,1

    1

    ,

    ,1

    1

    ,,

    ⎥⎥⎥⎥⎥

    ⎦⎢⎢⎢⎢⎢

    ⎣ ∂∂

    ∂∂

    ∂∂=

    ∂∂

    ⎥⎥⎥⎥⎥

    ⎦⎢⎢⎢⎢⎢

    ⎣ ∂∂

    ∂∂

    ∂∂=

    ∂∂

    L

    MM

    L

    MM

    Example: Pendulum with friction 0sin =++ θθθ gk &&&

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 17

    Example: Pendulum with friction 0sin =++ θθθlm

    xmkx

    lgx

    ox⎥⎥⎦

    ⎢⎢⎣

    ⎡−−= 1cos

    10&

    • Function f(t) of time– Piecewise continuous and exponential order

    Laplace Transform

    btKetf

  • 10

    Laplace transform examples• Step function – unit Heavyside Function

    • After Oliver Heavyside (1850-1925)

    0if1)()()(

    >=−=−===∞+−∞−∞

    −∞

    − ∫∫ σωσeedtedtetusF

    tjststst

    ⎩⎨⎧

    ≥<

    =0for,10for,0

    )(tt

    tu

    • Exponential function• After Oliver Exponential (1176 BC- 1066 BC)

    0if)()(0000

    >+−−

    ∫∫ σωσ sjsdtedtetusF

    ∫ ∫∞ ∞ ∞+−

    +−−− >+

    =+

    −===0 0

    )()( if1)( ασ

    αα

    ααα

    ssedtedteesF

    tstsstt

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 19

    • Delta (impulse) function δ(t)

    ++0 0 0 αα ss

    sdtetsF st allfor1)()(0

    == ∫∞

    −δ

    Laplace Transform Pair TablesSignal Waveform Transform

    impulse

    step

    ramp

    )(tδ 1

    s1

    1

    )(tu

    )(tturamp

    exponential

    damped ramp

    sine22 β

    β

    +ss

    2s

    α+s1

    2)(

    1

    α+s

    )(ttu

    )(tue tα−

    )(tutte α−

    ( ) )(sin tutβ

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 20

    cosine

    damped sine

    damped cosine22)( βα

    α

    ++

    +

    s

    s

    22)( βα

    β

    ++s

    22 β+s

    s( ) )(cos tutβ

    ( ) )(sin tutte βα−

    ( ) )(cos tutte βα−

  • 11

    Laplace Transform Properties

    { } { } { } )()()()()()( 2121 sBFsAFtBtAtBftAf +=+=+ 21 fLfLLLinearity: (absolutely critical property)

    ( )Ft ⎫⎧ ( )ssFdf

    t=

    ⎭⎬⎫

    ⎩⎨⎧∫0

    )( ττLIntegration property:

    )0()()( −−=⎭⎬⎫

    ⎩⎨⎧ fssF

    dttdf

    LDifferentiation property:

    )0()0()(22)(2

    −′−−−=⎪

    ⎪⎬⎫

    ⎪⎨⎧

    fsfsFstfdL

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 21

    )()()(2 ⎪⎭⎬

    ⎪⎩⎨ ff

    dt

    )0()0()0()()( )(21 −−−−′−−−=⎪⎭

    ⎪⎬⎫

    ⎪⎩

    ⎪⎨⎧ −− mmm

    m

    mffsfssF

    dttfd

    LmsL

    Laplace Transform Properties

    )()}({ αα +=− sFtfe tL

    Translation properties:

    s-domain translation:

    { } 0)()()( >=−− − asFeatuatf as forLt-domain translation:

    Initial Value Property: )(lim)(lim0

    ssFtfst ∞→+→

    =

    Fi l V l P t )(li)(li Ftf

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 22

    Final Value Property: )(lim)(lim0

    ssFtfst →∞→

    =

    If all poles of F(s) are in the LHP

  • 12

    Laplace Transform Properties

    )(1)}({asF

    aatf =LTime Scaling:

    Multiplication by time:ds

    sdFttf )()}({ −=L

    Convolution:

    ds

    )()(})()({0

    sGsFdtgft

    =−∫ τττL

    Time product: λλπωσ

    ωσdsGsF

    jtgtf

    j

    j∫+

    −−= )()(

    21)}()({L

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 23

    Laplace Transform

    Exercise: Find the Laplace transform of the following waveform

    [ ] )()2cos(2)2sin(22)( tutttf −+= ( )( )424)( 2 +

    +=

    ssssF ( )4+ss

    Exercise: Find the Laplace transform of the following waveform

    ( )

    [ ] ( )tudttedtuetf

    dxxtuetft

    t

    tt

    4040

    04

    5)(5)(

    4sin5)()(−

    +=

    += ∫ ( )( )

    ( )2

    2

    3

    4020010)(

    1648036)(

    ++

    =

    ++++

    =

    sssF

    ssssssF

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 24

    ( )40+sExercise: Find the Laplace transform of the following waveform

    )2()(2)()( TtAuTtAutAutf −+−−= ( )seAsF

    Ts 21)(−−

    =

  • 13

    Laplace transformsLinearsystem

    Differential Laplace Algebraicdom

    ain)

    Complex frequency domain(s domain)

    equation

    Classicaltechniques

    transform L equation

    Algebraictechniques

    Tim

    e do

    mai

    n (t

    d

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 25

    • The diagram commutes– Same answer whichever way you go

    Responsesignal

    Inverse Laplacetransform L-1

    Responsetransform

    Solving LTI ODE’s via Laplace Transform

    ( ) ( ) ( ) ( ) ubububyayay mmm

    mn

    nn

    01

    101

    1 +++=+++−

    −−

    − LL

    Initial Conditions: ( )( ) ( ) ( )( ) ( )0,,0,0,,0 11 uuyy mn KK −−Initial Conditions:

    ⎥⎦

    ⎤⎢⎣

    ⎡−=⎥

    ⎤⎢⎣

    ⎡−+− ∑∑∑∑∑

    =

    −−

    =

    =

    −−−

    =

    =

    −− ji

    j

    jiim

    ii

    ji

    j

    jiin

    ii

    n

    j

    jjnn susUsbsysYsasysYs1

    0

    )1(

    0

    1

    0

    )1(1

    0

    1

    0

    )1( )0()()0()()0()(

    ( ) ( ) ( ) ( )0,,0,0,,0 uuyy KK

    Recall jk

    j

    jkkk

    k

    sfsFdt

    tfd ∑−

    =

    −−−=⎭⎬⎫

    ⎩⎨⎧ 1

    0

    )1( )0()()( sL

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 26

    011

    1

    1

    0

    )1(

    0

    1

    0

    )1(1

    0

    011

    1

    011

    1

    )0()0()()(

    asasas

    subsyasU

    asasasbsbsbsbsY n

    nn

    ji

    j

    jim

    ii

    ji

    j

    jin

    ii

    nn

    n

    mm

    mm

    ++++

    −+

    ++++++++

    = −−

    =

    −−

    =

    =

    −−−

    =−

    −−

    ∑∑∑∑LL

    L

    For a given rational U(s) we get Y(s)=Q(s)/P(s)

  • 14

    Laplace Transform

    Exercise: Find the Laplace transform V(s)

    )(4)(6)( =+ tutvdt

    tdv( ) 6

    36

    4)(+

    −+

    =sss

    sV

    3)0( −=−vdt ( ) 66 ++ sss

    Exercise: Find the Laplace transform V(s)

    ( )( )( ) 12

    3215)(

    +−

    +++=

    sssssV5)(3)(4)( 22

    2

    =++ −etvdt

    tdvdt

    tvd t

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 27

    ( )( )( )2)0(',2)0( =−−=− vv

    What about v(t)?

    Transfer Functions

    ( ) ( ) ( ) ububyayay mmn

    nn

    01

    101

    1 ++=+++−

    −−

    − LL

    Assume all Initial Conditions Zero:

    )()()()()(

    011

    1

    011

    1n

    nn

    mm sU

    sAsBsU

    asasasbsbsbsY =++++

    +++= −

    −−

    L

    L

    Assume all Initial Conditions Zero:

    ( ) ( ) )()( 01110111 sUbsbsbsYasasas mmnnn +++=++++ −−−− LLInputOutput

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 28

    )())(()())((

    )()()(

    21

    21

    011

    1

    011

    1

    n

    m

    nn

    n

    mm

    pspspszszszsK

    asasasbsbsb

    sUsYsH

    −−−−−−

    =

    +++++++

    == −−

    −−

    L

    L

    L

    L

  • 15

    Rational Functions

    • We shall mostly be dealing with LTs which are rational functions – ratios of polynomials in s

    )( 011

    1m

    mm

    m bsbsbsbsF ++++=−

    − L

    • pi are the poles and zi are the zeros of the function• K is the scale factor or (sometimes) gain

    )())(()())((

    )(

    21

    21

    011

    1

    n

    m

    nn

    nn

    pspspszszszsK

    asasasasF

    −−−−−−

    =

    ++++= −

    L

    L

    L

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 29

    • A proper rational function has n≥m• A strictly proper rational function has n>m• An improper rational function has n

  • 16

    Residues at multiple poles

    rjrd1 ⎤⎡

    Compute residues at poles of order r:

    rr

    rm

    psk

    psk

    psk

    pszszszsKsF

    )()()()()())(()(

    12

    1

    2

    1

    1

    1

    21

    −++

    −+

    −=

    −−−−

    = LL

    rjsFrpsjrds

    dpsjr

    k ii

    j L1,)()(lim)!(1

    =⎥⎦⎤

    ⎢⎣⎡ −

    −→−=

    ( )31522

    +

    +

    s

    ss

    )52()1( 23 ++ sss )52()1( 23 ⎥⎤

    ⎢⎡ ++ sssd 2)52()1(li1

    232⎥⎤

    ⎢⎡ ++ sssd

    Example:( ) ( )31

    321

    11

    2

    +−

    ++

    +=

    sss

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 31

    3)1(

    )52()1(lim 33−=

    +++

    −→ ssss

    s1

    )1()52()1(lim 31=⎥⎥⎦

    ⎢⎢⎣

    ⎡+

    ++−→ s

    sssdsd

    s2

    )1()52()1(lim!2

    1321

    =⎥⎥⎦⎢

    ⎢⎣ +

    ++−→ s

    sssdsd

    s

    ( ) ( ) ( )( ) )(32

    13

    11

    12

    152 2

    321

    3

    21 tutte

    sssL

    sssL t −+=⎟⎟

    ⎞⎜⎜⎝

    ⎛+

    −+

    ++

    =⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛++ −−−

    Residues at complex poles

    • Compute residues at the poles

    • Bundle complex conjugate pole pairs into second-order terms if

    )()(lim sFasas

    −→

    you want

    • but you will need to be careful

    • Inverse Laplace Transform is a sum of complex exponentialsTh ill b l

    ( )[ ]222 2))(( βααβαβα ++−=+−−− ssjsjs

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 32

    • The answer will be real

  • 17

    Inverting Laplace Transforms in Practice

    • We have a table of inverse LTs• Write F(s) as a partial fraction expansion

    b sm + b sm−1 + + b s+ b

    F(s) = bms + bm−1s +L+ b1s+ b0ans

    n + an−1sn−1 +L+ a1s+ a0

    =K (s− z1)(s− z2)L(s− zm)(s− p1)(s− p2)L(s− pn )

    =α1

    s− p1( )+

    α2s− p2( )

    +α31

    (s− p3)+

    α32s− p3( )2

    +α33

    s− p3( )3+ ...+

    αqs− pq( )

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 33

    • Now appeal to linearity to invert via the table– Surprise!– Nastiness: computing the partial fraction expansion is best

    done by calculating the residues

    Example 9-12

    • Find the inverse LT of )52)(1(

    )3(20)( 2 ++++=

    sssssF

    )(*221 kkksF ++=

    21211)(

    jsjsssF

    +++

    −++

    +=

    π45

    255521)21)(1(

    )3(20)()21(21

    lim2

    10152

    2)3(20)()1(

    1lim1

    jej

    jsjssssFjs

    jsk

    sss

    ssFss

    k

    =−−=+−=+++

    +=−+

    +−→=

    =−=++

    +=+

    −→=

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 34

    )()4

    52cos(21010

    )(252510)( 45)21(

    45)21(

    tutee

    tueeetf

    tt

    jtjjtjt

    ⎥⎦⎤

    ⎢⎣⎡ ++=

    ⎥⎥

    ⎢⎢

    ⎡++=

    −−

    −−−++−−

    π

    ππ

  • 18

    Not Strictly Proper Laplace Transforms

    • Find the inverse LT of

    – Convert to polynomial plus strictly proper rational function

    348126)( 2

    23

    ++

    +++=

    ssssssF

    • Use polynomial division

    35.0

    15.02

    3422)( 2

    ++

    +++=

    ++

    +++=

    sss

    sssssF

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 35

    • Invert as normal

    )(5.05.0)(2)()( 3 tueetdt

    tdtf tt ⎥⎦⎤

    ⎢⎣⎡ +++= −−δδ

    Block Diagrams

    Series:1G 2G

    1G

    2G

    +

    +

    Parallel:

    21GGG =

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 36

    21 GGG +=

  • 19

    Block DiagramsNegative Feedback:

    G-

    +)(sR )(sE )(sC BRER

    −= Error signalReference input

    H)(sB HCBGEC

    == Output

    Feedback signal

    )1()1(

    GHG

    RCGRCGHGHCGRC

    +=⇒=+⇒−=

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 37

    )(

    )1(1)1(GHR

    EREGHHGERE+

    =⇒=+⇒−=

    Rule: Transfer Function=Forward Gain/(1+Loop Gain)

    Block DiagramsPositive Feedback:

    G+

    +)(sR )(sE )(sC BRER

    += Error signalReference input

    H)(sB HCBGEC

    == Output

    Feedback signal

    )1()1(

    GHG

    RCGRCGHGHCGRC

    −=⇒=−⇒+=

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 38

    )(

    )1(1)1(GHR

    EREGHHGERE−

    =⇒=−⇒+=

    Rule: Transfer Function=Forward Gain/(1-Loop Gain)

  • 20

    Block Diagrams

    Moving through a branching point:

    G)(sR )(sCG)(sR )(sC G

    G/1)(sB

    G

    )(sB

    Moving through a summing point:

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 39

    G+

    +)(sR )(sC

    )(sB

    G+

    +

    G

    )(sR )(sC

    )(sB

    Block Diagrams

    1H

    Example:

    1G-

    +)(sR )(sC2G 3G+

    2H

    -

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 40

    212321

    321

    1 GGHGGHGGG++

    )(sC)(sR

  • 21

    Mason’s Rule

    6H

    4H

    1H+

    +)(sU )(sY2H 3H+

    5H

    ++

    +

    7H

    ++

    Signal Flow Graph

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 41

    )(sU )(sY1H 2H 3H

    4H

    6H

    5H 7H

    1 2 3 4

    nodes branches

    Mason’s RulePath: a sequence of connected branches in the direction of the signal flow without repetitionLoop: a closed path that returns to its starting nodeForward path: connects input and output

    ∑ ΔΔ== i iiG

    sUsYsG 1)()()(

    gains) loop (alltdeterminan system the

    path forward ith the of gain

    =

    =Δ=

    i

    -

    G

    1

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 42

    path forward ith the touch not does that graph the of part the for of value

    touch not do that loops three possible all of products gain

    touch) not do that loops two possible all of products gain

    g )p(

    Δ=Δ+

    +

    ∑∑∑

    i

    L

    )(

    (

  • 22

    Mason’s Rule

    )(sU )(sY1H 2H 3H

    4H

    6H

    1 2 3 4)(sU )(sY

    5H 7H

    6244321

    1)()(

    HHHHHHHHHHHHHHHHHHHHH

    UsY −+

    =

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 43

    735156747362511)( HHHHHHHHHHHHHHsU +−−−−

    Impulse Response

    )()()(0

    tudtu =−∫∞

    ττδτDirac’s delta:

    Integration is a limit of a sum g⇓

    u(t) is represented as a sum of impulses

    By superposition principle, we only need unit impulse response

    ( )τ−th Response at t to an impulse applied at τ

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 44

    h )(ty)(tu

    τττ dthuty )()()(0∫∞

    −=

    System Response:

  • 23

    Impulse Response

    h )(ty)(tu

    τττ dthuty )()()( ∫∞

    −=

    t-domain:

    )()()()( thtyttu =⇒=δImpulse response

    Convolution: )()(})()({0

    sUsHdthu =−∫∞

    τττL

    )(Y)(Us domain:

    τττ dthuty )()()(0∫=

    The system response is obtained by convolving the input with the impulse response of the system.

    )()()()( thtyttu =⇒=δ

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 45

    H

    )()()( sUsHsY =

    )(sY)(sUs-domain:

    The system response is obtained by multiplying the transfer function and the Laplace transform of the input.

    )()(1)()()( sHsYsUttu =⇒=⇒=δImpulse response

    Time Response vs. PolesReal pole: teth

    ssH σ

    σ−=⇒

    += )(1)( Impulse

    Response

    1Ti C

    00

    <>

    σσ Stable

    Unstable

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 46

    στ 1= Time Constant

  • 24

    Time Response vs. Poles

    Real pole:

    tethsH σσσ −=⇒= )()( Impulse eths

    sH σσ

    =⇒+

    = )()(

    στ 1= Time Constant

    tetyss

    sY σσ

    σ −−=⇒+

    = 1)(1)( Step R

    Impulse Response

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 47

    ss σ+ Response

    Time Response vs. PolesComplex poles:

    ( )22

    22

    2

    2)(

    ω

    ωζωω

    =

    ++=

    n

    nn

    n

    sssH Impulse

    Response

    ( ) ( )222 1 ζωζω −++ nns

    ::

    ζωn Undamped natural frequency

    Damping ratio

    ( )( )2

    )( njsjs

    sHωσωσ

    ω−+++

    =

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 48

    ( )( )

    ( ) 222

    d

    n

    dd

    s

    jsjs

    ωσω

    ωσωσ

    ++=

    +++

    21, ζωωζωσ −== ndn

  • 25

    Time Response vs. PolesComplex poles:

    ( ) ( ) ( )tethssH dtn

    nn

    n ωζ

    ωζωζω

    ω σ sin1

    )(1

    )(2222

    2−

    −=→

    −++=

    I l Impulse Response

    0>σ Stable

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 49

    0

  • 26

    Time Response vs. PolesComplex poles:

    ( ) ( ) ( ) ( )⎥⎦⎤

    ⎢⎣

    ⎡+−=→

    −++= − ttety

    sssY d

    dd

    t

    nn

    n ωωσω

    ζωζωω σ sincos1)(1

    1)( 222

    2

    Step Response

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 51

    Time Response vs. Poles

    Complex poles:

    2

    22

    2

    2)(

    ω

    ωζωω

    ++=

    n

    nn

    n

    sssH

    ( ) ( )222 1 ζωζω −++= nnn

    s

    ( ) ( )nnn

    s

    s

    ζωζωζ

    ωζ

    1:1

    :0222

    22

    −++<

    +=

    CASES:

    Undamped

    Underdamped

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 52

    ( )( )[ ] ( )[ ]nn

    n

    ss

    s

    ωζζωζζζ

    ωζ

    11:1

    :122

    2

    −−+−++>

    += Critically damped

    Overdamped

  • 27

    Time Response vs. Poles

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 53

    Time Domain Specifications

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 54

  • 28

    Time Domain Specifications1- The rise time tr is the time it takes the system to reach the vicinity of its new set point2- The settling time ts is the time it takes the system transients to decaytransients to decay3- The overshoot Mp is the maximum amount the system overshoot its final value divided by its final value4- The peak time tp is the time it takes the system to reach the maximum overshoot point

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 55n

    sp

    nr

    np

    teM

    tt

    ζω

    ωζωπ

    ζ

    ζπ 6.4

    8.11

    21

    2

    ==

    ≅−

    =

    −−

    Time Domain Specifications

    Design specification are given in terms of

    sppr tMtt ,,,

    These specifications give the position of the poles

    dn ωσζω ,, ⇒

    Example: Find the pole positions that guarantee

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 56

    Example: Find the pole positions that guarantee

    sec3%,10sec,6.0 ≤

  • 29

    Effect of Zeros and Additional poles

    Additional poles:1- can be neglected if they are sufficiently to the left of the dominant ones.2- can increase the rise time if the extra pole is within 2- can increase the rise time if the extra pole is within a factor of 4 of the real part of the complex poles.

    Zeros:1- a zero near a pole reduces the effect of that pole in the time response.2- a zero in the LHP will increase the overshoot if the

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 57

    zero is within a factor of 4 of the real part of the complex poles (due to differentiation).3- a zero in the RHP (nonminimum phase zero) will depress the overshoot and may cause the step response to start out in the wrong direction.

    Stability

    011

    1

    011

    1

    )()(

    asasasbsbsbsb

    sRsY

    nn

    n

    mm

    mm

    ++++++++

    = −−

    −−

    L

    L

    )())(()( 21 mzszszsKsY −−−= L

    Impulse response:

    kkk

    )())(()( 21 npspspsK

    sR −−− L

    )()()()()(

    2

    2

    1

    1

    n

    n

    psk

    psk

    psk

    sRsY

    −++

    −+

    −= L

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 58

    )()()()(1)(

    2

    2

    1

    1

    n

    n

    psk

    psk

    psksYsR

    −++

    −+

    −=⇒= L

    tpn

    tptp nekekekty +++= L21 21)(

  • 30

    Stability

    We want:

    tpn

    tptp nekekekty +++= L21 21)(

    nie ttpi K10 =∀⎯⎯→⎯ ∞→

    Definition: A system is asymptotically stable (a.s.) if

    ipi ∀< 0}Re{

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 59

    0)(

    )( 011

    1

    =

    ++++= −−

    sa

    asasassa nnn LCharacteristic polynomial:

    Characteristic equation:

    Stability

    Necessary condition for asymptotical stability (a.s.):

    ia ∀> 0 iai ∀> 0

    Use this as the first test!

    If any ai

  • 31

    Routh’s Criterion

    Necessary and sufficient conditionDo not have to find the roots pi!

    Routh’s Array:

    n

    n

    n

    n

    bbbsaaasaas

    3321

    2531

    1421

    L

    L

    − na Depends on whether

    n is even or odd

    761541321 aaabaaabaaab −−−

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 61

    n

    n

    n

    as

    ddscccs

    0

    214

    3213

    M

    MM

    L

    L

    L

    ,,

    ,,

    ,,

    1

    31312

    1

    21211

    1

    31512

    1

    21311

    1

    7613

    1

    5412

    1

    3211

    ccbbcd

    ccbbcd

    bbaabc

    bbaabc

    aaaab

    aaaab

    aaaab

    −=

    −=

    −=

    −=

    ===

    Routh’s Criterion

    How to remember this?

    Routh’s Array:

    L

    L

    L

    L

    4342413

    3332312

    2322211

    131211

    mmmsmmmsmmmsmmms

    n

    n

    n

    n

    − ,

    ,

    1,21,2

    12,2

    22,1

    =

    =

    +−−

    mmmm

    am

    am

    jii

    jj

    jj

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 62

    MMMM434241

    3,1,1

    1,11,1, ≥∀−=

    +−− im

    mmm

    i

    jiiji

  • 32

    Routh’s Criterion

    The criterion:

    • The system is asymptotically stable • The system is asymptotically stable if and only if all the elements in the first column of the Routh’s array are positive

    • The number of roots with positive real parts is equal to the number of sign changes in the first column of the Routh

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 63

    garray

    Routh’s Criterion - Examples

    Example 1: 0212 =++ asas

    0322

    13 =+++ asasasExample 2:

    Example 3:

    0)6(5 23 =+++ kskssExample 4:

    044234 23456 =++++++ ssssss

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 64

    0)6(5 =+−++ kskssExample 4:

  • 33

    Routh’s Criterion - Examples

    Example: Determine the range of K over which the system is stable

    K-

    +)(sR )(sY( )( )61

    1+−

    +sss

    s

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 65

    Routh’s Criterion

    Special Case I: Zero in the first columnWe replace the zero with a small positive constant ε>0 and proceed as before. We then apply the p pp ystability criterion by taking the limit as ε→0

    Example: 010842 234 =++++ ssss

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 66

  • 34

    Routh’s Criterion

    Special Case II: Entire row is zeroThis indicates that there are complex conjugate pairs. If the ith row is zero, we form an auxiliary equation , y qfrom the previous nonzero row:

    L+++= −−+ 331

    21

    11 )(iii ssssa βββ

    Where βi are the coefficients of the (i+1)th row in the array. We then replace the ith row by the coefficients of the derivative of the auxiliary polynomial

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 67

    Example: 02010842 2345 =+++++ sssss

    of the derivative of the auxiliary polynomial.

    Properties of feedback

    Disturbance Rejection:

    wOpen loop

    w

    oKr +A+ y

    Closed loop

    wArKy o +=

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 68

    cK-

    +r +A+ y

    wAK

    rAK

    AKycc

    c

    ++

    +=

    11

    1

  • 35

    Properties of feedback

    Disturbance Rejection:

    Choose control s.t. for w=0,y≈r

    rwryA

    Kc =+≈⇒>> 01

    wryA

    Ko +=⇒=1Open loop:

    Closed loop:

    F db k ll tt ti f di t b ith t

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 69

    Feedback allows attenuation of disturbance without having access to it (without measuring it)!!!

    IMPORTANT: High gain is dangerous for dynamic response!!!

    Properties of feedback

    Sensitivity to Gain Plant Changes

    wOpen loop

    w

    oKr +A+ y

    Closed loop

    oo

    o AKryT =⎟⎠⎞

    ⎜⎝⎛=

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 70

    cK-

    +r +A+ y

    c

    c

    cc AK

    AKryT

    +=⎟

    ⎠⎞

    ⎜⎝⎛=

    1

  • 36

    Properties of feedback

    Sensitivity to Gain Plant Changes

    Let the plant gain be

    AT δδAA δ+

    AA

    TT

    o

    o δδ =

    o

    o

    cc

    c

    TT

    AA

    AKAA

    TT δδδδ

    =

  • 37

    PID ControllerP Controller: Example (lecture06_a.m)

    pK-

    +)(sR )(sY12 ++ ss

    A)(sE )(sU

    )1()(1)(

    )()(

    2 AKssAK

    sGKsGK

    sRsY

    p

    p

    p

    p

    +++=

    +=

    12 += pn AKω 11

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 73

    Underdamped transient for large proportional gainSteady state error for small proportional gain

    12 =n

    pn

    ζω0

    121

    21

    ⎯⎯ →⎯+

    ==⇒ ∞→pKpn AKω

    ζ

    PID ControllerPI Controller:

    sKKsC Ip +=)(

    -

    +)(sR )(sY)(sG)(sE )(sU

    1)(

    ,)()(1

    )()()()(

    sEsGsC

    sGsCsRsY

    =

    +=

    )()(,)()()(0

    sEs

    KKsUdeKteKtu Ipt

    Ip ⎟⎠⎞

    ⎜⎝⎛ +=+= ∫ ττ

    0)(1

    1lim1

    )(1

    1lim)(lim1)(000

    =⎟⎠⎞

    ⎜⎝⎛ ++

    =⎟⎠⎞

    ⎜⎝⎛ ++

    ==⇒=→→→

    sGs

    KKssGs

    KKsssEe

    ssR

    Ip

    sIp

    ssss

    Step Reference:

    .)()(1)( sGsCsR +

    =

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 74

    ⎠⎝⎠⎝ ss

    • It does not matter the value of the proportional gain• Plant does not need to have a pole at the origin. The controller has it!

    Integral control achieves perfect steady state reference tracking!!!Note that this is valid even for Kp=0 as long as Ki≠0

  • 38

    PID ControllerPI Controller: Example (lecture06_b.m)

    sKK Ip +

    -

    +)(sR )(sY12 ++ ss

    A)(sE )(sU

    ( )AKsAKss

    AKsK

    sGKK

    sGs

    KK

    sRsY

    Ip

    Ip

    Ip

    Ip

    +++++

    =⎟⎠⎞

    ⎜⎝⎛ ++

    ⎟⎠⎞

    ⎜⎝⎛ +

    =)1()(1

    )(

    )()(

    23

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 75

    sp ⎟⎠⎜⎝

    )(

    DANGER: for large Ki the characteristic equation has roots in the RHP

    0)1(23 =++++ AKsAKss IpAnalysis by Routh’s Criterion

    PID ControllerPI Controller: Example (lecture06_b.m)

    0)1(23 =++++ AKsAKss IpNecessary Conditions: 0,01 >>+ AKAK IpThis is satisfied because 0,0,0 >>> Ip KKA

    AKs p3 11 +

    Routh’s Conditions:

    >−+ 01 AKAK Ip

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 76

    AKsAKAKs

    AKs

    I

    Ip

    I

    p

    0

    1

    2

    11−+

    ⇓Ip

    AKK PI

    1+

  • 39

    PID ControllerPD Controller:

    sKKsC Dp +=)(-

    +)(sR )(sY)(sG)(sE )(sU

    1)(

    ,)()(1

    )()()()(

    sEsGsC

    sGsCsRsY

    =

    +=

    ( ) )()(,)()()( sEsKKsUdt

    tdeKteKtu DpDp +=+=

    ( ) )0(111

    )(11lim)(lim1)(

    00 GKssGsKKsssEe

    ssR

    pDpssss +

    =++

    ==⇒=→→

    Step Reference:

    .)()(1)( sGsCsR +

    =

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 77

    PD controller fixes problems with stability and damping by adding “anticipative” action

    ∞→⇔= )0(0 GKe pss•Proportional gain is high•Plant has a pole at the origin

    True when:

    PID ControllerPD Controller: Example (lecture06_c.m)

    -

    +)(sR )(sY12 ++ ss

    A)(sE )(sUsKKsC Dp +=)(

    ( )( )

    ( )( ) )1(1)(1

    )()()(

    2 AKsAKssKKA

    sGsKKsGsKK

    sRsY

    pD

    Dp

    Dp

    Dp

    +++++

    =++

    +=

    AK pn +=12ω AKAK ++ 11

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 78

    The damping can be increased now independently of KpThe steady state error can be minimized by a large Kp

    AKDn

    pn

    +=12ζω AKAKAKp

    D

    n

    D

    ++

    =+

    =⇒12

    12

    ζ

  • 40

    PID ControllerPD Controller:

    sKKsC Dp +=)(-

    +)(sR )(sY)(sG)(sE )(sU

    1)(

    ,)()(1

    )()()()(

    sEsGsC

    sGsCsRsY

    =

    +=

    ( ) )()(,)()()( sEsKKsUdt

    tdeKteKtu DpDp +=+=

    NOTE: cannot apply pure differentiation.In practice,

    .)()(1)( sGsCsR +

    =

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 79

    sKDis implemented as

    1+ssK

    D

    D

    τ

    PID Controller

    PID: Proportional – Integral – Derivative

    ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛++ sT

    sTK Dp

    11+)(sR )(sY)(sG)(sE )(sU⎟⎠

    ⎜⎝ sTI-

    ⎞⎛

    ⎥⎦

    ⎤⎢⎣

    ⎡++= ∫

    U

    dttdeTde

    TteKtu D

    d

    Ip

    1)(

    )()(1)()(0

    ττ DpDI

    pI TKKT

    KK == ,

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 80

    ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛++= sT

    sTK

    sEsU

    DI

    p11

    )()(

    PID Controller: Example (lecture06_d.m)

  • 41

    PID Controller: Ziegler-Nichols Tuning

    • Empirical method (no proof that it works well but it works well for simple systems)• Only for stable plants• You do not need a model to apply the method• You do not need a model to apply the method

    1)()(

    +=

    sKe

    sUsY std

    τ

    Class of plants:

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 81

    1)( +ssU τ

    PID Controller: Ziegler-Nichols Tuning

    METHOD 1: Based on step response, tuning to decay ratio of 0.25.

    T i T bl

    dd

    dI

    dp

    dp

    tTtTKPID

    tTt

    KPD

    tKP

    50221:

    3.0,9.0:

    :

    ===

    ==

    =

    τ

    τ

    τTuning Table:

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 82

    dDdId

    p tTtTtKPID 5.0,2,2.1: ===

  • 42

    PID Controller: Ziegler-Nichols Tuning

    METHOD 2: Based on limit of stability, ultimate sensitivity method.

    uK-

    +)(sR )(sY)(sG)(sE )(sU

    • Increase the constant gain Ku until the response

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 83

    becomes purely oscillatory (no decay – marginally stable – pure imaginary poles)• Measure the period of oscillation Pu

    PID Controller: Ziegler-Nichols Tuning

    METHOD 2: Based on limit of stability, ultimate sensitivity method.

    T i T bl

    8,

    2,6.0:

    2.1,45.0:

    5.0:

    uD

    uIup

    uIup

    up

    PTPTKKPID

    PTKKPD

    KKP

    ===

    ==

    =

    Tuning Table:

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 84

    82

    dud

    u tPtK 4,2 == τ

    The Tuning Tables are the same if you make:

  • 43

    PID Controller: Integrator Windup

    Actuator Saturates: - valve (fully open)- aircraft rudder (fully deflected)

    cu(O t t f th t ll )

    u(Input of the plant)

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 85

    (Output of the controller)

    PID Controller: Integrator Windup

    sKK Ip +

    -

    +)(sR )(sY)(sG)(sE )(sUc )(sU

    What happens? - large step input in r- large e- large uc → u saturates

    ll b ll

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 86

    - eventually e becomes small- uc still large because the integrator is “charged”- u still at maximum- y overshoots for a long time

  • 44

    PID Controller: Anti-WindupPlant without Anti-Windup:

    Plant with Anti-Windup:

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 87

    PID Controller: Anti-WindupIn saturation, the plant behaves as:

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 88

    For large Ka, this is a system with very low gain and very fast decay rate, i.e., the integration is turned off.

  • 45

    Steady State Tracking

    The Unity Feedback Case

    )(sC+)(sR )(sY)(sG)(sE )(sU)(sC-

    )(sG

    )()(11

    )()(

    sGsCsRsE

    +=

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 89

    11)(

    )(1!

    )(

    +=

    =

    k

    k

    ssR

    tkttrTest Inputs: k=0: step (position)

    k=1: ramp (velocity)

    k=2: parabola (acceleration)

    Steady State Tracking

    The Unity Feedback Case

    )(sC+)(sR )(sY)(sG)(sE )(sUn

    o sG )(

    Type nSystem

    -

    11)(),()(1

    1)(,)()()( +=+

    == kn

    on

    o

    ssRsR

    ssGsEs

    sGsGsC

    Steady State Error:

    ns

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 90

    )0(lim1

    )(lim1)(1

    1lim)(lim)(lim00100

    on

    kn

    sko

    n

    n

    sk

    nosst

    ss Gss

    ssGss

    ss

    sGsssEtee +=

    +=

    +===

    →→+→→∞→

    Steady State o

    Final Value Theorem

  • 46

    Steady State TrackingThe Unity Feedback Case

    likns −-

    +)(sR )(sY)(sEn

    o

    ssG )(

    Type nSystem

    )0(lim

    0o

    nsss Gse

    +=

    Steady State Error:

    Type (n) Step (k=0) Ramp (k=1) Parabola (k=2)Input (k)

    111

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 91

    Type 0

    Type 1

    Type 2

    psoKsGsCG +

    =+

    =+

    →1

    1)()(lim1

    1)0(1

    1

    0

    vsoKsGssCG1

    )()(lim1

    )0(1

    0

    ==→

    asoKsGsCsG1

    )()(lim1

    )0(1

    2

    0

    ==→

    ∞ ∞

    0

    0 0

    Steady State Tracking

    2)()(lim

    1)()(lim0)()(lim

    20

    0

    ==

    ==

    ==

    nsGsCsK

    nsGssCKnsGsCK

    sv

    spPosition Constant

    Velocity Constant

    Acceleration Constant2)()(lim0

    ==→

    nsGsCsKsa

    n: Degree of the poles of CG(s) at the origin (the number of integrators in the loop with unity gain feedback)

    • Applying integral control to a plant with no zeros at the origin makes the system type ≥ I• All this is true ONLY for unity feedback systems

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 92

    • All this is true ONLY for unity feedback systems• Since in Type I systems ess=0 for any CG(s), we say that the system type is a robust property.

  • 47

    Steady State Tracking

    The Unity Feedback Case

    +)(sR )(sY)(sE )(sU

    )(sW

    +

    11)(

    )(1!

    )(

    +=

    =

    k

    k

    ssW

    tkttw

    )()()()(1

    )()()( sTssT

    sGsCsG

    sWsY

    on==

    +=

    )(sC-

    +)(sR )(sY)(sG)(sE )(sU +

    Set r=0. Want Y(s)/W(s)=0.

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 93

    k

    n

    osksstssss sssT

    sssTssYtyye )(lim1)(lim)(lim)(lim

    0100 →+→→∞→=====−

    Steady State Error: e=r-y=-y Final Value Theorem

    Steady State TrackingThe Unity Feedback Case

    )(sC-

    +)(sR )(sY)(sG)(sE )(sU +

    )(sW

    +

    Steady State Output:

    Type (n) Step (k=0) Ramp (k=1) Parabola (k=2)Disturbance (k)

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 94

    Type 0

    Type 1

    Type 2

    *

    *

    *

    ∞ ∞

    0

    0 0

  • 48

    Steady State TrackingExample:

    )(sW

    wKI to 1 type⇒≠ 0

    sKK Ip +

    -

    +)(sR )(sY( )1+ss

    )(sE )(sU+

    +

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 95

    wKK IP to0type⇒=≠ 0,0

    Root LocusController

    )(sC+)(sR )(sY)(sG)(sE )(sU

    Plant

    -

    )(1)()(

    )()()(1)()(

    )()(

    sKLsGsC

    sHsGsCsGsC

    sRsY

    +=

    +=

    )(sH

    Sensor

    ⇒= )()( sKDsC

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 96

    )(1)()()(1)( sKLsHsGsCsR ++

    Writing the loop gain as KL(s) we are interested in tracking the closed-loop poles as “gain” K varies

  • 49

    Root LocusCharacteristic Equation:

    0)(1 =+ sKL

    The roots (zeros) of the characteristic equation are the ( ) qclosed-loop poles of the feedback system!!!

    The closed-loop poles are a function of the “gain” K

    Writing the loop gain as

    nnmm

    mm

    asasasbsbsbs

    sasbsL

    ++++++++

    == −−

    11

    11

    )()()( L

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 97

    nn asasassa ++++ −11)( L

    The closed loop poles are given indistinctly by the solution of:

    KsLsKbsa

    sasbKsKL 1)(,0)()(,0)()(1,0)(1 −==+=+=+

    Root Locus

    { } { })()()(1 LKLsKL numdenrootszerosRL +=+=when K varies from 0 to ∞ (positive Root Locus) or

    from 0 to -∞ (negative Root Locus)

    ⎪⎩

    ⎪⎨⎧

    =∠

    =⇔−=>o180)(

    1)(1)(:0sL

    KsL

    KsLK

    Phase condition

    Magnitude condition

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 98

    ⎪⎩

    ⎪⎨⎧

    =∠

    −=⇔−=<o0)(

    1)(1)(:0sL

    KsL

    KsLK

    Phase condition

    Magnitude condition

  • 50

    Root Locus by Characteristic Equation Solution

    Example: K-

    +)(sR )(sY( )( )110

    1++ ss

    )(sE )(sU

    )10(11)()(

    2 KssK

    sRsY

    +++=

    Closed-loop poles: 0)10(110)(1 2 =+++⇔=+ KsssL

    101s 0=K

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 99

    24815.5 Ks −±−=

    28145.5

    5.52

    4815.5

    10,1

    −±−=

    −=

    −±−=

    −−=

    Kis

    s

    Ks

    s

    0481048104810

    −=

    KKKK

    Root Locus by Characteristic Equation Solution

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 100

    We need a systematic approach to plot the closed-loop poles as function of the gain K → ROOT LOCUS

  • 51

    Root Locus by Phase Condition

    Example: K-

    +)(sR )(sY( )( )845

    12 ++++

    sssss)(sE )(sU

    ( )( )

    ( )( )( )isissss

    ssssssL

    222251

    8451)( 2

    −+++++

    =

    ++++

    =

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 101

    iso 31+−=

    belongs to the locus?

    Root Locus by Phase Condition

    o

    o43.108o87.36

    o45

    o70.78

    o90

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 102

    [ ] oooooo 18070.784587.3643.10890 −≈+++− iso 31+−=⇒ belongs to the locus!Note: Check code lecture09_a.m

  • 52

    Root Locus by Phase Condition

    iso 31+−=

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 103

    We need a systematic approach to plot the closed-loop poles as function of the gain K → ROOT LOCUS

    Root Locus{ } { })()()(1 LKLsKL numdenrootszerosRL +=+=

    1

    when K varies from 0 to ∞ (positive Root Locus) or from 0 to -∞ (negative Root Locus)

    Basic Properties:

    • Number of branches = number of open-loop poles • RL begins at open-loop poles

    0)(0 =⇒= saK

    0)()(1)(0)(1 =+⇔−=⇔=+ sKbsaK

    sLsKL

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 104

    • RL ends at open-loop zeros or asymptotes

    • RL symmetrical about Re-axis

    )(

    ⎩⎨⎧

    >−∞→=

    ⇔=⇒∞=)0(

    0)(0)(

    mnssb

    sLK

  • 53

    Root Locus

    Rule 1: The n branches of the locus start at the poles of L(s)and m of these branches end on the zeros of L(s).n: order of the denominator of L(s)m: order of the numerator of L(s)m: order of the numerator of L(s)

    Rule 2: The locus is on the real axis to the left of and odd number of poles and zeros.In other words, an interval on the real axis belongs to the root locus if the total number of poles and zeros to the right is odd.

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 105

    This rule comes from the phase condition!!!

    Root Locus

    Rule 3: As K→∞, m of the closed-loop poles approach the open-loop zeros, and n-m of them approach n-m asymptotes with angles

    1,,1,0,)12( −−=−

    += mnlmn

    ll K πφ

    and centered at

    11011−− ∑∑ mnlab zerospolesα

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 106

    1,,1,0,11 −−=−

    =−

    = ∑∑ mnlmnmn

    K α

  • 54

    Root Locus

    Rule 4: The locus crosses the jω axis (looses stability) where the Routh criterion shows a transition from roots in the left half-plane to roots in the right-half plane.

    Example:

    )54(5)( 2 ++

    +=

    sssssG

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 107

    5,20 jsK ±==

    Root Locus

    Example:4673

    1)( 234 +++++

    =ssss

    ssG

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 108

  • 55

    Root Locus

    Design dangers revealed by the Root Locus:

    • High relative degree: For n-m≥3 we have closed loop instability due to asymptotesinstability due to asymptotes.

    • Nonminimum phase zeros: They attract closed loop poles into the RHP

    46731)( 234 ++++

    +=

    ssssssG

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 109

    11)( 2 ++

    −=

    ssssG

    Note: Check code lecture09_b.m

    Root Locus

    Viete’s formula:

    When the relative degree n-m≥2, the sum of the closed loop poles is constantpoles is constant

    ∑−= poles loop closed1a

    mmmm bsbsbssbsL ++++== −−

    11

    11)()( L

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 110

    nnnn asasassa

    sL++++ −

    −1

    11)(

    )(L

  • 56

    Phase and Magnitude of a Transfer Function

    011

    1

    011

    1)(asasas

    bsbsbsbsG nn

    n

    mm

    mm

    ++++++++

    = −−

    −−

    L

    L

    )())(()( 21 mzszszsKsG −−−= L

    The factors K, (s-zj) and (s-pk) are complex numbers:

    )())(()(

    21 npspspsKsG

    −−− L

    pk

    zj

    ipkk

    izjj

    pkerps

    mjerzsφ

    φ

    ==−

    ==−

    L

    K

    1,)(

    1,)(

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 111

    Ki

    kk

    eKK φ=

    pn

    pp

    zm

    zzK

    ipn

    ipip

    izm

    izizi

    erererererereKsG

    φφφ

    φφφφ

    L

    L

    21

    21

    21

    21)( =

    Phase and Magnitude of a Transfer Function

    ( )zmzzK

    pn

    pp

    zm

    zzK

    izzz

    ipn

    ipip

    izm

    izizi

    errr

    erererererereKsG

    φφφ

    φφφ

    φφφφ

    +++

    =

    LL

    L

    L

    21

    21

    21

    21

    21)(

    Now it is easy to give the phase and magnitude

    ( )( )

    ( ) ( )[ ]pnppzmzzK

    pn

    pp

    K

    ip

    npp

    zm

    zz

    ipn

    ppmi

    errrrrrK

    errrerrreK

    φφφφφφφ

    φφφφ

    +++−++++

    +++

    =

    =

    LL

    L

    L

    L

    L

    L

    2121

    21

    21

    21

    21

    21

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 112

    y g p gof the transfer function:

    ( ) ( )pnppzmzzKp

    npp

    zm

    zz

    sG

    rrrrrrKsG

    φφφφφφφ +++−++++=∠

    =

    LL

    L

    L

    2121

    21

    21

    )(

    ,)(

  • 57

    Phase and Magnitude of a Transfer FunctionExample: ( )( ) )20(51

    )735.6()(+++

    +=

    sssssG

    p1φ

    p2φ

    p3φ

    z1φ

    pr3zr1 pr2

    pr1 ( )pppzppp

    z

    sG

    rrrrsG

    3211

    321

    1

    )(

    )(

    φφφφ ++−=∠

    =iss o 57 +−==

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 113

    Root Locus- Magnitude and Phase Conditions

    { } { })()()(1 LKLsKL numdenrootszerosRL +=+=when K varies from 0 to ∞ (positive Root Locus) or

    from 0 to -∞ (negative Root Locus)

    ⇔−=>K

    sLK 1)(:0

    ( ) ( )[ ]pnppzmzzpKip

    npp

    zm

    zz

    pn

    mp errr

    rrrKpspspszszszsKsL φφφφφφφ +++−++++=

    −−−−−−

    = LLL

    L

    L

    L2121

    21

    21

    21

    21

    )())(()())(()(

    ( ) ( ) oLLL

    L

    180)(

    1)(

    2121

    21

    21

    =+++−++++=∠

    ==

    pn

    ppzm

    zzK

    pn

    pp

    zm

    zz

    p

    psL

    KrrrrrrKsL

    φφφφφφφ

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 114

    ⇔−=<K

    sLK 1)(:0

    ( ) ( )nm

    ( ) ( ) oLLL

    L

    0)(

    1)(

    2121

    21

    21

    =+++−++++=∠

    −==

    pn

    ppzm

    zzK

    pn

    pp

    zm

    zz

    p

    psL

    KrrrrrrKsL

    φφφφφφφ

  • 58

    Root Locus

    Selecting K for desired closed loop poles on Root Locus:

    If so belongs to the root locus, it must satisfies the characteristic equation for some value of Kcharacteristic equation for some value of K

    Then we can obtain K as

    KsL o

    1)( −=

    1

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 115

    )(1

    )(1

    o

    o

    sLK

    sLK

    =

    −=

    Root Locus

    Example: ( )( )511)()(

    ++==

    sssGsL

    ( ) ( ) 204242

    54314351)(

    143

    2222 =++−=

    ++−++−=++==⇒+−=

    iisssL

    Kis ooo

    o

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 116

    sys=tf(1,poly([-1 -5]))so=-3+4i[K,POLES]=rlocfind(sys,so)

    Using MATLAB:

  • 59

    Root LocusExample: ( )( )51

    1)()(++

    ==ss

    sGsL

    57

    +−=o is

    43 iso +−=

    06.42)(

    1==

    osLK

    57 iso +−=

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 117

    When we use the absolute value formula we are assuming that the point belongs to the Root Locus!

    Root Locus - Compensators

    Example: ( )( )511)()(

    ++==

    sssGsL

    Can we place the closed loop pole at so=-7+i5 only varying K?NO W d COMPENSATORNO. We need a COMPENSATOR.

    ( )( )( )51110)()()(

    +++==

    ssssGsDsL( )( )51

    1)()(++

    ==ss

    sGsL

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 118

    The zero attracts the locus!!!

  • 60

    Root Locus – Phase lead compensator

    Pure derivative control is not normally practical because of the amplification of the noise due to the differentiation and must be approximated:

    ( )( ) zpzssGsDsL >+== ,1)()()(

    zppszssD >

    ++

    = ,)( Phase lead COMPENSATOR

    When we study frequency response we will understand why we call “Phase Lead” to this compensator.

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 119

    ( )( ) psspsG +++ ,51)()()(

    How do we choose z and p to place the closed loop pole at so=-7+i5?

    Root Locus – Phase lead compensatorExample:

    Phase lead COMPENSATOR

    ( )( ) zpsspszssGsDsL <

    ++++

    == ,51

    1)()()(

    o19.140o80.111o04.21

    ?1zφ

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 120

    oooooo 03.9303.45304.2180.11119.1401801 ==+++=zφ 735.6−=⇒ z

    ( ) ( ) oLL 180)( 2121 =+++−++++=∠ pnppzmzzK psL φφφφφφφ

  • 61

    Root Locus – Phase lead compensatorExample:

    Phase lead COMPENSATOR

    ( )( )511

    20735.6)()()(

    ++++

    ==sss

    ssGsDsL

    COMPENSATOR

    11757

    =+−=

    Kiso

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 121

    Root Locus – Phase lead compensator

    Selecting z and p is a trial an error procedure. In general:

    • The zero is placed in the neighborhood of the closed-loop natural frequency, as determined by rise-time or p q y, ysettling time requirements.• The poles is placed at a distance 5 to 20 times the value of the zero location. The pole is fast enough to avoid modifying the dominant pole behavior.

    The exact position of the pole p is a compromise between:

    • Noise suppression (we want a small value for p)

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 122

    • Compensation effectiveness (we want large value for p)

  • 62

    Root Locus – Phase lag compensatorExample: ( )( )51

    120735.6)()()(

    ++++

    ==sss

    ssGsDsL

    17356+s( )( )

    2

    00010735.6

    511

    20735.6lim)()(lim)(lim −

    →→→×=

    ++++

    ===sss

    ssGsDsLKsssp

    What can we do to increase Kp? Suppose we want Kp=10.

    ( )( ) zpszssGsDsL

  • 63

    Root Locus – Phase lag compensator

    Selecting z and p is a trial an error procedure. In general:

    • The ratio zero/pole is chosen based on the error constant specification.p• We pick z and p small to avoid affecting the dominant dynamic of the system (to avoid modifying the part of the locus representing the dominant dynamics)• Slow transient due to the small p is almost cancelled by an small z. The ratio zero/pole cannot be very big.

    The exact position of z and p is a compromise between:

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 125

    • Steady state error (we want a large value for z/p)• The transient response (we want the pole p placed far from the origin)

    Root Locus - Compensators

    Phase lead compensator: pzpszssD <

    ++

    = ,)(

    pzpszssD >

    ++

    = ,)(Phase lag compensator:

    We will see why we call “phase lead” and “phase lag” to these compensators when we study frequency response

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 126

  • 64

    Frequency Response

    • We now know how to analyze and design systems via s-domain methods which yield dynamical information

    • The responses are described by the exponential modesTh d d i d b h l f h L l– The modes are determined by the poles of the response Laplace Transform

    • We next will look at describing cct performance via frequency response methods– This guides us in specifying the system pole and zero

    i i

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 127

    positions

    Sinusoidal Steady-State Response

    22)()cos()( ωωω+

    =⇔=s

    AsUtAtu

    Consider a stable transfer function with a sinusoidal input:

    • Where the natural modes lie

    –These are in the open left half plane Re(s)

  • 65

    Sinusoidal Steady-State Response

    • Input

    • Transform

    φωφωφω cossinsincos)cos()( tAtAtAtu −=+=

    2222 sincos)(ωφφ +−= AsAsU

    • Response Transform

    • Response Signal

    2222 ωω ++ ss

    N

    N

    psk

    psk

    psk

    jsk

    jsksUsGsY

    −++

    −+

    −+

    ++

    −== L

    2

    2

    1

    1*

    )()()(ωω

    forced response natural response

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 129

    • Sinusoidal Steady State Response

    44444 344444 21L44 344 21

    responsenatural21

    responseforced

    * 21)( tpNtptptjtj Nekekekekkety +++++= − ωω

    tjtjSS ekkety

    ωω −+= *)(

    ∞→t

    0

    Sinusoidal Steady-State Response

    • Calculating the SSS response to• Residue calculation

    [ ] [ ])()()(lim)()(limωω

    ωωjsjs

    sUsGjssYjsk→→

    −=−=

    )cos()( φω += tAtu

    • Signal calculation

    ))(()(21

    21)(

    2sincos)(

    ))((sincos))((lim

    ωφφ

    ω

    ωω

    ωφωφωω

    ωωφωφω

    jGjj

    js

    ejGAejAG

    jjAjG

    jsjssAjssG

    ∠+

    ==

    ⎥⎦

    ⎤⎢⎣

    ⎡ −=⎥

    ⎤⎢⎣

    ⎡+−

    −−=

    kkLtyss ⎬⎫

    ⎨⎧

    += −)(*

    1

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 130

    ( )Ktkeekeek

    jsjsLty

    tjKjtjKj

    ss

    ∠+=

    +=⎭⎬

    ⎩⎨ +

    +−

    −∠−∠

    ω

    ωωωω

    cos2

    )(

    ( ))(cos)()( ωφωω jGtjGAtyss ∠++=

  • 66

    Sinusoidal Steady-State Response

    • Response to• is ))(cos()(

    )cos()(ωφωω

    φωjGtAjGy

    tAtu

    ss ∠++=

    +=

    – Output frequency = input frequency– Output amplitude = input amplitude × |G(jω)|– Output phase = input phase + G(jω)

    • The Frequency Response of the transfer function G(s) is given by its evaluation as a function of a complex variable at s=jω

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 131

    • We speak of the amplitude response and of the phase response– They cannot independently be varied

    » Bode’s relations of analytic function theory

    Frequency Response

    • Find the steady state output for v1(t)=Acos(ωt+φ)

    +_V1(s)sL

    R V2(s)

    +

    • Compute the s-domain transfer function T(s)– Voltage divider

    • Compute the frequency response

    -

    RsLRsT+

    =)(

    ⎟⎠⎞

    ⎜⎝⎛−=∠

    += −

    RLjT

    LR

    RjT ωωω

    ω 122

    tan)(,)(

    )(

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 132

    • Compute the steady state output

    ⎠⎝+ LR ω )(

    ( )[ ]RLtLR

    ARtv SS /tancos)(

    )( 1222

    ωφωω

    −−++

    =

  • 67

    Bode Diagram

    )

    -5

    0

    Bode Diagrams• Log-log plot of mag(T), log-linear plot of arg(T) versus ω

    (dB

    ))

    Mag

    nitu

    de (d

    B

    -25

    -20

    -15

    -10

    0

    Mag

    nitu

    de (

    eg)

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 133

    Frequency (rad/sec)

    Phas

    e (d

    eg

    104

    105

    106

    -90

    -45

    Phas

    e (d

    e

    Frequency Response

    )cos()( φω += tAtu )(sG ))(cos()( ωφωω jGtAjGyss ∠++=

    Stable Transfer Function

    • After a transient, the output settles to a sinusoid with an amplitude magnified by and phase shifted by .

    • Since all signals can be represented by sinusoids (Fourier i d t f ) th titi d

    )( ωjG )( ωjG∠

    )( jG )( jG∠

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 134

    series and transform), the quantities and are extremely important.

    • Bode developed methods for quickly finding and for a given and for using them in control design.

    )( ωjG )( ωjG∠

    )( ωjG )( ωjG∠)(sG

  • 68

    Frequency Response

    • Find the steady state output for v1(t)=Acos(ωt+φ)

    +_V1(s)sL

    R V2(s)

    +

    • Compute the s-domain transfer function T(s)– Voltage divider

    • Compute the frequency response

    -

    RsLRsT+

    =)(

    ⎟⎠⎞

    ⎜⎝⎛−=∠

    += −

    RLjT

    LR

    RjT ωωω

    ω 122

    tan)(,)(

    )(

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 135

    • Compute the steady state output

    ⎠⎝+ LR ω )(

    ( )[ ]RLtLR

    ARtv SS /tancos)(

    )( 1222

    ωφωω

    −−++

    =

    Bode Diagram

    )

    -5

    0

    Frequency Response - Bode Diagrams• Log-log plot of mag(T), log-linear plot of arg(T) versus ω

    (dB

    ))

    Mag

    nitu

    de (d

    B

    -25

    -20

    -15

    -10

    0

    Mag

    nitu

    de (

    eg)

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 136

    Frequency (rad/sec)

    Phas

    e (d

    eg

    104

    105

    106

    -90

    -45

    Phas

    e (d

    e

    [ ] [ ] Hzffrad === ,2sec,/ πωω

  • 69

    Bode Diagrams

    )())(()())(()(

    21

    21

    n

    m

    pspspszszszsKsG

    −−−−−−

    =L

    L

    The magnitude and phase of G(s) when s=jω is given by:

    ( ) ( )[ ]pnppzmzzKip

    npp

    zm

    zz

    errrrrrKsG φφφφφφφ +++−++++= LL

    L

    L2121

    21

    21)(

    zzz

    Nonlinear in the magnitudes

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 137

    ( ) ( )pnppzmzzKp

    npp

    zm

    zz

    jG

    rrrrrrKjG

    φφφφφφφω

    ω

    +++−++++=∠

    =

    LL

    L

    L

    2121

    21

    21

    )(

    ,)(

    Linear in the phases

    Bode Diagrams

    )(log20)( ωω jGjG dB =

    Why do we express in decibels?)( ωjG

    zzz rrr

    ( ) ( )pnppzmzmz rrrrrrKsG log20log20log20log20log20log20log20)(log20 211 +++−++++= LLBy properties of the logarithm we can write:

    ?)()(21

    21 =⇒= dBpn

    ppm jGrrrrrrKjG ωω

    L

    L

    The magnitude and phase of G(s) when s=jω is given by:

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 138

    ( ) ( )( ) ( )pnppzmzzK

    dBp

    ndBp

    dBp

    dBz

    mdBz

    dBz

    dBdB

    sG

    rrrrrrKsG

    φφφφφφφ +++−++++=∠

    +++−++++=

    LL

    LL

    2121

    2121

    )(

    )(

    Linear in the phases

    Linear in the magnitudes (dB)

  • 70

    Bode DiagramsWhy do we use a logarithmic scale? Let’s have a look at our example:

    222

    1

    1)(

    )()(

    ⎟⎞

    ⎜⎛+

    =+

    =⇒+

    =LLR

    RjTRsL

    RsTωω

    ω

    1 ⎟⎠

    ⎜⎝

    +R

    ⎥⎦

    ⎤⎢⎣

    ⎡⎟⎠⎞

    ⎜⎝⎛+−=⎟

    ⎠⎞

    ⎜⎝⎛+−=

    22

    1log101log201log20)(RL

    RLjT dB

    ωωω

    Expressing the magnitude in dB:

    Asymptotic behavior:

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 139

    ( ) ωωωωω log20log20/log20/

    log20)(: −=−=⎟⎠⎞

    ⎜⎝⎛−→∞→

    dBdB L

    RLRLR

    jT

    0)(:0 →→ dBjT ωω

    LINEAR FUNCTION in logω!!! We plot as a function of logω.dBjG )( ω

    Bode Diagrams

    A cutoff frequency occurs when the gain is reduced from its maximum passband value by a factor :2/1

    Decade: Any frequency range whose end points have a 10:1 ratio

    dB3log202log20log202

    1log20 −≈−=⎟⎠⎞

    ⎜⎝⎛

    MAXMAXMAX TTT

    Bandwith: frequency range spanned by the gain passband

    Let’s have a look at our example:

    ⎧ )(

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 140

    ⎩⎨⎧

    ====

    ⎟⎠⎞

    ⎜⎝⎛+

    =2/1)(/

    1)(0

    1

    1)(2 ωω

    ωω

    ωω

    jTLRjT

    RL

    jT

    This is a low-pass filter!!! Passband gain=1, Cutoff frequency=R/LThe Bandwith is R/L!

  • 71

    General Transfer Function (Bode Form)

    ( ) ( ) ( )q

    nn

    nmo

    jjjjKjG⎥⎥⎦

    ⎢⎢⎣

    ⎡++⎟⎟

    ⎞⎜⎜⎝

    ⎛+= 121

    2

    ωωζ

    ωωωτωω

    The magnitude (dB) (phase) is the sum of the magnitudes (dB)

    Classes of terms:

    1-

    2-

    ( ) oKjG =ω( ) ( )mjjG ωω =

    g ( ) (p ) g ( )(phases) of each one of the terms. We learn how to plot each term, we learn how to plot the whole magnitude and phase Bode Plot.

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 141

    3-

    4-

    ( ) ( )jjG ωω =( ) ( )njjG 1+= ωτω

    ( )q

    nn

    jjjG⎥⎥⎦

    ⎢⎢⎣

    ⎡++⎟⎟

    ⎞⎜⎜⎝

    ⎛= 12

    2

    ωωζ

    ωωω

    General Transfer Function: DC gain

    ( ) oKjG =ω

    ( )⎧

    = log20 odB KjωGMagnitude and Phase:

    25

    30

    35

    40

    (dB

    )

    120

    140

    160

    180

    200

    eg)

    ( )⎩⎨⎧

    =∠000

    o

    o

    KK

    jG if

    ifπ

    ω( ) 10−=sG

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 142

    10-1 100 101 1020

    5

    10

    15

    20

    Frequency (rad/sec)

    Mag

    nitu

    de

    10-1 100 101 1020

    20

    40

    60

    80

    100

    Frequency (rad/sec)

    Pha

    se (d

    e

  • 72

    General Transfer Function: Poles/zeros at origin

    ( ) ( )mjjG ωω =

    ( ) log20 ωmjωG dB ⋅=Magnitude and Phase:

    0

    10

    20

    e (d

    B) -40

    -20

    0

    deg)

    ( )2πω mjG =∠( )

    ssGm 1,1 =−=

    ( ) 01 =dBG

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 143

    10-1 100 101 102-40

    -30

    -20

    -10

    Frequency (rad/sec)

    Mag

    nitu

    de

    10-1 100 101 102-120

    -100

    -80

    -60

    Frequency (rad/sec)

    Pha

    se (d

    decdBm 20⋅

    General Transfer Function: Real poles/zeros

    ( ) ( )njjG 1+= ωτωMagnitude and Phase:

    ( ) ( )( ) ( )ωτω

    τω1

    22

    tan

    1log10−=∠

    +⋅=

    njG

    njωG dB

    Asymptotic behavior:

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 144

    ωτω

    ω

    τω

    τω

    log20)(

    0)(

    /1

    /1

    ⋅+⋅⎯⎯ →⎯

    ⎯⎯ →⎯

    >>

    >

  • 73

    0

    5

    10

    General Transfer Function: Real poles/zeros

    10/1,1 =−= τn

    ( ) 1GdB

    30

    -25

    -20

    -15

    -10

    -5

    Mag

    nitu

    de (d

    B)

    dBjG dB = 0)0(

    ( )1

    10+

    = ssGdBn 3⋅ decdBn 20⋅

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 145

    10-1 100 101 102 103-40

    -35

    -30

    Frequency (rad/sec)

    dBnG

    dBnjG

    dB

    dB

    ∞=∞

    ⋅=

    )sgn()(

    3)/1( τ

    General Transfer Function: Real poles/zeros

    -10

    0

    10 10/1,1 =−= τn

    ( ) 1G

    o0)0( =∠ jG-70-60

    -50

    -40

    -30

    -20

    Pha

    se (d

    eg)

    ( )1

    10+

    = ssG

    o45⋅n

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 146

    o

    o

    90)(

    45)/1(

    0)0(

    ⋅=∞∠

    ⋅=∠

    njG

    njG

    jG

    τ

    10-1 100 101 102 103-100

    -90

    -80

    Frequency (rad/sec)

  • 74

    General Transfer Function: Complex poles/zeros

    ( )q

    nn

    jjjG⎥⎥⎦

    ⎢⎢⎣

    ⎡++⎟⎟

    ⎞⎜⎜⎝

    ⎛= 12

    2

    ωωζ

    ωωω

    ⎤⎡ ⎞⎛⎞⎛22

    Magnitude and Phase:

    ( )

    ( ) ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛−

    ⋅=∠

    ⎥⎥⎦

    ⎢⎢⎣

    ⎡⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛+⎟⎟

    ⎞⎜⎜⎝

    ⎛−⋅=

    −22

    1

    22

    2

    2

    /1/2tan

    21log10

    n

    n

    nndB

    qjG

    qjG

    ωωωζωω

    ωωζ

    ωωω

    Asymptotic behavior:

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 147

    y p

    ωωω

    ω

    ωω

    ωω

    log402)(

    0)(

    ⋅+⋅−⎯⎯ →⎯

    ⎯⎯ →⎯

    >>

    >

  • 75

    -20

    0

    20

    General Transfer Function: Complex poles/zeros

    05.0,1,1 ==−= ζωnq

    ( ) 1=sG

    -140

    -120

    -100

    -80

    -60

    -40

    Pha

    se (d

    eg)

    o

    o

    o

    180)(

    90)/1(

    0)0(

    ⋅=∞∠

    ⋅=∠

    =∠

    qjG

    qjG

    jG

    τo90⋅q

    ( )11.02 ++

    =ss

    sG

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 149

    10-2 10-1 100 101 102-200

    -180

    -160

    Frequency (rad/sec)

    180)( ∞∠ qjG

    Frequency Response

    ( ) ( ))50)(10(

    5.02000++

    +=

    sssssGExample:

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 150

  • 76

    Frequency Response: Poles/Zeros in the RHP

    • Same .

    • The effect on is opposite than the stable case.

    )( ωjG

    )( ωjG∠

    ( )2

    1−

    =s

    sGExample:

    An unstable pole behaves like a stable zeroAn “unstable” zero behaves like a “stable” pole

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 151

    This frequency response cannot be found experimentally but can be computed and used for control design.

    First order LOW PASS

    α⇓

    +=

    K

    sKsT )(

    αωω

    +=

    jKjT )(

    αωω)(

    22 +=

    KjT

    Gain and Phase:

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 152

    ( )αωωθαω

    /tan)( 1−−∠=+

    K

    ⎩⎨⎧

    =∠018000

    KK

    Ko

  • 77

    First order LOW PASS

    ( )αωωθαω

    ω

    /tan)(

    )(

    1

    22

    −−∠=+

    =

    K

    KjT

    0)(,)0( =∞= TK

    ωK

    jT ⎯⎯ →⎯)(

    αωα

    ααα =⇒==

    += c

    TKKjT2

    )0(2

    )(22

    Cutoff frequency

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 153

    ωω

    αω

    αω

    αω

    KjT

    jT

    ⎯⎯ →⎯

    >>

    >

  • 78

    First Order HIGH PASS

    α⇓

    +=

    Kj

    sKssT )(

    αωωω+

    =jKjjT )(

    αωω

    ω)(22 +

    =K

    jT

    Gain and Phase:

    Classical Control – Prof. Eugenio Schuster – Lehigh UniversityClassical Control – Prof. Eugenio Schuster – Lehigh University 155

    ( )αωωθαω

    /tan90)( 1−−+∠=+

    oK

    ⎩⎨⎧

    =∠018000

    KK

    Ko

    First order HIGH PASS

    ( )αωωθαω

    ωω

    /tan90)(

    )(

    1

    22

    −−+∠=+

    =

    oK

    KjT

    KTT =∞= )(,0)0(

    KjT ⎯⎯ →⎯

  • 79

    First order HIGH PASS

    ( )αωω�