145
TÄTIGKEITSBERICHT PROGRESS REPORT Atominstitut Institute of Atomic and Subatomic Physics 08-10

ATI Progress Report 2008-2010

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

TÄTIGKEITSBERICHT PROGRESS REPORT Atominstitut Institute of Atomic and Subatomic Physics

08-10

 

Tätigkeitsbericht Progress Report

2008 - 2010

 

2  

Table of contents 1. Introduction 3

2 Progress Reports of the Research Areas 2.1 Applied Quantum Physics …………………………………………………………… 14

2.2 Atomic Physics and Quantum Optics …………………………………………….…. 18

2.3 Nuclear and Particle Physics ………………………………………………….….… 25

2.4 Neutron and Quantum Physics ……………………………………………………... 30

2.5 Radiation Physics …………………………………………………………………… 39

2.6 Low Temperature Physics and Superconductivity ………………………….....……. 45

2.7 Junior Research Groups: Quantum metrology ……….………….……………….…. 52

3 Reports from the Central Facilities 3.1 TRIGA Reactor ………………………………………………………………………. 55

3.2 Radiation Protection Department ………………………………………..………….. 58

3.3 EDV ……………………………………………………………………………...…… 60 3.4 Das Elektroniklabor am Atominstitut ………………………………………………. 61

3.5 Mechanische Werkstätte …………………………………………………………… 62

4 Guest Scientists, Co-operations, Public Relations, Publications 63

5 Teaching / Lehrveranstaltungen 132

6 Personnel and organigram 137

1 Einleitung

Das Atominstitut (ATI) wurde 1958 als interuniversitäres Institut gegründet und 1962 an seinem heutigen Standort im Prater mit der Inbetriebnahme des TRIGA Mark II Forschungsreaktors eröffnet. Im Rahmen der Universitätsreform wurde das ATI 2002 in die Fakultät für Physik an der TU-Wien integriert und widmet sich heute einem breiten Portfolio aus Forschung und Ausbildung auf den Gebieten der Atom-, Kern-, Teilchen- und Reaktorphysik, der Strahlenphysik und des Strahlenschutzes, der Umweltanalytik und Radiochemie sowie der Tieftemperaturphysik, Neutronenphysik, Quantenphysik und Quantenoptik. Die wissenschaftlichen Arbeiten reichen von sehr fundamentalen Fragestellungen über Symmetrien und Wechselwirkungen bis hin zu angewandten Aufgaben wie das Überprüfen der Strahlungsresistenz kommerzieller Kunstharze für den Bau von ITER.

Um die über die Jahre gewachsene inhaltliche Breite der Forschung auch nach außen zu vermitteln, haben Fakultät und Rektorat der TU-Wien mit 1. Oktober 2009 beschlossen, das Institut in "Atominstitut - Institute of Atomic and Subatomic Physics" umzubenennen.

Mit Stand 1.1.2011 umfasst das permanente Personal des Atominstituts ca. 32 wissenschaftliche (18 fest angestellt, 14 auf 6-Jahresverträgen) und 29 nichtwissenschaftliche Mitarbeiterinnen und Mitarbeiter. Dazu kommen aus Drittmitteln finanzierte Projektassistentinnen und Projektassistenten (ca. 70), deren Bedeutung für die Erfüllung der Forschungs- und Ausbildungsaufgaben des Instituts im Laufe der letzten Jahre kontinuierlich gestiegen ist. Am ATI arbeiten etwa 50 Studierende an ihrer Diplomarbeit oder Dissertation. Das Angebot des Atominstituts in der Lehre umfasst alle Forschungsbereiche und ist in die Curricula an der Fakultät für Physik voll integriert.

Im Berichtszeitraum von 2008 bis 2010 gab es einige wesentliche Veränderungen am ATI. Durch zwei neue Berufungen (Prof. Hartmut Abele: Neutronenphysik und Prof. Arno Rauschenbeutel: Angewandte Quantenphysik) gelang es, zwei herausragende Wissenschafter mit ihren Gruppen nach Wien zu bringen und damit die Wissenschaft und Lehre am ATI zu erweitern und zu konsolidieren. Dadurch gelang es mit tatkräftiger Unterstützung unseres Dekans, Prof. Gerald Badurek, die mit der Berufung von Prof. Hannes-Jörg Schmiedmayer begonnenen Umbau- und Modernisierungsarbeiten wieder aufzunehmen und auf das ganze Institut auszuweiten, sodass nun allen Gruppen am ATI eine moderne Labor- und Büroinfrastruktur zur Verfügung steht.

Mit dem Erreichen des 65. Lebensjahres von Prof. Harald W. Weber kam es mit 1. Oktober 2009 zu einem Wechsel in der Institutsleitung. Prof. Weber widmet sich seither wieder voll seiner Forschung. An dieser Stelle sei ihm ausdrücklich für seinen unermüdlichen Einsatz für das ATI gedankt.

Im Jahre 2008 gelang es uns im Rahmen der sehr breit ausgeschriebenen Professur Strahlenphysik, Prof. Abele (LMU München und Univ. Heidelberg) zu berufen. Er ist seit März 2009 mit seiner Gruppe am ATI. Mit seiner Forschung erweiterte er auch das Arbeitsgebiet der Neutronenphysik in Richtung fundamentaler Wechselwirkungen und Symmetrien und bildet somit eine wichtige Brücke zu der Theorie am ATI und zu den Teilchenphysikinstituten der Österreichischen Akademie der Wissenschaften (HEPHY und SMI). Seine Gruppe ist einer der Hauptnutzer des TRIGA Mark II Forschungsreaktors am Institut. Die Verbindung zur Hochenergiephysik wurde auch durch Prof. Christian Fabjan verstärkt, der nach der gescheiterten Berufung Hochenergiephysik + Direktor des HEPHY diese Stelle in Form einer §99 Professur interimsmäßig übernommen hat.

Darüber hinaus gelang es uns im Rahmen der Profilbildungsinitiative des BMWF im Wettbewerb der Universitäten, eine Professur angewandte Quantenphysik zu bekommen.

4  

Aus einem herausragenden Bewerberfeld wurde 2010 Prof. Arno Rauschenbeutel von der Universität Mainz berufen und forscht nun seit Dezember 2010 mit seiner Gruppe am ATI.

Eine weitere zukunftsweisende Entwicklung war, dass Dr. Thorsten Schumm im Jahre 2009 für sein Projekt ‚Nuclear Clock’ den START Preis und 2010 einen ERC Starting Grant gewinnen konnte. In der Institutsstruktur wurde daraufhin eine neue Kategorie für durch solche Preise ausgezeichnete junge Wissenschafter eingeführt: Nachwuchsgruppen, die es den Preisträgern ermöglicht, Entscheidungen am ATI gleichberechtigt mitzugestalten.

In zweiten Halbjahr 2010 wurde gemeinsam mit der TU-Wien, der Universität Wien und der Österreichischen Akademie der Wissenschaften das „Vienna Center for Quantum Science and Technology“ (VCQ) (http://vcq.quantum.at) gegründet und im Rahmen eines wissenschaftlichen Symposiums an der TU-Wien und einer Festveranstaltung an der Universität Wien am 15. Dezember 2011 im Beisein von Bundesministerin Dr. Beatrix Karl, Stadtrat Dr. Andreas Mailath-Pokorny und hochrangigen Vertretern der EU Forschungspolitik eröffnet. Es vereinigt die Quantenwissenschaften der drei Institutionen in einem gemeinsamen Wissenschaftszentrum. Das VCQ hat sich zum Ziel gesetzt, auf diesem Zukunftsgebiet der Grundlagenforschung und Technologieentwicklung in Forschung und Lehre neue Impulse zu setzen.

Das neue Radiochemie Labor (links) und Neutronenphysik Labor (rechts).

Nach den im Sommer 2007 beendeten Umbauarbeiten zu den Labors der Atom- und Quantenphysik war sehr bald klar, dass sich durch die weiteren Berufungen die Möglichkeit eröffnet, die bauliche Infrastruktur des gesamten Instituts auf einen modernen, zeitgemäßen Stand zu bringen. Mit tatkräftiger Unterstützung unsers Dekans, Prof. Badurek, gelang es, die Leitung der TU-Wien von diesem Plan im Frühjahr 2009 zu überzeugen. Nach einer intensiven Planungsphase, die sehr professionell von der hervorragenden Arbeit des Architekturbüro Simlinger sowie einer sehr guten Kooperation mit der Abteilung Gebäude und Technik der TU-Wien, den zuständigen Stellen der BIG sowie dem Zentralen Informatikdienst der TU Wien geprägt war, konnte Ende 2009 mit den Arbeiten am ATI begonnen werden. Ende 2010 waren die Arbeiten so weit abgeschlossen, dass das fast fertig revitalisierte ATI der Universitätsleitung und dem Universitätsrat präsentiert werden konnte. Stellvertretend für alle sei hier insbesondere Herrn Rektor Peter Skalicky, Vizerektor Gerhard Schimak, Gerald Hodecek, den Architekten Berndt Simlinger und Bernhard Prüller und den Planern Ing. Reza Saber und Ing. Cornelius Peter gedankt. Von den Mitarbeitern des ATI gilt unser Dank und unsere Anerkennung besonders Herrn Dr. Johannes Sterba, der als Vertreter des ATI den Umbau begleitete und immer den kürzesten und effektivsten Weg zwischen dem Institut und der Bauleitung fand. Ebenfalls unersetzlich war Dr. Stephan Schneider, dessen technisch-wissenschaftliche Expertise bei der Laborinfrastruktur maßgeblich zum Erfolg heutiger Experimente beiträgt. Durch die Erneuerung der baulichen Infrastruktur und durch Verlegung von Labors und EDV Einrichtungen in das 1. und 2. Untergeschoss gelang es uns auch, signifikant zusätzliche Büro- und Laborflächen zu

gewinnen, und damit die angespannte Raumsituation etwas zu verbessern. Für die schon absehbare Vergrößerung des wissenschaftlichen Personals durch die Projekte der neuen Gruppen sind in Zukunft sicherlich zusätzliche Büroflächen notwendig. Insgesamt wurden ∼980 m2 Labor und ∼550 m2 Büroflächen generalsaniert. Neben den ∼239 m2 neuen Quantenoptiklabors für die Gruppe Rauschenbeutel sind hier besonders die ∼394 m2 neuer Labors für die Strahlenphysik und Radiochemie zu erwähnen.

Labor Büro total

Strahlenphysik / Radiochemie 394 117 511

Tieftemperaturphysik 38 107 145

Neutronenphysik + Reaktor (Berufung Abele) 197 232 429

Atom / Quantenphysik 68 0 68

Nachwuchsguppen (START/ERC T. Schumm) 45 27 72

Angew. Quantenphysik (Berufung Rauschenbeutel) 239 66 305

981 549 1530

sanierte Büro- und Laborflächen

Im Berichtszeitraum sind etliche langjährige und hoch verdiente Mitglieder des ATI durch Pensionierung ausgeschieden: Aus dem Kreis der wissenschaftlichen Mitarbeiter und Beamten sind Ao. Prof. Dr. Helmuth Böck (30.9.2008), Ao. Prof. Dr. Manfred Tschurlovits (30.9.2008) zu nennen, aus dem Kreis der nichtwissenschaftlichen Mitarbeiter sind Peter Schröder (31.10.2008), Ing. Hartwig Bitterman (30.11.2008), Kurt Liebhart (31.5.2008), Erich Tischler (28.2.2009) und Walter Drabek (31.10.2010) in den Ruhestand getreten. Alle von ihnen haben in ihrer zumeist jahrzehntelangen Tätigkeit am Atominstitut wesentlich zur Gestaltung und zum Profil des Hauses beigetragen, wofür ihnen an dieser Stelle ausdrücklich nochmals gedankt sei. Erwähnenswert ist auch, dass Dr. Björn Hessmo (bis 30.6.2009) an die National University of Singapur berufen wurde und seit Juli 2009 am dortigen Center for Quantum Technology lehrt und forscht. Im Berichtszeitraum konnten wir auch einige neue aus dem Globalbudget der TU finanzierte Mittarbeiter am ATI begrüßen. Im Bereich Neutronenphysik gelang es mit der tatkräftigen Unterstützung unsers Dekans eine Laufbahnstelle gemäß KV für den schon lange am ATI forschenden Dr. Yuji Hasegawa zu bekommen. Drüber hinaus betreut Dr. Harmut Lemmel seit 1.7.2008 als Universitätsassistent das Neutronen-Interferometer am ILL. Dazu kamen über das Innovative-Ideen-Programm der TU-Wien Robert Amsüss (1.3.2010) und Xiangzun Wang (22.3.2010) als Prädocs.

Im Bereich Strahlenphysik und Reaktor wurden Dr. Andreas Musilek zum Leiter des Betrieblichen Strahlenschutzes und Sicherheitsbeauftragter, Dr. Johannes Sterba zu seinem Stellvertreter und Dr. Georg Steinhauser zum stellvertretenden Reaktorbetriebsleiter bestellt; alle mit langjähriger Erfahrung am ATI als Projektmittarbeiter.

Besonders hervorzuheben ist, dass es uns gelang, Dr. Johannes Majer (YALE University) und Dr. Michael Trupke (Imperial College London) als Universitätsassistenten ans ATI zu bringen. Dies ist nicht nur ein Zeichen der zunehmenden Internationalisierung des wissenschaftlichen Personals, sondern illustriert die Attraktivität unseres Instituts. Mit den neuen Berufungen wird sich dieser Trend noch verstärken.

Darüber hinaus gelang es auch, die Elektronikwerkstatt durch Rainer Essbüchl (1.4.2009) und die mechanische Werkstatt durch Rudolf Gergen (15.3.2009) und Roman Flasch (1.10.2010) sowie die allgemeinen Dienste im Haus durch Günther Kratky (5.10.2009) erheblich zu

6  

stärken. Die immer größer werdenden Anforderungen in der Verwaltung wurden *) von 1.8.2008 – 31.1.2010 von Tamara Jurschitsch und danach von Birgit Magerling übernommen. Durch die Berufungen gelang es auch, eine zusätzliche Stelle in der Verrechnung und Projektabrechnung zu erhalten. Diese verantwortungsvolle Aufgabe hat Brigitta Buchberger übernommen. Des weiteren hat Michaela Foster mit 7.1.2008 die Betreuung der Chemielabors übernommen, Franz Foret hat von 1.9.2008 – 30.6.2010 die Experimente der Neutronenphysik technisch unterstützt, und Mathias Stüwe betreut seit 1.9.2009 das Institut im Reinraum und bei der Nanofabrikation.

Obwohl also der aus dem Globalbudget der TU finanzierte Personalstand unseres Instituts eine sehr positive Entwicklung zeigt, ist die wissenschaftliche Leistungsfähigkeit des ATI ohne die erfolgreiche Einwerbung von Drittmitteln und die damit verbundene Möglichkeit der Anstellung von Projektassistentinnen und Projektassistenten auf Zeitverträgen nicht zu erhalten. Von diesen Projekten sollen besonders die erstmals an einen Mitarbeiter unseres Instituts vergebenen START Preis und ERC starting grant (T. Schumm 2009/2010) erwähnt werden sowie der EURYI Award (A. Rauschenbeutel), das Doktorandenkolleg des Wissenschaftsfonds (FWF) „Complex Quantum Systems“ - CoQuS (H.-J. Schmiedmayer, zusammen mit der Universität Wien), die Spezialforschungsbereiche des FWF „Foundations and Applications of Quantum Science“ - FOQUS (H.-J. Schmiedmayer, zusammen mit den Universitäten Innsbruck und Wien) sowie „The Synchronisation of Civilizations in the Eastern Mediterranean in the Second Millennium B.C.“ – SCIEM2000 (M. Bichler, zusammen mit den Universitäten Innsbruck und Wien sowie der Österreichischen Akademie der Wissenschaften) und das DFG Schwerpunkt-Programm 1491 „Precision Experiments in Particle and Astrophysics with Cold and Ultracold Neutrons“ (koordiniert von H. Abele) und das TU Doktoratskolleg „Functional Matter“ – FunMat (H.-J. Schmiedmayer). Darüber hinaus gibt es eine große Anzahl von FWF-, EU- und Industrieprojekten sowie zahlreiche EURATOM-Projekte zur Kernfusion. Mit Stand vom 31.12.2010 sind im Rahmen dieser Projekte ca. 60 wissenschaftliche und 5 nichtwissenschaftliche Mitarbeiterinnen und Mitarbeiter angestellt, die ganz wesentlich zum wissenschaftlichen Output unseres Instituts beitragen.

Auch die den Forschergruppen am Institut zur Verfügung stehenden finanziellen Ressourcen haben sich im Berichtszeitraum noch mehr in Richtung der kompetitiv eingeworbenen Mittel verlagert. Das von der TU-Wien zur Verfügung gestellte Globalbudget reicht gerade aus, um die laufenden Kosten des Institutsbetriebs (Strahlenschutz, Reaktor, EDV, Verwaltung etc. ) und einige wenige kleine Reparaturen zu decken. Dafür wurde es möglich, über Innovative Projekte und über Laborerneuerung (Li-On) erhebliche Mittel zur Anschaffung und zur Erneuerung von Geräten kompetitiv von der TU einzuwerben. Praktisch alle Gruppen am ATI waren bei diesen Ausschreibungen erfolgreich, trotzdem ist die Bedeutung der Drittmitteleinwerbung weiter gestiegen. Die eingeworbenen Mittel stiegen von ca. 2 M€ im Jahr 2007 auf fast 4 M€ (mehr als das 10fache des Globalbudget) im Jahr 2010.

Besonders hervorgehoben werden soll auch die starke internationale Einbindung des Atominstituts in die internationale Forschungsszene, die durch viele Beteiligungen an internationalen Projekten und der Forschungsarbeit an internationalen Großforschungseinrichtungen (ILL, CERN, ESRF etc.) belegbar ist. Besonders erwähnenswert ist dabei die Zusammenarbeit mit der Internationalen Atomenergieorganisation (IAEA) und hierbei die Ausbildung der Safeguard-Inspektoren der IAEA am TRIGA Reaktor des Atominstituts sowie die Mitgliedschaft Österreichs am Institut Laue-Langevin in Grenoble, wo eine permanente Außenstelle des Instituts zum Betrieb des Neutronen-Interferometer (S18)

                                                       

Maria Paukovits bis 29.2.2008  

installiert ist. Die Kooperationsmöglichkeiten auf dem Sektor der Kernfusion (ITER) werden über die Assoziation mit EURATOM abgewickelt.

Zum Schluss soll der sehr erfreuliche wissenschaftliche Output des ATI nicht unerwähnt bleiben. Mitarbeiter des ATI haben in den besten Journalen publiziert: 19x in Physical Review Letters, 5x in Nature Journalen und je 1x in Science, Angewandte Chemie und Reviews of Modern Physics.

Neben der wissenschaftlichen Tätigkeit, der Ausbildung und der Lehre setzt das Atominstitut einen Schwerpunkt seiner Aktivitäten in der Veranstaltung von Führungen durch das Haus. Ein Highlight ist dabei eine Besichtigung des TRIGA MARK II Forschungsreaktors und der zahlreichen Stationen, bei denen neben den Effekten der ionisierenden Strahlung die Forschungsarbeit an speziellen Beispielen den Besuchern nähergebracht werden. In den Jahren 2008-2010 wurde unser Institut etwa 9000 Personen in ca. 573 Führungen näher vorgestellt. Interessenten sind hauptsächlich Schülerinnen und Schüler der Oberstufengymnasien, wodurch eine wesentliche Zielgruppe zur Erweckung des Interesses an den Naturwissenschaften erreicht wird.

Besonders spannend für die Vortragenden und das faszinierte Auditorium waren die Veranstaltung im Rahmen der Kinderuniversität wie z.B. „Was ist Temperatur“, die von CoQuS Doktoranden des ATI organisiert und abgehalten wurde. „Gibt es das wirklich“, bei der Prof. Heinz Oberhummer die physikalische (un-) Möglichkeit von Filmszenen analysierte, oder „Kann man in Luft auch schwimmen?” von unserem Dekan, Prof. Gerald Badurek. Besonderen Anklang fand auch ein Labornachmittag, der von der Gruppe Atom- und Quantenphysik im Anschluss an die Vorlesung “Wie mache ich Atome kalt“ am ATI abgehalten wurde.

Zahlreiche wissenschaftliche Arbeiten haben auch weiteres Interesse gefunden und wurden durch Pressemitteilungen der Journale, der TU-Wien und der Austrian Press Agency (APA) verbreitet, die wiederum in diversen Tageszeitungen und Wochenmagazinen zu interessanten Artikeln geführt haben. Das Spektrum reichte von eher humoristischen Auftritten eines ‚Lurch‘ im Nabel in Quizshows bis hin zu ausführlichen Rezensionen und Diskussionen in wissenschaftlichen Journalen. So wurden z.B. die Anwendung von Generic Algorithms zur selbst optimierenden Steuerung eines BEC Experimentes aus der Diplomarbeit von W. Rohringer in Nature Physics in einem Reference Frame ausführlich diskutiert.

Neben den oben erwähnten wissenschaftlichen Auszeichnungen durch START und ERC gab es eine ganze Reihe von weiteren Ehrungen für Institutsmitglieder. Stellvertretend seien hier die Auszeichnungen von Prof. Ch. Fabjan und Prof. N. Vana durch das Ehrenkreuz für Wissenschaft und Kunst 1. Klasse erwähnt, die Verleihung der Ehrendoktorwürde der Ukrainischen Akademie der Wissenschaften an Prof. H. Rauch, der Outstanding Career Award der European X-ray Spectometry Association, EXSA, an Ao Prof. P. Wobrauschek, die Verleihung des Bader Preis für die Geschichte der Naturwissenschaften 2010 an Dr. Georg Steinhauser und eine Honorarprofessur an der Southwest Jiaotong University, Chengdu, China an Prof. H.W. Weber.

Letztlich sei erwähnt, dass wir für die Studierenden nicht nur interessante Vorlesungen, Seminare und Praktika anbieten, sondern auch als beliebter Veranstaltungsort für das jährlich Ende Juni stattfindende Sommergrillfest der Fachschaft für Physik der TU Wien fungieren, wo in ungezwungener Atmosphäre der Abschluß des Studienjahres miteinander gefeiert werden kann.

8  

1 Introduction

The Atominstitut (ATI) was established in 1958 as an inter-university institute, and in 1962 opened at its current location on the Prater with the commissioning of the TRIGA Mark II research reactor. As part of the reform of the university system, the ATI was integrated 2002 into the Faculty of Physics at the TU Wien and is now dedicated to today's broad range of research and education in the fields of atomic, nuclear, particle and reactor physics, environmental analysis and radiochemistry, radiation physics and radiation protection, as well as low-temperature physics, neutron physics, quantum physics and quantum optics. The scientific work ranges from very fundamental questions about symmetries and interactions to applied tasks such as checking the radiation resistance of commercial resins for the construction of ITER.

After the widening of the spectrum of research the faculty and the rectorate decided to rename the institute with 1st of October 2009 to "Atominstitut - Institute of Atomic and Subatomic Physics".

At the end of 2010, there are 32 permanent personnel that make up the institute's scientific staff (18 permanent employees, 14 with 6-year contracts) as well as 29 technical staff. In addition, third-party-funded project assistants (currently 70) have been increasing in number over recent years, which is important to be able to fulfill the research and training activities of the institute. The institute also has about 50 students working on either their doctoral or masters thesis. The educational opportunities offered by the institute cover all areas of research and are fully integrated into the curriculum of the Faculty of Physics.

In the period from 2008 to 2010, there were significant changes at the Atominstitut. The appointments of Prof. Hartmut Abele (Neutron Physics) and Prof. Arno Rauschenbeutel (Applied Quantum Physics) brought two preeminent scientists and their groups to Vienna, consolidating and expanding the science and education at the institute. With the active support of the Dean of Physics, Prof. Gerald Badurek and with the appointment of Prof. Hannes-Jörg Schmiedmayer as the director of the institute, reconstruction and modernization work has been expanded to the entire building, such that all research groups at the institute now experience modern laboratory and office infrastructure.

With the arrival of his 65th birthday, Prof. Harald W. Weber stepped down in October 2009 as the director of the institute and has since once again devoted himself fully to research. His tireless efforts in the name of the institute are very greatly appreciated.

In 2008, after a broad search for a new professor of radiation physics, Prof. Harmut Abele (University of Munich and University of Heidelberg) was appointed. Since March 2009, he and his research group have further expanded the physics of and with neutron beams in the direction of fundamental interactions and symmetries, thus forming an important bridge to the theory groups of the Atominstitut and particle physics at of the Austrian Academy of Sciences (HEPHY and SMI). This connection was further strengthened by the appointment of Prof. Christian Fabjan as interims Director of HEPHY and professor for particle physics at the ATI. The group of Prof. Abele is one of the key users and promoters of the TRIGA Mark II research reactor at the ATI.

In the framework of a funding initiative of the BMWF, we succeeded, in competition with other universities, to secure a professorship in applied quantum physics. From an outstanding field of applicants, Prof. Arno Rauschenbeutel (University of Mainz) was appointed and, since December 2010, he and his research group have conducted their research at the Atominstitut.

Another important development was that Dr. Thorsten Schumm received the START prize in 2009 for his nuclear clock project and subsequently won an ERC Starting Grant in 2010. In view of this development, a new structure was introduced at the institute for outstanding young scientists who win such awards: junior research groups. These groups will allow outstanding young scientists to stand on an equal footing and help shape decisions at the institute.

In the second half of 2010, together with the Vienna University of Technology, the University of Vienna and the Austrian Academy of Sciences, the Vienna Center for Quantum Science and Technology (VCQ) (http://vcq.quantum.at) was established. The opening on the 15th of December 2010 was marked by a scientific symposium held at the TU Wien and a ceremony held at the University of Vienna in the presence of Minister Dr. Beatrix Karl, City Councillor Dr. Andreas Mailath-Pokorny, and senior representatives of EU research policy. The VCQ combines the quantum science of the three institutions in a joint research center. The VCQ has set itself the goal of providing new impetus in the teaching and research of this emerging field of basic research and technology development.

The new radiochemistry laboratory (left) and neutron physics laboratory (right).

After the summer of 2007, the renovations to the Atomic and Quantum Physics group’s laboratories ended and it was soon clear that there was the possibility of further applications to bring the physical infrastructure of the entire institution to a modern, contemporary state. With the active support of the Dean of Physics, Prof. Badurek, the leadership of the TU Wien was convinced of the plan in early 2009. After an intensive planning phase, the very professional work at the institute began at the end of 2009 and was marked by the excellent work of the architects Simlinger, excellent cooperation with the Department of Building & Engineering of the TU Wien, the competent authorities of BIG and GUT, and the central computer science service of the University of Vienna. By the end of 2010, the work at the institute was almost finished, such that the newly revitalized ATI could be presented to the university management and university council. Particular thanks should be given to the Rector Peter Skalicky, Vice Chancellor Gerhard Schimak, ADir. Gerald Hodecek, the architects Berndt Simlinger and Bernhard Prüller, and the planners Ing. Reza Saber and Ing. Cornelius Peter. Special thanks also go to Dr. Johannes Sterba as the representative of the institute for the rebuilding. His effective management of the many projects and different companies is greatly appreciated. The technical and scientific expertise of Dr. Stephan Schneider has also been essential to the success and smooth running of today’s laboratory experiments. Through renewing the physical infrastructure, laboratories and computing infrastructure in the first and second basements of the institute, we have managed to gain significant laboratory and office space, and therefore alleviate much of the tight room situation. However, more office space will certainly be required in the future, particularly to accommodate the increasing scientific staff for the projects of the new research groups already in the institute. A total of approximately 980 m2 of laboratory space and

10  

approximately 550 m2 of office space were renovated. In addition to the approximately 239 m2 of new quantum optics labs for the Rauschenbeutel group, the approximately 394 m2 of new laboratories for radiation physics and radiochemistry should also be noted.

Laboratory Offices total

Radiation Physics / Radiochemistry 394 117 511

Low Temperature Physics 38 107 145

Neutron Physics and Reaktor (Prof. Abele) 197 232 429

Atomic and Quantum Physics 68 0 68

Quantum Metrology (START/ERC, Prof. Schumm) 45 27 72

Applied Quantum Physics (Prof. Rauschenbeutel) 239 66 305

981 549 1530

Newly renovated laboratory space and offices

During the reporting period a number of long-serving and highly valued members of the ATI retired. Among them were the academic staff Ao. Prof. Dr. Helmuth Böck (30.9.2008) and Ao. Prof. Dr. Manfred Tschurlovits (30.9.2008), and the non-academic staff of Peter Schröder (31.10.2008), Hartwig Bitterman (30.11.2008), Kurt Liebhart (31.5.2008), Erich Tischler (28.2.2009) and Walter Drabek (31.10.2010). All of them contributed significantly to the developement and profile of the house during their tenure at the institute, and the opportunity is taken here to thank them once again. It is also worth noting that Dr. Bjorn Hessmo also left the institute (30.6.2009) after receiving an appointment as a professor of physics at the National University of Singapore, Centre for Quantum Technology, where he now carries out both research and teaching. With the active support of the Dean of Physics, Prof. Badurek, we were able to appoint Dr. Yuji Hasegawa, who has been working on neutron interferometry at the ATI for many years, to a tenure track position (Laufbanstelle). In addition, Dr. Hartmut Lemmel has been serving as a University Assistant since 01/07/2008, working on the neutron interferometer at the ILL. In addition, as part of the Innovative Ideas program of the TU Wien, the doctoral students Robert Amsüss (1.3.2010) and Xiangzun Wang (22.3.2010) are now employed at the institute.

In the field of radiation physics and reactor physics, Dr. Andreas Musilek is now Head of Operational Radiation Protection and Safety Officer, with Dr. Johannes Sterba as his deputy, and Dr. Georg Steinhauser is now Deputy Reactor Manager, all of whom have many years of experience at the institute.

The institute also succeeded in hiring Dr. Johannes Majer (Yale University) and Dr. Michael Trupke (Imperial College London) as University Assistants. This is not only a sign of the increasing internationalization of the academic staff, but illustrates the attractiveness of our institute. With the new appointments, this trend will intensify.

Rainer Essbüchl (1.4.2009) has joined the Electronics Workshop and Rudolf Gergen (03/15/2009) and Roman Flasch (1.10.2010) have joined the Mechanical Workshop, with Guenther Kratky (5.10.2009) joining General Services. The ever-increasing demands in administration* were taken up by Tamara Jurschitsch (1.8.2008 to 31.1.2010) and then by Birgit Magerling. Through the new appointment of Prof. Rauschenbeutel we succeeded to secure an additional administrative postion focused on accounting, which Britta Buchberger is now responsible for. In addition, Michaela Foster has taken care of the chemistry labs since

11 

01/07/2008, Franz Foret took care of the technical aspects of neutron physics experiments from 09.01.2008 - 30.6.2010, and Mathias Stüwe has since 01.09.2009 taken care of the institute’s needs with regard to the cleanroom and nanofabrication.

Thus, although the number University-funded staffing at the institute increased, the academic performance of the ATI would be severely hindered without the successful acquisition of external funding and the associated possibility of employing project assistants on short-term contracts. Of these projects, of particular mention are the awards of a START prize and an ERC starting grant for the first time to an employee of our institute (T. Schumm 2009/2010), the EURYI Award (A. Rauschenbeutel), the Graduate School (FWF) Complex Quantum Systems - CoQuS (J. Schmiedmayer, together with the University of Vienna), the Special Cooperative Research Grants: Foundations and Applications of Quantum Science - FOQUS (J. Schmiedmayer, together with the Universities of Innsbruck and Vienna), The synchronization of Civilizations in the Eastern Mediterranean in the Second Millennium BC - SCIEM2000 (M. Bichler, together with the Universities of Innsbruck and Vienna and the Austrian Academy of Sciences) and the DFG Schwerpunkt Programm 1491 Precision Experiments in Particle and Astrophysics with Cold and Ultracold Neutrons (coordinated by H. Abele) and the TU Wien Doctoral Program Functional Matter - FunMat (J. Schmiedmayer). In addition, there are a large number of FWF, EU and industrial projects such as numerous projects for the EURATOM research on nuclear fusion. As of 31.12.2010, about 60 academic and 5 non-academic staff and associates are employed by such projects, all of whom contribute considerably to the scientific output of our institute.

The financial resources available to the institute’s research groups has shifted during the reporting period ever more in the direction of grants from competitive funding. The global budget provided by the TU Wien is just enough for the running costs of the institute’s operations (radiation protection, the reactor, computing, management, etc.) and to cover a few small repairs. New competitive funding opportunities at the TU Wien, like ‘Innovative Projekte’ (Innovativ Projects) and ‘Li-On’ (a fund to renew old lab equipment) enabled us to attract significant funds. Virtually all of the research groups at ATI were successful in this tender, yet the importance of external funding continues to increase. In this regard, the institute’s research groups were very successful, with acquisitions rising from about 2 M€ in 2007 to nearly 4 M€ (more than 10 times the basic budget provided by the TU) in 2010.

Particular emphasis should be placed on the strong international integration of the Atominstitut within the international research community through participation in many international projects and research in major international research facilities (ILL, CERN, ESRF, etc.). Particularly noteworthy is the cooperation with the International Atomic Energy Agency (IAEA), the training of SafeGuard IAEA inspectors at the TRIGA Reactor at the Atominstitut, and the Austrian membership of the Institute Laue Langevin in Grenoble, where a permanent branch of the Atominstitut is located for the operation of the neutron interferometer (S18). The possibilities for cooperation in the field of nuclear fusion (ITER) will come through the association with EURATOM.

Finally, it is important that the very pleasing scientific output of the ATI does not go unmentioned. Scientists of the ATI have been published in the best journals: 19x in Physical Review Letters, 5x in Nature journals, and 1x in each of Science, Angewandte Chemie, and Reviews of Modern Physics.

In addition to academic activities, training and teaching is a focus of the institute, which also includes its activities in the organization of guided tours of the institute. A highlight of the tour is the visit to the TRIGA MARK II research reactor and the numerous nearby research stations, whereby the effects of ionizing radiation are explained, giving specific examples to the visitors in the context of both research and the wider world. Between 2008 and 2010 our

                                                       

Maria Paukovits until 29.2.2008 

12  

institution was presented in detail to approximately 9,000 people through about 573 guided tours. The tour participants were mainly senior high school students, who are a major target group for the revival of interest in the natural sciences.

The KinderUni events were particularly exciting for both the young audience and the teachers. For example CoQuS students presented “What is temperature?”, Prof. Heinz Oberhummer analyzed the physics behind film scenes in “Is this possible?” and our dean Prof. Gerald Badurek captured fascinating physics in “Can one swim in air?”. A special hands on laboratory session “Atoms in action” was held in the afternoon at the ATI by the Atomic and Quantum Physics group in connection with the lecture "How to cool atoms?".

Numerous scientific studies have also garnered wider interest, through press releases from scientific journals, the TU Wien and the Austrian Press Agency (APA), which in turn have led to interesting articles in several daily newspapers and weekly magazines. The spectrum ranged from entertaining appearances in Quizshows to detailed discussions and reviews in scientific journals. Within this framework, for example, the use of genetic algorithms for self-optimizing control of a Bose-Einstein condensate experiment was discussed in Nature Physics, stemming from the Diploma work of Wolfgang Rohringer.

In addition to the above-mentioned scientific awards such as the START prize and ERC starting grant, there were a number of other awards for institute members. These awards included the Ehrenkreuz für Wissenschaft und Kunst 1. Klasse for Prof. Ch. Fabjan and Prof. N. Vana, the award of an honorary doctorate from the Ukrainian Academy of Sciences to Prof. H. Rauch, the Outstanding Career Award from the European X-ray Spectrometry Association, EXSA for Ao. Prof. P. Wobrauschek, the Bader Preis für die Geschichte der Naturwissenschaften, 2010 to Dr. G. Steinhauser, and an honorary professorship at Southwest Jiaotong University, Chengdu, China for Prof. H. Weber.

Ultimately, it should be mentioned that we offer students not only interesting lectures, seminars and practical projects, but also act as a popular venue for the summer barbeque festival that takes place every June, organized by the Fachschaft für Physik der TU Wien (the student council for physics at the TU Wien), where students can celebrate in a relaxed atmosphere with each other.  

13 

2 Progress Reports of the Research Areas

14  

2.1 Applied Quantum Physics

Staff: R. García Fernández, T. Hoinkes, P. Schneeweiß, J. Volz, A. Rauschenbeutel Project Staff: S. Arroyo Camejo, K. Friebe, C. Junge, R. Mitsch, M. Numrich, D. Papencordt, J. Petersen, D. Reitz, D. O‘Shea, A. Stiebeiner, C. Wuttke

Glass fibres play an important role for guiding and controlling light in many areas of everyday life: Owing to their enormous capacity for data transmission, they have become the backbone of the modern information society. Moreover, they have numerous applications in medicine and industry. However, despite the widespread and successful use of glass fibre technology, the design and optimization of novel types of glass fibres is still a highly active field of research which yielded impressive progress recently. As an example, so-called “photonic fibres” could overcome a number of restrictions limiting conventional fibre optics. This development opened technological and scientific routes which gave new stimuli to research with and on optical fibres and initiated a race venturing ever more extreme fields of application using glass fibres.

In this context, we aim at entering the quantum regime using specially designed glass fibres. More precisely, we want to quantum mechanically couple light and matter (atoms, molecules, etc.) on the surface of ultra-thin glass fibres. Depending on the application, the diameter of the glass fibres ranges from a few ten micrometres down to a few hundred nanometres, using the strong spatial confinement of the light for an extreme focusing which enhances the light–matter interaction. Such a strong coupling of light and matter based on glass fibres opens a number of perspectives. Potential applications include the ultra-high sensitivity detection of molecules, chemical and biological nano-sensing, “atomic switches” for light fields, and novel types of light sources, required for quantum communication, quantum cryptography, and for quantum information processing.

Vorstellung

Glasfasern spielen zur Führung und Kontrolle von Licht in vielen Bereichen des Lebens eine wichtige Rolle: Durch ihre enorme Kapazität für die Datenübertragung sind sie zum Rückgrat der Informationsgesellschaft geworden. Aber auch in der Medizin und in der Industrie haben Glasfasern zahlreiche Anwendungen. Doch trotz der weiten Verbreitung und des erfolgreichen Einsatzes von Glasfasertechnologie ist die Entwicklung und Optimierung von neuartigen Glasfasern immer noch ein höchst aktives Forschungsfeld, in dem in neuester Zeit eindrucksvolle Fortschritte erzielt wurden. So erlauben es zum Beispiel „photonische Fasern“ eine Reihe von Beschränkungen zu überwinden, die der konventionellen Faseroptik gesetzt sind. Die hierdurch eröffneten technischen und wissenschaftlichen Möglichkeiten gaben der Forschung an und mit optischen Fasern neue Impulse und haben ein Wettrennen eingeleitet, mit Glasfasern in immer extremere Einsatzbereiche vorzustoßen. In diesem Zusammenhang arbeiten wir nun daran, mit Hilfe von speziellen Glasfasern in den Bereich der Quantenphysik vorzustoßen. Genauer soll eine quantenmechanische Kopplung von Licht und Materie (Atomen, Molekülen, etc.) an der Oberfläche von ultradünnen Glasfasern erreicht werden. Je nach Anwendung reicht der Durchmesser der Glasfasern hierbei von einigen zehn Mikrometern bis hinunter zu einigen hundert Nanometern, wobei der starke räumliche Einschluss des Lichts wie eine extreme Fokussierung wirkt und die Licht–Materie Wechselwirkung verstärkt. Eine solche starke Kopplung von Licht und Materie mittels Glasfasern eröffnet eine Reihe von neuen Möglichkeiten. Potenzielle Anwendungen umfassen den ultrahochempfindlichen Nachweis von Molekülen, chemische und biologische Nano-Untersuchungen, atomare Lichtschalter sowie neuartige Lichtquellen, die in der Quantenkommunikation, in der Quanten-Kryptographie und in der Quanten-Informationsverarbeitung benötigt werden.

15 

Cold-Atom Physics Using Optical Nanofibres

R. Mitsch, D. Reitz, P. Schneeweiß, A. Rauschenbeutel

Our group recently demonstrated trapping of laser-cooled atoms using optical nanofibers. Using the force exerted by the evanescent field surrounding the nanofiber, the atoms are confined in a one dimensional optical lattice 200 nm above the fiber surface, see Fig. 1.1,2,3 In addition, the nanofiber allows us to efficiently interface the atomic ensemble and further light fields. We plan to employ this scheme for mediating light-light interaction.

Under certain conditions, photons propagating through this nanofiber are no longer independent entities but result in collective atom-light excitations, so-called dark state polaritons (DSPs). These DSPs can be tailored to behave like massive particles. Furthermore, using suitable non-linearities, strong polariton-polariton interactions can be introduced and strongly correlated DSP states can be prepared. These states can be elegantly investigated by mapping the DSPs back onto freely propagating photons. The correlations of the latter can then be detected with high efficiency using standard quantum optics techniques.

More quantitatively, strong correlations can be achieved if the optical depth per atom, OD, verifies the condition = OD² Nat / Nph ≫ 1, where Nat and Nph are the number of trapped atoms and the number of interacting photons, respectively. This implies that the photon-photon interaction increases with the number of atoms Nat. To our knowledge, this advantageous scaling property is unique to our setup. Moreover, our setup is unique in the sense that it allows us to investigate photon-photon interactions that are distributed along the fiber in a region of macroscopic length.

In its current state, the experiment is operated in the regime ≈ 0.1.3 However, a number of methods are at hand in order to significantly increase . We will work towards maximizing both Nat and the atom-light coupling strength. Furthermore, the trapping of atoms in regular arrays should lead to collective effects such as sub- and superradiance. We will therefore explore how these collective effects can be used in order to enhance the nonlinearities. Based on these achievements, we will then implement effective photon-photon interactions that are significantly stronger than the experimental loss processes.

a) b)

 

Figure 1: (a) The intensity of the light that is guided by an optical nanofibre decays exponentially outside of the fibre. The decay length depends on the wavelength of the light. Therefore, red light protrudes further out of the fibre. (b) Combining light fields that are red and blue detuned with respect to the resonance frequency of caesium atoms, one can thus realize a trapping potential near the nanofibre surface for the latter.

                                                       1 Cold-Atom Physics Using Ultrathin Optical Fibres: Light-Induced Dipole Forces and Surface Interactions, G. Sagué, E. Vetsch, W. Alt, D. Meschede, and A. Rauschenbeutel, Phys. Rev. Lett. 99, 163602 (2007). 2 Blue-detuned evanescent field surface traps for neutral atoms based on mode interference in ultra-thin optical fibres, G. Sagué, A. Baade, and A. Rauschenbeutel, New J. Phys. 10, 113008 (2008). 3 Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber, E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, Phys. Rev. Lett. 104, 203603 (2010). 

16  

Cavity Quantum Electrodynamics Using Bottle Microresonators

C. Junge, D. O‘Shea, J. Volz, A. Rauschenbeutel

Whispering gallery mode (WGM) microresonators are monolithic, micron-sized dielectric structures in which the light is guided near the surface by continuous total internal reflection. We have developed a novel type of WGM microresonator.1,2 This highly prolate shaped “bottle microresonator” sustains WGMs that exhibit two spatially well separated regions with enhanced field strength, see Fig. 2. The field per photon on the resonator surface is significantly higher than, e.g., for equatorial WGMs in microsphere resonators with a comparable mode volume. In addition, the frequency spacing of these modes is smaller, so that a tuning range of several free spectral ranges could be demonstrated. Such resonators are therefore advantageous concerning, e.g., their application for non-linear optics and cavity quantum electrodynamics (CQED) experiments with neutral atoms.3,4

Figure 2: (a) Storing light in a bottle microresonator. In addition to the radial confinement by continuous total internal reflection at the resonator surface, the axial confinement of the light is caused by an effective harmonic potential (dashed line) fixed by the curvature of the resonator profile. The resulting intensity distribution is therefore given by the eigenfunctions of the quantum mechanical harmonic oscillator. (b) Experimental micrograph of a bottle mode with four axial intensity nodes, visualized via the upconverted green fluorescence of dopant erbium ions in a 36-μm diameter bottle microresonator. Scale bar, 30 μm.

 

In particular, bottle microresonators can be actively stabilized5 and offer a straightforward mechanical access for two ultra-thin coupling fibers. This facilitates their operation as add–drop filters and allowed us to use them for Kerr-switching of single-wavelength cw light between two fiber ports at record low powers.6 The ease and efficiency at which these experiments could be performed bodes well for extending such non-linear applications to the quantum regime. To this end, we have set up an experimental apparatus compatible with the requirements of cold-atom CQED using bottle microresonators.

In our experimental set-up, cold rubidium atoms are delivered to the bottle microresonator using an atomic fountain. It launches a sub-Doppler cooled atomic cloud such that the turning points of the atomic trajectories on average coincide with the position of the resonator, thereby giving the longest atom-field interaction time.6 The long term goals of the project are to route small coherent light fields between two fiber ports using a single atom, to demonstrate entanglement between the internal state of the atom and the routed light field, to investigate the decoherence of the thus generated Schrödinger cat state, and finally to realize quantum logic gates between two photons.

                                                       1 Tunable Whispering Gallery Mode Resonators for Cavity Quantum Electrodynamics, Y. Louyer, D. Meschede, and A. Rauschenbeutel, Phys. Rev. A 72, 031801(R) (2005). 2 Ultra-high-Q tunable whispering-gallery-mode microresonator, M. Pöllinger, D. O'Shea, F. Warken, and A. Rauschenbeutel, Phys. Rev. Lett. 103, 053901 (2009). 3 All-optical signal processing at ultra-low powers in bottle microresonators using the Kerr effect, M. Pöllinger and A. Rauschenbeutel, Optics Express, 18, 17764 (2010). 4 Ultra-high Q whispering-gallery-mode bottle microresonators: properties and applications, D. O’Shea, C. Junge, S. Nickel, M. Pöllinger, and A. Rauschenbeutel, Proc. SPIE 7913, 79130, (2011). 5 Active frequency stabilization of an ultra-high Q whispering-gallery-mode microresonator, D. O’Shea, A. Rettenmaier, and A. Rauschenbeutel, Appl. Phys. B 99, 623 (2010). 6 All-optical switching and strong coupling using tunable whispering-gallery-mode microresonators, D. O'Shea, C. Junge, M. Poellinger, A. Vogler, and A. Rauschenbeutel, arXiv:1105.0330, submitted to Appl. Phys. B (2011). 

17 

Surface Adsorbed Molecules

D. Papencordt, A. Stiebeiner, R. García Fernández, A. Rauschenbeutel

The guided modes of sub-wavelength-diameter optical nanofibres exhibit a pronounced evanescent field. The absorption of light by particles covering the nanofibre surface is therefore readily detected via the fibre transmission. We have shown that the resulting absorption for a given surface coverage can be orders of magnitude higher than that for conventional surface spectroscopy. As a demonstration, we carried out measurements on sub-monolayers of 3,4,9,10-perylene-tetracarboxylic dianhydride (PTCDA) molecules at ambient conditions, revealing the agglomeration dynamics on a second to minutes timescale.1 Further, we have succeeded to simultaneously measure the fluorescence and absorption of molecules adsorbed on the fibre surface via the fibre guided mode at ambient conditions. Our results show a high sensitivity both in absorption and fluorescence and allow the detection of small surface overages.2

Figure 3 shows the schematic experimental setup. A tapered fibre with a 320-nm diameter waist of 1 mm length was used in a conventional absorption spectrometer configuration with a tungsten white light source and a commercial CCD spectrograph. The molecules are deposited on the nanofibre waist by heating a crucible with PTCDA crystals below the fibre.

Recently, we have set up a new experimental apparatus in order to deposit molecules onto the nanofibre waist under ultra-high vacuum (UHV) conditions. This allows us to carry out spectroscopy on a much larger variety of molecules including those not stable when sublimated at ambient conditions. Secondly, we have full control on the flux of molecules impinging onto the fibre. And finally, in vacuum, we can desorb pollutants (water etc.) from the fibre and work with a much better defined surface. At present, we are exploring the potential of our method for single molecule detection, manipulation, and functionalization. We carried out preliminary studies in order to conceive a new method for coating the nanofiber with an organic matrix doped with the molecular species. Cooling the nanofiber to cryogenic temperatures was a challenging process in itself and the nanofiber mounting holder had to be modified to avoid a transmission drop caused by thermal effects. On the other side, it was important to optimize the shape of the tapered fiber with the purpose of achieving an as high as possible transmission in the spectral range of interest.3

The experiments are performed in a dye molecule / matrix-system consisting of the well-known Terylene molecules in p-Terphenyl crystals. Our first measured fluorescence spectra show a clear trend towards narrower linewidths while decreasing the temperature. The results are in good agreement with the state of the art and are noteworthy for being the first ones carried out at the surface of a waveguide. The next step will be the detection of single molecules, which requires a statistical analysis of the spectra. In order to have a high control and reproducibility, the cryostat has been attached to the vacuum chamber allowing us to coat the nanofiber using a molecular beam.

                                                       1 Ultra-sensitive surface absorption spectroscopy using sub-wavelength diameter optical fibers. F. Warken, E. Vetsch, D. Meschede, M. Sokolowski, and A. Rauschenbeutel, Optics Express, 15, 11952 (2007). 2 Ultra-sensitive fluorescence spectroscopy of isolated surface-adsorbed molecules using an optical nanofiber, A. Stiebeiner, O. Rehband, R. Garcia-Fernandez, and A. Rauschenbeutel, Optics Express, 17, 21704 (2009). 3 Design and optimization of broadband tapered optical fibers with a nanofiber waist, A. Stiebeiner, R. Garcia-Fernandez, and A. Rauschenbeutel, Optics Express, 18, 22677 (2010). 

Figure 3: Schematic experimental setup for surface spectroscopy of PTCDA molecules adsorbed on an optical nanofibre.

18  

2.2 Atomic Physics and Quantum Optics  

Staff: M. Trupke, B. Hessmo,J. Majer, St. Schneider, Th Schumm, J. Schmiedmayer Project staff: I. Mazets, A. Perrin, M. Schramböck, D. Smith, J Verdu, R. Amsüss, T. Berrada, T. Betz, K. Buczak, R. Bücker, F. Diorico, D. Fischer, M. Göbel, M. Gring, P. Grisins, Ch. v. Hagen, St. Haslinger, C. Hufnagel, C. Koller, M. Kuhnert, T. Langen, St. Manz, T. Nöbauer, St. Minniberger, W. Rohringer At the centre of our research is the physics of small mesoscopic many-body quantum systems and their robust implementation with new technologies. Our effort is in two main directions: (1) physics of quantum degenerate ultra-cold atom systems and (2) the quantum interconnect project.

To study quantum physics of ultra-cold atoms we use Atomchips1. They combine quantum manipulation techniques from atomic physics with the capability of nanofabrication, micro electronics and micro-optics through miniaturization and integration on a single chip. Our current physics focus is on the equilibrium and non-equilibrium properties of 1d systems, studied through matter-wave interference.

Different physical implementations of quantum science have each their own advantages and shortcomings. The Quantum Interconnect project aims at connecting different quantum systems and thereby pooling strengths to overcome weaknesses. Currently we look at coupling superconducting circuits to ensembles of electron and nuclear spins, which exhibit long coherence times and could be a good quantum memory.

The group is part of the Vienna Center for Quantum Science and Technology (VCQ). Our nano-fabrication is done at the Center for Micro and Nano Structures (ZMNS).

Vorstellung

Im Zentrum unserer Forschung steht die Physik von mesoskopischen Vielteilchen-Quantensystemen und deren robuste Implementierung mittels neuer Technologien. Unsere Anstrengungen gehen in zwei Hauptrichtungen: (1) Physik von entarteten Quantensystemen von ultrakalten Atomen und (2) das Quantum-Interconnect Projekt.

Für die Untersuchung der Quantenphysik von ultrakalten Atomen verwenden wir Atomchips. Sie kombinieren Quantenmanipulationstechniken aus der Atomphysik mit den Möglichkeiten der Nanofabrikation, Mikroelektronik und Mikrooptik durch Miniaturisierung und Integration auf einem einzigen Chip. Zur Zeit studieren wir Gleichgewichts- und nicht-Gleichgewichts-eigenschaften mittels Interferenz.

Verschiedene technische Realisierungen von Quantenphysik haben ihre jeweiligen Vor- und Nachteile. Ziel des Quantum-Interconnect Projekts ist es, unterschiedliche Systeme auf quantenmechanischem Niveau zu koppeln und damit Stärken zu verbinden, um Schwächen zu überwinden. Zurzeit untersuchen wir die Kopplung von supraleitenden Schaltkreisen an Spinensembles und NV-Farbzentren in Diamant, welche sehr lange Kohärenzzeiten aufweisen und daher ideale Quantenspeicher darstellen würden.

Die Gruppe ist Teil des Vienna Center for Quantum Science and Technology (VCQ). Die Fabrikation erfolgt am Zentrum für Mikro und Nano Strukturen (ZMNS) der TU-Wien.

                                                       1 AtomChips consist of surface-mounted microstructures, ranging in scale from several hundreds of microns down to 100 nm.

Current-carrying micro-wires, of different shapes and sizes deliver accurate-tailored magnetic and electric fields for atom manipulation close to the chip surface. For a review see: R. Folman, et al. Adv. Atom. Mol. Opt. Physics 48, 263 (2002).

19 

Atom Chip: Technology and Sensing

S. Aigner, D. Fischer, B. Hessmo, M. Schramböck, W. Rohringer. M. Trupke, J. Majer, J. Schmiedmayer

Atom chip research has advanced to a robust technological platform which enables novel measurements in hitherto inaccessible regimes. We have demonstrated the trapping, cooling and transport of atom clouds on atom chips, and detected them using an integrated fibre-optical detector with sensitivity at the single-particle level. We have furthermore shown that ultra-cold atom clouds can be used to probe surface magnetic fields with unprecedented sensitivity. This has become possible because of refinements in fabrication processes1 and improvements of experimental techniques2. We have established AtomChip fabrication at the ZMNS at the TU-Wien.

Magnetic Field Microscope: Ultra cold atoms probe the local magnetic potential through their magnetic interaction. They fill the potential landscape like a gas (thermal atoms) or a liquid (BEC). The local column density is a measurement of the local potential energy surface, and thereby the magnetic field by V(r) = mFgFμB |B(r)| where μB is Bohr's magneton, mF is the quantum number associated with the Zeeman state of the atom and gF is the Lande-factor. Compared to scanning probes, which have micrometer-scale spatial resolution and 10–5 T sensitivity, or superconducting quantum interference devices (SQUIDs) with 10–13 T sensitivity but a resolution of hundreds of micrometers, ultra-cold atom magnetometry gives both high sensitivity (10–10 T) and a high resolution on the order of 3 μm. Using this tool, we have performed ground-breaking measurements which revealed long-range correlations in the current flow forming unexpected organized patterns oriented at ±45° relative to the mean current direction in a thin gold metal film3. The patterns are a direct consequence of universal scattering properties at defects. The observed amplitude of the current direction fluctuations scales inversely to that expected from standard probes and methods. This indicates that ultra-cold atom magnetometry enables new insight into the interplay between disorder and transport.

A quasi one dimensional cloud of ultra-cold Rubidium Atoms (T~100nK) or a Rb Bose-Einstein-Condensate is positioned with the help of an Atom Chip micrometres above the sample to be probed. Variations if the current flow modify the trapping magnetic field which results in a change in the line density of the trapped atoms. Imaging the trapped atom cloud allows to infer the magnetic field profile along the atom trap, and from it the variations in the current flow direction.

                                                       1 Multilayer atom chips for versatile atom micromanipulation M. Trinker et al. Appl. Phys. Lett. 92, 254102 (2008). 2 Stochastic optimization of a cold atom experiment using a genetic algorithm, W. Rohringer, et al. Appl. Rev. Lett. 93, 264101 (2008), 3 Long-Range Order in Electronic Transport through Disordered Metal Films, S. Aigner, et al., Science 319, 1226 (2008)

20  

Probing many body quantum physics in 1D

T. Berrada, T. Betz, R. Bücker, M. Göbel, C. Koller, St. Manz, I. Mazets, A. Perrin, M. Schramböck, T. Schumm, J. Schmiedmayer

Interference patterns of one-dimensional (1D) systems contain information on coherence in the interference-fringe contrast itself, as well as in the full distribution function (FDF) of its shot-to-shot fluctuations, which can be related to higher order correlation functions. We started with looking at equilibrium properties. The FDF of the interference contrast of two independently formed 1D quasi-condensates released from a double-well potential reveals information about the quasi-long-range order in the 1D condensates, and about the role of thermal and quantum fluctuations1. In a similar experiment with residual coupling between the 1D-condensates in a double well2 we studied the influence of temperature and tunnel coupling. The FDF reveals an additional length scale, on which tunnel coupling restores the relative phase between the quasi condensates in each well. This length new scale and the thermal coherence length define the properties of the coupled system. The experiments are in excellent agreement with theory. Currently we are applying these tools to investigated non equilibrium quantum systems.

Density-density correlations in expansion, comparable to Hanbury-Brown Twiss correlations are a probe into many body quantum physics, probing the multimode nature of the system. High sensitivity HBT measurement became possible with the help of our novel fluorescence imaging detector with close to unit efficiency and single atom sensitivity3. In analogy to chaotic light, atom bunching is observed in expanding thermal Bose gases. We were able to characterize the transition from thermal to degenerate Bose gases for a variety of systems, showing that excitations expected for one-dimensional systems can also appear in finite temperature gases in the 3D regime4. For a 1D degenerate Bose gas the same method can be used in a quantitative way to determine the temperature from the thermal phase fluctuations5. Our new method, also works for pure quasi-condensates, where the thermal fraction is not visible any more.

Two coupled 1D Bose gases. The relative phase (z) is accessed in an interference experiment. The difference (z) is used to analyze the spatial phase correlations. UPPER PART: trapped ensembles of atoms. LOWER PART: atomic interference pattern.

                                                       1 Probing quantum and thermal noise in an interacting many-body system; S. Hofferberth, et al. Nat. Phys. 4, 487 (2008). 2 Two-point phase correlations of a one-dimensional Bosonic Josephson Junction; T. Betz, et al. Phys. Rev. Lett. 106, 020407 (2011) 3 Single-particle-sensitive imaging of freely propagating ultra-cold atoms R. Bücker, et al.New J. Phys. 11, 103039 (2009), 4 Hanbury Brown and Twiss correlations across the Bose-Einstein condensation threshold; A. Perrin, et al., Nature Physics 8, 195-198 (2012). 5 Two-point density correlations of quasi-condensates in free expansion; S. Manz, et al. Phys. Rev. A 81, 031610(R) (2010).

21 

Many-Body Quantum Physics Out of Equilibrium

T. Berrada, T. Betz, R. Bücker, M. Gring, Ch. v. Hagen, M. Kuhnert, T. Langen, St. Manz, I. Mazets, A. Perrin, D.A. Smith, Th. Schumm, J. Schmiedmayer

Understanding the non-equilibrium dynamics of many-body quantum systems is one of the most fundamental and important problems in physics. It is crucial for a wide range of problems ranging from understanding equilibration in the early universe to developing future quantum technologies such as quantum computers, which are inherent non-equilibrium machines. Yet, there is no general approach known to characterize the resulting (quantum) states.

Many-body dynamics and decoherence in one-dimensional systems are captured in the full distribution function. The full distribution function can be analyzed both theoretically and experimentally with respect to the integration length over the one-dimensional system. The distribution function shows a non-trivial time evolution and gives insight into the multimode dynamics of 1D systems1. Moreover, this analysis through quantum noise reveals the phenomenon of prethermalization in the dynamics of one-dimensional systems and gives us a tool to analyse it. Prethermalization is a very general phenomenon where a non-equilibrium system reaches a thermal-like steady state in a time scale much shorter than a true equilibration time. It is predicted to occur in a large variety of physical systems ranging from the early universe to solid state. We have recently experimentally investigated non-equilibrium physics in 1d Bose gases through the full distribution functions of quantum observables, and made the first observation of prethermalized state2.

In a third set of experiments we used collisions in a restricted 1d system to create twin-atom beams3 propagating in a single transverse mode. Using optimal control, all the atoms in a BEC are transferred into the first transverse excited state of the 1d trap. Collisions lead to de-excitation, which produce the correlated pairs. This process is the matter wave analogue of the creation of correlated photon pairs in parametric down-conversion. The relative atom number fluctuations in the twin-atom beams exhibit a non-classical suppression of up to 10 dB below shot noise.

A 1d BEC in the first transverse excited state decays by emission of atom pairs. The figure shows the atomic intensity after the cloud is released from the trapping potential and imaged after expansion. The central part (blue) clearly shows the spatial structure of the radially excited state. Two clouds containing the twin-atoms (red) have large momentum, and show the transverse profile of the ground state wave function.

                                                       1 Ramsey Interference in One-Dimensional Systems: The Full Distribution Function of Fringe Contrast as a Probe of Many-Body Dynamics, T. Kitagawa, et al. , Phys.Rev.Lett. 104, 255302 (2010) 2 Relaxation Dynamics and Pre-thermalization in a Quantum System, M. Gring, et al. submitted (2011) 3 Twin-atom beams; R. Bücker, et al. Nat. Phys. 7, 607 (2011)

22  

Theory of BEC and Many Body Systems

P. Grisins, J. Schmiedmayer, I. Mazets

The recent experiments in our group demonstrated, that ultra-cold atomic gases in atom chips based traps, can be deep in the one-dimensional (1D) regime. A 1D system of identical bosonic particles with short-range pair wise interactions has been known to be integrable. In the course of its time evolution, these systems memorize their initial state. Although relaxation to a certain equilibrium state remains possible, this state is far from the thermal equilibrium approachable by non-integrable physical systems.

We identified a source of non-integrability in 1D experiments with virtual excitations of the radial degrees of freedom1. Even, if the collision energy of two atoms is insufficient to excite the radial motion states, the latter ones can be excited virtually, and the system is brought back to the energy shell by collision with the third atom. Such effective three-body elastic collisions are always present. As the result, the system becomes slightly non-integrable and can thermalize, which is in agreement with experimental observations.

He fluctuations in the interference between two 1D quasi condensates can be used for thermometry of ultra-cold atoms in the low temperature range where conventional thermometry methods fail. We developed a universal theoretical approach2 to the noise statistics of interfering quasicondensates that allows taking a finite tunnel coupling between quasicondensates into account. The description is based on Ornstein-Uhlenbeck stochastic processes, the co-ordinate along the major axis of the elongated trap playing the role of time ad also includes the finite, longitudinally-trapped systems. This versatile, powerful and time-efficient numerical modelling tool enabled us to fully characterize coupled quasicondensates at thermal equilibrium, thus paving the way to quantitative experimental studies of the non-equilibrium dynamics in low-dimensional ultra-cold gases.

On the analytic level, we proposed, a mechanism for sub exponential, ~ exp [–(t/t0)2/3], decay

of coherence between two coherently-split atomic quasicondensates. Matter waves propagating in a 1D quasicondensate dephase due to local fluctuations of the density and advection velocity. The obtained time scale is in a good agreement with the experiment. Finding an adequate model for intrinsic, sub-exponential dephasing, was an important result in the theory of low-dimensional bosonic systems.

Universal functions describing the decay exponent of correlation functions dependent on relative distance. The curves are labeled by the ratio of temperature and chemical potential.

                                                       1 Breakdown of integrability in a quasi-1D ultra-cold bosonic gas. I.E. Mazets, T. Schumm, J. Schmiedmayer. Phys. Rev. Lett. 100, 210403 (2008). 2 Fluctuations and Stochastic Processes in One-Dimensional Many-Body Quantum Systems, H.-P. Stimming, N. J. Mauser, J. Schmiedmayer, and I. E. Mazets. Phys.Rev.Lett. 105, 015301 (2010).

23 

Quantum Interconnect Project: Atom-Photon interface K. Buczak, C. Koller, T. Nöbauer, J. Majer, M. Trupke J. Schmiedmayer In quantum information processing, different physical implementations have each their own advantages and shortcomings. Solid-state systems allow fast processing and dense integration; atom- or ion-based systems are slower, but exhibit long qubit coherence times. The Quantum Interconnect project aims at quantum interconnecting the different quantum systems and thereby pooling their strengths to overcome their weaknesses.

Atom-Photon interface: Quantum repeater – A single excitation of a collective state in an atomic ensemble is a very robust qubit. It can be written by spontaneous Raman scattering, the emitted Stokes photon heralding the success of the write process. If the Stokes photon is emitted in a superposition of two modes, the stored excitation is entangled with the emitted photon. This allows to teleport quantum information into the atomic ensemble1 (writing a quantum memory) and to entangle two remote atomic ensembles2 (a first step towards a BDLCZ quantum repeater). In a series of additional experiments we could show, that the motion of the ultra-cold atoms limit the storage time in the quantum memory to about 1 ms3. This limitation led us to look for different storage media, preferentially in solid state, where the emitters are fixed. Consequently we started experiments investigating NV color centers in diamond, with the goal to couple them to photons as quantum memory.

Integrated optics on the chip – The detection and distinction of the internal state of single atoms forms the basis of our work towards a robust and miniaturised quantum circuit, and we have shown in the last years that we can not only detect single atoms with high efficiency, but also detect their internal state selectively4, For these measurements we used an integrated fibre-optic detector on the surface of an atom chip. In this device, excitation light reaches the cold atoms via a single-mode fibre and is focused to a spot size of 5 μm using a lens at the tip of the light guide. Fluorescence from ultra-cold atoms traversing the focus is collected using a multimode fibre, which delivers the photons directly to a single-photon counting module.

Left: a) Layout of the fibre detector. b) Collection efficiency as a function of position. c) Fibre in SU8 alignment structure. d) Schematic of mounting structure. Top right: Spectroscopy of atoms in the guide. Bottom right: Table of detector efficiency in photons per atom for the two hyperfine ground states.

                                                       1 Memory-built-in quantum teleportation with photonic and atomic qubits Y-A. Chen, et al. Nature Physics 4, 103-107 (2008) 2 Experimental demonstration of a BDCZ quantum repeater node Z-S Yuan, et al Nature 454, 1098-1101 (2008), 3 A millisecond quantum memory for scalable quantum networks Bo Zhao, et al. Nature Physics 5, 95-99 (2009), 4 A single-atom detector integrated on an atom chip: fabrication, characterization and application”, D. Heine, et al. New J. Phys. 12 095005 (2010)

24  

Quantum Interconnect Project: Interface to solid state

R. Amsüss, F. Diorico, St. Haslinger, C. Hufnagel, C. Koller, T. Nöbauer, St. Minniberger, J Verdu, St. Schneider, J. Schmiedmayer, J.Majer

In this part of the Quantum Interconnect project we aim at combining atom like systems (as quantum memory) with solid state quantum circuits. As a first step we explore thereby new hybrid quantum devices connecting superconducting solid-state qubits to collective states stored in spin ensembles. The weak magnetic coupling is enhanced by a factor N1/2 by the collective coupling in an ensemble of N spins, the tremendous gap in time scales can be overcome by the long photon lifetime in a superconducting coplanar waveguide resonator (CPWR)1.

Connecting spin ensembles to micro wave circuits – A very interesting candidate for such a quantum memory is the NV color center in diamond which has transitions in the microwave regime and in the optical. In a recent experiment we have managed to strongly couple an ensemble of NV centers to a superconducting transmission line resonator, confirmed the scaling of ensemble coupling and found a 40 s long relaxation time of the NV spins 2. In addition we also demonstrated coupling to nuclear 13C spins in Diamond which opens the possibility of a quantum memory with very long coherence times. The defects that convert the Nitrogen impurities to NV centers were created by neutron irradiation in our reactor

Connecting ultra cold atoms to micro wave circuits – A second experiment aims at the original idea of coupling a cloud of ultra-cold atoms to superconducting resonator. As a first step we have built a magnetic conveyor belt transport, which allows transporting laser-cooled atoms from a magneto-optical trap into a cryostat. Currently, we manage to transport 108 rubidium atoms to a trap located in a Gifford-MacMahon refrigerator. As a next step, we will implement a superconducting atomchip and try to create a Bose-Einstein condensate on this atomchip.

(a) Coplanar MW resonator with a Diamond sample containing NV centers mounted on top. (c) NV center transition frequencies as a function of an externally applied magnetic field. (b) Measured MW transmission versus applied magnetic field. A large Rabi splitting of 17 MHz is observed when ensemble and resonator are brought into resonance, an indication for strong magnetic coupling.

  

                                                       1 Strong magnetic coupling of an ultra-cold gas to a superconducting waveguide cavity, J. Verdu, et al. Phys. Rev. Lett. 103, 043603 (2009); 2 Cavity QED with magnetically coupled collective spin states R. Amsüss, et al. Phys. Rev. Lett. 107, 060502 (2011)

25 

2.3 Nuclear and Particle Physics

Staff: M. Faber, Ch. Fabjan, H. Markum, H. Leeb Project staff: St. Gundacker, R. Höllwieser, D. Neudecker, M. Pitschmann The research activites have been focused on theoretical and experimental studies of the subatatomic structure of matter and the properties of fundamental interactions and symmetries. The research comprises timely problems of nuclear, hadron and particle physics.

The modelling of nuclear reactions relevant for nuclear astrophysics and nuclear technology has been the center of nuclear physics research. The most striking result was the formulation and numerical implementation of novel techniques for the determination of reliable uncertainties in nuclear data evaluations strongly based on modeling, an important prerequisite for the development of advanced nuclear technologies.

Another central topic has been the investigation of the strong interaction by lattice gauge calculations. Especially, the confinement properties could also be confirmed for a tadpole improved Lüscher-Weisz gauge action. Further renown work has been dedicated to calculate the topological charge for admissible gauge fields. Recently this puzzling problem has been confirmed for other fermion representations by lattice calculations.

Experimental high energy particle physics is performed in association with the Institute of High Energy Physics (HEPHY) of the Austrian Academy of Science, whose director is member of the Atominstitut. HEPHY pursued two principle research activities: a) preparation of the Compact Muon Solenoid (CMS) Experiment at the CERN LHC and the first research operation starting at the end of 2009; b) study of CP-violation in the B-Bbar system with the experiment Belle and its successor experiment Belle II at the Japanese Accelerator Laboratory KEK, Tsukuba near Tokyo.

Vorstellung

Die wissenschaftlichen Aktivitäten konzentrieren sich auf theoretische und experimentelle Untersuchungen der subatomaren Struktur der Materie und der Eigenschaften der fundamentalen Wechselwirkungen und Symmetrien. Die Forschungsarbeiten umfassen aktuelle Fragestellungen der Kernphysik, der Hadronenphysik und der Teilchenphysik.

Die kernphysikalische Forschung zielt auf die Modellierung von Kernreaktionen, die für nukleare Astrophysik und Nuklear-Technologien von Relevanz sind. Herausragendes Ergebnis ist dabei die Formulierung und Implementierung neuer Techniken zur Bestimmung von Unsicherheiten von Kerndatenevaluationen, welche eine Voraussetzung für die Entwicklung neuer nuklearer Technologien darstellen.

Ein weiterer Schwerpunkt ist die Untersuchung der Eigenschaften der starken Wechsel-wirkung mittels Gittereichrechnungen. Ein wichtiges Ergebnis war die Bestätigung der Eigenschaft des Quarkeinschlusses (Confinement) für die tadpole Lüscher-Weisz Wirkung. In weiteren Arbeiten der Gruppe wurde zunächst ein Problem bei der Berechnung topologischer Ladungen von zulässigen Eichtheorien identifiziert und kürzlich die Diskrepanz auch bei anderen Fermion Darstellungen identifiziert.

Die Arbeiten auf dem Gebiet der Experimentellen Hochenergiephysik werden in Zusammenarbeit mit dem Institut für Hochenergiephysik (HEPHY) der Österr. Akademie der Wissenschaften durchgeführt. Am HEPHY werden zwei Forschungsrichtungen verfolgt: a) die Vorbereitung des Compact Muon Solenoid (CMS) Experiments am Large Hadron Collider (LHC) am CERN und der Ende 2009 beginnenden ersten Messperiode; b) die Untersuchung der CP-Verletzung im B-Bar System mittels des Belle Experiments und dessen Nachfolger-Experiment Belle II am Japanischen Beschleunigerlabor KEK in Tsukuba.

26  

Novel techniques for uncertainty estimates for nuclear data evaluation

St. Gundacker, D. Neudecker, H. Leeb

Nuclear data evaluation provides a consistent set of nuclear reaction cross section data and their uncertainties, which is an essential prerequisite for advances in nuclear technology, nuclear medicine and safety concerns. With regard to the requirements of conventional nuclear reactors, nuclear data evaluations have been limited to neutron induced reactions up to 20 MeV in the past. Recent progress in nuclear medicine and developments in nuclear fusion, radioactive waste incineration and GenIV reactors require cross section data and uncertainties in an extended energy range up to 150 MeV. Unfortunately experimental data is scarce at energies beyond 20 MeV and therefore nuclear data evaluations must strongly rely on nuclear modeling, for which no established methods for uncertainty estimates are available.

A novel procedure for the estimation of uncertainties for evaluation strongly based on nuclear modeling has been developed by the nuclear physics group at the Atominstitut in recent years1. Following the general ideas of nuclear data evaluation the method is based on Bayesian statistics. The key novelty is the setup of a theoretically motivated prior including covariance matrices for cross section uncertainties which account for parameter uncertain- ties as well as model defects. The former are worked out from the concept of maximum information entropy assuming ignorance (apart from a-priori knowledge) and transformation invariance. Including physics and mathematics constraints in the procedure is the only way which provides covariance matrices without recourse to experimental data. A worldwide first formulation of so-called model defects, which account for deficiencies of nuclear models, has been set up by the group 2. Here, recourse to experimental data is necessary. The novel technique is very appealing because it allows mean values deviating from the underlying nuclear models and yields covariance matrices for the prior which are less stiff than those obtained by other approaches. In addition to the work on the prior, a proper treatment of experimental systematic uncertainties was worked out which includes correlations between experiments, completely ignored in previous evaluations. Results of a first application, i.e. the evaluation of neutron-induced cross sections of 55Mn are shown in the figure. Further extension to differential data is in progress.

Work supported in part by EURATOM projects IP_EUROTRANS and ANDES as well as by the F4E project NUDATA _FILES. The views and opinions expressed herein do not reflect necessarily those of the European Commission.

 

Figure 1: On the left: (n,2n; n,2n)-correlation matrix evaluated by the Full Bayesian Evaluation Technique. On the right: evaluated (n,2n) cross sections (red) compared to experiments (EXFOR number) and the prior values (blue ).

                                                       

1 Consistent Procedure for Nuclear Data Evaluation Based on Modeling, H. Leeb, et al., Nuclear Data Sheets 109, 2762 (2008). 2 Model defects for nuclear data evaluation, St. Gundacker, H. Leeb, Proc. Sci. Workshop on Nuclear Data Measurements, Theory and Applications, Budapest, Hungary, Sept. 23-25, 2009, Inst. of Isot., HAS, 109 (2010).

 

27 

Probing QCD by lattice gauge theory

R. Höllwieser, M. Pitschmann, M. Faber

Lattice QCD (LQCD) is the main tool for probing quantum chromodynamics (QCD), the theory of quarks and gluons, in the non-perturbative regime. It is a gauge theory formulated on a grid or lattice of points in space and time, where gauge degrees of freedom are put on the edges of the lattice, so-called links. We work with lattices generated by Monte Carlo simulation of the tadpole improved Lüscher-Weisz pure-gauge action, mainly at coupling β = 3.3 (lattice spacing a = 0.15 fm ) for the SU (2) gauge group, which is very appropriate to study the mechanism and relation of quark confinement and chiral symmetry breaking.

Since Savvidy [Phys.Lett.B71 (1977) 133] we know that the QCD-vacuum is non-trivial and has magnetic properties. In lattice QCD it was shown that magnetic fluxes (vortices) con- dense in the vacuum and compress the electric flux between quark and antiquark to a string leading to confinement, see e.g. Greensite [Prog.Part.Nucl.Phys. (2003) 51:1]. The confinement mechanism was tested in many ways with Wilson pure-gauge action. In [Phys. Rev. D78 (2008) 054508]1 we confirm the confinement properties also for the tadpole improved Lüscher-Weisz gauge action and showed that center vortices are also relevant for chiral symmetry breaking. Vortex configurations reproduce a chiral condensate and show strong correlations to the eigenmodes of the Dirac operator.

Dirac eigenmode density peak(center) on a 20⁴-lattice, with upperand lower z-slices of the same t-slice.

We found that the scalar density of these eigenmodesshows sharp peaks in point-like regions of the latticevolume and also the vortex density is maximal at thesepositions, enhanced by a factor of four compared to theaverage vortex density. These dense vortex structures atthe eigenmode density peaks are known to be sources oftopological charge from the picture advocated byEngelhardt and Reinhardt. Therefore we studytopological properties of classical, spherical centervortices from the low-lying eigenmodes of the Diracoperator, in both the overlap and asqtad formulations,fundamental and adjoint representation. In particular weaddress the puzzle raised in a previous work of our workgroup2, where we found a problem calculating thetopological charge for ”admissible” gauge fields. Weconfirm the discrepancy between the topological chargeextracted from a lattice version of FF~ and the index ofthe Dirac operator also for the other, above mentionedfermion representations.

Furthermore we concentrate on the puzzle of fractional topological charge, which can be analyzed by adjoint Dirac zeromodes. During cooling a classical, spherical center vortex on a 403 × 2-lattice we find an interesting structure with topological charge Q = 1/2, measured from plaquette and hypercube definition as well as the adjoint index theorem. The topological object we identify as a Dirac monopole with a gauge field fading away at large distances. Therefore even for periodic boundary conditions it does not need an antimonopole.3, 4 

                                                       1 Center Vortices and the Dirac Spectrum, R. Höllwieser et al., Phys. Rev. D 78, 054508 (2008) [arXiv: hep-lat/0805.1846]. 2 Tests of the Lattice Index Theorem, G. Jordan et al., Phys. Rev. D 77, 014515 (2008) [arXiv: hep-lat/0710.5445]. 3 Lattice Index Theorem and Fractional Topological Charge, R. Höllwieser et al., (2010) [arXiv: hep-lat/1005.1015]. 4 Spherical Vortices, Monopoles and Lattice Index Theorem, R. Höllwieser et al., PoS LAT2010: 276 (2010)

28  

Research with CMS

Ch. Fabjan

During 2008 the installation of the CMS detector was completed, to which HEPHY made two major contributions: 1) it took a leading role in the R&D and construction of the world’s largest tracking system, based on the Silicon detector technology; its contribution corresponded to about 20%. HEPHY had also a leading role in the R&D, construction and operation of the event-selection system (Trigger system), which has the critical function to select among the hundreds of millions collisions per second the few hundred ones, thought to represent interesting or new physics information.

All of 2009 saw the commissioning of the CMS detector, with a substantial part reserved for recording Cosmic ray events. These data were the basis for more than 20 publications on the detector performance and one physics paper, reporting the measurement of the ratio of positive over negative atmospheric muons up to very high momenta. One HEPHY doctoral student received the Victor Hess Prize for his work on the CMS Tracker.

Unquestionably, the year 2010 was the initial culmination of 15 years of intense preparatory work: First collisions at 7 TeV were recorded on March 30, 2010. The collision rate increased rapidly and reached more than 10 Million collisions per sec by the end of 2010. The quality of the data recorded demonstrated very quickly the excellent performance of the CMS detector, in particular also of those systems with HEPHY contributions, reaching or even exceeding design specifications just a few weeks after turn-on. This remarkable performance was paralleled by the amazingly quick availability of the first physics results. Some 23 physics papers were accepted for publication in 2010. While priority was given to studies of the physics of the Standard Model at this new energy regime, some first results were obtained extending in significant ways our understanding: no mini-black holes were observed; very large areas of the parameter space of models extending or replacing the Standard model, e.g. Supersymmetry, were tested, and a number of exclusion results were obtained. One striking example was the first observation of matter flow from very inelastic proton-proton collisions, an effect previously only observed in relativistic heavy ion collisions. HEPHY pursues two specific research activities with the CMS detector.

1) Search for Physics beyond the Standard Model (BSM), both in model-independent ways and specifically for Supersymmetry. The HEPHY group pursues searches along specific discovery channels 1, with emphasis on leptons and missing energy, characteristic of the decay of supersymmetric particles (see Fig. 1). In parallel, a model-independent search strategy has been developed in collaboration with Harvard, Princeton and other groups 2 .  2) A second effort is aimed at a better understanding of the production mechanisms of bound heavy quark- antiquark states (Quarkonia). For this study a new strategy was developed based on a novel and precise measurement of the polarization of the decay products.

__________________________________________________

1 W. Kiesenhofer, R. Schoefbeck et al., JME-10-009, to be published in JINST 2 D. Alves et al., https://twiki.cern.ch/twiki/bin/view/CMSPublic/ PhysicsResultsSUS10006

New limits in the SUSY parameter space. The light blue area will be the parameter space which will be explored with the data expected for 2011. Results obtained by the SUSY team with

29 

 

Research with Belle and Belle II

Ch. Fabjan

HEPHYs second research pillar is the programme with Belle and Belle II. The Belle effort was in the limelight in 2008 with the attribution of the 2008 Nobel Prize to M. Kobayashi and T. Maskawa for their description of CP-violation in the Standard Model. The data of Belle (and of the competitor BBar at SLAC) were cited as providing the experimental foundation for the validity of this theory. HEPHYs major contributions are to the physics analysis of the Belle data; one HEPHY physicist is leading the principal Belle analysis group, responsible for the analysis of the Cabibbo-Kobayashi-Maskawa matrix elements, which describe the CP-violation in the Standard Model. In 2010, one HEPHY doctoral student received the Victor Hess Prize for the world’s most precise determination of one of the most crucial matrix elements, Vcb, which describes the coupling between the c and b quarks. This was achieved by developing a novel analysis method to include kinematic constraints and contributions of very low-momentum particles 1. The operation of the B-factory was terminated last summer. However, the analysis of the world’s largest sample B-Bbar pairs and the unique set of data on the Upsilon(5S) resonance will be pursued with emphasis on the measurement of exotic states.

The success of the Belle programme led to the rapid approval by the Japanese government of the successor B-factory, Super KEKB with the upgraded and partially reconstructed experiment Belle II. The Technical Design Report 2 for Belle II was approved in 2010. HEPHY was asked to assume the complete responsibility for the R&D, design and construction of the new Silicon Strip detector, including the full electronics readout chain and a novel cooling system. Belle II is scheduled to start research in 2014.

HEPHY has also a small participation in the International Linear Collider Experiment, ILD, to which it contributed to R&D of the Si-tracker, reconstruction algorithms and the Technical Design Report. A small group of HEPHY theorists work in research on QCD and SUSY, matching to a certain extent the HEPHY activities with CMS. In 2010, HEPHY successfully organized, in collaboration with the ATI, the Vienna Conference on Instrumentation, attended by about 250 scientists and in April 2011 a topical workshop on QCD and Quarkonia production.

 

Cut through the Silicon Vertex Detector, showing the asymmetric arrangement of the four Silicon-detector layers. Novel support structures integrating cooling and electronics achieved a new record for low-mass collider detector.

__________________________________________________

1 Measurement of the form factors of the decay B0-> D*-l+�e and determination of the CKM matrix element |Vcb|, W. Dungel et al: Phys. Rev. D 82, 112007 (2010) 2 Belle II TDR: KEK Report 2010-1 bzw. arXiv:1011.0352

30  

2.4 Neutron and Quantum Physics

Staff: G. Badurek, E. Jericha, Y. Hasegawa, H. Lemmel, H. Rauch, J. Summhammer, M. Zawisky, H. Abele Project staff: K. Durstberger-Rennhofer, E. Dyrnjaja, J.Eichbichler, J. Erhart, S. Filipp, C. Gösselsberger‚ G. Cronenberg, F. Hameed, M. Horvarth, T. Jenke, J. Klepp, G. Konrad, T. Lins, R. Loidl, S. Mayer, H. Saul, S. Sponar, J. Springer, G. Sulyok, X. Wang, B. Zamani Neutrons are powerful tools for addressing questions from the domains of particle physics to computer tomography: Neutrons provide information on quarks and leptons, about nucleo synthesis in supernova explosions, as well as on combustion processes in engines or the structure of St. Stephen's Cathedral. A key domain of our group is neutron polarimetry and neutron optics, in particular interferometry with perfect crystals and the observation of interference effects between a neutron's spin up state and down state. Many neutron physics observables are sensitive to physics beyond the standard model emerging from superstrings, supersymmetry or other Grand Unified Theories. Neutrons test gravitation at small distances by quantum interference deep into the theoretically interesting regime. Priority Programme 1491, which is funded by the FWF and the German DFG and coordinated by the Atominstitut, has defined four main areas of emphasis, three of which the Atominstitut is also working on with its own projects. Ultra-small-angle neutron scattering measures density fluctuations on the micron scale. At low contrast this method is superior to other methods such as electron force microscopy.

Vorstellung

Die Neutronenphysik umspannt den großen Bogen von der Teilchenphysik bis hin zur Computertomographie: Mit Neutronen trifft man Aussagen zu Quarks und Leptonen, zur Nukleosynthese in Supernovaexplosionen; ebenso erlauben es Neutronen, einen Blick ins Innere von Motoren oder des Gemäuers des Stephansdoms zu werfen. Die Neutronenpolarimetrie und die Neutronenoptik, insbesondere die Silizium-Perfektkristall-Interferometrie mit der Beobachtung von Interferenzerscheinungen zwischen den beiden Spin-Zuständen des Neutrons, zählt seit Jahrzehnten zu den Domänen der Arbeitsgruppe. Neutronen ermöglichen auch die Suche nach Physik jenseits des Standardmodells und testen die Gravitation bei Mikrometerabständen, wobei gerade Fragen der Teilchenphysik bei höchsten Energien und der Kosmologie inzwischen durch Experimente auf dem anderen, niederenergetischen Ende der Energieskala beantwortet werden, und zwar mit kalten und ultrakalten Neutronen. Das Schwerpunktprogramm 1491, das vom FWF und der deutschen DFG gefördert und am Atominstitut koordiniert wird, hat dazu 4 wissenschaftliche Schwerpunktsbereiche definiert. An drei dieser Bereiche ist das Atominstitut durch eigene Projekte beteiligt. Ultrakleinwinkelstreuung mit Neutronen (UltraSANS) misst Dichtefluktuationen in der Größenordnung von Mikrometern. Bei Proben mit geringem Kontrast ist diese Methode anderen Methoden wie Elektronen-Atomkraftmikroskopie überlegen.

31 

Neutron Beta Decay with PERC

J. Erhart, C. Gösselsberger‚ M. Horvarth, X. Wang, E. Jericha, G. Konrad, H. Abele

Precision measurements of observables in neutron decay address important open questions of particle physics1, and are generally complementary to direct searches for new physics beyond the Standard Model (SM) in HEP. Within the SM neutron decay is described by two parameters only. Since more than two observables are accessible the problem is over-determined. Thus, precise measurements of correlations can be used to study the SM as well to search for evidence of possible extensions, like right-handed currents, scalar and tensor interactions 2, or Supersymmetry (SUSY).

Our emphasis lies on angular correlations involving the neutron spin and electron, neutrino, and proton momenta. We measure the coefficients a, A, B, and C with increasing accuracy. The spectrometer aSPECT has been built at Mainz University to perform a precise measurement of the proton spectrum shape to determine a and C. With a measurement in 2011 the aSPECT collaboration aims to improve the uncertainty on a to 1% (literature value 5%). The instrument PERKEO II has been designed at Heidelberg University to measure A, B, and C with reduced corrections2. The successor PERKEO III serves to measure correlation coefficients using a pulsed neutron beam3. With a measurement in 2008/2009 the PERKEO collaboration reduced the uncertainty on A by a factor of 5 (compared to the PDG 2010).

PERKEO II and III have motivated the new instrument PERC4 improving the sensitivity of neutron decay studies by up to two orders of magnitude compared to the best experiments. PERC is under development by an international collaboration. The instrument will be set up at the FRM II in Munich. Our main goal within the next two years is the design and the construction of the joint project PERC. The first milestone (the design) has been achieved: At its exit PERC delivers neutron decay products, under well-defined and precisely variable conditions. Depending on the decay parameters studied, the analysis of the extracted electrons and protons must be performed with different and specialized detectors. In Vienna we focus on electron energy, simultaneous electron and proton momentum, and proton spectroscopy.

Moreover, precision measurements with PERC demand a perfect knowledge and control of the key parameters for the neutron beam, i.e., wavelength distribution, degree of polarization, and time structure. In this context, we are developing a novel design of spatial magnetic spin resonator, MONOPOL, allowing precise velocity selection as well as the accurate definition of the neutron beam’s time structure by solely tuning electronic parameters5. The concept is based on the well-established Drabkin neutron resonator combined with travelling magnetic fields.

Scheme of PERC. Cold neutrons (green) pass through the decay volume where only a small fraction decays. The decay products (red) are guided by the strong magnetic field towards the detector (blue).

                                                       1 The neutron. Its properties and basic interactions, H. Abele, Prog. Part. Nucl. Phys. 60, 1-81 (2008) 2 The neutron alphabet: Exploring the properties of fundamental interactions, H. Abele, Nucl. Instr. Meth. A611,193 (2009) 3 The new neutron decay spectrometer Perkeo III, B. Märkisch et al., Nucl. Instr. Meth. A 611, 216-218 (2009) 4 A clean, bright, and versatile source of neutron decay products, D. Dubbers et al., Nucl. Instr. Meth. A 596, 238-247 (2008) 5 Design of a pulsed spatial neutron magnetic spin resonator, G. Badurek et al., Physica B 406, 2458-2462 (2011) 

32  

Neutron Capture and the Age of the Galaxy

G. Badurek, H. Leeb, H. Oberhummer, E. Jericha

The Rhenium/Osmium cosmochronometer represents a unique clock for the determination of the age of our galaxy. This clock relies on the beta decay of 187Re into 187Os with a half-life of 41 billion years and the production of this isotope during the rapid r-process of nucleosynthesis in supernova explosions of massive stars. Since these stars evolved quickly, the Re/Os clock started soon after the formation of the galaxy. The daughter nucleus 187Os is shielded from direct production in the r-process by its parent 187Re which makes the abundance ratio 187Os/187Re the characteristic quantity for this clock. However, apart from the radiogenic component resulting from the beta decay of 187Re, 187Os is also produced by the slow s-process of nucleosynthesis during the asymptotic giant branch phase of low-mass stars which is passed in a late stage of their evolution. There, 187Os is produced by neutron capture in 186Os and lost by its own neutron capture to 188Os. Therefore, the aim of the n_TOF Collaboration* was a precise determination of these neutron capture rates which then provide a reliable basis for correcting the experimentally measured 187Os/187Re abundance ratio. The n_TOF facility at CERN consists of a lead target neutron spallation source, a 185 m long neutron flight tube, and an experimental area, established as a radioactivity class A laboratory in 2009/10, where the detectors are located. Capture events were recorded for the neutron energy range 1 eV to 1 MeV, relevant for the astrophysical context, where the neutron energy is determined from their time-of-flight, given by the period between the time when the protons hit the spallation target and the time when the capture events are detected. The reactions were identified by detection of characteristic gamma rays which are emitted by the Os isotopes after neutron capture. For gamma detection fast low-background C6D6 scintillation detectors were employed. From these measurements a wealth of nuclear data was obtained for the Osmium isotopes. The important quantity for the stellar clock is the Maxwellian Averaged Cross Section (MACS)1 which is relevant for the average s-process production rate in the hot stellar environment. Measurement of this quantity illustrates the advantage of the polyenergetic neutron beam available at n_TOF. Cross sections are measured for all relevant energies and their stellar impact may be calculated for various models involving different individual averages due to various star temperatures. Data analysis shows that the nuclear physics uncertainties will now only affect the age of the galaxy obtained by the Re/Os clock via advanced stellar models by less than 1 Gyr2.

Left: The 187Os neutron capture cross section. Centre: MACS for 187Os as measured at n_TOF and compared to previous values for kT = 30 keV. Right: Nuclear galactic abundance evolution in the context of the age of the galaxy.

                                                       1 Neutron physics of the Re/Os clock. I., The n_TOF Collaboration, M. Mosconi et al., Phys. Rev. C 82 (2010) 015802. 2 Neutron physics of the Re/Os clock. III., K. Fujii et al., Phys. Rev. C 82 (2010) 015804. *Atominstitut members of the n_TOF Collaboration have been G. Badurek, E. Jericha, H. Leeb, and H. Oberhummer 

33 

Polarized Neutrons and Spin interference

K. Durstberger-Rennhofer, S. Filipp, J. Klepp, S. Sponar, G. Sulyok, H. Abele, Y. Hasegawa, E. Jericha, G. Badurek

The neutron physics group at the Atominstitut has participated in the framework programs FP6 & FP7 of the European Commission within the neutron initiative NMI3 in the polarized neutron Joint Research Activities by developing novel ideas regarding the production of polarized neutron beams via Dynamical Neutron Polarization DNP1, the foundations of tensorial neutron tomography2, the development of an ultra-small-angle scattering technique for polarized neutrons, USANSPOL, and the development of the ultra-flexible polarized neutron resonator MONOPOL. Measurements in close collaboration with researchers in Berlin represent the first realization of a 3D-tomographic acquisition of a magnetic field distribution inside and around a solid3.

 

Left: Impression of a DNP facility. Centre: Experimental setup for mixed-state phases. Right: Tomographic projections of neutron intensity after passage through a magnetic coil. Neutron polarimeter has been used to measure relative phases between spin eigenstates: it is quite suitable apparatus to determine spin-dependent phases during evolutions. In a recent neutron polarimetry experiment the mixed-state relative phases between spin eigenstates are determined from the maxima and minima of measured intensity oscillations4. Experimental setup as depicted. From the results, it is confirmed that the sum of the individually determined geometric and dynamical phases is not equal to the associated total phase which is obtained from a single measurement, unless the system is in a pure state.

Spin-energy entanglement was studied with neutron polarimeter. A violation of a Bell-like inequality was demonstrated: the correlation function SCHSH, in Clauser–Horne–Shimony–Holt (CHSH) formalism, is determined to be 2.333 +/- 0.002 > 2, which violates the Bell-like CHSH inequalities more than 166 standard deviations nt5. In addition, the robustness of Berry’s phase was confirmed experimentally by using trapped ultracold neutrons (UCN): it is demonstrated that the geometric phase contributions to dephasing due to adiabatic field fluctuations vanish for long evolution times6.

                                                       1 A non-conventional neutron polarizer concept, G. Badurek, Ch. Hartl, E. Jericha, Nucl. Instr. Meth. A586 (2008) 95. 2 Perfect crystal neutron interferometry and tensorial neutron tomography, E. Jericha, R. Szeywerth, H. Leeb, G. Badurek, Nucl. Instr. Meth. A586 (2008) 119. 3 Imaging with polarized neutrons, M. Strobl et al., Physica B404 (2009) 2611. 4 Observation of nonadditive mixed state phase with polarized neutron, J. Klepp et al., quant-ph/08090572, Phys. Rev. Lett. 101 (2008) 150404. 5 Violation of Bell-like Inequality for spin-energy entanglement in neutron polarimetry, S. Sponar et al., quant-ph/09074654, Phys. Lett. A374 (2010) 431. 6 Experimental demonstraton of the stability of Berry’s phase for a spin 1/2 particle, S. Filipp et al., Phys. Rev. Lett. 102 (2009) 030404. 

34  

Magnetic Micro-Structure Probed with Ultra-high Resolution

G. Badurek, C. Gösselsberger, E. Jericha

The study of the magnetic structure of condensed matter is one of the key areas of neutron research. Polarized neutron scattering resolves magnetic ordering mechanisms on an atomic level in crystalline samples, polarized small-angle scattering investigates magnetic nanostructure and novel imaging techniques magnetic distributions in macrostructures. The magnetic microstructure of novel materials may be either explored by the well-established depolarization techniques, or the recently introduced ultra-small-angle scattering for polarized neutrons, USANSPOL, which is being developed at the Atominstitut. This development is also part of the European neutron and muon integrated infrastructure initiative NMI3 currently running within the framework program FP7 of the European Commission. The technique relies on the extremely narrow angular width of the reflection curve for neutrons reflected by perfect crystals which offers access to micrometer structures – a typical size for magnetic domains in novel technologically relevant materials. Polarization of the neutrons is accomplished by using birefringent magnetic prisms. Neutron scattering of both spin states is recorded in a single measurement which considerably reduces the potential for systematic errors. We employed this new technique at novel soft-magnetic ribbons with exceptional magnetostriction properties which are particularly attractive for application as highly efficient magnetic shielding, sensors or actuators. In the work performed so far we have identified magnetic microstructures in the range from about 1 μm 1 to well above 20 μm 2. We were able to follow the evolution of the domain sizes in ribbons with increasing external magnetic field or external stress. USANSPOL allows following the growth of these domains in a unique way. The sensitivity to different sample structures resulting from different manufacturing conditions of the ribbons has been demonstrated and shows its potential for characterization of novel magnetic materials with respect to varying production parameters. It is interesting to note that in this initial work the USANSPOL technique came close or even went beyond its limits when encountering the very large magnetic domains of the order of 20-30 μm. Under these circumstances the measured data come very close to the resolution function of the instrument, and the information about the structure size concentrates in the vicinity around zero momentum transfer. A particular strength of the technique thereby lies in the fact that the neutron intensity at zero momentum transfer is directly accessible.

Left: Typical raw data (symbols) and instrument curve (black line); each maximum corresponds to a fully polarized neutron beam of opposite polarization direction. Centre: Scattered neutron intensity for a magnetic ribbon under external stress. Right: Domain structure size evolution for a magnetic ribbon under various external magnetic fields (red) and stresses (blue).

                                                       1 Characterization of novel magnetic materials using the USANSPOL technique, E. Jericha, G. Badurek, R. Grössinger, (2010), doi:10.1016/j.physb.2010.11.036. 2 Amorphous soft-magnetic ribbons studied by ultra-small-angle polarized neutron scattering, G. Badurek, E. Jericha, R. Grössinger, R. Sato Turtelli, J. Phys.: Conf. Ser. 211 (2010) 012027. 

35 

Neutron interferometry

K. Durstberger-Rennhofer, S. Filipp, J. Klepp, R. Loidl, S. Mayer, S. Sponar, J. Springer, G. Sulyok, H. Abele, G. Badurek, Y. Hasegawa, H. Lemmel, H. Rauch, M. Zawisky

Quantum contextuality using 2 degrees of freedom of single neutrons, based on an inequality derived from the Peres-Mermin proof of the Kochen- Specker theorem, was experimentally demonstrated. A Bell-like state was generated and the observed violation 2:291+/- 0:008 > 1 clearly confirms the fact that quantum mechanical predictions cannot be reproduced by noncontextual hiddenvariable theories1. In parallel, entangled states of 3 degrees of freedom, namely a Greenberger-Horne-Zeilinger-like (GHZ-like) state was studied2. An equality derived by Mermin was applied to analyze the generated GHZ-like state: We determined the four expectation values and finally obtained M = 2.558 +/- 0.004 > 2. This demonstrates a violation of Mermin-like inequality for triply entangled GHZ-like state in a single-particle system, which, in turn, clearly contradicts the noncontextual assumption and confirms quantum contextuality. Neutron interferometer was used to investigate the influence of the geometric phase on a Bell measurement for a spin-path-entangled neutron state3: two schemes, polar and azimuthal adjustment of the Bell angles, are realized and analyzed in detail. For the study of decoherence phenomena in a neutron interferometer, it was demonstrated that, while at low interference order a smearing of the interference pattern is observed, at high interference order a smearing of the modulated momentum distribution occurs4.

Within the framework of the neutron-electron interaction project the world’s largest crystal interferometer has been prepared5. Its extreme angular resolution - with respect to beam deflection - has been exploited for the first measurement of the crystal diffraction phase, the so-called Laue phase 6. A new project has started 2010 aiming at a further improvement of angular resolution towards 10-6 s of arc thereby testing the Newtonian gravitation law and hypothetical short-range interactions for the neutron as very light quantum object. The macroscopic separation of the neutrons in crystal interferometers remains unrivalled in matter wave interferometry.

                                                       1 Exp. Test of Quantum Contextuality in Neutron Interferometry, H. Bartosik et al., Phys. Rev. Lett. 103 (2009) 040403. 2 Engineering of triply entangled states in a single-neutron system, Y. Hasegawaet al., Phys. Rev. A81 (2010) 032121. 3 Geometric phase in entangled systems: A single-neutron interferometer experiment, S. Sponar et al., Phys. Rev. A81 (2010) 042113. 4 Noise-induced dephasing in neutron interferometry, G. Sulyok et al., Phys. Rev. A81 (2010) 053609. 5 A large-area perfect crystal neutron interferometer optimized for coherent beam-deflection experiments, M. Zawisky et al., Nucl. Instr. Meth. A612 (2010) p.338-344 and Nucl. Instr. Meth. A615 (2010) p.307-312 6 A neutron interferometric measurement of a phase shift induced by Laue transmission, J. Springer et al., Acta Cryst. A66 (2010) p.17-21  

Experimental setup for Kochen-Specker theorem

The world’s largest perfect crystal interferometer consisting of 2 interference loops, 6 beam splitters and 100 cm2 enclosed beam area.

36  

Neutron radiography and tomography

E. Dyrnjaja, F. Hameed, B. Zamani, H. Abele, M. Zawisky

A variety of non-destructive investigations, e.g. of boron distribution in aluminium and steels, the sensitive detection of liquids and moisture in building materials, rocks and fuel cells etc. have profited from the high resolution of our new digital neutron detectors (scintillators and imaging plates down to 25 microns nominal resolution)1. Their large dynamic range and high neutron sensitivity to hydrogen was exploited for studying the penetration behaviour of restoration agents like stone consolidants in samples taken from historical buildings and monuments 2,3.

We also present high-flux neutron radiography and tomography at the Institut Laue-Langevin in Grenoble, France4. With a high-intensity thermal neutron beam, this work is dedicated to real-time, snapshot and stroboscopic radiography with time resolution down to a few microseconds, as well as dynamic tomography on a sub-second time scale. The high intensity also allows the visualization of thick and strongly absorbing materials. 

 

 

 

 

                                                       1 Digitized neutron imaging with high spatial resolution at a low power research reactor: I. Analysis of detector performance, M. Zawisky et al., Nucl. Instr. Meth. A587 (2008) p.342-349 2 II. Applications to steel and rock samples, M. Zawisky et al., Nucl. Instr. Meth. B268 (2010) p.2446-2450 3 Investigation of Calcareous Arenites from St. Stephan’s Cathedral, Vienna, F. Hameed et al., DES Publications, Lancaster 2008, p.251-263 4 High flux neutron imaging for high speed radiography, dynamic tomography and strongly absorbing materials, A. Hillenbach et al., Nucl. Instr. Meth. A542 (2005) 116–122

Right: Common rail diesel injector nozzle/oil jet 100 μs exposure time, sum of 51,200 exposures.

Left: Investigation of Calcareous Arenites from St. Stephan’s Cathedral. The penetration and 3D distribution of a stone consolidant (strengthener) was analysed using the neutron tomography technique.

37 

Improving the silicon solar cell

J.Eichbichler, G.Mehl, B.Rotter, B.Stietka, J. Summhammer

At the Atominstitut a small research group around Johann Summhammer was worked since 1996 on improvements of the silicon solar cell, which accounts for about 90% of all photovoltaic power installed worldwide. In 2010 alone, the newly installed generating capacity was around 27 GW, which is equivalent to 3 to 4 GW continuous power as e.g. from nuclear power plants. Still, costs must be reduced further. In the period 2008-10 the emphasis of our work was the following:

1. Development of a new interconnection technology of solar cells, which requires about 6 to 7 percent less aperture area to generate the same power. For this, the basic layout of the solar cell – which has been used since the 1980‘s – had to be changed to the so called „QuarterCell“ scheme 1, 2, 3. The transfer of this technology to Austrian industry is in progress (www.pvt-austria.at).

2. With the project „Concentrator Photovoltaics“, which started in 2009, an IR laser for local heating and cutting of silicon wafers could be added to our lab infrastructure. This made it possible to develop solar cells of any desired size for concentrator applications. In particular, small solar cells (12 x 19mm²) were developed in collaboration with an Austrian company (nondisclosure agreement applies). They are intended for 30x concentrated solar power using linear parabolic trough concentrators with seasonal single axis tracking.

3. Selective emitter by laser doping. The new laser could also be tuned to heat the silicon wafers at desired positions to effect local n+ doping. Such doping is desirable under the metal contactswhich form a Schottky barrier between to the semiconductor. The rest of the emitter is only moderately n doped to obtain a high quantum efficiency in the blue solar spectrum. Prior research has shown gains in output power on the order of 1%. Our preliminary results [6] point in the same direction, but also underline the need for much more accurate alignment than is customary in typical production lines (collaboration with www.falconcell.at).

Due to restructuring the solar cells lab at the Atominstitut had to be closed in mid 2010. The new solar cells lab will start operating under the roof of the Institute for Thermodynamics and Energy Conversion, also at the Vienna University of Technology, in March 2012.

 

                                                       1 Wire cell: A more efficient silicon solar cell and module, Michael Stietka and Johann Summhammer (WIP-Renewable Energies 2008, Munich 2008; ISBN 3–936338–24-8, www.photovoltaic-conference.com), p.530-533. 2 Rectangular silicon solar cell with more power and higher voltage modules, Johann Summhammer and Harald Rothen (WIP-Renewable Energies 2009, Munich 2009; ISBN 3-936338-25-6 www.photovoltaic-conference.com), p.2221-2224. 3Silizium-Solarzelle und verlustarme Verbindungstechnik von Silizium-Solarzellen, Johann Summhammer, Gebrauchsmusteranmeldung Öst. Patentamt (2010) 

Front side of the newly developed silicon „Quarter Solar Cell“

38  

qBOUNCE: a Realization of Gravity Resonance Spectroscopy

G. Cronenberg, K. Durstberger, T. Jenke, H. Lemmel, T. Lins, H. Saul, H. Abele

The qBOUNCE project tests Newton’s inverse-square law of gravity with quantum objects by means of quantum interference. The aim is to improve the experimental sensitivity to hypothetical short ranged forces on the micron scale and to the cosmological constant by several orders of magnitude. The method explores a unique system consisting of a particle, the neutron, and a macroscopic object, the mirror, and its precise measurement of quantum de Broglie phases.

A first experiment directly observes a so-called Quantum Bouncing Ball: a quantum wave packet falling in the Earth’s gravitational field and bouncing off a hard mirror surface. The time evolution of such a system shows quantum phenomena such as collapses and revivals. The goal is to measure the spatial probability density of the wave packet for different evolution times. Two experiments have been performed at the ultra-cold neutron source of the

instrument PF2 at Institute Laue-Langevin in Grenoble/ France; they show evidence for the quantum-mechanical interference pattern. The analysis of the full dataset is ongoing.

The second experiment demonstrates that transitions between these gravitational states can be induced by a mechanical coupling between quantum states |1> and |3> 1. A novelty of this work is the fact that – in contrast to previous resonance methods – the quantum mechanical transition is driven by an oscillating field, which is not a direct coupling of an electromagnetic charge or moment to an electromagnetic potential. The experiment has the potential to test the equivalence principle and Newton’s gravity law at the micron scale, because Newtonian gravity and hypothetical fifth forces evolve with different phase

information, which can be related to frequency measurements with unprecedented accuracy2. It will also allow searching for a hypothetical charge of the neutron3.

                                                       1 Realization of a gravity-resonance-spectroscopy technique, T. Jenke, Nature Physics 7, 468–472 (2011) 2 Ramsey’s method of separated oscillating fields and its application to gravitationally induced quantum phase shifts, H. Abele et. al., Phys. Rev. D81, 065019 (2010) 3 Probing neutron’s electric neutrality with Ramsey Spectroscopy of gravitational quantum states of ultra-cold Neutrons, K. Durstberger-Rennhofer, accepted in Phys. Rev. D (2011)

 

Sketch of the setup used for the measurements at the ILL in 2008.

Gravity resonance spectroscopy and excitation: Thetransmission as a function of modulation frequency shows asharp resonance ats

for the |1> ⟶|3>transition. The grey band represents the statistical 1uncertainty of all off-resonant data points.

39 

2.5 Radiation Physics

Staff: M. Bichler, M. Hajek, S. Ismail, G. Steinhauser, J. Sterba, Ch. Streli Project staff: R. Bergmann, F. Eder, Ch. Hofstätter, C. Horntrich, D.Ingerle, P. Kregsamer, F. Meirer, B. Pemmer, F.Posch, S.Sasamori, S.Smolek, P. Wobrauschek

The research area "Radiation Physics" was established 2008 by combining "Radiation Physical Analytics and Radiochemistry" with "Radiation Physics, Radiation Protection and Nuclear Engineering". Due to the combination of originally different working groups this research area offers a large variety of activities. Four working groups are established: X-Ray Physics, Radiochemistry, Dosimetry, Nuclear Chemistry and Nuclear Engineering.The X-ray group deals with the development and application of energy dispersive X-ray fluorescence analysis (EDXRF). X-ray tubes and radioisotopes are used for excitation in the lab, synchrotron radiation sources from large scale facilities in Europe and abroad lead to improved excitation conditions for special methods like TXRF, μXRF and absorption spectroscopy (EXAFS, XANES). The radiochemistry and nuclear chemistry groups are closely connected to the reactor. Here research primarily in the field of radioanalytical methods and neutron activation analysis is conducted. Applications range from fundamental research (e.g. the development of fast sample transfer systems) to environmental analysis and archaeometry. In many lab courses, the group teaches the safe and responsible handling of radioactive materials. Investigation and modeling of radiation effects in condensed matter and biological systems are the primary research topics of the dosimetry group. They will enhance their relevance to environmental, medical and industrial applications. In September 2010, the department organized an international summer school on "Radiation Physics in Cultural Heritage Studies" at the Institute of Atomic and Subatomic Physics.

Vorstellung

Der Forschungsbereich Strahlenphysik wurde 2008 durch Zusammenlegung der Forschungsbereiche "Strahlenphysikalische Analytik und Radiochemie" und "Strahlenphysik, Strahlenschutz und Nukleare Messtechnik" neu eingerichtet. Durch die Zusammenlegung ursprünglich unterschiedlicher Arbeitsgruppen ist das Spektrum dieses Forschungsbereichs sehr weit. Vier Arbeitsgruppen werden unterschieden: Röntgenphysik, Radiochemie, Dosimetrie und Nuklearchemie sowie Nukleare Messtechnik. Die Röntgenphysikgruppe befasst sich mit der Entwicklung und Anwendung energiedispersiver Röntgenfluoreszenzmethoden (Energy Dispersive X-Ray Fluorescence, EDXRF). Als Anregungsquelle im Labor dienen Röntgenröhren und Radioisotope. Synchrotronstrahlungsquellen, welche an Großforschungseinrichtungen im Ausland vorhanden sind, bieten bessere Bedingungen für Spezialmethoden wie TXRF, μXRF und Absorptionsspektroskopie (EXAFS, XANES). Fachlich stark an den Reaktor angebunden sind die Gruppen Radio- und Kernchemie. Die Forschungsschwerpunkte sind Radioanalytik, insbesondere Neutronenaktivierungsanalyse und deren Einsatz in Umweltanalytik und Archäometrie. Die Entwicklung neuer, schneller Rohrpostsysteme und anderer methodischer Verbesserungen gehört ebenfalls zum Arbeitsspektrum. In der Lehre wird großer Wert auf das Vermitteln des richtigen und verantwortungsbewussten Umgangs mit offenen radioaktiven Stoffen gelegt. Die Untersuchung und Modellierung von Strahleneffekten in Festkörpern und biologischen Systemen ist der Arbeitsschwerpunkt der Gruppe Dosimetrie, Strahlenschutz und Archäometrie. Dieser Schwerpunkt widmet sich Fragestellungen aus den Bereichen Umwelt, Medizin und Technik. Im September 2010 wurde von der Abteilung eine internationale Sommerschule zum Thema "Radiation Physics in Cultural Heritage Studies" am Atominstitut organisiert.

40  

X-ray physics

D.Ingerle, C.Horntrich,P.Kregsamer, F.Meirer, B.Pemmer, S.Smolek, Ch. Streli, P.Wobrauschek

The working group “X-Ray Physics” achieved significant scientific progress due to the support by five projects in the last three years. Within the EC Project ANNA (Analytical Network for Nanotechnology) one of the milestones was the accreditation (ISO 17025) of the X-ray lab for the TXRF analysis of wafer surface analysis, this has been successfully established also together with the valuable financial support of the TU Wien. Further the improvement of detection limits for light elements, the characterization of ultra-shallow junctions - implants in the nm range - as well as high k thin films - nm thickness- with grazing incidence XRF (GI-XRF) was successfully performed. A FWF project on applications of synchrotron radiation induced TXRF (SRTXRF), performed at HASYLAB, Hamburg, with international cooperation partners, focused on the application of absorption spectroscopy (XANES) at trace element levels for chemical speciation. Applications in various fields like speciation of arsenic in cucumber plants, analysis of size fractioned aerosols and speciation of contaminations on silicon wafers have been successfully demonstrated. Absorption effects have been studied and the inverse technique Grazing Exit XRF has been experimentally verified and characterized. An invited review article was published by F. Meirer in Trends in Anal. Chem. 2010 1. The preliminary experiments at SSRL, Stanford for the determination of degree of dopant activation achieved by the current implantation and annealing techniques analyzing the local coordinate structure around As ions with GIXRF-EXAFS/XANES lead to a FWF Schrödinger grant of F. Meirer at SSRL for 18 months. In another FWF project, in collaboration with the Ludwig Boltzmann Institute of osteology and the ANKA synchrotron source in Karlsruhe, the 2D elemental distribution of Pb in bones was performed successfully and healthy bones compared to osteoporotic bones. Further the chemical binding of Pb in bone was determined with Micro-XANES 2.

The Doc-fFORTE grant for Christine Horntrich supported the investigation of the influence of sample morphology to the quality of quantification in Wafer surface analysis with TXRF. A 3 month guest visit of Eva Margui from Girona, Spain, at the X-ray lab dealt with the application of TXRF to environmental studies, determination of Se and Hg at trace levels and remediation studies in post mining areas using the new developed micro-XRF spectrometer. Technical cooperation projects for IAEA supported the design of special TXRF spectrometers and a secondary target system for the Institute of nuclear energy in Amman, Jordan and the institute of Atomic energy in Colombo, Sri Lanka. The "NESY European winter school for Research on Neutron and Synchrotron radiation facilities" at the Planneralm was organized successfully in 2009.

                                                       1 Synchrotron radiation-induced total reflection X-ray fluorescence analysis, F. Meirer et al., Trends in Analytical Chemistry, Vol. 29, No. 6, 2010 2 Assessment of chemical species of lead accumulated in tidemarks of human articular cartilage by X-ray absorption near-edge structure analysis, F. Meirer et al., J. Synchrotron Rad. (2011). 18, doi:10.1107/S0909049510052040

Left: quantative backscatter electron image and elemental distribution of Ca, Zn and Pbin bone, right: Comparison of XANES curves of bone and synthetic Pb doped hydroxyapatite

41 

Radiation physics in cultural heritage studies

M. Bichler, M. Hajek, S. Ismail, G. Steinhauser, J. Sterba, Ch. Streli

Scientific studies in archaeology cover such a wide spectrum of techniques that, apart from the where?, how? and why? in the background of an artefact’s manufacture, there is plenty to be said about the when? The age of an archaeological object seems to hold the greatest fascination amongst these queries, perhaps because the sheer scale of man’s past helps us to adjust to the reality of our own lifespan. Radiation physics is a key to cultural heritage investigations by unlocking tremendous information that is stored in archaeological and geological artefacts. The Summer School “Radiation Physics in Cultural Heritage Studies”, organized from 20 to 24 September 2010 at the Institute of Atomic and Subatomic Physics, addressed recent developments and applications of neutron activation and X-ray fluorescence analysis, luminescence dating, radiocarbon dating and dendrochronology, as well as isotope analysis using ICP-MS. Aimed at art historians, geo-archaeologists and students of arts, natural sciences and engineering, the Summer School made Vienna’s academic resources – distinguished university institutes, well-equipped laboratories, and fine museums – available to men and women of many ages, backgrounds, and nationalities through an intense summer session of archaeometry courses to expand the participants’ cultural, social and intellectual horizons. It stimulated the dialog and catalysed new interactions between scientists from apparently distant areas of research, who are commonly interested in the application of radiation physics methods in the field of art, geo- and archaeology. The courses procured physical fundamentals along with practical hands on radiation physics methods in archaeology and exclusive excursions to specialized laboratories.

Elemental analysis – In collaboration with the Vienna Museum of Fine Arts (Kunst-historisches Museum) and IAEA, an improved portable XRF spectrometer for non-destructive analysis of cultural heritage and art objects – including light element capability down to Na – has been developed and was tested successfully analyzing the Saliera1.

Geological dating – Luminescence dating of giant brown coal seam fires that smouldered for more than 1500 years between 4000 and 2200 B.C. contributed to explain the myths of a legendary region in the Upper Austrian Hausruck quarter, close to the villages of Geboltskirchen and Altenhof2. The coal fires may have arisen spontaneously or been ignited by lightning strikes.

Provenancing – Since many years, the radiochemistry group is working in the field of archaeometry. Originally, this work was primarily focused on provenance studies of pumice – more than 500 pumice lumps could be provenance over the past decade – however, the group is constantly expanding the focus of analytical techniques for archaeometric challenges. Recent topics are provenancing of obsidian, ceramics, clay tablets and still pumice. The data obtained by the radiochemistry group allow the establishment of chronologies, trade routes and relative age determination and hence are of great importance for archaeologists and historians 3,4,5.

                                                       1 PART II (Portable ART analyzer) – development of a XRF spectrometer adapted for the study of artworks in the Kunsthistorisches Museum, G. Buzanic et al., Vienna, X-Ray Spectrom. 2010, 39, 98 – 102 2 Comparative study of infrared-stimulated luminescent and thermoluminescent dating of archaeological artefacts, R. Bergmann et al., Radiat. Meas. 43, 781–785 (2008). 3 The influence of different tempers on the composition of pottery, J. H. Sterba et al., J. Arch. Sci. 36 (2009) 1582-1589. 4 New light on old pumice: The origins of Mediterranean volcanic material from ancient Egypt, J. H. Sterba et al., J. Arch. Sci. 36 (2009) 1738-1744. 5 Provenancing of archeological pumice finds from North Sinai, G. Steinhauser et al., Naturwissenschaften 97 (2010) 403-410.

42  

Radiation effects and dosimetry

M. Hajek Radiation Biophysics – Significant progress in radiobiology has refined our understanding of radiation-induced biological response at the cellular level and challenged the conventional macroscopic description of radiation action in favour of a nanodosimetric approach, which considers the spatial distribution of energy deposition along the particle track. The empirical correlation of luminescence properties of alkali halides1,2 and biological endpoints, such as DNA strand breaks in human fibroblasts3, opened up promising opportunities for bioequivalent solid-state dosimetry. Analysis of the nanodosimetric response to different radiation modalities using track-structure theory and general multi-target, multi-hit models made evident that the targets for radiation-induced effects in physical and biological systems are of comparable size. Availability of bioequivalent dosimeters allows evaluating the biological effectiveness of radiations of different quality, largely independent of dose and dose rate.

Radiation Protection in Space – The ESA human phantom torso “Matroshka” was used to measure the distribution of absorbed dose within an astronaut’s body at intra- and extravehicular activity on board the International Space Station (ISS) and provide a basis for reliable estimation of stochastic and deterministic radiation risks4. A numerical model of the Matroshka torso (MATSIM) shall further support risk projection through the possibility of sending an astronaut on a virtual mission of exploration. Effective scientific exploitation of data obtained from the Matroshka experiment is provided through the FP7 Collaborative Project HAMLET, bringing together leading European scientists in the field of space dosimetry. Combined application of luminescence and nuclear track detectors allowed for systematic mapping of the radiation environment in the ISS European laboratory ‘Columbus’. A cross-calibration of active and passive instrumentation for space dosimetry was conducted in the frame of the international initiative ICCHIBAN at various high-energy accelerator facilities in Europe, Japan and the U.S. An integrated life sciences research roadmap enabling European human space exploration in synergy with the ESA strategy, taking advantage of the expertise available in Europe and identifying the potential of non-space applications and dual research and development is currently being developed under the FP7 Coordination Action THESEUS funded by the European Commission. Dr M. Hajek was elected Rapporteur of the THESEUS Expert Group ‘Radiation Dosimetry’.

                                                       1 TL-efficiency – Overview and experimental results over the years, T. Berger, M. Hajek, Radiat. Meas. 43, 146–156 (2008). 2 On the linearity of the high-temperature emission from 7LiF:Mg,Ti (TLD-700), T. Berger, M. Hajek, Radiat. Meas. 43, 1467-1473 (2008). 3 Cellular signal transduction events as a function of linear energy transfer (LET), C. Fürweger et al., Radiat. Prot. Dosim. 126, 418–422 (2007). 4 Astronaut’s organ doses inferred from measurements in a human phantom outside the International Space Station, G. Reitz et al., Radiat. Res.171 225–235 (2009).

Dose profile in an astronaut’s body at extravehicular activity.

43 

Radiochemistry

F. Eder, G.Steinhauser, J.Sterba, M. Bichler

The radiochemistry group is dedicated to the education and investigation of, generally speaking, radioactivity and its application. We teach the safe and responsible handling of radionuclides. The research focuses on the radioanalytical determination of trace elements and radionuclides in various sample materials. The radiochemistry group heavily utilizes the Atominstitut’s research reactor, primarily for Neutron Activation Analysis (NAA) but also for the production of radiotracers. We apply these methods in archaeometric provenance studies, for botanical research, environmental studies and last but not least in basic nuclear physical research. Apart from these analytical studies, we have dedicated some of our research capacity to the synthesis of novel inorganic substances (nitrogen-rich compounds of the f-block elements). In the following we discuss some examples of our work.

Basic nuclear research – In collaboration with the University of Vienna, the radiochemistry group worked on the determination of the nuclear cross section for the reaction 54Fe(n,)55Fe as well as the half-life of 55Fe. Another topic was the investigation of the neutron capture by the uranium isotopes 235U and 238U 1.

Tracer methods – The development and application of analytical protocols utilizing radiotracers is another topic of research of the radiochemistry group. This important technique was applied successfully for the investigation of the metabolism of carnivorous plants 2.

Environmental studies – Much focus is also being laid on the determination of heavy metals and radionuclides in environmental samples by NAA and gamma spectrometry 3. The environmental pollution caused by fireworks and pyrotechnics is of increasing interest for both researchers and authorities. The radiochemistry group has undertaken much effort to contribute to a better understanding of this complex issue by providing precise analytical data on the emission of heavy metals in the course of firework displays.

Nitrogen-rich compounds of the lanthanoids – A novel topic of the radiochemistry group is preparative inorganic chemistry of the lanthanoids, in particular the nitrogen-rich compounds of rare earth elements 4. This research topic is not only interesting for the basic research. It is important for the simulation of the behavior of the f-block elements in final nuclear waste repositories.

                                                       1 The first use of 236U in the general environment and near a shutdown nuclear power plant, F. Quinto et al., Appl. Radiat. Isot. 67 (2009) 1775-1780. 2 Expanding the menu for carnivorous plants: Uptake of potassium, iron and manganese by carnivorous pitcher plants, W. Adlassnig et al., Appl. Radiat. Isot. 67 (2009) 2117-2122. 3 Heavy metals from pyrotechnics in New Years Eve snow atmospheric environment, G. Steinhauser et al., Atmos. Environ. 42 (2008) 8616-8622. 4 Nitrogen-rich compounds of the lanthanoids: Highlights and summary, G. Steinhauser et al., Helv. Chim. Acta 93 (2010), 183-202.

Partial crystal structure of a novel 5,5’-azobistetrazolate of lanthanum

44  

Nuclear Chemistry & Short-Time Activation Analysis

S. Ismail

The Nuclear Chemistry & NAA group (S. Ismail) deals with the technical and chemical developments in the field of nuclear analytical chemistry (i.e., neutron activation analysis, etc.). Through the cooperation and support of the International Atomic Energy Agency – IAEA, it was possible to fund three projects during the last three years. The first was to develop a fast sample transportation system for short-time activation analysis (2007-2008). The system was developed to optimize the utilization of a MT-25 microtron in Havana-Cuba. The second project is to develop a suitable system to be installed at the Dalat Nuclear Research Institute - Vietnam (2009-2011). The system will optimize the utilization of the vertical in-core irradiation facilities and one of the radial irradiation beam tubes for fast and fully-automatic neutron activation analysis. A third project is to develop a complete transport system for a nuclear research reactor at Almaty - Kazakhstan (2010-2011). The system will be designed to optimize the analysis of large geological samples. Additionally, in cooperation with IAEA and the International Centre for Theoretical Physics (ICTP), it was possible to carry-out training programs for scientists from Cuba, Libya and Egypt in the field of neutron activation analysis. Furthermore, in cooperation with ÖAD and Pakistan Overseas Scholarship Program for PhD in Selected Fields, it was possible to fund a PhD program (2008-2010) in the field of short-time activation analysis.

The counting station of a sample transportation system for short-time activation analysis

at the TRIGA-II reactor of the Atomic Institute - Vienna University of Technology A scientific collaboration between TU and the Taif University has started in April 2010 for a period of 5 years. Three scientific units (Analytical Laboratory, Environmental Unit, and Environmental Radioactivity Unit) will be established at the Taif-University in cooperation with the Atomic Institute. An agreement between Assiut university- Egypt and the TU Vienna was signed in May 2009. In the context of this agreement a delegation (Profs. VR Kaiser, VR Schimak, Böck, Ismail, Prof. Kutschera) had visited Assiut university during the period 18-24 February 2010. Ismail was elected (June 2010) as a vice-president of the basic science group - advisory committee of the National Authority for Education Quality Assurance and Accreditation Egypt (NAQAAE).

45 

2.6 Low Temperature Physics and Superconductivity

Staff: M. Eisterer, F.M. Sauerzopf, H.W. Weber Project staff: T. Baumgartner, M. Chudy, J. Emhofer, H. Fillunger, F. Hengstberger, N. Hörhager, K. Humer, A. Kortyka, F. Köchl, M. Kulich, R.K. Maix, R. Prokopec, K.R. Schöppl, T. Withnell, M. Zehetmayer

Scientific work within this research area has been traditionally focused on basic-physics- and application-oriented aspects of superconductivity. High temperature superconductors (HTS), but also “new materials”, such as MgB2 and the recently discovered Fe-based superconductors, play a central role in our research. The flux pinning mechanisms, the percolation of Cooper pairs across grain boundaries and the homogeneity of supercurrent transport in long lengths of modern coated conductors are of special interest there. Significant inputs were provided by the Marie Curie network NESPA with its focus on power applications of superconductivity, which led to medium and long term appointments of a number of young scientists on the pre- or post-doc level. In view of the decision to build the fusion device ITER in Cadarache (France) our work on the characterization and qualification of components of superconducting fusion magnets entered into a decisive phase. Based on the excellent radiation resistance of a newly developed insulation material (glass fibre tapes impregnated with a mixture of cyanate ester and epoxy), the specification of the ITER toroidal field magnets now requires the application of this new material, which is – as a consequence – being produced by several companies worldwide and needs characterization and final qualification by our group (ITER contracts). Further characterization work on NbTi superconductors (for ITER) and on Nb3Sn superconductors (for LHC Upgrade, CERN), also under neutron irradiation, is currently under way.

Vorstellung Die wissenschaftlichen Arbeiten dieses Forschungsbereichs sind seit vielen Jahren von grundlagen- und anwendungsorientierten Aspekten der Supraleitung geprägt. Naturgemäß bilden hierfür die Hochtemperatursupraleiter, aber auch die „neuen Materialien“ wie Magnesiumdiborid oder die erst 2008 entdeckten Fe-As Supraleiter, ein reiches Betätigungsfeld. Von besonderem Interesse sind hier die Mechanismen der Flussverankerung, der Stromtransport von Cooper Paaren über Korngrenzen sowie die Homogenität der Suprastromverteilung über größere Längen von modernen Bandleitern. Ein besonderer Schwerpunkt wurde im Berichtszeitraum durch das Marie Curie Netzwerk NESPA gesetzt, in dessen Mittelpunkt Anwendungen der Hochtemperatursupraleitung in der Energietechnik standen und das uns mit einer Vielzahl engagierter junger Leute im Pre- oder Post-Doc Stadium bereicherte. Bedingt durch die endgültige Entscheidung zum Bau der Fusionsanlage ITER in Cadarache (Südfrankreich) sind unsere Arbeiten zur Entwicklung und Qualifizierung von Komponenten der supraleitenden Magnete in ein entscheidendes Stadium getreten. Aufgrund der hervorragenden Strahlenbeständigkeit der neu entwickelten Spulenisolation (Glasfasergewebe mit einer Mischung von Zyanatester und Epoxydharz imprägniert) wurde dieses Material in die Konstruktionsspezifikation für die ITER Toroidalfeldspulen aufgenommen und von verschiedenen Herstellern produziert, wobei uns nun die Charakterisierung und endgültige Qualifizierung obliegt. Weitere Arbeiten zur Qualifizierung von NbTi Supraleitern (ITER) oder von Nb3Sn unter Neutronenbestrahlung (LHC Upgrade, CERN) sind im Gange, wobei der TRIGA Reaktor des Instituts wertvolle Dienste leistet.

46  

Insulation materials for fusion magnets

H. Fillunger, K. Humer, R.K. Maix, R. Prokopec, H.W. Weber

Our research in the framework of the EURATOM programme for developing and characterising new insulation systems for fusion magnets entered a decisive phase during the reporting period. All our previous work had shown that glass-fibre reinforced plastics made of mixtures of cyanate ester (CE) and epoxy resins represented a system that would fulfil all the requirements set for the insulation of superconducting magnets in a fusion reactor, particularly with regard to the radiation environment. This would ensure that the superconducting magnets, which are the most expensive single components of such a reactor, would not fail until the end of the plant lifetime and beyond. As a consequence, the fabrication of an “industrial mock-up” was organized, in order to test the vacuum impregnation process of large coils with the new insulation system on an industrial scale. In view of the successful outcome of all these tests, the ITER Organization decided to specify the insulation for the TF coils accordingly, i.e. to consist of boron-free glass-fibre tapes impregnated with a 40/60 blend of CE / epoxy.

The most important steps of this development may be summarized as follows. Work on the “traditional” epoxies, such as those employed for the fabrication of the TF model coil by the European Home Team during the ITER Development Phase, confirmed that the dielectric strength of these materials remained basically unaffected by neutron irradiation to the ITER design fluence of 1x1022 m-2 (E > 0.1 MeV), as shown in Figure 1.

1021

1022

0

20

40

60

80

100

120

0

Laminate

Sandwich

Die

lect

ric

Str

eng

th (

kV m

m-1

)

Neutron Fluence (m-2, E>0.1MeV)

Figure 1: Dielectric strength as a function of fast neutron fluence for two different sample configurations (epoxy reinforced with R-glass with and without a stainless steel disk). All tests were made at 77 K.

On the other hand, the mechanical properties of these materials, which are of decisive importance for the stability of such huge magnets against the forces during cool-down or warm-up as well as the enormous Lorentz forces acting during magnet operation, are seriously affected by neutron irradiation. Due to the nature of these materials, i.e. the wrapping of the glass-fibre tapes around the windings or the outer structure of a full pancake, followed by vacuum pressure impregnation, their mechanical properties are strongly anisotropic and most sensitive to interlaminar shear forces acting on them. Furthermore, in view of the pulsed operation of tokamak devices, fatigue effects under shear as well as under tension need to be taken into consideration (for a review of the subject, see 1). In order to demonstrate the seriousness of the problem, the radiation

                                                       

1 Radiation effects on superconducting fusion magnet components: H.W. Weber, Int. J. of Modern Physics E 20, No. 6, 1-54

(2011)

47 

response of pure epoxies (such as those used for the TF model coil) is shown in Figure 1 and compared to typical results on cyanate esters.

0 1x1021 1x1022

10

20

30

40

50

60

70

80

90

100

ILSS

SBS @

77K

Neutron fluence (E>0.1 MeV)

Interlaminar Shear

Strength

parallel

perpendicular

ITER Design Fluenc

CYANATE ESTER

EPOXY

T1(100) (0°)

T1(100) (90°)

T2(40) (0°)

T2(40) (90°)

T8(30) (0°)

T8(30) (90°)

T10(20) (0°)

T10(20) (90°)

0 10 20 30 40 50 60 70 80 90 100

ILSSirr

/ILSSunirr

(%)

1*1022

m-2

2*1022

m-2

4*1022

m-2

5*1022

m-2

Fig. 1: Fluence dependence of the interlaminar shear strength of pure epoxies and pure cyanate esters measured at 77 K.

Fig. 2: Relative change of the interlaminar shear strength at 77 K for various cyanate ester/epoxy blends at fast neutron fluences of up 5x1022 m-2. Numbers in brackets indicate the CE content of the blend.2, 3

However, the high costs of cyanate esters compared to epoxies suggested systematic studies on reducing the CE content and investigating the properties of CE/epoxy blends. The corresponding results are shown in Figure 2 and demonstrate the excellent radiation tolerance of these blends, at least in the range down to 40 wt% CE. Some of them were exposed to five times the ITER lifetime fluence and still retained much higher shear strengths than pure epoxies at a ten times smaller dose. After minor modifications of the materials the tests were repeated and found to satisfy all the specifications required.4 As a consequence, the TF coils will be fabricated with these newly developed materials (40/60 CE/epoxy blends) and the role of ATI will shift to the characterization and quality assurance of these new products, which are currently being manufactured by different companies worldwide.

                                                       2 Mechanical behavior of cyanate ester / epoxy blends after reactor irradiation to high neutron fluences: R. Prokopec et al., Adv. Cryog. Eng. 54, 182-189 (2008) 3 Insulation systems for superconducting fusion magnets based on cyanate ester: K. Humer et al., Fus. Eng. Des. 84, 960-963 (2009) 4 Characterization of advanced cyanate ester / epoxy blends before and after reactor irradiation: R. Prokopec et al., Fus. Eng. Des. 85, 227-233 (2010)

48  

Coated Conductors

M. Chudy, M. Eisterer, J. Emhofer, F. Hengstberger, K.R. Schöppl, T. Withnell, H.W. Weber

The extremely rapid worldwide development of this form of conductors based on the HTS Y-Ba-Cu-O (123 superconductor) led to the availability of commercially produced highly textured coated conductors with lengths of the order of 1.000 m and with current carrying capabilities of the order of 500 A per cm width of the tapes at liquid nitrogen temperature (77 K). Although the above number for the critical current (at 77 K and in self-field) is quite impressive (the actual critical current density Jc of such a 1 μm thick superconductor being even more impressive!), many applications require much higher transport currents and very low ac losses. In order to solve this problem, several concepts are currently being investigated, among them so-called Roebel cables, where meander shaped sections of the coated conductor tape are assembled to form a cable structure consisting of several parallel strands of superconductor (Figure 1).

Figure 1: Schematic view of the build-up of a Roebel cable (left). The prototype of a Roebel Assembled Coated Conductor (RACC), consisting of between 5 and 16 strands, is shown on the right.

The primary concern associated with this technology is twofold: firstly, what is the consequence of cutting the meander shaped sections from the tape in terms of Jc and of the current flow direction, which is no longer always parallel to the fabrication direction of the tape? And secondly, is the supercurrent flow sufficiently homogeneous under dc and ac field or current conditions? Both of these issues can be optimally addressed by the recently developed magnetoscan technique and/or by Hall probe mapping of the self-field under current transport of a Roebel strand1 cut from the above tape. Figure 2 shows clear indications of tape damage, such as variations in the tape width, as a consequence of the cutting process, but perfectly homogeneous current flow along the transverse section of the meander.

The second major focus of our work on coated conductors is connected to our research on superconducting magnets for nuclear fusion and explores the potential of such conductors for future fusion magnets, such as for “DEMO”, the next step on the way to electricity generating fusion power plants. Here, commercially available conductors are investigated with regard to their behaviour under neutron and gamma radiation, their performance at “high” temperatures (up to 77 K) and in magnetic fields (of up to 15 T), in order to arrive at a “road map” for their potential use as fusion magnet conductors. Activities of this kind are currently gaining considerable momentum, since liquid helium cannot be considered as a sustainable resource for the coming centuries. The optimal solution would, therefore, be to achieve operating temperatures of the magnets in the liquid nitrogen temperature range (~64 – 77 K), which could possibly be done with high-amperage cables made from coated conductors. Systematic work on the radiation response of high temperature

                                                       1 Scan measurements on Roebel assembled coated conductors (RACC): R. Fuger et al., J. Physics: Conf. Ser. 97, 012222 - 1-6 (2008)

49 

superconductors (in particular coated conductors) 2, 3, 4 clearly demonstrates their high radiation tolerance, the beneficial effects of neutron-induced defects in the range of the ITER design fluence, particularly the reduction of the critical current anisotropy (Figure 3), and in general the enormous progress in conductor performance achieved by industry during the past few years.

Figure 2. Current distribution in a Roebel strand cut from a 12 mm wide coated conductor tape. The inhomogeneities in the current flow (highlighted) are caused by small variations in the conductor width caused by the cutting process.

0 20 40 60 80 100 120

20

30

40

deg)

1.1022 m-2

4.1021

m-2

unirr

I c (

A)

64 K 6 T

H II c

Correlated pinning

Intrinsic pinning

Figure 3: Angular dependence of the critical current in a coated conductor at 64 K and 6 T. The data refer to the unirradiated state (green symbols) and to two subsequent sequential irradiation steps (red and black).

In summary, although significant improvements of conductor performance can be expected in the future, a replacement of Y in the 123 superconductors by another rare earth element, especially Sm, seems advisable, because it offers the possibility of bridging the present gap to the design criteria of DEMO due to its higher transition temperature (nearly 95 K) and, consequently, its higher irreversibility line.5

                                                       2 Influence of neutron irradiation on high temperature superconducting coated conductors: R. Fuger et al., Physica C 468, 1647-1651 (2008) 3 YBCO coated conductors for fusion magnets: R. Fuger et al., IEEE Trans. Appl. Supercond. 19, 1532-1535 (2009) 4 Neutron irradiation of coated conductors: M. Eisterer et al., Supercond. Sci. Technol. 23, 014009 – 1-6 (2010) 5 Superior properties of SmBCO coated conductors at high magnetic fields and elevated temperatures: R. Fuger et al., Physica C 470, 323-325 (2010)

50  

Fe-based superconductors

H.W. Weber, M. Zehetmayer, M. Eisterer

The discovery of superconductivity in materials containing Fe (and As) as well as the rapid development of similar families of materials with transition temperatures up to 55 K (SmFeAsO1-) came as a big surprise in 2008 and triggered worldwide excitement, much in the same way as the discovery of the high temperature superconductors in 1986 or of MgB2 in 2001. Similar to the cuprates, these materials are close to antiferromagnetic ordering, which has to be suppressed by doping in order to obtain superconductivity. This suggests the same mechanism of superconductivity in the iron based superconductors as in the cuprates, based on antiferromagnetic spin interactions.

Our work focused initially on the introduction of disorder by neutron irradiation1, which causes enhanced impurity scattering (small defects of high density) and improved flux pinning (nanometre sized defects). In contrast to magnesium diboride, impurity scattering is not efficient in improving the upper critical field in the iron based superconductors, because it is already extremely high in clean samples and can, therefore, hardly be improved by reducing the mean free path of the charge carriers. Typical data of the upper critical field after different irradiation steps are shown in Figure 1. The behaviour is dominated by the decrease in transition temperature. The slope of Bc2 increases after the first irradiation step, but decreases upon further irradiation. We also find a small reduction of the upper critical field anisotropy2.

Figure 1: Upper critical field of high pressure synthesized SmFeAsO1- after irradiation to various neutron fluences.

The neutron-induced defects also enhance flux pinning and consequently the critical current densities. Results on a cobalt doped BaFe2As2 single crystal are shown in Figure 2 and resemble data obtained from similar experiments on YBa2Cu3O7- crystals, although the critical current densities are significantly lower than in the cuprates.

                                                       1 Neutron irradiation of SmFeAsO1-xFx : M. Eisterer et al., Supercond. Sci. Technol. 22, 065015 – 1-5 (2009) 2 Effects of disorder on the superconducting properties of BaFe1.8Co0.2As2 single crystals: M. Eisterer et al., Supercond. Sci. Technol. 22, 095011 – 1-4 (2009)

51 

Figure 2: Increase of the critical current density in a cobalt doped BaFe2As2 single crystal after irradiation to 4×1021 fast neutrons per square meter.

However, they would be large enough for applications, the crucial point for this purpose being the grain boundaries. If they do not suppress the supercurrents, cheap polycrystalline conductors could be made of these new superconducting materials. Otherwise all relevant parameters are superior in the cuprates, from which technical (but currently very expensive) conductors can be fabricated. The intergranular currents are still low in today’s polycrystalline samples of iron based superconductors, but the problem seems less severe than in the cuprates and it is currently not clear whether the actual limitations for the intergranular currents are intrinsic (as in the cuprates) or a consequence of blocking layers inherent in today’s preparation techniques. By a special magnetization measurement method, we obtained evidence of clusters of strongly linked grains which are embedded in a matrix of weakly linked grains3. In order to investigate the role of grain boundaries in more detail, we plan to perform Hall probe microscopy (the corresponding setup is currently under construction), where the intra- and intergranular currents can be assessed simultaneously and related to the local microstructure.

Substantial progress in this field is expected from the recently granted research project SUPER-IRON in the framework of the EU Nanotechnology programme, where five research teams each from the EU and from Japan will make a dedicated effort to tackle the grain boundary issue and come up with reliable answers on the application aspects of these new superconductors.

                                                       3 Disorder effects and current percolation in FeAs based superconductors: M. Eisterer et al., Supercond. Sci. Technol. 23, 054006 – 1-7 (2010) 

52  

2.7 Junior research group: Quantum metrology (since 2011)

Staff: T. Schumm Project Staff: G. Kazakov, M. Schreitl, G. Winkler

Precision measurements, performing increasingly stringent and precise test of physical models and theories are besides the search for „new physics“ one of the main methods of research. Quantum mechanical properties, e.g. transition energies, are perfectly universal and reproducible (indistinguishability of particles) quantities and are hence ideally suited to implement standards for physical quantities. It is the aim of the research group to investigate novel quantum systems with regards to metrology applications (“quantum metrology”)

Especially laser spectroscopy and atomic clocks have reached an incredible level of accuracy and allow to put constrains on fundamental constants of physics like the fine structure/Rydberg constant. It is generally accepted, that further progress will be made going to higher transition energies such as optical atomic clocks.

At the heart of recent developments in the field of laser spectroscopy is the frequency comb technique, which represents an absolute optical synthesizer across the entire optical range. We will further improve these capabilities by extending the wavelength range into the UV and VUV regime and provide the basis for next-generation optical standards at very high frequencies.

Vorstellung

Präzisionsmessungen und damit ein immer genauerer Test der Vorhersagen unserer physikalischen Modelle und Theorien ist neben der Suche nach „neuer Physik“ eine der Hauptmethoden wissenschaftlicher Forschung. Quantenmechanische Eigenschaften wie z.B. Übergangsenergien sind perfekt reproduzierbare und universelle Größen (Ununterscheidbarkeit von Teilchen) und eignen sich daher hervorragend als Grundlage („Standard“) der physikalischen Größen und Einheiten. Die Arbeitsgruppe Quantenmetrologie wird neuartige Quanteneffekte und Systeme auf ihre Eignung für Präzisionsmessungen hin untersuchen.

Insbesondere im Bereich Laserspektroskopie und Atomuhren erlaubt die extreme Messgenauigkeit mittlerweile Aussagen über fundamentale Naturkonstanten wie die Feinstruktur- oder Rydberg-Konstante. Es ist allgemein anerkannt, dass weiterer Fortschritt im Bereich höherer Übergangsenergien wie z.B. bei optischen Atomuhren stattfinden wird.

Die kürzlich entwickelte Frequenzkammtechnologie hat die optische Spektroskopie revolutioniert. Sie bietet erstmals einen absolut „optischen Frequenzgenerator“ über den gesamten optischen Bereich. Unser Ziel ist es, den Einsatzbereich bis ins (Vakuum-) Ultraviolette zu erweitern und damit die Grundlage für die nächste Generation optischer Atomuhren zu schaffen.

53 

Towards a nuclear atomic clock basend on 229Thorium

The Radioisotope 229Thorium possesses a unique and remarkable property: its nucleus has an exceptionally low-energy excited (isomer) state which is expected only 7.6 eV above the

ground state (corresponding to an excitation wavelength of 165 nm). This system may provide a bridge between atomic and nuclear physics, allowing for the manipulation of an atomic nucleus using (laser) light. Being able to coherently control a nuclear quantum system will open up a plethora of research possibilities, ranging from a quantum memory over optical Mössbauer spectroscopy to nuclear atomic clocks.

A frequency standard based on this transition would outperform any of the existing atomic clock schemes by many orders of magnitudes. Furthermore, it will present a series of

practical advantages: the Thorium electron shell provides an effective shielding against electric or magnetic fields. This allows doping Thorium atoms into a crystal matrix and hence realizing a solid-state based frequency standard at room temperature and infinite observation time.

The energy of the low-energy transition results from a near cancellation of binding energies of the involved nuclear states, which are on the GeV level. These binding energies are determined amongst others by the Coulomb interaction, quantified by the fine structure constant. A precise measurement of the transition energy hence allows constraining a possible drift of the fine structure constant. As the transition is determined by cancelation of two large energies, such a measurement will be orders of magnitudes more sensitive than comparable efforts based on conventional atomic clocks.

At the current state we are identifying a suitable host crystal matrix for 229Thorium ions which chemically accepts the dopant and at the same time maintains optical transmission down to 160 nm. First attempts with Calcium fluoride single crystals, doped with the more abundant and stable 223Thorium isotope show very promising results. We have also started setting up the frequency comb system, further work will concentrate on efficient high-harmonic generation to transfer the comb light into the UV regime.

232Thorium-doped single CaF2 crystal. Doping concentration 200 ppm (1018 Th ions/cm3).

54  

3 Reports from the Central Facilities

55 

3.1 TRIGA Reactor G. Steinhauser, H. Böck, M. Villa

The Atominstitut (ATI) operates a TRIGA Mark II research reactor since March 1962 with a thermal power of 250 kW which is today the only operating research reactor in Austria.

Beyond academic education also education and early information at the secondary school level is very important to attract the young generation to basic nuclear knowledge which may later lead towards an academic nuclear education.

Due to these factors, besides its regular academic programs, the ATI has recently established a new program for secondary school pupils just before their certificate for university studies (17 to 18 years of age). In co-operation with dedicated physics teachers, two full day courses have been carried out in December 2010 to attract the future university students in nuclear physics.

The nuclear education and training (E&T) activities at university level involve mainly the academic (BS, Master and PhD) programs and some training programs. The ATI graduates about twenty Masters and five PhD students in nuclear related subjects per year.

Figure 1 depicts the trend of nuclear education at ATI. It is interesting to see in Figure 1 that the increasing trend of students in nuclear subjects offered at ATI. The obvious reason for this growing trend may be the awareness level of public in general and students in particular, about the need to maintain an expertise in the field of nuclear-, reactor- and radiation physics. This expertise can deliver answers to questions concerning the dispersal of radioactive material and related limits for humans, animals, environment and food.

Figure 1: Increasing trend of nuclear education in Austria [5].

56  

One of the first international training courses was the Eugene Wigner Course established in 2005 as a multi-national training course. During about 3 weeks between 10 to 18 students were trained at the TRIGA reactor Vienna, the training reactor at the TU Budapest and at the Vrabec reactor at the TU Prague. Although these courses were very successful they were abandoned due to financial problems in 2008.

The ATI signed a contract with Nuclear Technology Education Consortium (NTEC) (www.ntec.ac.uk) in 2007 to carry out two times a year a one week course for six NTEC students. The course consists of 15 experimental exercises and the course results are credited to the participating students by the University of Manchester.

The ATI also plays a role in the Integrated Infrastructure Initiative for Material Testing Reactor MTR+I3 EU project. The key goal of the European FP6 project MTR+I3 was to build durable cooperation between Material Testing Reactor (MTR) operators and relevant laboratories that can maintain European leadership with up-dated capabilities and competences regarding reactor performances and irradiation technology. Within the network of MTR+I3 project, ATI was one important partner providing its nuclear E&T services to facilitate this EU project. The TRIGA Mark II research reactor offered a training course for MTR+3I in reactor physics and instrumentation and control.

Another contract was signed in 2009 with the Belgian research centre SCK-CEN MOL to perform seven one week courses for about 40 MOL reactor staff as part of their regular retraining required by the Belgian Regulatory Authority. The practical exercises were chosen from the available table of 20 exercises.

Another support toward EU countries is to provide training to the operational staff of the NPP Bohunice and Mochovce since 2002. This regular training course is being managed at the ATI in co-operation with the TU Bratislava/Slovakia.

Due to its close location to the IAEA headquarters, the ATI provides nuclear education and training (E&T) services to IAEA Member States (MS) for many years. Therefore the ATI has long-term experience in organizing national and international training courses under the IAEA Technical Cooperation projects.

The Eastern European Research Reactor Initiative (EERRI) was established by the IAEA to organize and to implement a Group Fellowship Training Program on Research Reactors (GFTPRR) to satisfy the increasing demand for the mentioned skill development and is offered to interested participants from MS. The program is organized in collaboration with the Vienna University of Technology/Atominstitut (VUT/ATI). The first iteration involves VUT/ATI, two Hungarian Nuclear Research Institutes, and staff members from the Jozef Stefan Institute/Ljubljana (IJS), Slovenia. The duration of the training program is 6 weeks and covers about 30 topics ranging from theoretical lectures to practical experiments at the TRIGA reactor Vienna and at the training reactor of the Budapest Technical University grouped into three main areas; organizational matters, research reactor operation & maintenance and radiation protection. Currently following institutes are involved in this project.

Vienna University of Technology/Atominstitut (VUT/ATI), Austria KFKI Budapest, Hungary Budapest University of Technology, Hungary Institute Jozef Stefan, Ljubljana, Slovenia Technical University of Prague, Czech Republic Research Centre Rez, Czech Republic

57 

The first course was carried out for six weeks in spring 2010 with great success; the demand was so high that since the first course four more courses with similar structure have been carried out with IAEA financial support.

The ATI has been carrying out training courses for the IAEA Safeguards Traineeship program since 1984 especially for participants from developing countries. These courses last about 4 weeks and the trainees undergo a very tight theoretical and practical training. About 90 trainees from all over the world have passed through the ATI safeguard training courses since 1984.

Since mid-1970 the ATI is hosting IAEA fellows from all over the world to spend from two weeks to one year in specialized nuclear training. The fellow is attached according to his/her training area to one ATI working group and after an appropriate introduction period carries out his/her assigned training task. Within this program more than 110 fellows have passed through the ATI. In addition, in many cases a long-term cooperation between the ATI and the fellow’s home institute has been established.

 Figure 2: Radioxenon sampling at the Atominstitut with SAUNA II (Swedish Automatic Unit for Noble Gas

Acquisition)

58  

3.2 Radiation Protection Department Dieter Hainz, Sigfried Shrbeny, Monika Veit-Öller, Andreas Musilek

The radiation protection department is responsible for the implementation of health physics at the Institute. Among other things, this implies dosimetry and radiation related medical checkups for occupationally exposed workers of category A and B working at the Institute. Each year some 2500 dosemeters were released for staff, students, and participants of practical lectures. Also 100 occupationally exposed workers of category A had to get medical checkups. These checkups were carried out by the medical service of the Vienna University of Technology for the first time in 2009 to guarantee maximum effectiveness.

During the construction work at the Institute in the recent years, many additional tasks had to be managed. Beside the supervision of the construction workers, former radiation areas had to be checked on radioactive contamination and decontaminated if necessary. These measurements were checked by the authorities. Subsequently a new operating approval for the Institute had to be issued by the authorities which had to be prepared by the radiation protection department. Primarily the new radio-chemistry laboratories had to be prepared properly to get the operating approval, which was issued in April 2011. In line with the construction work and the rearrangement of laboratories the controlled and supervised radiation areas of the Institute were adopted to the new utilization. With collaboration of the authorities the number of supervised areas could be decreased. This was reasonable because new research areas established at the Institute are not handling radioactive material at all. So the effort in supervising students and visitors can be minimized in future. In the recent years many courses in the field of radiation protection were carried out by the department. Beside the lectures for students of the Vienna University of Technology, theoretical and practical lectures in cooperation with WIFI and Austrian authorities (BM.I, BMVIT) were held for people working with radioactive materials or radiation in their business. Finally the courses for the IAEA should be emphasized. These courses, which were held in cooperation with the reactor group, keep up important contacts to international authorities and other international research fields.

Vorstellung

Der Betriebliche Strahlenschutz des Atominstituts ist für die Umsetzung der gesetzlichen Richtlinien im Bereich des Strahlenschutzes verantwortlich. Dies beinhaltet unter anderem die Durchführung der dosimetrischen Überwachung und die Veranlassung der medizinischen Untersuchungen von beruflich strahlenexponierten Personen der Kategorien A bzw. B am Institut. Pro Jahr wurden so rund 2500 Dosimeter an Mitarbeiter, Studenten und Teilnehmer von praktischen Übungen ausgegeben. Medizinische Untersuchungen wurden für ca. 100 beruflich strahlenexponierte Personen der Kategorie A organisiert. Diese Untersuchungen wurden 2009 das erste Mal durch den Arbeitsmedizinischen Dienst der TU Wien durchgeführt, womit die Umsetzung effizienter gestaltet werden konnte.

Durch die Bauarbeiten, die in den letzten Jahren am Institut durchgeführt wurden, mussten weitere Aufgabenbereiche abgedeckt werden. So wurden zum Beispiel, neben der Überwachung der am Institut tätigen Bauarbeiter, Strahlenbereiche umgewidmet. Bereiche, die zukünftig nicht mehr als Strahlenbereich geführt werden sollen, mussten freigemessen und gegebenenfalls dekontaminiert werden. Die so vom Betrieblichen Strahlenschutz durchgeführten Messungen wurden von der Behörde bzw. von Sachverständigen überprüft und für in Ordnung befunden. Nachfolgend wurde dem Institut eine neue Betriebsbewilligung ausgestellt, die von den Behörden in Zusammenarbeit mit dem Betrieblichen Strahlenschutz erarbeitet wurde. Der Schwerpunkt bei diesen Arbeiten lag in der entsprechenden Vorbereitung der neuen Radiochemielabors, um die gesetzlichen Rahmenbedingungen zu erfüllen. Die Bewilligung konnte dann im April 2011 erteilt werden.

59 

Im Rahmen der Bauarbeiten und der Umgestaltung der Laborbereiche wurden auch die Überwachungs- und Kontrollbereiche des Instituts an die neue Nutzungssituation angepasst. In Zusammenarbeit mit den Behörden konnte so auch die Anzahl der Strahlenbereiche im Institut reduziert werden. Dies war notwendig und sinnvoll, da neue Forschungsbereiche am Institut nicht mehr mit radioaktiven Materialien arbeiten. Somit kann zukünftig auch der Aufwand für die strahlenphysikalische Überwachung von Studenten bzw. Besuchern reduziert werden.

In den vergangenen Jahren wurden viele Ausbildungen im Bereich des Strahlenschutzes abgehalten. Neben den Vorlesungen für Studenten der TU Wien wurden auch theoretische und praktische Kurse für Teilnehmer veranstaltet, die in ihrem Arbeitsumfeld mit radioaktiven Stoffen umgehen. Dies wurde in Zusammenarbeit mit externen Stellen wie dem WIFI, dem BM.I und dem BMVIT durchgeführt. Hervorzuheben sind noch die Kurse, die für die IAEA abgehalten wurden. Diese Ausbildungen, die regelmäßig in Zusammenarbeit mit der Reaktorgruppe abgehalten werden, ermöglichen wichtige Kontakte mit internationalen Behörden und Forschungsgruppen.

 

Überprüfung von Hand-Fuß Monitoren durch den Betrieblichen Strahlenschutz

60  

3.3 EDV H. Diem, G. Pühringer, H. Richter, F. Sauerzopf

Die Entwicklung des Atominstituts im Berichtszeitraum brachte auch für die EDV-Abteilung einige beachtliche Herausforderungen mit sich. Einerseits verursachte der Umbau bzw. die Renovierung vielfältige administrative Probleme. Die parallel verlaufende deutliche Vergrößerung des Personalstandes durch die Erweiterung des Arbeitsbereiches "Neutronen- und Quantenphysik" und das Hinzukommen des Arbeitsbereiches "Angewandte Quantenphysik" erhöhte auch entsprechend die Belastung von Infrastruktur und Personal der EDV-Abteilung. Diese Änderungen sowie die laufend steigenden Anforderungen an die Qualität der angebotenen Services führten zu notwendigen Adaptionen und Erweiterungen der bestehenden IT-Infrastruktur.

Durch die Umsiedlung der IT-Abteilung mussten insbesondere die Server in den zweiten Keller verlegt werden. Durch die Aufstellung der Server im Baustellenbereich musste eine stark erhöhte Wartungstätigkeit in Kauf genommen werden. Für Backups von Daten der einzelnen Arbeitsplatzrechner wurde ein zentraler Backup-Server sowie Gruppenserver für Datenhandling und Backup von einigen Arbeitsgruppen eingerichtet. Zur Erhöhung der Datensicherheit wurden zusätzlich Spiegelserver für einige dieser Systeme und ein Backup-Gerät für den E-Mail-Server in den Institutsräumen (Arbeitsbereich Kernphysik) im Freihausgebäude eingerichtet. Allerdings mussten auch diese während der dort notwendigen Umbauten 2010 wieder umgesiedelt werden. Zusammen mit DNS-Service und ebenfalls redundant aufgebauten Druckerservern ergibt sich eine Gesamtzahl von sechs zentralen Geräten, zuzüglich zwei Backup-Systemen im Freihaus und fünf Gruppenservern, von denen ebenfalls zwei im Freihaus gespiegelt werden. Softwarewartung, die meisten Hardware-Reparaturen und die Wartung der Systeme wird durch die EDV Abteilung geleistet.

Ein traditionell gewichtiger Punkt in der Betreuung der Institutsangehörigen ist die Einrichtung und Hilfestellung beim Betrieb der Mitarbeiter PCs. Deren Zahl stieg im Berichtszeitraum von knapp 250 auf etwa 430, nicht nur durch neu hinzugekommenes Personal, sondern auch durch die zusätzlich angeschafften Laptop Rechner, die aus dem Wissenschaftsbetrieb nicht mehr weg zu denken sind. Nicht vergessen sollte man, dass durch die Einführung des SAP Systems an der TU Wien eine signifikante Anzahl SAP Arbeitsplätze eingerichtet und gewartet werden müssen.

Durch die stark gestiegene Zahl der Arbeitsplatzrechner war der ursprüngliche Pool an IP-Adressen im Netz des Atominstituts nicht mehr ausreichend. Als vernünftiger Ausweg bot sich die Einbeziehung des ATI ins TU-net an. Im Zuge der Umstellung wurde die Neuzuordnung aller Rechneradressen im Netz des Atominstituts notwendig. Der Datenverkehr von aus dem ATI gesendeten Daten sank im Berichtszeitraum von 1818 Gb (2008) auf 1359 Gb (2010), währen die empfangene Datenmenge fast verdoppelt wurde, von 3433 Gb (2008) auf 6469 Gb (2010).

Zur Einführung des neuen TUPhone Telefonsystems war es notwendig, sämtliche Telefonnummern des Instituts neu zuzuteilen und zu verbinden. Im Zuge der Systemumstellung bekam unsere Abteilung zusätzlich den Betrieb und die Wartung der Nummern- und Apparatezuteilung überantwortet.

Zu Beginn des Berichtszeitraumes wurde die Webpage in der zu diesem Zeitpunkt abgestimmten Form fertig gestellt. Die starke Vergrößerung des Personalstandes, eine massive Erweiterung der Anforderungen an die Präsentation sowie die Beseitigung einer wichtigen Datenbankanbindung (TUWIS) führte zur notwendigen Neuplanung des Webauftritts, die allerdings mit Ende 2010 nicht abgeschlossen war.

61 

3.4 Das Elektroniklabor am Atominstitut Rainer Essbüchl, Maximilian Zach, Jörg Miehle

Aufgrund des zu erwartenden hohen Bedarfs an Elektronikbaugruppen der neu zu etablierenden Forschungsgruppen am Atominstitut wurde 2007 die neue Elektronikwerkstatt in Betrieb genommen. 2009 wurde das bis dato 2-Mann Team DI (FH) Jörg Miehle als Bereichsverantwortlicher und Maximilian Zach als Elektroniker durch Rainer Essbüchl für den Schwerpunkt Reparatur und Fertigung verstärkt. Dies war notwendig, da aufgrund der Berufung der Professuren „Neutronen- und Quantenphysik“ und „Angewandte Quantenphysik“ an das Atominstitut der Bedarf an Elektronikkomponenten weiter anstieg. Durch die so steigende Anzahl von Mitarbeitern und den erhöhten Platzbedarf im Haus stand auch der Elektronik sehr wenig Werkstattbereich zur Verfügung. Die damit verbundene deutlich reduzierte Lagerhaltung und eine optimierte Fertigung konnten jedoch erfolgreich umgesetzt werden.

Allein im Jahre 2010 wurden 128 Geräte mit einem Materialwert von über € 30.000 gebaut. Über 90% des Materialbedarfs wird „just in time“ geordert. Um den steigenden Anforderungen an die Elektronikwerkstatt gerecht zu werden und die Fertigungsabläufe zu optimieren, wurden in den letzten Jahren nicht unerhebliche Investitionen im Bereich Löttechnik und „Rapid Prototyping“ getätigt. So wurden zwei Lötöfen und ein Fräsbohrplotter sowie viele weitere nützliche Fertigungshilfsmittel und Messgeräte angeschafft. Auch wurde zur Verbesserung des Entwicklungspotentials der Messgerätepark ganz erheblich erweitert. Heute ist die Elektronikwerkstatt in der Lage, flexibel und kurzfristig auf die Wünsche der WissenschafterInnen einzugehen und das auf hohem technischen Niveau. So konnte unter anderem zur linearen Ansteuerung von Spulen die abgebildete netzbetriebene, spannungsgesteuerte Stromquelle bis 10A mit einer Genauigkeit von 1mA und einem Stromrauschen von maximal 10μA entwickelt und gefertigt werden.

Auch in Zukunft wird alles daran gesetzt werden, die Fertigung und Entwicklung sowie die Gerätereparatur weiter zu verbessern, um den stetig steigenden Anforderungen gerecht zu werden.

Links: Von der Elektronikgruppe entwickelte spezielle ultrastabile steuerbare Stromquelle bis 10A. Mitte: Rauscharme statische Spannungsquelle, Rechts: Modul zur Laserfrequenzstabilisierung mittels Radiofrequenzmodulation.

62  

3.5 Mechanische Werkstätte Roman Flasch, Rudolf Gergen, Andreas Linzer, Herbert Hartmann

Das Jahr 2008 begann mit dem Abgang des im ganzen ATI beliebten Herrn Erich TISCHLER, durch seinen Übertritt in den wohlverdienten Ruhestand. Im Gegenzug konnte aber ein neuer Mitarbeiter für die Werkstätte, Herr Rudolf GERGEN, gewonnen werden, welcher mit großer fachlicher Kompetenz, Erfahrung und Wissen nun das Team verstärkt, um gemeinsam mit Herrn Andreas LINZER, welcher bereits seit dem Jahr 2007 am ATI tätig ist, den sowohl in Quantität als auch in Qualität gestiegenen Anforderungen an die Fertigung gerecht zu werden.

Durch die Berufung neuer Professoren ans Institut und den Zugang deren Arbeitsgruppen war die Wiederherstellung der Versuchsaufbauten das vorrangige Aufgabengebiet der Werkstätte. Hierfür waren einige Hilfsvorrichtungen zu fertigen und Adaptionen durchzuführen.

Im Anschluss wurde dann ein neues Projekt in Angriff genommen, das “magnetische Förderband für ultrakalte Atome“ (siehe Foto). Für die Umsetzung dieses Projekts wurde eine Vielzahl von Vorrichtungen gebaut und Teile angefertigt. Um nur einige hier aufzuzählen: eine Hochvakuumkammer, Kompensationsspulen, Transportspulen, ein Kryostat mit Messeinsatz, eine “Elektronenkanone“, etc.

Links: Abschirmung für 50 K aus hochreinem Aluminium für einen Kryostaten, Mitte Links: Elektronenkanone aus Kupfer und Keramik (Macor) gefertigt, Mitte Rechts: Hochvakuumkammer aus einem Stück nichtmagnetischem Edelstahl gefertigt, Rechts: Hochstromfähige Kupferspulen, ultrakompakt gewickelt und in thermisch leitendem Epoxidharz eingegossen für Atomtransport.

Die größten terminlichen Herausforderungen stellten aber die Versuchsaufbauten für das Forschungsinstitut ILL in Grenoble dar. Innerhalb eines derart engen Zeitfensters einen so großen Umfang von Komponenten (Spiegelhalterungen, Schwenk- und Kippvorrichtungen, Kristallaufnahmen, Beammonitorflansche, etc.) zu fertigen und analog die anfallenden Arbeiten für alle anderen Arbeitsgruppen innerhalb des ATI unterzubringen, brachte uns fast ans Limit des Machbaren.

Glücklicherweise bereichert seit dem Jahr 2010 ein zusätzlicher, ebenfalls sehr wertvoller Mitarbeiter unser Team, Herr Roman FLASCH.

In diesem Jahr wurde auch der Grundstein für die Anschaffung einer neuen CNC-Fräsmaschine gelegt. Dem nächsten Report vorgreifend, möchten wir den positiv verlaufenden Ausgang diesbezüglich bereits jetzt bekannt geben. 

63 

4 Guest Scientists, Co-operations, Public Relations, Publications

64  

4.1 Applied Quantum Physics Seit Juli 2010 als neuer Fachbereich am Atominstitut Zum 1. Juli 2010 wurde Univ.Prof. Dr. Arno Rauschenbeutel als Leiter des neu eingerichteten Fachbereichs „Angewandte Quantenphysik“ an das Atominstitut berufen. Nach Fertigstellung der Labore und Büros ist die Arbeitsgruppe Rauschenbeutel dann Anfang Dezember 2010 samt allen experimentellen Apparaturen von der Johannes Gutenberg Universität Mainz nach Wien übersiedelt. Es folgte eine mehrmonatige Periode des Wiederaufbaus der Experimente, so dass die Publikationen, Forschungsergebnisse etc., die in der AG Rauschenbeutel im Laufe der Berichtsperiode 2008–2010 erzielt wurden, nicht dem Atominstitut zuzuordnen sind und hier nicht aufgelistet werden.

65 

4.2 Atomphysik, Quantenoptik

Preise und Auszeichnungen START preis (T. Schum)

ERC starting grant (T. Schumm)

Gastwissenschaftler

Kazakov Georgy St. Petersburg State Polytechnic University

03.02.2009 01.05.2009 24.09.2009 01.01.2010

Helmut Rathgen Universität Stuttgart

17.05.2010 01.06.2010 Kae Nemoto National Institute of Informatics (Tokyo) William Munro NTT basic research laboratory (Japan) Thomas Plisson Institut d’Optique

Graduate School, Compus Polytechnique, Palaiseau, France Stage de l’ècole Polytechnique,

July 2008 – March 2009

Claudia deGrandi Boston University, USA, June 2008 – Oct. 2008

Gastvortragende 2008 14. Jänner E. DEMLER Harvard University Quantum noise analysis of ultracold atoms 14. März Florian GRÜNER MPI Quantenoptik, Garching Towards table-top free-electron-lasers 4. April Philipp KRAMMER Universität Wien Entanglement witnesses and bound entanglement 18. April Andreas POPPE und Momtchil PEEV Austrian Research Centers Quantum key distribution network in Vienna 25. April Carsten HENKEL Universität Potsdam Dekohärenz naher einer Oberfläche 23. Mai David I. SCHUSTER Yale University Microwave cavity quantum electrodynamics in a molecular ion trap 6. Juni Iva BREZINOVA TU Wien Theoretische Physik Phase coherent electron transport through quantum dots 13. Juni Jérôme ESTEVE Kirchhoff-Institut für Physik Squeezing and entanglement in a Bose-Einstein condensate 20. Juni Ulrich HOHENESTER Universität Graz

66  

Optimal quantum control of Bose-Einstein condensates in magnetic microtraps 4. Juli Lothar FRITSCHE Universität Karlsruhe Kann man Quantenmechanik aus einem fundamentalen Prinzip herleiten? 8. Juli Marlan O. SCULLY Texas A&M and Princeton University Directed spontaneous emission from an extended ensemble of N atoms:

Timing is everything 17. Oktober Michael TRUPKE Imperial College London Integrating optical devices with atom chips 14. November Christoph SIMON Université de Genève Quantum memories based on solid-state atomic ensembles 28. November Pascal BOEHI LMU München State selective micro-wave potentials: Towards a controlled phasegate on

an atom chip 12. Dezember Stefan ROTTER TU Wien Comprehensive lasing theory for multimode random lasers 19. Dezember Dietmar PETRASCHEK Universität Linz Berechnung von Kohärenzlängen im Rahmen der dynamischen

Beugungstheorie 2009 16. Jänner Christoph BECHER Universität Saarland Color centers im Diamanten 9. März Martin WEGENER Universität Karlsruhe Photonics Metamaterials: Optics Starts Walking on Two Feet 17. März Tien D. KIEU University of Melbourne A Random Tour of Quantum Physics 27. März A. RETZKER Imperial College, London Hawking radiation, Unruh effect and moving mirrors 23. März Daniel LOSS Universität Basel Spins Coupled to Electric Fields and Photons in Microwave Cavities 30. März Thomas CORBITT MIT, Cambridge Introduction into detection of gravitational waves 6. April L. HACKERMÜLLER Universität Mainz Interacting ultracold Fermi-gases in optical lattices 20. April Philippe BOUYER Laboratoire Charles Fabry Using Matter-waves and optical disorder to study coherent transport 24. April A. K. PAN Bose Institute, Calcutta Empirical scrutiny of the Bohmian Model 27. April Fritz BOSCH GSI, Darmstadt Beta Decay and Stellar Nucleosynthesis 4. Mai Massimo INGUSCIO LENS, Florence Ultracold atoms in disordered optical lattices 8. Mai R. HART Univ. Innsbruck From an ideal gas to the Super-Tonks-Girardeau Regime with tunable

interactions 11. Mai Ekkehard PEIK Physikalisch-Technische Bundesanstalt, Braunschweig Optical clocks with trapped ions 15. Mai J. ZMESKAL Stefan-Meyer Institut, Wien [auch in KT] Exotic atoms - towards precision spectroscopy of kaonic hydrogen 25. Mai Clemens BECHNINGER Universität Stuttgart

67 

Der kritische Casimir Effekt: Kräfte durch Fluktuationen 29. Mai J. ELZERMAN ETH Zürich Quantum optics with semiconductor nanostructures 2. Juni A. RAUSCHENBEUTEL Universität Mainz Nano-Quantenoptik mit ultradünnen Glasfasern 8. Juni A. KUHN Oxford University Atom-photon connections and scalability in quantum networks Dieter MESCHEDE Universität Bonn Quantum Marbles - Controlling neutral atoms at every step 9. Juni D. LEIBFRIED NIST Boulder Quantum information processing and quantum control with trapped ions 15. Juni M. ASPELMEYER Universität Wien Quantum-opto-mechanics: quantum foundations and quantum

information on the nano- and microscale Klaasjan N.J. VAN DRUTEN WZI, Universiteit van Amsterdam Life in lineland (on an atom chip) 19. Juni H. De RIEDMATTEN Universität Genf Quantum memories for quantum networks Barry SANDERS University of Calgary, Canada Electron superhighways and bridges in protein complexes 29. Juni Mark G. RAIZEN University of Texas, Austin, USA Towards Comprehensive Control of Atomic and Molecular Motion 9. Oktober Julian GROND Universität Graz Optimal control with Bose-Einstein condensates 16. Oktober Margareta WALLQUIST Universität Innsbruck Coherence and decoherence 30. Oktober Xiaosong MA IQOQI-Wien Experimental realizations of gedankenexperiments regarding space and

time in quantum physics 20. November Matt LAHAYE Syracuse University, NY/USA Nanomechanical measurements of a superconducting qubit 4. Dezember Florian MARQUARDT Ludwig-Maximilians-Universität München Decoherence of electrons 10. Dezember F. FERLAINO Universität Innsbruck Ultracold erbium atoms S. STELLMER Universität Innsbruck Bose-Einstein condensation of strontium R. HART Universität Innsbruck Experiments with atoms in optical lattices S. BARZ Universität Wien Recent results and future challenges of photonic quantum computation A. DALEY Universität Innsbruck An atomic colour superfluid via three-body loss M. KLEINMANN Universität Innsbruck Almost compatible observables in quantum tests of contextuality 11. Dezember J. DALIBARD ENS Paris Gauge fields for neutral atoms: from Sagnac’s to Berry’s phase E. RASEL Universität Hannover Matter waves in free fall C. GENES Universität Innsbruck Opto-mechanical interactions via optical sideband scattering with

molecules and mirrors

68  

C. KLEMPT Universität Hannover Parametric down-conversion with matter waves S. RAMELOW Universität Wien Coherent single photon (up-) conversion M. KLEINMANN Universität Wien Hidden variable test with single photon qutrits 2010 15. Jänner Jan Michael ROST MPI Dresden Fast electron migration: A universal phenomenon under XFEL and

attosecond light pulses 12. März Christoph SCHÄFF Uni Wien

Creating and manipulating higher dimensional photonic states 19. März Michael VANNER Uni Wien Optomechanic for pedestrians 26. März Jason TWAMLEY Macquarie University, Australia Nonlinear quantum optics in superconducting systems: Giant-Kerr and

nitrogen-vacancy defects 16. April Peter HADLEY TU Graz Hierarchical ordering in organic electronics 7. Mai Christian GROSS Uni Heidelberg Spin squeezing and nonlinear interferometry with ultra-cold quantum

gases 28. Mai Helmut RATHGEN Uni Stuttgart Quantum non-demolition measurement of a bare nuclear spin in diamond 19. November Andreas HEMMERICH Universität Hamburg p-wave superfluidity 26. November Selim JOCHIM Universität Heidelberg Deterministic preparation and control of a few fermion system 10. Dezember Stefan TROTZKY LMU München Non-equilibrium quantum dynamics in optical lattices and thermalization YAO 2009: February 17 – 21, Young Atom Opticians Conference   Conference for young researchers working in quantum optics with a focus 

on cold atoms organized by students of the group.  SFB FoQuS Meeting: December 10th - 11th 2009,   Meeting des Sonderforschungsbereichs Foundations and Applications of 

Quantum Science am Atominstitut. 

Gastprofessoren N.Proukakis (U. Newcastle)

Co-Operations Jian-Wei Pan, University of Heidelberg und University of Science and Technology of China, China

Markus Oberthaler, Kirchhoff Institut für Physik, University of Heidelberg, Germany

69 

Jörg Wrachtrup, 3rd Institute of Physics and Research Center SCOPE, University Stuttgart, Germany

Ron Folman, Department of Physics, Ben-Gurion University of the Negev, Be’er-Sheva, Israel

David E. Pritchard, Massachusetts Institute of Technology, USA

Alexander D. Cronin, University of Arizona, Tucson, USA

R.J. Schoelkopf, Yale University, New Haven, USA

Peter Krüger, Nottingham University, Great Britain

Ulrich Hohenester, Karl-Franzens-Universität Graz, Graz, Austria

Helmut Ritsch, University of Innsbruck, Austria

Eugene Demler, Harvard University, Cambridge, USA

Gershon Kurizki, Weizmann Institute of Science - 76100 Rehovot, Israel

Norbert Mauser, Wolfgang Pauli Institut, Universität Wien

Fujio Shimizu, NTT Basic Research Laboratories, Kanagawa, Japan

Tommaso Calarco, Institute of Quantum Information Processing, Ulm University, Germany

Igor Lesanovsky, Nottingham University, Great Britain

Public Relations, Öffentlichkeitsarbeit KinderUni, 12.-24.Juli 2010, Workshop, Vorlesung und Laborführung Lehrerweiterbildung: Vortrag und Laborführung, 23.Feber 2010 Vorträge im Rahmen vom Wissenschaft in Schulen

PA: „Physiker bauen supraleitende Quanten-Computerchips“ (Juli 2009)

PA: „TU-Studierende veranstalten internationale Quantenphysik-Konferenz“ (Februar 2009): Young-Atom-Opticians (YAO) Conference 2009. Hundert Studierende aus der ganzen Welt präsentieren am Atominstitut für fünf Tage neueste Arbeiten aus dem Bereich der Quantenphysik präsentieren.

"Imagefilm" – Clara Lehnfeld (Oktober 2007): Arbeit der Filmakademie zum Thema Quantenphysik.

Vernetzung in Sachen Quantenphysik ”Der Standard” vom 15.12.2010 Seite: 16 Ressort: Forschung Spezial Wiener Quantenphysiker bündeln ihre Kräfte science.ORF.at 14.12.2010

Kräfte bündeln, Strahlkraft erhöhen Der Standard” vom 07.12.2010 Seite: 20 Ressort: Forschung Spezial

WAS KOMMT: Jugend forscht ”Der Standard” vom 30.06.2010 Seite: 17 Ressort: Forschung Spezial

KinderuniWien kämpft heuer auch gegen Armut APA-JOURNAL Karriere vom 24.06.2010

WAS KOMMT: Schweben ”Der Standard” vom 16.06.2010 Seite: 16 Ressort: Forschung Spezial Ein Strahl mit Zukunft ”Der Standard” vom 24.03.2010 Seite: 13 Ressort: Forschung Spezial

WAS KOMMT: Verteilungskampf Der Standard” vom 10.03.2010 Seite: 16 Ressort: Forschung Spezial

70  

Kein Schutz vor Mittelmäßigkeit ”Der Standard” vom 03.03.2009 Seite: 16 Ressort: NetBusiness Spitzenforscher üben Kritik am Uni-Kollektivvertrag APA-JOURNAL Karriere vom 02.03.2009

Wittgensteinpreisträger fürchten um Forschung science.ORF.at 03.02.2009

Bessere Fernübertragung von Quanteninformation science.ORF.at 19.08.2008

Quantenphysik-Sommerkurs in Innsbruck APA-JOURNAL Forschung vom 11.07.2008

How Can Quantum Physics Be Harnessed? Science Dayly June 2008

ÖH veranstaltet wieder “Woche der freien Bildung” APA-JOURNAL Karriere vom 19.05.2008 ÖH veranstaltet wieder "Woche der freien Bildung" science.ORF.at 19.05.2008

Experimental-Physik: Das Rauschen der Quanten ”Die Presse” 22.04.2008

Quanten rauschen anders science.ORF.at 21.4.2008

Stromfluss stottert im Mikrobereich science.ORF.at 22.2.2008

Quantencomputer rücken näher COMPUTERWELT 17.02.2008

Zwischenspeicherung photonischer Quantenbits gelungen pressetext.austria 17.02.2008

Wesentlicher Schritt in Richtung Quantencomputer gelungen ”Der Standard” 06.02.2008

Zwischenspeicherung photonischer Quantenbits gelungen The Epoch Times 26.01.2008

Elemente: Info-Doppeltalent I: Quanten ”Die Presse” 23.01.2008 Seite: 36

Kritischer Blick in den Topf für die Nachwuchsforschung ”Der Standard” 23.01.2008

Ein Atomchip für alle Quantenfälle ”Der Standard” 23.01.2008

Neues zur Quanten-Teleportation pro-physik 23.01.2008

Quantensprung bei der Quanten-Teleportation ScienceXX 23.01.2008

Information von Photon auf Atom und retour science.ORF.at 22.01.2008

Researchers Demonstrate Quantum Teleportation and Memory in Tandem Physorg.com 20.01.2008

71 

Info-Doppeltalent I: Quanten „Die Presse“ 23.01.2008 International Scientific Press:

Fit for purpose Thesis: Nature Physics 4, 901 (2008)

Parting a cloud Nature: Research Highlights Vol 454, p370, 24 July 2008

"The Observer and its reality" (Clara Lehnfeld) Winners of the first European Science Film Festival

The award for the "best independent film" went to Clara Lehnfeld from Vienna; her film "The Observer and its reality" (Der Beobachter und seine Realität) explains the behavior of quanta in a vivid and entertaining manner. The jury was impressed by the combination of Psychoanalysis and Cinema as the "best scientific theme".

Club Research (22.3.2010):

Öffentliches Geld für welche Forschung:Nach der Krise der Verteilungskampf?

Popular Lectures:

Science goes to school Vorlesungen und diskussionen über Wissenschaft und Quanten-Physik in verschiedensten Schulen in Niederösterreich (BRG St. Pölten, BG/BRG Stockerau, HTL Mödling, Mai/Jun 2009)

Quantenwissenschaften Rotary Club Wien (Jun 3rd 2009)

Informationsveranstaltung: MC fellowships (FFG + TU-Wien Mar. 24th 2009)

72  

Publikationen Zeitschriftenartikel

Simon Aigner, L. Pietra, Y. Japha, O. Entin-Wohlman, T. David, R. Salem, R. Folman, H.-J. Schmiedmayer: "Long-Range Order in Electronic Transport Trough Disordered Metal Films“; Science, 319 (2008), S. 1226 - 1229.

Y.-A. Chen, S. Chen, Z.-S. Yuan, B. Zhao, C. Chuu, H.-J. Schmiedmayer, J.-W. Pan: "Memory-built-in quantum teleportation with photonic and atomic qubits“; Nature Physics, 4 (2008), S. 103 - 107.

C. Chuu, T. Strassel, B. Zhao, Markus Koch, Y.-A. Chen, S. Chen, Z.-S. Yuan, H.-J. Schmiedmayer, J.-W. Pan: "Quantum Memory with Optically Trapped Atoms“; Physical Review Letters, 101 (2008), 120501; S. 120501-1 - 120501-4.

A. Goebel, C. Wagenknecht, Q. Zhang, Y.-A. Chen, K. Chen, H.-J. Schmiedmayer, J.-W. Pan: "Multistage Entanglement Swapping“; Physical Review Letters, 101 (2008), 8; S. 080403-1 - 080403-4.

S. Hofferberth, I. Lesanovsky, Thorsten Schumm, A. Imambekov, V. Gritsev, E. Demler, H.-J. Schmiedmayer: "Probing quantum and thermal noise in an interacting many-body system“; Nature Physics, 4 (2008), S. 489 - 495.

Y. Japha, O. Entin-Wohlman, T. David, R. Salem, Simon Aigner, H.-J. Schmiedmayer, R. Folman: "Organized Current Patterns in Disordered Conductors“; Physical Review B, 77 (2008), S. 1 - 5.

I. Mazets, G. Kurizki, M.K. Oberthaler, H.-J. Schmiedmayer: “Creation of macroscopic quantum superposition states by a measurement“; EPL (vormals Europhys. Lett.), 83 (2008), S. 60004-p1 - 60004-p5.

I. Mazets, Thorsten Schumm, H.-J. Schmiedmayer: "Breakdown of integrability in a quasi-one-dimensional ultracold bosonic gas“; Physical Review Letters, 100 (2008), S. 1 - 4.

W. Rohringer, R. Bücker, S. Manz, Th. Betz, C. Koller, M. Göbel, A. Perrin, H.-J. Schmiedmayer, Thorsten Schumm: "Stochastic optimization of a cold atom experiment using a genetic algorithm“; Applied Physics Letters, 93 (2008), 264101; S. 264101-1 - 264101-3.

M. Trinker, S. Groth, S. Haslinger, S. Manz, Th. Betz, S. Schneider, I. Bar-Joseph, Thorsten Schumm, H.-J. Schmiedmayer: "Multilayer atom chips for versatile atom micromanipulation“; Applied Physics Letters, 92 (2008), 254102; S. 1 - 3.

Z.-S. Yuan, Y.-A. Chen, B. Zhao, S. Chen, H.-J. Schmiedmayer, J.-W. Pan: "Experimental demonstration of a BDCZ quantum repeater node“; Nature, 454 (2008), S. 1098 - 1101.

73 

R. Bücker, A. Perrin, S. Manz, Th. Betz, C. Koller, T. Plisson, J. Rottmann, Thorsten Schumm, H.-J. Schmiedmayer: "Single-particle-sensitive imaging of freely propagating ultracold atom“; New Journal of Physics, 11 (2009).

A. Cronin, H.-J. Schmiedmayer, D. Pritchard: “Optics and Interferometry with Atoms and Molecules“; Reviews of Modern Physics, 81 (2009), S. 1051 - 1129.

L. DiCarlo, J. Chow, J. Gambetta, L. Bishop, B. Johnson, D. Schuster, J. Majer, A. Blais, L. Frunzio, S. Girvin, R. Schoelkopf: “Demonstration of two-qubit algorithms with a superconducting quantum processor“; Nature, 460 (2009), S. 240 - 244.

D. Gallego, S. Hofferberth, Thorsten Schumm, P. Krüger, H.-J. Schmiedmayer: “Optical lattice on an atom chip“; Optics Letters, 34 (2009), 22; S. 3463 - 3465.

J. Grond, H.-J. Schmiedmayer, U. Hohenester: “Optimizing number squeezing when splitting a mesoscopic condensate“; Physical Review A, 79 (2009), 021603(R); S. 021603-1 - 021603-4.

J. Grond, G. von Winckel, H.-J. Schmiedmayer, U. Hohenester: “Optimal control of number squeezing in trapped Bose-Einstein condensates“; Physical Review A, 80 (2009), S. 053625-1 - 053625-15.

D. Heine, M. Wilzbach, T. Rauch, Björn Hessmo, H.-J. Schmiedmayer: “Integrated atom detector: Single atoms and photon statistics“; Physical Review A, 79 (2009), 021804(R); S. 021804-1 - 021804-4.

U. Hohenester, J. Grond, H.-J. Schmiedmayer: “Optimizing atom interferometry on atom chips“; Fortschritte der Physik, 57 (2009), S. 1121 - 1132.

A. Imambekov, I. Mazets, D. Petrov, V. Gritsev, S. Manz, S. Hofferberth, Thorsten Schumm, E. Demler, H.-J. Schmiedmayer: “Density ripples in expanding low-dimensional gases as a probe of correlations“; Physical Review A, 80 (2009), S. 1 - 14.

J. Majer: “Quantencomputer Wenn ein Bit gleichzeitig 0 und 1 ist“; Bulletin SEV/AES, 5 (2009), S. 9 - 11.

I. Mazets, H.-J. Schmiedmayer: “Dephasing in two decoupled one-dimensional Bose-Einstein condensates and the subexponential decay of the interwell coherence“; European Physical Journal B, 68 (2009), S. 335 - 339.

I. Mazets, H.-J. Schmiedmayer: “Restoring integrability in one-dimensional quantum gases by two-particle correlations“; Physical Review A, 79 (2009), 061603(R); S. 061603-1 - 061603-4.

D. Petrosyan, G. Bensky, G. Kurizki, I. Mazets, J. Majer, H.-J. Schmiedmayer: “Reversible state transfer between superconducting qubits and atomic ensembles“; Physical Review A, 79 (2009), 040304(R); S. 040304-1 - 040304-4.

F. Shimizu, Christoph Hufnagel, T. Mukai:

74  

“Stable Neutral Atom Trap with a Thin Superconducting Disc“; Physical Review Letters, 103 (2009), S. 253002-1 - 253002-4.

J. Verdu, H. Zoubi, C. Koller, J. Majer, H. Ritsch, H.-J. Schmiedmayer: “8. Strong magnetic coupling of an ultracold gas to a superconducting waveguide cavity“; Physical Review Letters, 103 (2009), S. 043603-1 - 043603-4.

M. Wilzbach, D. Heine, S. Groth, X. Liu, T. Raub, Björn Hessmo, H.-J. Schmiedmayer: “Simple integrated single-atom detector“; Optics Letters, 34 (2009), 3; S. 259 - 261.

B. Zhao, Y.-A. Chen, X.-H. Bao, T. Strassel, C. Chuu, X.-M Jin, H.-J. Schmiedmayer, Z.-S. Yuan, S. Chen, J.-W. Pan: “A millisecond quantum memory for scalable quantum networks“; Nature Physics, 5 (2009), S. 95 - 99.

H. Abele, T. Jenke, H. Leeb, H.-J. Schmiedmayer: “Ramsey's method of separated oscillating fields and its application to gravitationally induced”; Physical Review D, 81 (2010), S. 065019.

H. Abele, T. Jenke, H. Leeb, H.-J. Schmiedmayer: “Ramsey´s method of separated oscillating fields and its application to gravitationally induced quantum phase shifts“; Physical Review D, 81 (2010), 065019; S. 1 - 8.

J. Grond, U. Hohenester, I. Mazets, H.-J. Schmiedmayer: “Atom interferometry with trapped Bose-Einstein condensates: impact of atom-atom interactions“; New Journal of Physics, 12 (2010), 065036; S. 1 - 29.

J. Grond, H.-J. Schmiedmayer, U. Hohenester: “Shaking thecondensates:Optimalnumbersqueezinginthedynamic splitting ofaBose-Einsteincondensate“; Physica E, 42 (2010), S. 432 - 435.

D. Heine, W. Rohringer, D. Fischer, M. Wilzbach, T. Raub, S. Loziczky, X. Liu, S. Groth, Björn Hessmo, H.-J. Schmiedmayer: “A single-atom detector integrated on an atom chip: fabrication, characterization and application“; New Journal of Physics, 12 (2010), 095005; S. 1 - 23.

K. Henschel, H. Risch, J. Majer, H.-J. Schmiedmayer: “Cavity QED with an ultracold ensemble on a chip: prospects of strong magnetic coupling at finite temperatures“; Physical Review A, 82 (2010), 033810.

T. Kitagawa, S. Pielawa, A. Imambekov, H.-J. Schmiedmayer, V. Gritsev, E. Demler: “Ramsey Interference in One-Dimensional Systems: The Full Distribution Function of Fringe Contrast as a Probe of Many-Body Dynamics“; Physical Review Letters, 104 (2010), 255302; S. 1 - 4.

P. Krüger, S. Hofferberth, I. Mazets, I. Lesanovsky, H.-J. Schmiedmayer: “Weakly Interacting Bose Gas in the One-Dimensional Limit“; Physical Review Letters, 105 (2010), 265302; S. 1 - 4.

S. Manz, R. Bücker, Th. Betz, C. Koller, S. Hofferberth, I. Mazets, A. Imambekov, E.

75 

Demler, A. Perrin, H.-J. Schmiedmayer, Thorsten Schumm: “Two-point density correlations of quasicondensates in free expansion“; Physical Review A, 81 (2010), S. 031610-1 - 031610-4.

I. Mazets, H.-J. Schmiedmayer: “Thermalization in a quasi-one-dimensional ultracold bosonic gas“; New Journal of Physics, 12 (2010), 055023; S. 1 - 19.

H.P. Stimming, N. Mauser, H.-J. Schmiedmayer, I. Mazets: “Fluctuations and Stochastic Processes in One-Dimensional Many-Body Quantum Systems“; Physical Review Letters, 105 (2010), 015301; S. 1 - 4.

T. Tscherbul, T. Calarco, I. Lesanovsky, R. Krems, A. Dalgarno, H.-J. Schmiedmayer: “rf-field-induced Feshbach resonances“; Physical Review A, 81 (2010), 050701; S. 1 - 4.

1 Beiträge in Conference proceedings 133 Talks and Conference contributions (57 invited conference talks)

Akademische Arbeiten Dissertationen

1. Ch. Vom Hagen: "Towards a low dimensional degenerate Fermi-Fermi-Bose mixture"; Begutachter/in(nen): H.-J. Schmiedmayer; Atominstitut, 2008; Rigorosum: 04/2008.

2. D. Heine: "Single Atom Detection and Non-Classical Photon Correlations"; Begutachter/in(nen): H.-J. Schmiedmayer; Atominstitut, 2008; Rigorosum: 07/2008.

3. M. Göbel: "Low-Dimensional Traps for Bose-Fermi Mixtures"; Begutachter/in(nen):

H.-J. Schmiedmayer; Atominstitut, 2008; Rigorosum: 11/2008.

4. S. Manz: "Density correlations of expanding one-dimensional Bose gases"; Begutachter/in(nen): H.-J. Schmiedmayer; Atominstitut, 2010; Rigorosum: 11/2010.

Diplom- und Master-Arbeiten

1. T. Raub: "An integrated Fluorescence Detector"; Betreuer/in(nen): H.-J. Schmiedmayer; Atominstitut, 2008; Abschlussprüfung: 2008.

2. T. Juffmann: "Molecular interferometry and nanostructuring"; Betreuer/in(nen): H.-J. Schmiedmayer; Atominstitut, 2008; Abschlussprüfung: 05/06/2008.

3. B. Stix: "A New Imaging System For Dual-Species Atomchip Experiments";

Betreuer/in(nen): H.-J. Schmiedmayer; Atominstitut, 2008; Abschlussprüfung: 11/06/2008.

4. R. Amsüss: "Development of a Source of Ultracold Atoms for Cryogenic

76  

Environments"; Betreuer/in(nen): H.-J. Schmiedmayer; Atominstitut, 2009; Abschlussprüfung: 14/01/2009.

5. S. Loziczky: "Detecting cold atoms using microoptics"; Betreuer/in(nen): H.-J.

Schmiedmayer; Atominstitut, 2009; Abschlussprüfung: 02/2009.

6. M. Schreitl: "Creating and purifying ultracold degenerate gases using hyperfine transitions"; Betreuer/in(nen): H.-J. Schmiedmayer; Atominstitut, 2010; Abschlussprüfung: 09/2010.

7. G. Winkler: "A Dipole Trap on an Atom Chip"; Betreuer/in(nen): H.-J.

Schmiedmayer; Atominstitut, 2010; Abschlussprüfung: 09/2010.

77 

4.3 Nuclear Physics and Nuclear Particle Physics

Preise und Auszeichnungen Ehrenkreuz für Wissenschaft und Kunst 1. Klasse (Fabjan, Christian W.)

Victor Hess Preis für hervorragende Dissertation auf dem Gebiet der Kern- und Teilchenphysik (Widl, Edmund)

Victor-Hess-Preis für hervorragende Dissertation auf dem Gebiet der Kern- und Teilchenphysik (Dungel, Wolfgang)

FEMtech Expertin des Monats (Wulz, Claudia)

Gastwissenschaftler Alexander Kobushkin Bogolyubov Instiute for Theoretical Physics, Kiev

04.07.2010 03.08.2010 06.06.2009 05.07.2009

18.06.2008 17.07.2008 14.01.2008 13.02.2008

Andrei Ivanov University of St. Petersburg, Nuclear Physics

01.02.2009 28.02.2009 01.02.2010 28.02.2010 Oleg Borisenko Bogolyubov Instiute for Theoretical Physics, Kiev

01.11.2008 01.12.2008

Gastvortragende

2008 24. November Dr. Alberto MENGONI, IAEA, Nuclear Data Section, Vienna The physics questions associated with experiments at the n_TOF facility at

CERN 16. Dezember Univ. Prof. Mark HUYSE, Institut voor Kern- en Stralingsfysica, Univ.

Leuven, Belgium The Physics of Exotic Nuclei: Challenges of Experiments at ISOLDE @

CERN 2009 26. Jänner Prof. Dr. Jose TAIN, Instituto de Fisica Corpuscular, Univ. Valencia and

C.S.I.C. Edificio de Institutos de Paterna, Valencia, Spain Beta-decay total absorption spectroscopy for basic and applied research 30. März Dr. Arjan PLOMPEN, Neutron Physics, EC-JRC-IRMM, Geel, Belgium Measurements for nuclear safety and waste minimization

78  

15. Mai J. ZMESKAL Stefan-Meyer Institut Wien Exotic atoms - towards precision spectroscopy of kaonic hydrogen 25. Mai Prof. Dr. Peter GRABMAYR, Kepler Center for Astro and Particle Physics,

Physikalisches Institut der Univ. Tübigen, Tübingen, Germany The Neutrinoless Double Beta Decay Experiment GERDA 18. 19. 25. Mai L. LYONS Oxford University Gastvorlesung: Practical statistics for experimental scientists 10. September Dr. Arifa Ali KHAN, Univ. Taiz and Univ. Regensburg Nichtkommutative Eichtheorien in 4 Dimensionen 2010 18. Januar David BURKE Institut für Theoretische Physik, TU Wien Gastvorlesung: Confined monopoles 25. Januar SABINE ERTL Institut für Theoretische Physik, TU Wien Black holes, AdS/CFT and holography

Co-Operations Institut für Hochenergiephysik – HEPHY

n_TOF Collaboration, CERN (H. Leeb, G. Badurek, E. Jericha)

NUDATA_FILE Consortium, F4E Project (H. Leeb)

Wallner Anton, Pavlik Andreas (H. Leeb, G. Badurek, E. Jericha)

Fakultät Physik, VERA, Universität Wien

Borisenko, Oleg, Bogolyubov Institute for Theoretical Physics (BITP), Kiev

Greensite, Jeffrey Paul, San Francisco State University, CA, USA

Heller, Urs M., American Physical Society, NY, USA

Herman, Michal, National Nuclear Data Centre (NNDC), Brookhaven National Laboratory, NY, USA

Kobushkin, Alexander, National Technical University in Kiev, Physical and Technical Institute

Koning, Arjan, Nuclear Research and Consultancy Group, NRG Petten, NL

Olejnik, Stefan, Institute of Physics, Slovak Academy of Sciences, Bratislava

Sedigheh Deldar, University of Tehran, Iran

Serebrov, Anatolii P., Petersburg Nuclear Physics Institute (PNKPI RAS), St. Petersburg, Russia 

Troitskaya, N.I., St. Petersburg Polytechnic Inst., Russia

Jordan, Gerald, Institut für Photonik, Technische Universität Wien

Kienle, Paul, Stefan-Meyer-Institut für subatomare Physik, Vienna, Austria

Marton, Hans, Stefan-Meyer-Institut für subatomare Physik, Vienna, Austria

Public Relations, Öffentlichkeitsarbeit Oberhummer Heinz Science Buster (Kabarett) Rabenhoftheater und andere Veranstalter

PA: „Aberglaube? Nicht mit uns“ (April 2009): Die Gesellschaft für kritisches Denken wendet sich gegen betrügerische Esoterik und wissenschaftsfeindliche Schwindelei.

79 

PA „Radioaktiven Abfall entschärfen“ (September 2008): Für den Bau einer Anlage zur Transmutation gefährlicher Reststoffe, untersuchen KernphysikerInnen der Technischen Universität (TU) Wien in einem europaweiten Konsortium die Wechselwirkung von Neutronen mit den relevanten Materialien.

Publikationen Zeitschriftenartikel

C. Domingo-Pardo, G. Badurek, E. Jericha, H. Leeb, H. Oberhummer, -. nTOF Collaboration: "The measurement of the 206Pb(n, γ) cross section and stellar implications"; J. Phys. G: Nucl. Part. Phys., 35 (2008), S. 014020-1 - 014020-6.

M. Faber, A. N. Ivanov, P. Kienle, E.L. Kryshen, M. Pitschmann, N. Troitskaya: "First-Forbidden Continuum- and Bound-State β+ -Decay Rates of Bare 205Hg80+ and 270Tl81+ Ions"; Physical Review C, 78 (2008), 061603(R); S. 061603-1 - 061603-4.

M. Faber, A. Kobushkin, M. Pitschmann: "Shape vibrations of topological fermions"; Advanced Studies in Theoretical Physics, 2 (2008), 1; S. 11 - 22.

R. Höllwieser, M. Faber, J. Greensite, U. M. Heller, S. Olejnik: "Center Vortices and the Dirac Spectrum"; Physical Review D, 78 (2008), S. 054508-1 - 054508-14.

A. N. Ivanov, M. Faber, R. Reda, P. Kienle: "Weak decays of H-like 140Pr58+ and He-like 140Pr57+ ions"; Physical Review C, 78 (2008), 025503; S. 025503-1 - 025503-4.

E. Jericha, R. Szeywerth, H. Leeb, G. Badurek: "Perfect crystal neutron interferometry and tensorial neutron tomography"; Nuclear Instruments and Methods in Physics Research A, 586 (2008), S. 119 - 123.

G. Jordan, R. Höllwieser, M. Faber, U. M. Heller: "Tests of the lattice index theorem"; Physical Review D, 77 (2008), S. 014515-1 - 014515-7.

H. Leeb: "Profile reconstruction from neutron reflectivity data and a priori knowledge"; Nuclear Instruments and Methods in Physics Research A, 586 (2008), S. 105 - 109.

M. Mosconi, G. Badurek, E. Jericha, H. Leeb, H. Oberhummer, -. nTOF Collaboration: "Nuclear physics for the Re/Os clock"; J. Phys. G: Nucl. Part. Phys., 35 (2008), S. 014015-1 - 014015-7.

D. Neudecker, M. Faber: "Thick-Center-Vortex-Model and the Coulomb Potential"; Proceedings of science, Confinement 8 (2008), S. 182.

80  

G. Tagliente, G. Badurek, E. Jericha, H. Leeb, H. Oberhummer, -. nTOF Collaboration: "Experimental study of the 91Zr(n,γ) reaction up to 26 keV"; Physical Review C, 78 (2008), 045804; S. 045804-1 - 045804-11.

G. Tagliente, K. Fujii, G. Badurek, E. Jericha, H. Leeb, H. Oberhummer, M. Pigni, -. nTOF Collaboration: "Neutron capture cross section of 90Zr: Bottleneck in the s-process reaction flow"; Physical Review C, 77 (2008), S. 035802-1 - 035802-9.

O. Borisenko, S. Voloshin, M. Faber: "Field Strength Formulation, lattice Bianchi identities and perturbation theory for non-Abelian models"; Nuclear Physics B, 816 (2009), S. 399 - 426.

M. Calviani, G. Badurek, E. Jericha, H. Leeb, H. Oberhummer, -. nTOF Collaboration: "High-accuracy 233U(n, f ) cross-section measurement at the white-neutron source n TOF from near-thermal to 1 MeV neutron energy"; Physical Review C, 80 (2009), 044604; S. 1 - 11.

M. Faber, A. Ivanov, V.A. Ivanova, J. Marton, M. Pitschmann, A. Serebrov, N. Troitskaya, M. Wellenzohn: "Continuum-state and bound-state β--decay rates of the neutron"; Physical Review C, 80 (2009), S. 035503-1 - 035503-8.

M. Faber, A. Ivanov, P. Kienle, E.L. Kryshen, M. Pitschmann, N. Troitskaya: "On "GSI Oscillations" as Interference of Two Closely Spaced GroundMass Eigenstates of H-LikeMother Ions"; Research Letters in Physics, 2009 (2009).

M. Faber, A. Ivanov, P. Kienle, M. Pitschmann, N. Troitskaya: "On the influence of the magnetic field of the GSI experimental storage ring on the time-modulation of the EC-decay rates of the H-like mother ions"; J. Phys. G: Nucl. Part. Phys., 37 (2009), S. 015102 - 015104.

M. Faber, A. N. Ivanov, V.A. Ivanova, J. Marton, M. Pitschmann, N. Troitskaya, M. Wellenzohn: "On continuum- and bound-state λ--decay rates of pionic and kaonic hydrogen in the ground state"; J. Phys. G: Nucl. Part. Phys., 36 (2009), S. 075009 - 075014.

C. Guerrero, G. Badurek, E. Jericha, H. Leeb, H. Oberhummer, -. nTOF Collaboration: "The n_TOF Total Absorption Calorimeter for neutron capture measurements at CERN"; Nuclear Instruments and Methods in Physics Research A, 608 (2009), S. 424 - 433.

H. Abele, T. Jenke, H. Leeb, H.-J. Schmiedmayer: "Ramsey's method of separated oscillating fields and its application to gravitationally induced"; Physical Review D, 81 (2010), S. 065019.

N. Colonna, G. Badurek, E. Jericha, H. Leeb, H. Oberhummer, -. nTOF Collaboration: "Neutron cross-sections for next generation reactors: New data from n_TOF"; Applied Radiation and Isotopes, 68 (2010), S. 643 - 646.

81 

C. Domingo-Pardo, G. Badurek, E. Jericha, H. Leeb, H. Oberhummer: "Forthcoming (n, γ) measurements on the Fe and Ni isotopes at CERN n TOF"; Journal of Physics: Conference Series, 202 (2010), 012026; S. 1 - 4.

K. Fujii, G. Badurek, E. Jericha, H. Leeb, H. Oberhummer, -. nTOF Collaboration: "Neutron physics of the Re/Os clock. III. Resonance analyses and stellar (n,γ) cross sections of 186,187,188Os"; Physical Review C, 82 (2010), 015804; S. 1 - 18.

R. Höllwieser, M. Faber: "Distribution of Magnetic Monopoles within cubes in Compact QED"; International Journal of Modern Physics A, 25 (2010).

R. Höllwieser, M. Faber, U. Heller: "Spherical vortices, fractional topological charge and lattice index theorem in SU(2) LGT"; Proceedings of science, 276 (2010).

H. Markum, A. Khan: "Definition of Instantons in Noncommutative Gauge Theory in Higher Dimensions"; Proceedings of science, 258 (2010).

C. Massimi, G. Badurek, E. Jericha, H. Leeb, H. Oberhummer, -. nTOF Collaboration: "197Au(n,γ ) cross section in the resonance region"; Physical Review C, 81 (2010), 044616; S. 1 - 22.

M. Mosconi, G. Badurek, E. Jericha, H. Leeb, H. Oberhummer, -. nTOF Collaboration: "Neutron physics of the Re/Os clock. I. Measurement of the (n,γ) cross sections of 186,187,188Os at the CERN n_TOF facility"; Physical Review C, 82 (2010), 015802; S. 1 - 10.

C. Paradela, G. Badurek, E. Jericha, H. Leeb, H. Oberhummer, -. nTOF Collaboration: "Neutron-induced fission cross section of 234U and 237Np measured at the CERN Neutron Time-of-Flight (n_TOF) facility"; Physical Review C, 82 (2010), 034601; S. 1 - 11.

G. Tagliente, G. Badurek, E. Jericha, H. Leeb, H. Oberhummer, -. nTOF Collaboration: "The 92Zr(n,γ) reaction and its implications for stellar nucleosynthesis"; Physical Review C, 81 (2010), 055801; S. 1 - 9.

16 Beiträge in Conference proceedings 60 Talks and Conference contributions (4 invited conference talks)

Bücher und Buchbeiträge F. Aumayr, G. Badurek, M. Hajek, E. Jericha, P. Kienle, M. Krammer, H. Leeb, J. Marton, E. Widmann, H. W. Weber (Hrg.): "Physics Opportunities at MedAustron - White Book"; Schriftenreihe der Technischen Universität Wien, First Edition (2009), Wien, 2009, ISBN: 978-3-901-1671-4-0; 109 S.

82  

Akademische Arbeiten Dissertationen

1. C. Bloch: "Studies for the Commissioning of the CERN CMS Silicon Strip Tracker "; Begutachter/in(nen): Ch. Fabjan; Atominstitut, 2008; Rigorosum: 16/01/2008.

2. A. Hirtl: "Determination of the Strong Interaction Ground State Width in Pionic Hydrogen"; Begutachter/in(nen): M. Faber; Atominstitut, 2008; Rigorosum: 04/03/2008.

3. T. Bergauer: "Design, Construction and Commissioning of the CMS Tracker at CERN and Proposed Improvements for Detectors at the Future International Linear Collider"; Begutachter/in(nen): M. Krammer; Atominstitut, 2008; Rigorosum: 23/04/2008.

4. M. Kronbacher: "Optimization of the light extraction for heavy inorganic scintillators"; Begutachter/in(nen): Ch. Fabjan; Atominstitut, 2008; Rigorosum: 18/06/2008.

5. P. Speckmayer: "Energy Measurement of hadrons with the CERN-ATLAS Calorimeter"; Begutachter/in(nen): Ch. Fabjan, J. Fidler; Festkörperphysik, 2008; Rigorosum: 18/06/2008.

6. G. Richter: "Stability of nonlocal quantum correlations in neutral B-meson systems"; Begutachter/in(nen): M. Jeitler; Atominstitut, 2009; Rigorosum: 21/01/2009.

7. R. Höllwieser: "Center vortices and chiral symmetry breaking"; Begutachter/in(nen): M. Faber; Atominstitut, 2009; Rigorosum: 18/03/2009.

8. W. Bartmann: "Design of Injection and Extraction Systems with Optimisation of Lattice and Layout for the CERN PS2 Synchrotron"; Begutachter/in(nen): Benedikt; Atominstitut, 2009; Rigorosum: 02/09/2009.

9. G. Jordan: "Strong-field ionization of few-electron systems with MCTDHF"; Begutachter/in(nen): A. Scrinzi, M. Faber; Institut für Photonik, 2009; Rigorosum: 18/09/2009.

10. R. Fröschl: "Calibrating the CERN ATLAS Experiment with E/p"; Begutachter/in(nen): Ch. Fabjan; Atominstitut, 2009; Rigorosum: 14/10/2009.

11. W. Dungel: "Precision measurements of the CKM-matrix element |Vcb| and the form factors of semileptonic decays of B mesons"; Begutachter/in(nen): M. Jeitler; Atominstitut, 2010; Rigorosum: 21/01/2010.

83 

12. M. Dragicevic: "The New Silicon Strip Detectors for the CMS Tracker Upgrade "; Begutachter/in(nen): M. Krammer; Atominstitut, 2010; Rigorosum: 22/06/2010.

Diplom- und Master-Arbeiten

1. T. Layer: "Phasenuntersuchungen für ein Modell topologischer Fermionen"; Betreuer/in(nen): M. Faber; Atominstitut, 2008; Abschlussprüfung: 2008.

2. M. Wellenzohn: "On the Self Energy and the Radiation Reaction Problem in Classical Electrodynamics"; Betreuer/in(nen): M. Faber; Atominstitut, 2008; Abschlussprüfung: 2008.

3. C. Maszl: "Investigations on high pressure direct-current glow discharges"; Betreuer/in(nen): J. Laimer, H. Leeb, P. Pongratz; Institut für Allgemeine Physik, 2008; Abschlussprüfung: 12/03/2008.

4. H. Schindler: "Protecting the ALICE Experiment against Beam Failures"; Betreuer/in(nen): Ch. Fabjan; Atominstitut, 2008; Abschlussprüfung: 12/03/2008.

5. T. Aumayer: "Beam Phase and Intensity Monitoring for the Compact Muon Solenoid Experiment"; Betreuer/in(nen): Ch. Fabjan; Atominstitut, 2008; Abschlussprüfung: 30/04/2008.

6. M. Hölbling: "Antiprotonen-Kern Opitsche Potentiale in Kernmaterienäherung"; Betreuer/in(nen): H. Leeb; Atominstitut, 2008; Abschlussprüfung: 11/06/2008.

7. E. Ruppert: "Triodensputterdeposition der Innenseite von Hohlzylindern geringen Durchmessers"; Betreuer/in(nen): J. Laimer, M. Faber, P. Varga; Institut für Allgemeine Physik, 2008; Abschlussprüfung: 08/10/2008.

8. F. Moser: "Implementation of a General-Purpose Kinematic Estimator in the Software Environment of the International Linear Collider and Application to Pair Production of W Bosons "; Betreuer/in(nen): M. Regler ; Atominstitut, 2008; Abschlussprüfung: 08/10/2008.

9. M. Feher: "A microscopic approach to the imaginary alpha-nucleus optical potential for magic nuclei"; Betreuer/in(nen): H. Leeb; TU Wien, 2008; Abschlussprüfung: 25/11/2008.

10. D. Neudecker: "Anpassung des Modells dicker Zentrumsvortices an SU(3)-Gitterdaten"; Betreuer/in(nen): M. Faber; Atominstitut, 2009; Abschlussprüfung: 09/03/2009.

84  

11. M. Valentan: "Tracking detector optimization for collider experiments with fast simulation and by analytical methods"; Betreuer/in(nen): M. Regler; Atominstitut, 2009; Abschlussprüfung: 11/03/2009.

12. A. Zöttl: "Spatiotemporal Analysis of Cultured Neural Networks"; Betreuer/in(nen): H. Markum; Atominstitut, 2009; Abschlussprüfung: 10/06/2009.

13. F. Teischinger: "Monitoring Infrastructure Development for the CMS Drift Tube Track Finder at the LHC"; Betreuer/in(nen): C. Wulz; Atominstitut, 2009; Abschlussprüfung: 19/06/2009.

14. H. Jerabek: "Molecular dynamics simulations of anesthetics in phospholipid bilayers"; Betreuer/in(nen): H. Markum; Atominstitut, 2009; Abschlussprüfung: 21/10/2009.

15. H. Kasieczka: "Early SUSY Searches at the CMS Experiment at CERN"; Betreuer/in(nen): C. Wulz; Atominstitut, 2009; Abschlussprüfung: 26/11/2009.

16. S. Gundacker: "Quality of nuclear reaction models for data evaluation in the calcium - copper region"; Betreuer/in(nen): H. Leeb; Atominstitut, 2010; Abschlussprüfung: 13/01/2010.

17. W. Kiesenhofer: "Performance studies on Silicon Strip Sensors with 50 μm pitch"; Betreuer/in(nen): M. Krammer; Atominstitut, 2010; Abschlussprüfung: 26/01/2010.

18. S. Brunner: "New Methods for Improvement of Time of Flight Positron Emission Tomography"; Betreuer/in(nen): Ch. Fabjan; Atominstitut, 2010; Abschlussprüfung: 10/03/2010.

19. L. Gruber: "Optimization of the operating parameters of the LHCb muon system"; Betreuer/in(nen): Ch. Fabjan; Atominstitut, 2010; Abschlussprüfung: 10/03/2010.

20. G. Auzinger: "Design of a Cooling Device for the Qualification of Irradiated Silicon Sensors"; Betreuer/in(nen): M. Krammer; Atominstitut, 2010; Abschlussprüfung: 23/03/2010.

21. C. Kurfürst: "Quench protection of the LHC quadrupole magnets"; Betreuer/in(nen): Ch. Fabjan; Atominstitut, 2010; Abschlussprüfung: 09/06/2010.

22. T. Themel: "An Integrated Testing Facility for the Global Trigger of the CMS Experiment at CERN"; Betreuer/in(nen): C. Wulz; Atominstitut, 2010; Abschlussprüfung: 09/06/2010.

85 

4.4 Neutron and Quantum Physics

Preise und Auszeichnungen Prof. Dr. H. Rauch Verleihung Ehrendoktorat Dr. hc. 2010: National Academy of Sciences of Ukraine, Kiev ("Achievements in neutron optics")

Gastwissenschaftler Masanao OZAWA, Graduate School of Information Science, Nagoya University, JP

Juni & Dezember 2009 Sen Debasis,Bahadur Jitendra, Mazumder Subhasish, Bhabha Atomic Research Centre, In

04.04.2008 27.04.2008 Radlinski Andrzej, Sakurovs Richard, Csiro Energy Technology, AU Blach Tomas, Busbridge Tara, Griffith University, AU Melnichenko Yuri, Oak Ridge National Laboratory, Univ Tennessee, Knoxville, US

27.08.2008 13.09.2008 Fischer Henry, Ill, Fr Neuefeind Joerg, Oak Ridge National Laboratory, US Barnes Adrian C., H H Wills Phys Lab, Bristol, GB Salmon Philip Stephen, Dept Phys, Univ Bath, GB Simonson John Michael, Oak Ridge National Laboratory, US

23.09.2008 15.10.2008 Fischer Henry, Ill, Fr Neuefeind Joerg, Simonson John Michael, Oak Ridge National Laboratory, US Salmon Philip Stephen, Zeidler Anita, Dept Phys, Univ Bath, GB Barnes Adrian C., H H Wills Phys Lab, Bristol, GB Bychkov Eugene, Mreid, Univ Du Littoral, Dunkerque, FR

14.05.2009 16.06.2009 Klepp Juergen, Pruner Christian, Fally Martin, Universität Wien

16.07.2009 23.07.2009 Heunemann Peggy, Ill, 7.9.2009 8.9.2009 Wagh Apoorva G., Bhabha Atomic Research Centre, IN

8.10.2009 26.10.2009 Stark Robert, Park Sohyun, Schmahl Wolfgang W., Drobek Tanja, Altermann Wladyslav, Kristallographie – Lmu München, D Strobel Joachim, RWE DEA AG, D

8.9.2010 11.9.2010 Sen Debasis, Bahadur Jitendra, Mazumder Subhasish, Bhabha Atomic Research Centre, IN

12.9.2010 14.9.2010

86  

Gastvortragende

2008

10. April Hartmut ABELE Universität Heidelberg Fundamental and applied science with neutrons 9. Mai Stefan FILIPP ETH Zürich Neutronenmessungen zur Stabilität der geometrischen Phase 10. Oktober Oliver ZIMMER ILL, Grenoble/TU München Messung spinabhängiger Neutronstreulängen mittels pseudomagnetischer

Präzession 31. Oktober Axel R. MÜLLER TU München Ultra-cold neutrons: How to procuce, how to use them 21. November Scientific Afternoon: KOCHEN-SPECKER THEOREM Otfried GÜHNE Universität Innsbruck Introduction to Kochen-Specker theorem Adán CABELLO University Sevilla Kochen-Specker-theorem and neutron measurements Brian LaCour University of Texas-Austin Contextuality and Kochen-Specker 5. Dezember Martin FALLY Universität Wien Light-induced gratings as neutron optical elements

2009 23. Jänner Marc SCHUMANN Rice University, Houston The XENON100 dark matter experiment 3. April R. PICKER TU München PENELOPE, on the way towards a new neutron lifetime measurement 28. April E. SJÖQVIST Uppsala University Nodal free geometric phases 6. Mai C. KOLBITSCH TU und MedUni Wien Optische Kohärenztomographie 18. 19. 25. Mai L. LYONS Oxford University Gastvorlesung: Practical statistics for experimental scientists 19. Juni B. MÄRKISCH ILL Grenoble, Univ. Heidelberg Beta-Zerfall des Neutrons 25. Juni M. OZAWA Nagoya University Uncertainty principle for joint spin measurements 18. September S. VARRO Research Inst. For Solid State Physics and Optics, Budapest Correlations in single-photon experiments 27. November Georg BISON Universität Jena Magnetometry

2010 5. März Dominik WERDER Uni Heidelberg Betazerfall des Neutrons 30. April Gertrud KONRAD Uni Mainz

87 

aSpect-Instrument: Aspekte der Elektron-Neutrino-Korrelation im Neutron-β-Zerfall

21. Mai Klaus JUNGMANN KVI Uni Groningen Atoms under the looking glass - Precise studies of fundamental symmetries

and forces 25. Juni M. PREM Universität Wien Physics with neutrons probing properties of matter from macroscopic to

subatomic lengthscales 22. Oktober Michael RAMSEY-MUSOLF CalTech, Pasadena Neutrino puzzles; & leptogenesis; charged lepton flavor violation n 29. Oktober Sandor VARRO Universität Budapest Classical phenomenology of particle counting in Hanbury Brown and Twiss

type experiments 5. November Stefan FILIPP ETH Zürich Superconducting qubits, microwave photons and their coherent

interaction in circuit QED 12. November Jeroen PLOMP TU Delft Neutrons are falling apart 3. Dezember Kazimierz BODEK Uniwersytet Jagiellonski, Kraków Transverse electron polarization in neutron decay: search for exotic couplings in weak interactions

Gastprofessoren Michael Ramsey-Musolf, zweistündige Gastvorlesung "The new standard-model”, 9/2010 - 10/2010

Co-Operations Masanao OZAWA, Graduate School of Information Science, Nagoya University, Chikusa-ku, Nagoya 464-8601, JAPAN Beatrix Hiesmayr, Faculty of Physics, University of Vienna, Austria Stephan Paul, Technische Universität München, Germany Peter Fierlinger, Technische Universität München, Germany

Werner Heil, Universität Mainz, Germany Oliver Zimmer, ILL, Grenoble, France Torsten Soldner, ILL, Grenoble, France Peter Geltenbort, ILL, Grenoble, France Bastian Maerkisch, U. Heidelberg, Germany Ulrich Schmidt, U. Heidelberg, Germany Geoff Greene, University of Tennessee, USA Michael Ramsey-Musolf, University of Wisconsin-Madison, USA

Stefan Baeßler, University of Virginia, USA

Christian Plonka-Spehr, Universität Mainz, Germany Ulrich Kuetgens, Physikalisch-Technische Bundesanstalt, Braunschweig, Germany

Roland Grössinger, Dieter Süss, Institut für Festkörperphysik, TU Wien

88  

Andreas Pavlik, Anton Wallner, Claudia Lederer, Fakultät für Physik - Kernphysik, Universität Wien

The n_TOF Collaboration, CERN, Généve, Schweiz

Maelle Kerveno, Gérard Rudolf, Jean-Claude Thiry, Université de Strasbourg & CNRS, Strasbourg, Frankreich

Arjan J.M. Plompen, Stephan Oberstedt, Eurpean Commission, Joint Research Centre, Institute for Reference Materials and Measurements (IRMM), Geel, Belgien, Alexander Ioffe (Coordinator), Joint Research Activity on Polarized Neutrons, NMI3 Integrated Infratstructure Initiative for Neutron Scattering and Muon Spectroscopy, a collaboration of FZJ Forschungszentrum Jülich, Technical University München, Delft University of Technology, Laboratoire Léon Brillouin Saclay, Vienna University of Technology, St. Petersburg Nuclear Physics Institute & Technical University of Denmark

Wim Bouwman, Jeroen Plomp, Ad van Well, Delft University of Technology, Delft, Niederlande

Nikolay Kardjilov, Ingo Manke, Markus Strobl, Wolfgang Treimer, André Hilger, Helmholtz Zentrum Berlin für Materialien und Energie, Berlin, Deutschland

Burkhard Schillinger, Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II), Garching/München, Deutschland

Ralf Schweins, Peter Lindner, Institut Laue-Langevin (ILL), Grenoble, Frankreich

Schwerpunktprogramm 1491 des FWF und der deutschen DFG zusammen mit den Universitäten Heidelberg, Mainz, Jena, TU München, sowie FRM2, ILL, TU Wien.

Public Relations, Öffentlichkeitsarbeit ILL-NEWS 12-03-2009 "New results for the neutrons scattering lengths of 13C" PA “Sonnige Aussichten” (Mai 2009): Am Tag der Sonne, an dem circa 400 Informationsveranstaltungen rund um die saubere Energie stattfinden zeigt das Atominstitut welche Innovationen es in Sachen Solartechnik an der TU Wien gib. TU-Wien Aktuelles, News 2009-07-29 "Kontextualität ist Realität aber gibt es Realität?" TU-Wien Aktuelles, News 2009-11-20 „Antrittsvorlesung von Univ.-Prof. Dr. Hartmut Abele“ TU-Wien Aktuelles , News 2009-07-24 Neues internationales Forschungsprogramm an der TU Wien ILL-NEWS 05-08-2009 "Neutron quantum optics reveals new features of nature" Rauch: 11. Juni 2008: ORF-FS2, Club 2, "Atomkraft ja bitte" 22. Oktober 2008: ORF-Ö1, Dimensionen, "Lise Meitner: Kernspaltung und mehr" 5. November 2008: ORF-FS2, Runder Tisch, "Zwentendorf" 18. Dezember 2009: ORF-FS2, Im Zentrum, "Kernenergie im Kommen?" 18. September 2010: ORF-Ö1, Salzburger Nachtgespräche, "Forschung in Österreich"

89 

Publikationen Zeitschriftenartikel

H. Abele: "The Neutron. Its Properties and Basic Interactions"; Progress in Particle and Nuclear Physics, 60 (2008), S. 1.

G. Badurek, Ch. Hartl, E. Jericha: "A non-conventional neutron polariser concept"; Nuclear Instruments and Methods in Physics Research A, 586 (2008), S. 95 - 99.

S. Baessler, F. Ayala Guardia, M. Borg, F. Glück, W. Heil, G. Konrad, I. Konorov, R. Munoz Horta, G. Petzoldt, D. Rich, M. Simson, Y. Sobolev, H. Wirth, O. Zimmer: "First measurements with the neutron decay spectrometer aSPECT"; European Physical Journal A, 38 (2008), S. 17 - 26.

A. Cabello, S. Filipp, H. Rauch, Y. Hasegawa: "Proposed Experiment for Testing Quantum Contextuality with Neutrons"; Physical Review Letters, 100 (2008), 130404; S. 130404-1 - 130404-4.

C. Domingo-Pardo, G. Badurek, E. Jericha, H. Leeb, H. Oberhummer, -. nTOF Collaboration: "The measurement of the 206Pb(n, γ) cross section and stellar implications"; J. Phys. G: Nucl. Part. Phys., 35 (2008), S. 014020-1 - 014020-6.

D. Dubbers, H. Abele, S. Baessler, B. Märkisch, M. Schumann, T. Soldner, O. Zimmer: "A clean, bright and versatile source of neutron decay products"; Nuclear Instruments and Methods in Physics Research A, A596 (2008), S. 88.

H. Fischer, J. Neuefeind, J.M. Simonson, R. Loidl, H. Rauch: "New measurements of the coherent and incoherent neutron scattering lengths of 13C"; J. Phys.: Condens. Matter, 20 (2008), S. 1 - 14.

E. Jericha, R. Szeywerth, H. Leeb, G. Badurek: "Perfect crystal neutron interferometry and tensorial neutron tomography"; Nuclear Instruments and Methods in Physics Research A, 586 (2008), S. 119 - 123.

R. Khan, E. Bauer, X. Chen, R. Podloucky, P. Rogl: "Pressure Response of Novel Superconducting {Sr,Ba}Pt4Ge12"; Journal of the Physical Society of Japan, 77 (2008), S. 350 - 352.

J. Klepp, St. Sponar, S. Filipp, M. Lettner, G. Badurek, Y. Hasegawa: "Observation of Nonadditive Mixed-State Phases with Polarized Neutrons"; Physical Review Letters, 101 (2008), 150404; S. 150404-1 - 150404-4.

C.L. Mihailescu, C. Borcea, P. Baumann, P. Dessagne, E. Jericha, H. Karam, M. Kerveno, A.J. Koning, N. Leveque, A. Pavlik, A. Plompen, C. Quétel, G. Rudolf, I. Tresl:

90  

"A measurement of (n, xnγ) cross sections for 208Pb from treshold up to 20 MeV"; Nuclear Physics A, 811 (2008), S. 1 - 27.

M. Mosconi, G. Badurek, E. Jericha, H. Leeb, H. Oberhummer, -. nTOF Collaboration: "Nuclear physics for the Re/Os clock"; J. Phys. G: Nucl. Part. Phys., 35 (2008), S. 014015-1 - 014015-7.

H. Rauch: "Non-classical neutron beams for fundamental and solid state research"; Pramana - Journal of Physics, 71 (2008), 4; S. 785 - 796.

H. Rauch: "Test of quantum mechanics by neutron interferometry"; Eur. Phys. J. Special Topics, 159 (2008), S. 27 - 36.

M. Schumann, H. Abele: "Unrecognized Backscattering in Low Energy Beta Spectroscopy"; Nuclear Instruments and Methods in Physics Research A, A585 (2008), S. 88.

M. Schumann, M. Kreuz, M. Deissenroth, A. Glück, J. Krempel, B. Märkisch, D. Mund, K. Petukhov, T. Soldner, H. Abele: "Measurement of the Proton Asymmetry Parameter in Neutron Beta Decay"; Physical Review Letters, 100 (2008), S. 151801.

St. Sponar, J. Klepp, G. Badurek, Y. Hasegawa: "Zero-field and Larmor spinor precessions in a neutron polarimeter experiment"; Physics Letters A, 372 (2008), S. 3153 - 3156.

St. Sponar, J. Klepp, R. Loidl, S. Filipp, G. Badurek, Y. Hasegawa, H. Rauch: "Coherent energy manipulation in single-neutron interferometry"; Physical Review A, 78 (2008), 061604; S. 061604-1 - 061604-4.

G. Tagliente, G. Badurek, E. Jericha, H. Leeb, H. Oberhummer, -. nTOF Collaboration: "Experimental study of the 91Zr(n,γ) reaction up to 26 keV"; Physical Review C, 78 (2008), 045804; S. 045804-1 - 045804-11.

G. Tagliente, K. Fujii, G. Badurek, E. Jericha, H. Leeb, H. Oberhummer, M. Pigni, -. nTOF Collaboration: "Neutron capture cross section of 90Zr: Bottleneck in the s-process reaction flow"; Physical Review C, 77 (2008), S. 035802-1 - 035802-9.

H. Tatlisu, M. Bastürk, H. Rauch, M. Trinker: "Structural Investigation of SiCf/SiC Composites"; Materials and Structures, 15 (2008), 1; S. 13 - 16.

M. Trinker, E. Jericha, R. Loidl, H. Rauch: "Microfabricated silicon gratings as neutron-optical components"; Nuclear Instruments and Methods in Physics Research A, 586 (2008), S. 124 - 128.

M. Zawisky, F. Hameed, E. Dyrnjaja, J. Springer: "Digitized neutron imaging with high spatial resolution at a low power research reactor: I. Analysis of detector performance"; Nuclear Instruments and Methods in Physics Research A, 587 (2008), S. 342 - 349.

91 

H. Abele: "The neutron alphabet: Exploring the properties of fundamental interactions"; Nuclear Instruments and Methods in Physics Research A, A611 (2009), S. 193 - 197.

H. Abele: "The neutron alphabet:Exploring the properties of fundamental interactions"; Nuclear Instruments and Methods in Physics Research A, 611 (2009), S. 193 - 197.

H. Abele et al.: "QuBounce: the dynamics of ultra-cold neutrons falling in the gravity potential of the Earth"; Nuclear Physics A, A827 (2009), S. 593c.

H. Abele, T. Jenke, D. Stadler, P. Geltenbort et al.: "QuBounce: the dynamics of ultra-cold neutrons falling in the gravity potential of the Earth"; Nuclear Physics A, 827 (2009), S. 593c - 595c.

H. Bartosik, J. Klepp, C. Schmitzer, St. Sponar, A. Cabello, H. Rauch, Y. Hasegawa: "Experimental test of quantum contextuality in neutron interferometry"; Physical Review Letters, 103 (2009), S. 040403-1 - 040403-4.

M. Calviani, G. Badurek, E. Jericha, H. Leeb, H. Oberhummer, -. nTOF Collaboration: "High-accuracy 233U(n, f ) cross-section measurement at the white-neutron source n TOF from near-thermal to 1 MeV neutron energy"; Physical Review C, 80 (2009), 044604; S. 1 - 11.

M. Eisterer, J. Emhofer, S. Sorta, M. Zehetmayer, H. W. Weber: "Connectivity and critical currents in polycrystalline MgB2"; Supercond. Sci. Technol., 22 (2009), 034016; S. 1 - 7.

S. Filipp, J. Klepp, Y. Hasegawa, C. Plonka-Spehr, U. Schmidt, P. Geltenbort, H. Rauch: "Experimental Demonstration of the Stability of Berry´s Phase for a Spin-1/2 Particle"; Physical Review Letters, 102 (2009), 030404; S. 030404-1 - 030404-4.

S. Filipp, J. Klepp, C. Plonka-Spehr, U. Schmidt, P. Geltenbort, Y. Hasegawa, H. Rauch: "Characterization of a new ultra-cold neutron storage setup for arbitrary 3D-spin control"; Nuclear Instruments and Methods in Physics Research A, 598 (2009), S. 571 - 577.

C. Guerrero, G. Badurek, E. Jericha, H. Leeb, H. Oberhummer, -. nTOF Collaboration: "The n_TOF Total Absorption Calorimeter for neutron capture measurements at CERN"; Nuclear Instruments and Methods in Physics Research A, 608 (2009), S. 424 - 433.

F. Hameed, B. Schillinger, A. Rohatsch, M. Zawisky, H. Rauch: "Investigations of stone consolidants by neutron imaging"; Nuclear Instruments and Methods in Physics Research A, 605 (2009), S. 150 - 153.

Y. Hasegawa, G. Badurek, S. Filipp, J. Klepp, R. Loidl, St. Sponar, H. Rauch: "Entanglement between degrees of freedom of single-neutrons"; Nuclear Instruments and Methods in Physics Research A, 611 (2009), S. 310 - 313.

92  

T. Jenke, D. Stadler, H. Abele, P. Geltenbort: "Q-BOUNCE-Experiments with quantum bouncing ultracold neutrons"; Nuclear Instruments and Methods in Physics Research A, A611 (2009), S. 318 - 321.

T. Jenke, D. Stadler, H. Abele, P. Geltenbort: "Q-BOUNCE-Experiments withquantumbouncingultracoldneutrons"; Nuclear Instruments and Methods in Physics Research A, 611 (2009), S. 318 - 321.

G. Konrad, F. Ayala Guardia, S. Baessler, M. Borg, F. Glück, W. Heil, I. Konorov, K. Leung, R. Munoz Horta, M. Simson, Y. Sobolev, T. Soldner, H. Wirth, O. Zimmer: "The Proton Spectrum in Neutron Beta Decay: Latest Results with the aSPECT Spectrometer"; Nuclear Physics A, 827 (2009), S. 529 - 531.

B. Märkisch, H. Abele, D. Dubbers, F. Friedl, A. Kaplan, H. Mest, M. Schumann, T. Soldner, D. Wilkin: "The new neutron decay spectrometer Perkeo III"; Nuclear Instruments and Methods in Physics Research A, A611 (2009), S. 216 - 218.

S. Mayer, H. Rauch, P. Geltenbort, P. Schmidt-Wellenburg, P. Allenspach, Z Geza: "New aspects for high-intensity neutron beam production"; Nuclear Instruments & Methods in Physics Research Section A, 1 (2009), 6 S.

S. Mayer, H. Rauch, P. Geltenbort, P. Schmidt-Wellenburg, P. Allenspach, G. Zsigmond: "New aspects for high-intensity neutron beam production"; Nuclear Instruments and Methods in Physics Research A, 608 (2009), S. 434 - 439.

H. Rauch: "Basic quantum irreversibility in neutron interferometry"; Physica Scripta, T135 (2009), 014027; S. 1 - 7.

R. Sakurovs, A. Radlinski, Y. Melnichenko, T. Blach, G. Cheng, H. Lemmel, H. Rauch: "Stability of the Bituminous Coal Microstructure upon Exposure to High Pressures of Helium"; Energy & Fuels, 23 (2009), S. 5022 - 5026.

A.K. Shikov, V.I. Pantsyrny, N.I. Kozlenkova, L. Potanina, R. Vasilyev, I.N. Gubkin, E.V. Nikulenkov, J. Emhofer, M. Eisterer, H. W. Weber: "The Effect of Thermo-Mechanical Treatments on Jc(T,B) and Tcs of Nb-Ti Strands"; IEEE Transactions on Applied Superconductivity, 19 (2009), 3; S. 2540 - 2543.

M. Simson, F. Ayala Guardia, S. Baessler, M. Borg, F. Glück, W. Heil, I. Konorov, G. Konrad, R. Munoz Horta, K. Leung, Y. Sobolev, T. Soldner, H. Wirth, O. Zimmer: "Measuring the proton spectrum in neutron decay-Latest results with aSPECT"; Nuclear Instruments and Methods in Physics Research A, 611 (2009), S. 203 - 206.

M. Strobl, N. Kardjilov, A. Hilger, E. Jericha, G. Badurek, I. Manke: "Imaging with polarized neutrons"; Physica B, 404 (2009), S. 2611 - 2614.

M. Zawisky, J. Springer, R. Farthofer, U. Kuetgens: "A large-area perfect crystal neutron interferometer optimized for coherent beam-

93 

deflection experiments: Preparation and performance"; Nuclear Instruments & Methods in Physics Research Section A, 1 (2009).

H. Abele, T. Jenke, H. Leeb, H.-J. Schmiedmayer: "Ramsey's method of separated oscillating fields and its application to gravitationally induced"; Physical Review D, 81 (2010), S. 065019.

H. Abele, T. Jenke, H. Leeb, H.-J. Schmiedmayer: "Ramsey´s method of separated oscillating fields and its application to gravitationally induced quantum phase shifts"; Physical Review D, 81 (2010), 065019; S. 1 - 8.

G. Badurek, E. Jericha, R. Grössinger, R. Sato Turtelli: "Amorphous soft-magnetic ribbons studied by ultra-small-angle polarized neutron scattering"; Journal of Physics: Conference Series, 211 (2010), 012027; S. 1 - 6.

N. Colonna, G. Badurek, E. Jericha, H. Leeb, H. Oberhummer, -. nTOF Collaboration: "Neutron cross-sections for next generation reactors: New data from n_TOF"; Applied Radiation and Isotopes, 68 (2010), S. 643 - 646.

C. Domingo-Pardo, G. Badurek, E. Jericha, H. Leeb, H. Oberhummer: "Forthcoming (n, γ) measurements on the Fe and Ni isotopes at CERN n TOF"; Journal of Physics: Conference Series, 202 (2010), 012026; S. 1 - 4.

O. Ebrahimi, W. Treimer, M. Strobl, U. Feye-Treimer, N. Beul, E. Jericha, S. Seidel: "Ultra small angle scattering versus diffraction"; Journal of Physics: Conference Series, 251 (2010), 012072; S. 1 - 4.

M. Fally, J. Klepp, Y. Tomita, T. Nakamura, C. Pruner, M. Ellabban, R. Rupp, M. Bichler, I. Drevensek Olenik, J. Kohlbrecher, H. Eckerlebe, H. Lemmel, H. Rauch: "Neutron Optical Beam Splitter from Holographically Structured Nanoparticle-Polymer Composites"; Physical Review Letters, 105 (2010), 123904; S. 1 - 4.

K. Fujii, G. Badurek, E. Jericha, H. Leeb, H. Oberhummer, -. nTOF Collaboration: "Neutron physics of the Re/Os clock. III. Resonance analyses and stellar (n,γ) cross sections of 186,187,188Os"; Physical Review C, 82 (2010), 015804; S. 1 - 18.

Y. Hasegawa, K. Durstberger-Rennhofer, St. Sponar, H. Rauch: "Kochen-Specker theorem studied with neutron interferometer"; Nuclear Instruments and Methods in Physics Research A, 234 (2010).

Y. Hasegawa, R. Loidl, G. Badurek, K. Durstberger-Rennhofer, St. Sponar, H. Rauch: "Engineering of triply entangled states in a single-neutron system"; Physical Review A, 81 (2010), S. 032121-1 - 032121-6.

R. Khan, H. Böck, M. Villa: "The status and patterns of nuclear education in an anti-nuclear environment, Austria"; International Journal of Nuclear Knowledge Management, 4 (2010), 3; S. 211 - 219.

94  

R. Khan, S. Karimzadeh, H. Böck: "TRIGA fuel burn-up calculations and its confirmation"; Nuclear Engineering and Design, 240 (2010), S. 1043 - 1049.

H. Lemmel, A. Wagh: "Phase shifts and wave-packet displacements in neutron interferometry and a nondispersive, nondefocusing phase shifter"; Physical Review A, 82 (2010), S. 033626-1 - 033626-9.

C. Massimi, G. Badurek, E. Jericha, H. Leeb, H. Oberhummer, -. nTOF Collaboration: "197Au(n,γ ) cross section in the resonance region"; Physical Review C, 81 (2010), 044616; S. 1 - 22.

M. Mosconi, G. Badurek, E. Jericha, H. Leeb, H. Oberhummer, -. nTOF Collaboration: "Neutron physics of the Re/Os clock. I. Measurement of the (n,γ) cross sections of 186,187,188Os at the CERN n_TOF facility"; Physical Review C, 82 (2010), 015802; S. 1 - 10.

C. Paradela, G. Badurek, E. Jericha, H. Leeb, H. Oberhummer, -. nTOF Collaboration: "Neutron-induced fission cross section of 234U and 237Np measured at the CERN Neutron Time-of-Flight (n_TOF) facility"; Physical Review C, 82 (2010), 034601; S. 1 - 11.

St. Sponar, J. Klepp, K. Durstberger-Rennhofer, R. Loidl, S. Filipp, M. Lettner, R. Bertlmann, G. Badurek, H. Rauch, Y. Hasegawa: "New aspects of geometric phases in experiments with polarized neutrons"; Journal of Physics A: Mathematical and Theoretical, 43 (2010).

St. Sponar, J. Klepp, R. Loidl, S. Filipp, K. Durstberger-Rennhofer, R. Bertlmann, G. Badurek, H. Rauch, Y. Hasegawa: "Geometric phase in entangled systems: A single-neutron interferometer experiment"; Physical Review A, 81 (2010), S. 042113-1 - 042113-10.

St. Sponar, J. Klepp, C. Zeiner, G. Badurek, Y. Hasegawa: "Violation of a Bell-like inequality for spin-energy entanglement in neutron polarimetry"; Physics Letters A, 374 (2010), S. 431 - 434.

J. Springer, M. Zawisky, R. Farthofer, H. Lemmel, M. Suda, U. Kuetgens: "A large-areaneutron-interferometeroptimizedforcoherent beam deflection:Applications"; Nuclear Instruments and Methods in Physics Research A, 615 (2010), S. 307 - 312.

J. Springer, M. Zawisky, H. Lemmel, M. Suda: "A neutron interferometric measurement of a phase shift induced by Laue transmission"; Acta Crystallographica Section A, A66 (2010), S. 17 - 21.

G. Sulyok, Y. Hasegawa, J. Klepp, H. Lemmel, H. Rauch: "Noise-induced dephasing in neutron interferometry"; Physical Review A, 81 (2010), S. 053609-1 - 053609-8.

95 

G. Tagliente, G. Badurek, E. Jericha, H. Leeb, H. Oberhummer, -. nTOF Collaboration: "The 92Zr(n,γ) reaction and its implications for stellar nucleosynthesis"; Physical Review C, 81 (2010), 055801; S. 1 - 9.

M. Zawisky, F. Hameed, E. Dyrnjaja, J. Springer, A. Rohatsch: "Digitized neutron imaging with high spatial resolution at a low power research reactor: Applications to steel and rock samples"; Nuclear Instruments and Methods in Physics Research B, 268 (2010), S. 2446 - 2450.

34 Beiträge in Conference proceedings 178 Talks and Conference contributions (27 invited conference talks)

Bücher und Buchbeiträge

H. Abele: "Cold Neutrons, Gravitation and Forces in the Universe"; in: "Neutrons reveal all", Javier Jampo (Hrg.), 2008, ISBN: 978-84-692-4285-8, S. 117 - 122.

J. Klepp, St. Sponar, S. Filipp, M. Lettner, G. Badurek, Y. Hasegawa: "Nonadditive mixed state phase in neutron optics"; in: "Foundations of Probability and Physics - 5", American Institute of Physics, New York, 2009, ISBN: 978-0-7354-0636-0, S. 314 - 318.

H. Rauch: "Neutron Interferometry"; in: "Compendium of Quantum Physics", D. Greenberger, K. Hentschel, F. Weinert (Hrg.); Springer-Verlag, 2009, ISBN: 978-3-540-70622-9, S. 402 - 404.

Akademische Arbeiten Dissertationen

1. S. Mayer: "Ein Phasenraumtransformator für ultra-kalte Neutronen"; Begutachter/in(nen): H. Rauch; Atominstitut, 2008; Rigorosum: 10/10/2008.

2. F. Hameed: "Upgrading and new applications of a neutron imaging facility"; Begutachter/in(nen): H. Rauch; Atominstitut, 2008; Rigorosum: 17/12/2008.

3. J. Klepp: "Geometric phase properties in neutron optics experiments; Begutachter/in(nen): Y. Hasegawa, E. Sjöqvist; Atominstitut, University Uppsala, 2009; Rigorosum: 28/04/2009.

4. M. Vasicek: "Advanced Macroscopic Transport Models"; Begutachter/in(nen): T. Grasser, J. Summhammer; Institut für Mikroelektronik, 2009; Rigorosum: 12/10/2009.

96  

5. W. Bogner: "In vivo localized31P NMR Spectroscopy at High Magnetic Filed using Gradient Modulated Adiabatic Inversion Pulses"; Begutachter/in(nen): G. Badurek, E. Moser; Atominstitut; Inst. f. Mediz. Physik, 2009; Rigorosum: 17/12/2009.

6. J. Springer: "Neutron interferometric investigation of phase shifts arising from dynamical diffraction theory"; Begutachter/in(nen): M. Suda, D. Petraschek; Atominstitut; Johannes Kepler Universität Linz, 2010; Rigorosum: 21/01/2010.

Diplom- und Master-Arbeiten

1. F. Friedl: "Weiterentwicklung eines Experiments zur Realisierung eines Quantum Bouncing Balls"; Betreuer/in(nen): H. Abele; Universität Heidelberg, 03/2008

2. T. Jenke: "Measurements on liquid helium and aluminium alloys using Neutron Radiography"; Betreuer/in(nen): H. Abele; Universität Heidelberg, 03/2008

3. M. Faist: "Measurements on liquid helium and aluminium alloys using Neutron Radiography"; Betreuer/in(nen): H. Abele; Universität Heidelberg, 01/2008

4. R. Farthofer: "Strahlmanipulation mit Prismen im Perfektkristall-Neutroneninterferometer"; Betreuer/in(nen): J. Summhammer, M. Zawisky; Atominstitut, 2010; Abschlussprüfung: 03/07/2008.

5. D. Stadler: "Development and Characterization of a Pulsed Beam for Neutron Decay Experiments"; Betreuer: H. Abele; Universität Heidelberg, 2009; Abschlussprüfung: 01/2009;

6. K. Lux: "Diffraktion thermischer Neutronen an periodischen Phasengittern aus Silizium-Einkristallen Experiments"; Betreuer: H. Rauch; Atominstitut, 2009; Abschlussprüfung: 14/01/2009;

7. D. Werder: "Einfluss der Detektorfunktion auf die Messung des schwachen Magnetismus im Neutronzerfall"; Betreuer/in(nen): H. Abele; Universität Heidelberg, 2009; Abschlussprüfung: 08/2009;

8. H. Bartosik: "Experimental test of quantum contextuality with neutron interferometry";

97 

Betreuer/in(nen): Y. Hasegawa; Atominstitut, 2009; Abschlussprüfung: 11/03/2009;

9. C. Schmitzer: "A neutorn polarimetric test of Legget’s contextual model of quantum mechanics"; Betreuer/in(nen): Y. Hasegawa; Atominstitut, 2009; Abschlussprüfung: 11/03/2009;

10. A. Weissenbacher: "Preprocessing Strategies for Functional Connectivity Magnetic Resonance Imaging: A Quantitative Comparison"; Betreuer/in(nen): G. Badurek; Atominstitut, 2009; Abschlussprüfung: 10/06/2009;

11. F. Bruckner: "Stabilized source of entangled photon pairs characterized by quantum state tomography"; Betreuer/in(nen): M. Suda; Atominstitut, 2010; Abschlussprüfung: 13/01/2010;

12. M. Wieland: "Magnetic Resonance based Polymer Gel Dosimetry"; Betreuer/in(nen): G. Badurek, A. Berg; Atominstitut, 2010; Abschlussprüfung: 22/04/2010.

13. C. Weiß: "Fluence measurement at the neutron time of flight experiment at CERN"; Betreuer/in(nen): G. Badurek, E. Jericha; Atominstitut, 2010; Abschlussprüfung: 09/06/2010.

14. A. Hammerschmied: "Magnetisation Densities in Molecule-based Magnets by Polarised Neutron Diffraction"; Betreuer/in(nen): G. Badurek, E. Jericha, B. Gillon; Atominstitut, 2010; Abschlussprüfung: 09/06/2010.

15. J. Erhart: " Experimental demonstration of a universally valid uncertainty relation for error and disturbance in joint spin measurements"; Betreuer/in(nen): Y. Hasegawa; Atominstitut, 2010; Abschlussprüfung: 06/10/2010;

16. A. Hrdlicka: "Senkung des Beleuchtungsenergiebedarfs durch gebäudeintegrierte Photovoltaik"; Betreuer/in(nen): T. Bednar, J. Summhammer; Institut für Hochbau und Technologie, Forschungsbereich für Bauphysik und Schallschutz, 2010; Abschlussprüfung: 24/11/2010.

98  

4.5 Radiation Physics

Preise und Auszeichnungen Ehrung zum fünfzigsten Jahrestag seiner Promotion, 2008 (Prof. Karl Buchtela)

Bader Preis für die Geschichte der Naturwissenschaften, 2010 (Dr. Georg Steinhauser)

FameLab awards, science communication competition, 2008 (Dr. Georg Steinhauser)

Mobility Fellowship der Bank Austria (Mag. Fabienne)

Österreichisches Ehrenkreuz für Wissenschaft und Kunst 1. Klasse, 2010 (Prof. Norbert Vana)

Outstanding Career Award from the European X-ray Spectometry Association, EXSA (Prof. Peter Wobrauschek)

Best Poster Awards at the Denver X-ray Conferences, 2008-2010 (Röntgenphysik Gruppe)

Gastwissenschaftler Eva Margui Grabolosa Institute of Earth Sciences “Jaume Almera”, CSIC, LARX,

Barcelona, 10.2009 - 12.2009

Gastvortragende

2008 16. Jänner M. MITTERHAUSER Universitätsklinik für Nuklearmedizin Einführung in die Nuklearmedizin 23. Jänner P. LAGGNER Institut für Biophysik und Nanosystem-forschung der ÖAW,

Graz Kleinwinkelstreuung und die Österreichische SAXS Beamline am ELETTRA 13. März T. PROHASKA Universität für Bodenkultur Von Isotopen und Atomen: Anwendung von Isotopenmessungen in der

(nuklearen) Forensik und neue Möglichkeiten der Analyse neuer Materialien mittels ‘femto second laser ablation ICP-MS’

14. März R. GOLSER Universität Wien Investigating rare objects at VERA: fragile molecules and precious drawings 4. April C. SPIELMANN Universität Würzburg Zeitaufgelöste Spektroskopie mit lasergenerierter Röntgenstrahlung 10. April A. EHRESMANN Universität Kassel He-ion irradiation induced magnetic patterns: basics, applications,

possibilities 18. April O. JÄKEL Deutsches Krebsforschungszentrum Heidelberg Medizinphysikalische Forschung in der Ionentherapie 23. April F. J. MARINGER Bundesamt für Eich- und Vermessungswesen (BEV)

99 

Radon: Ursache – Wirkungen – Strategien 30. April U. PRÜFERT-FREESE Institut für Umweltmedizin der Stadt Wien Qualitätssicherung des Trinkwassers in Wien 18. Juni T. AUBERGER Medizinischen Universität Innsbruck Strahlentherapie mit Neutronen, Protonen und Kohlenstoffionen 22. Oktober F. KÖNIG Donauspital, Sozialmedizinisches Zentrum Ost Einführung in die Nuklearmedizin 26. November R. FREUND Institut für Krankenhausphysik, KH Hietzing mit

Neurologischem Zentrum Rosenhügel, Wien Qualitätssicherung in der Röntgendiagnostik 3. Dezember D. GEORG Universitätsklinik für Strahlentherapie und Strahlenbiologie,

AKH Wien Medizinische Nutzung von Linearbeschleunigern: Funktionsprinzipien und klinische Anwendungen

17. Dezember M. BENEDIKT CERN, Genf Med-AUSTRON

2009 14. Jänner R. GOLSER VERA Laboratorium, Universität Wien Zerstörungsfreie Analyse von Dürer Zeichnungen mit PIXE 3. Dezember E. Marguí GRABULOSA LARX Barcelona Application of X-ray spectrometry techniques to the assessment of

environmental impact of past mining activities

2010 12. Jänner M. RADTKE BESSY, BAM, Berlin Röntgenfluoreszenzanalyse mit Synchrotronstrahlung an der

Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin 19. Mai R. MAYER Med-Austron, Wr. Neustadt Medizinische und therapeutische Ziele von Med-Austron

Gastprofessoren Gastprofessoren - Angabe des Titels der Vorlesung und der home-institution sollten zumindest mehr als eine Woche hier gewesen sein, und mehrere Vorlesungen gegeben haben.

Co-Operations G. Pepponi, Foundatione Bruno Kessler, Trento, Italy

A. Markowicz, IAEA Nuclear Spectrometry Application lab

M.Griesser, Kunsthistorisches Museum, Wien

S. Török, KFKI-AEKI, Budapest Hungary

G. Zaray, ELTE University, Budapest , Hungary

E. Margui, Laboratory of X-ray Analytical Applications (LARX), Institute of Earth Sciences “Jaume Almera”, CSIC, Barcelona, Spain

100  

K. Klaushofer, Ludwig Boltzmann Institut für Osteologie, Wien

P. Pianetta , SSRL , Stanford , California

K. Appel, DESY, HASYLAB, Hamburg, Germany

R. Simon, ANKA, KIT, Karlsruhe, Germany

M. Radtke, HZB Berlin, Germany

J. Broekaert, Inst. of Anorganic and Applied Chemistry, Univ. of Hamburg, Germany

S. Pahlke, Ketek, München, Germany

C. Mantler, Siltronic, Freiberg, Germany

B. Beckhoff, Physikal-Technische Bundesanstalt (PTB), BESSY2, Berlin, Germany

J. Hofstätter, Universitätsklinik für Innere Medizin IV, AKH, Vienna, Austria

P. Fratzl, Max Planck Institut für Kolloid- und Grenzflächenforschung

J. Van den Berg, Univ. of Salford, Manchester, UK

A. Nutsch, Fraunhofer Institut für Integrierte Systeme und Bauelementetechnologie IISB

J. K. Pálfalvi, Atomic Energy Research Institute, Budapest, Hungary

L. Sihver, Chalmers University of Technology, Gothenburg, Sweden

S. Burmeister, Christian-Albrechts-Universität zu Kiel, Kiel, Germany

D. O’Sullivan, Dublin Institute of Advanced Studies, Dublin, Ireland

J. Dettmann, European Space Agency, Nordwijk, The Netherlands

T. Berger, German Aerospace Center, Cologne, Germany

L. Hager, Health Protection Agency, Chilton, United Kingdom

H. Tawara, High Energy Accelerator Research Organization, Tsukuba, Japan

V. Shurshakov, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia

A. Nagamatsu, Japan Aerospace Exploration Agency, Tsukuba, Japan

J. Miller, Lawrence Berkeley National Laboratory, Berkeley, CA, USA

E. Semones, NASA Johnson Space Center, Houston, TX, USA

Y. Uchihori, National Institute of Radiological Sciences, Chiba, Japan

S.W.S. McKeever, Oklahoma State University, Stillwater, OK, USA

P. Steier, Universität Wien, Fakultät für Physik - Isotopenforschung, VERA Labor, Wien, Austria

M. Srncik, Universität Wien, Institut für Anorganische Chemie, Wien, Austria

C. Vockenhuber, Laboratory of Ion Beam Physics ETH, Zürich, Switzerland

I. Dillmann, Institut für Kernphysik, Forschungszentrum Karlsruhe, Germany

L. Szentmiklosi, Dep. of Nuclear Research, Institute of Isotopes, Hungarian Academy of Sciences, Budapest, Hungary

Peter M. Fischer, Professor Cypriote and Near Eastern Archaeology University of Gothenburg, Sweden

V.M.F. Hammer, Naturhistorisches Museum, Wien, Austria

Wolfram Adlassnig, University of Vienna, Institution of Cell Imaging and Ultrastructure Research, Austria

Nicholas Pearce, Institute of Geography and Earth Sciences, Aberystwyth University, Wales, UK

Chaza Darwich, Université Claude Bernard Lyon 1, France

Jan Welch, ETH Zürich, Switzerland

101 

Jürgen Evers, LMU München, Germany

Paul Saey, CTBTO, IAEA, Vienna, Austria

Robert Seemann, Naturhistorisches Museum, Vienna, Austria

Nikolaos Symeonidis, University of Athens, Greece

Gerald Giester, Institut für Mineralogie und Kristallographie, University of Vienna, Austria

Peter Weinberger, Institute of Applied Synthetic Chemistry, Vienna University of Technology, Austria

Bernhard Lendl, Institute of Chemical Technologies and Analytics, Vienna University of Technology, Austria

Eliezer Oren, Ben-Gurion University of the Negev, Israel

Menno Blaauw, University of Technology Delft, Netherlands

Hans Mommsen, Helmholtz-Institut für Strahlen-und Kernphysik, Universität Bonn, Germany

Karen Polinger Foster, Department of Near Eastern Languages and Civilizations, Yale University, USA

Public Relations, Öffentlichkeitsarbeit PA „Silicon Valley im Wiener Prater“ (März 2010): Akkreditierung eines einzigartigen Röntgenlabors zur zerstörungsfreien Analyse von Siliziumwavern. Wissenschaft mit ästhetischem Wert (Wissenschaftspreis für ästhetisch ansprechende, tomographisch erzeugte Bilder eines Anopheles-Moskitos) PA “Strahlenrisiko im Weltraum” (März 2009): Das Europäische Forschungsprogramm HAMLET untersucht mit Beteiligung der TU Wien Strahlenrisiken im Weltraum. “Überschätzte Gefahr beim Weltraum-Spaziergang”, pressetext austria, 25.03.2009 “Strahlungsrisiko bei Marsmission weit höher als bei Weltraumspaziergang”, derStandardt.at, 25.03.2009 “Strahlende Aussichten”, Profil, 30.03.2009 “Radiation and Human Spaceflight”, öffentliche Informationsveranstaltung, TU Wien, 01.04.2009 – 02.04.2009 Ö1 “Wissen aktuell”, ORF, 02.04.2009 ORF 2 “Heute in Österreich”, ORF, 20.05.2009 “Faszination Weltraum”, Grazer Herbstmesse 09, 26.09.2009 – 04.10.2009 PA “Lumineszenz stellt archäologische Uhr auf Null” (März 2010): Ein Forscherteam des Atominstitutes hat mittels strahlenphysikalischer Methoden geholfen, das Rätsel der sogenannten Ziegelroith zu entschlüsseln. “Das Geheimnis aus der Ziegelroith”, Der Standard, 10.03.2010 “Vienna Summer School 2010: Radiation Physics in Cultural Heritage Studies”, TU Wien, 20.09.2010 PA “Optimierte Bestrahlung bei Prostata-Karzinomen“ (Oktober 2008): Zwei Physikerinnen der TU Wien haben in Kooperation mit der Medizinischen Universität Innsbruck und dem SMZ Ost die mittlere Abweichung bei der Bestrahlung von Prostatakarzinomen evaluiert und unterschiedliche Strahlungsquellen miteinander verglichen.

102  

Publikationen Zeitschriftenartikel

A. Barth, N. Winker, E. Ponocny-Seliger, W Mayrhofer, I. Ponocny, C. Sauter, N. Vana: "A meta-analysis for neurobehavioural effects due to electromagnetic field exposure emitted by GSM mobile phones"; Occupational and Environmental Medicine, 65 (2008), S. 243 - 246.

A. Barth, R. Winker, E. Ponocny-Seliger, W. Mayrhofer, I. Ponocny, C. Sauter, N. Vana: "A meta-analysis for neurobehavioural effects due to electromagnetic field exposure emitted by GSM mobile phones"; Occupational and Environmental Medicine, 65 (2008), 5; S. 342 - 346.

T. Berger, M. Hajek: "On the linearity of the high-temperature emission from 7LiF:Mg,Ti (TLD-700)"; Radiation Measurements, 43 (2008), S. 1467 - 1473.

T. Berger, M. Hajek: "TL-efficiency--Overview and experimental results over the years"; Radiation Measurements (eingeladen), 43 (2008), 2-6; S. 146 - 156.

R. Bergmann, M. Hajek, M. Fugger, N. Vana: "Comperative study of infrared-stimulated luminescent and thermoluminescent dating of archaeological artefacts"; Radiation Measurements, 43 (2008), 2-6; S. 781 - 785.

H. Böck: "Atomkraftwerke - Ausweg aus der Klimaproblematik?"; Wirtschaft & Umwelt, 3 (2008), S. 32.

U. Fittschen, F. Meirer, C. Streli, P. Wobrauschek, J. Thiele, G. Falkenberg, G. Pepponi: "Characterization of atmospheric aerosols using SR-TXRF and Fe K-edge TXRF-XANES"; Spectrochimica Acta Part B, 63 (2008), S. 1489 - 1495.

V. Groma, J. Osan, S. Török, F. Meirer, C. Streli, P. Wobrauschek, G. Falkenberg: "Trace element analysis of airport related aerosols using SR-TXRF"; IDOJARAS, 112 (2008), 2; S. 83 - 97.

M. Hajek, T. Berger, R. Bergmann, N. Vana, Y. Uchihori, N. Yasuda, H. Kitamura: "LET dependence of thermoluminescent efficiency and peak height ratio of CaF2:Tm"; Radiation Measurements, 43 (2008), 2-6; S. 1135 - 1139.

M. Hajek, T. Berger, N. Vana, M. Fugger, J. K. Pálfalvi, J. Szabó, I. Eördögh, Y. Akatov, V. Arkhangelsky, V. Shurshakov: "Convolution of TLD and SSNTD measurements during the BRADOS-1 experiment onboard ISS (2001)"; Radiation Measurements, 43 (2008), 7; S. 1231 - 1236.

103 

S. Ismail, W. Klikovich: "Low Cost Fully-automatic Counting System for INAA"; Egypt. J. Chem., Special Issue (2008), S. 29 - 42.

F. Meirer, G. Pepponi, C. Streli, P. Wobrauschek, P. Kregsamer, N. Zöger, G. Falkenberg: "Parameter study of self-absorption effects in Total Reflection X-ray Fluorescence-X-ray Absorption Near Edge Structure analysis of arsenic"; Spectrochimica Acta Part B, 63 (2008), S. 1496 - 1502.

F. Meirer, C. Streli, G. Pepponi, P. Wobrauschek, M.A. Zaitz, C. Horntrich, G. Falkenberg: "Feasibility study of SR-TXRF-XANES analysis for iron contaminations on a silicon wafer surface"; Surf. Interface Anal., 40 (2008), S. 1571 - 1576.

F. Smetana, M. Hajek, R. Bergmann, Helmut Brusl, M. Fugger, W. Gratzl, E. Kitz, N. Vana: "A portable multi-purpose OSL reader or UV dosimetry at workplaces"; Radiation Measurements, 43 (2008), 2-6; S. 516 - 519.

P. Steier, M. Bichler, L. FiField, R. Golser, W. Kutschera, A. Priller, Francesca Quinto, S. Richter, M. Srncik, P. Terrasi, L. Wacker, A. Wallner, Gabriele Wallner, K. Wilcken, E. Wild: "Natural and anthropogenic 236U in environmental samples"; Nuclear Instruments and Methods in Physics Research B, 266 (2008), Issue 10; S. 2246 - 2250.

G. Steinhauser: "Cleaner production in the Solvay Process: general strategies and recent developments"; Journal of Cleaner Production, 16 (2008), S. 833 - 841.

G. Steinhauser: "Quantification of the Abrasive Wear of a Gold Wedding Ring"; Gold Bulletin, 41 (2008), 1; S. 51 - 57.

G. Steinhauser, M. Bichler: "Adsorption of ions onto high silica volcanic glass"; Appl. Radiation and Isotopes, 66 (2008), S. 1 - 8.

G. Steinhauser, J. Evers, S. Jakob, T. Klapötke, G. Oehlinger: "A review on fulminating gold (Knallgold)"; Gold Bulletin, 41 (2008), 4; S. 305 - 317.

G. Steinhauser, W. Hujer, J. Sterba, R. Seemann, M. Bichler, N. Symeonidis: "On strontium and barium anomalies in the sediments of Charkadio Cave (Tilos Islang, Dodekanese, Greece)"; Journal of Radioanalytical and Nuclear Chemistry, 276 (2008), 1; S. 167 - 173.

G. Steinhauser, K. Karaghiosoff, T. Klapötke: "Synthesis and Crystal Structure of (CH3NH3)2[Cu(NO3)4]: a Rare Example of a

104  

Tetranitratocuprate (II) with a Light Cation of the Type M2[Cu(NO3)4]"; Zeitschrift für anorganische und allgemeine Chemie, 634 (2008), S. 892 - 894.

G. Steinhauser, T. Klapötke: ""Green" pyrotechnics: a chemists´ challenge"; Angewandte Chemie, 47 (2008), S. 3330 - 3347.

G. Steinhauser, T. Klapötke: "Pyrotechnik mit dem "Ökosiegel": eine chemische Herausforderung"; Angewandte Chemie, 120 (2008), S. 3376 - 3394.

G. Steinhauser, J. Sterba, M. Foster, F. Grass, M. Bichler: "Heavy metals from pyrotechnics in New Years Eve snow"; Atmospheric Environment, 42 (2008), S. 8616 - 8622.

G. Steinhauser, K. Tarantik, T. Klapötke: "Copper in Pyrotechnics"; Journal of Pyrotechnics, 27 (2008), 0058; S. 3 - 13.

J. Sterba, M. Blaauw, G. Steinhauser, M. Bichler, F. Grass, G. P. Westphal: "Accelerating k0"; Journal of Radioanalytical and Nuclear Chemistry, 278 (2008), 3; S. 613 - 616.

J. Sterba, G. Steinhauser, M. Bichler: "Cation-exchange properties of pumice: Taking a sip from a volcanic cocktail"; Journal of Radioanalytical and Nuclear Chemistry, Vol. 276 (2008), 1; S. 175 - 178.

C. Streli, P. Wobrauschek, F. Meirer, G. Pepponi: "Synchrotron radiation induced TXRF"; Journal of Analytical Atomic Spectrometry, 23 (2008), S. 792 - 798.

K. Uhlir, M. Griesser, G. Buzanich, P. Wobrauschek, C. Streli, D. Wegrzynek, A. Markowicz, E. Chinea-Cano: "Applications of a new portable (micro) XRF instrument having low-Z elements determination capability in the field of works of art"; X-Ray Spectrometry, 37 (2008), S. 450 - 457.

C. Vockenhuber, M. Bichler, A. Wallner, W. Kutschera, I. Dillmann, F. Käppeler: "Measurement of the thermal neutron capture cross section and the resonance integral of radioactive 182 Hf"; Physical Review C, 77 (2008), S. 1 - 7.

M. West, A. T. Ellis, P. Kregsamer, P. J. Potts, C. Streli, Christine Vanhoof, P. Wobrauschek: "Atomic spectrometry update. X-ray fluorescence spectrometry"; Journal of Analytical Atomic Spectrometry, 23 (2008), S. 1409 - 1437.

P. Wobrauschek, C. Streli, P. Kregsamer, F. Meirer, C. Jokubonis, A. Markowicz, D. Wegzynek, E. China-Cano: "TXRF attachment module modified for analysis in vacuum"; Spectrochimica Acta Part B, 63 (2008), S. 1404 - 1407.

105 

N. Zöger, C. Streli, P. Wobrauschek, C. Jokubonis, G. Pepponi, Paul Roschger, J. Hofstätter, A. Berzlanovich, D. Wegrzynek, E. Chinea-Cano, A. Markowicz, R. Simon, G. Falkenberg: "Determination of the elemental distribution in human joint bones by SR micro XRF"; X-Ray Spectrometry, 37 (2008), S. 3 - 11.

W. Adlassnig, G. Steinhauser, M. Peroutka, A. Musilek, J. Sterba, I.K. Lichtscheidl, M. Bichler: "Expanding the menu for carnivorous plants: Uptake of potassium, iron and manganese by carnivorous pitcher plants"; Appl. Radiation and Isotopes, 67 (2009), S. 2117 - 2122.

A. Barth, I. Ponocny, E. Ponocny-Seliger, N. Vana, R. Winker: "Effects of Extremely Low-Frequency Magnetic Field Exposure on Cognitive Functions: Results of a Meta-Analysis"; Bioelectromagnetics, in press (2009).

M. Bichler, N.J.G. Pearce, G. Steinhauser, J. Sterba: "More than just a convoluted table? Discussion of "Mediterranean tephra stratigraphy revisited: Results from a long terrestrial sequence on Lesvos Island, Greece" by margari et al. [J. Volcanol. Geotherm. Res. 163 (2007), 34-54]"; Journal of Volcanology and Geothermal Research, 181 (2009), S. 247 - 250.

G. Buzanich, P. Wobrauschek, C. Streli, A. Markowicz, D. Wegrzynek, E. Chinea-Cano, M. Griesser, K. Uhlir: "PART II (Portable ART analyzer) - development of a XRF spectrometer adapted for the study of artworks in the Kunsthistorisches Museum, Vienna"; X-Ray Spectrometry, 2009 (2009).

C. Darwich, M. Elkhatib, G. Steinhauser, H. Delalu: "Chlorine-Atom Transfer Reactions between Chloramine (0Chloramide) and Piperidine: Kinetic Reactivity and Characterization in a Raschig Medium"; Helvetica Chimica Acta, 92 (2009), S. 98 - 111.

C. Darwich, M. Elkhatib, G. Steinhauser, H. Delalu: "Kinetics of the Oxidation of N-Aminopiperidine with Chloramine"; Kinetics and Catalysis, 50 (2009), 1; S. 103 - 110.

C. Darwich, M. Elkhatib, G. Steinhauser, H. Delalu: "Kinetika okislenija N-aminopiperidina chloraminom"; Kinetika i Kataliz, 50 (2009), S. 112 - 119.

M. Dumont, N. Zöger, C. Streli, P. Wobrauschek, G. Falkenberg, P. Sanders, A.R. Pyzalla: "Synchrotron XRF analyses of element distribution in fossilized sauropod dinosaur bones"; Powder Diffraction, 24 (2009), 2; S. 130 - 134.

C. Horntrich, F. Meirer, C. Streli, P. Kregsamer, G. Pepponi, N. Zöger, P. Wobrauschek: "Influence of the sample morphology on total reflection X-ray fluorescence analysis"; Powder Diffraction, 24 (2009), 2; S. 140 - 144.

106  

R. Khan, H. Böck: “Status and Patterns of European Nuclear Education and its Best Practices”, European Nuclear Society News 23 (2009), S. 1-19.

F. Meirer, G. Pepponi, C. Streli, P. Wobrauschek, N. Zöger: "Grazing exit versus grazing incidence geometry for x-ray absorption near edge structure analysis of arsenic traces"; Journal of Applied Physics, 105 (2009), 074906; S. 074906-1 - 074906-7.

M. Ovari, C. Streli, P. Wobrauschek, G. Zaray: "Determination of carbon in natural freshwater biofilms with total reflection X-ray fluorescence spectrometry"; Spectrochimica Acta Part B, 64 (2009), S. 802 - 804.

Francesca Quinto, P. Steier, Gabriele Wallner, A. Wallner, M. Srncik, M. Bichler, W. Kutschera, F. Terrasi, Antonio Petraglia, C. Sabbarese: "The first use of 236U in the general environment and near a shutdown nuclear power plant"; Appl. Radiation and Isotopes, 67 (2009), S. 1775 - 1780.

G. Reitz, M. Hajek, R. Bergmann, M. Fugger, N. Vana: "Astronaut´s Organ Doses Inferred from Measurements in a Human Phantom Outside the International Space Station"; Radiation Research, 171 (2009), S. 225 - 234.

Paul Roschger, I. Manjubala, N. Zöger, F. Meirer, R. Simon, C. Li, N. Fratzl-Zelman, B. Misof, E. Paschalis, C. Streli, P. Fratzl, K. Klaushofer: "Bone Material Quality in Transiliac Bone Biopsies of Postmenopausal Osteoporotic Women After 3 Years Strontium Ranelate Treatment"; Journal of Bone and Mineral Research, 2009 (2009), S. 1 - 35.

P.R.J. Saey: "The Influence of Radiopharmaceutical Isotope Production on the Global Radioxenon Background"; Journal of Environmental Radioactivity, 100 (2009), S. 396 - 406.

G. Steinhauser: "CHN7 - A molecule like almost solid nitrogen"; Sitzungsberichte der Abteilung II der Österreichischen Akademie der Wissenschaften, 217 (2009), S. 3 - 11.

G. Steinhauser: "The nature of navel fluff"; Medical Hypotheses, 72 (2009), S. 623 - 625.

G. Steinhauser, W. Adlassnig, T. Lendl, M. Peroutka, M. Weidinger, I.K. Lichtscheidl, M. Bichler: "Metalloid Contaminated Microhabitats and their Biodiversity at a Former Antimony Mining Site in Schlaining, Austria"; Open Environmental Sciences, 31 (2009), S. 26 - 41.

G. Steinhauser, G. Giester, N. Leopold, C. Wagner, M. Villa: "Nitrogen-rich compounds of the lanthanoids: the 5,5´-azobis[1H-tetrazol-1-ides]

107 

of the light rare earths (Ce, Pr, Nd, Sm, Eu, Gd)."; Helvetica Chimica Acta, 92 (2009), S. 2038 - 2051.

G. Steinhauser, G. Giester, C. Wagner, N. Leopold, J. Sterba, B. Lendl, M. Bichler: "Nitrogen-Rich Compounds of the Lanthanoids: The 5,5'-Azobis[1H-tetrazol-1-ides] of some Yttric Earths (Tb, Dy, Ho, Er, Tm, Yb, and Lu)"; Helvetica Chimica Acta, 92 (2009), 7; S. 1371 - 1384.

G. Steinhauser, A. Musilek: "Do pyrotechnics contain radium?"; Environmental Research Letters, 4 (2009), S. 034006-1 - 034006-6.

G. Steinhauser, J. Sterba, M. Bichler: "Activation analysis: A method for the future"; Appl. Radiation and Isotopes, 67 (2009).

J. Sterba, H. Mommsen, G. Steinhauser, M. Bichler: "The influence of different tempers on the composition of pottery"; Journal of Archaeological Science, 36 (2009), S. 1582 - 1589.

J. Sterba, K. Polinger Foster, G. Steinhauser, M. Bichler: "New light on old pumice: the origins of Mediterranean volcanic material from ancient Egypt"; Journal of Archaeological Science, 36 (2009), S. 1738 - 1744.

Leila Teymournia, D. Berger, D. Kauer-Dorner, K. Poljanc, W. Seitz, H. Aiginger, C. Kirisits: "Comparison of PDR brachytherapy and external beam radiation therapy in the case of breast cancer"; Physics in Medicine and Biology, 54 (2009), S. 2585 - 2595.

M. West, A. T. Ellis, P. J. Potts, C. Streli, Christine Vanhoof, D. Wegrzynek, P. Wobrauschek: "Atomic spectrometry update. X-ray fluorescence spectrometry"; Journal of Analytical Atomic Spectrometry, 24 (2009), S. 1289 - 1326.

W. Adlassnig, K. Pranji, E. Mayer, G. Steinhauser, F. Hejjas, I. Lichtscheidl: "The abiotic environment of Heliamphora nutans (Sarraceniaceae): pedological and microclimatic observations on Roraima Tepui"; Brazilian Archives of Biology and Technology, 53 (2010), S. 425 - 430.

M. Bichler, J. Sterba, G. Steinhauser: "Bimsstein - ein bedeutungsschwerer Leichtbaustoff"; Praxis der Naturwissenschaften, 5/59 (2010), S. 17 - 20.

M. Fally, J. Klepp, Y. Tomita, T. Nakamura, C. Pruner, M. Ellabban, R. Rupp, M. Bichler, I. Drevensek Olenik, J. Kohlbrecher, H. Eckerlebe, H. Lemmel, H. Rauch: "Neutron Optical Beam Splitter from Holographically Structured Nanoparticle-Polymer Composites"; Physical Review Letters, 105 (2010), 123904; S. 1 - 4.

D. Giubertoni, G. Pepponi, M. Sahiner, S. Gennaro, M. Bersani, M. Kah, K. Kirkby, R. Doherty, M. Foad, F. Meirer, C. Streli, J. Woicik, P. Pianetta:

108  

"Deactivation of submelt laser annealed arsenic ultrashallow junctions in silicon during subsequent thermal treatment"; Journal of Vacuum Science and Technology, 28/C1B1 (2010), S. 1 - 5.

D. Ingerle, F. Meirer, N. Zöger, G. Pepponi, D. Giubertoni, G. Steinhauser, P. Wobrauschek, C. Streli: "A new spectrometer for grazing incidence X-ray fluorescence for the characterization of Arsenic implants and Hf based high-k layers"; Spectrochimica Acta Part B, 65 (2010), S. 429 - 433.

R. Khan, H. Böck, M. Villa: "The status and patterns of nuclear education in an anti-nuclear environment, Austria"; International Journal of Nuclear Knowledge Management, 4 (2010), 3; S. 211 - 219.

R. Khan, S. Karimzadeh, H. Böck: "TRIGA fuel burn-up calculations and its confirmation"; Nuclear Engineering and Design, 240 (2010), S. 1043 - 1049.

T. Klapötke, B. Krumm, N. Mayr, F. Steemann, G. Steinhauser: "Hands on explosives: Safety testing of protective measures"; Safety Science, 48 (2010), S. 28 - 34.

E. Margui, G. Floor, M. Hidalgo, P. Kregsamer, G. Roman-Ross, C. Streli, I. Queralt: "Analytical Possibilities of Total Reflection X-ray Spectrometry (TXRF) for Trace Selenium Determination in Soils"; Analytical and Bioanalytical Chemistry, 82 (2010), S. 7744 - 7751.

E. Margui, P. Kregsamer, M. Hidalgo, J. Tapias, I. Queralt, C. Streli: "Analytical approaches for Hg determination in wastewater samples by means of total reflection X-ray fluorescence spectrometry"; Talanta, 82 (2010), S. 821 - 827.

F. Meirer, A. Singh, G. Pepponi, C. Streli, T. Homma, P. Pianetta: "Synchrotron radiation-induced total reflection X-ray fluorescence analysis"; TrAC - Trends in Analytical Chemistry, 0165 (2010), 9936; S. 1 - 18.

J. Osan, F. Meirer, V. Groma, S. Török, D. Ingerle, C. Streli, G. Pepponi: "Speciation of Copper and ZN in size-fractionated aerosol samples using TXRF-XANES"; Spectrochimica Acta Part B, 65 (2010), S. 1008 - 1013.

G. Pepponi, D. Giubertoni, M. Bersani, F. Meirer, D. Ingerle, G. Steinhauser, C. Streli, P. Hoenicke, B. Beckhoff: "Grazing incidence x-ray fluorescence and secondary ion mass spectrometry combined approach for the characterization of ultrashallow arsenic distribution in silicon"; Journal of Vacuum Science and Technology, 28 (2010), S. C1C59 - C1C64.

P.R.J. Saey, T. Bowyer, A. Ringbom: "Isotopic noble gas signatures released from medical isotope production facilities - Simulations and measurements"; Applied Radiation and Isotopes, 68 (2010), 9; S. 1846 - 1854.

109 

P.R.J. Saey, C. Schlosser et al.: "Environmental Radioxenon Levels in Europe: a Comprehensive Overview"; Pure and Applied Geophysics, 167 (2010), 4-5.

S. Smolek, C. Streli, N. Zoeger, P. Wobrauschek: "Improved micro x-ray fluorescence spectrometer for light element analysis"; Review of Scientific Instruments, 81 (2010), 053707; S. 1 - 6.

G. Steinhauser, G. Giester, N. Leopold, C. Wagner, M. Villa, A. Musilek: "Nitrogen-rich compounds of the lanthanoids: Highlights and summary"; Helvetica Chimica Acta, 93 (2010), S. 183 - 202.

G. Steinhauser, T. Klapötke: "Using the Chemistry of Fireworks To Engage Students in Learning Basic Chemical Principles: A Lesson in Eco-Friendly Pyrotechnics"; Journal of Chemical Education (eingeladen), 87 (2010), S. 150 - 156.

G. Steinhauser, J. Sterba, E. Oren, M. Foster, M. Bichler: "Provenancing of archaeological pumice finds from North Sinai"; Naturwissenschaften, 97 (2010), S. 403 - 410.

R. Tinker, B. Orr, M. Grzechnik, E. Hoffmann, P.R.J. Saey, S. Solomon: "Evaluation of radioxenon releases in Australia using atmospheric dispersion modelling tools"; Journal of Environmental Radioactivity, 101 (2010), S. 353 - 361.

M. Villa, M. Hayden, G. Steinhauser, H. Böck: "Accident scenarios of the TRIGA Mark II reactor in Vienna"; Nuclear Engineering and Design, 240 (2010), S. 4091 - 4095.

A. Wallner, K. Buczak, T. Belgya, M. Bichler, L. Coquard, I. Dillmann, O. Forstner, R. Golser, F. Käppeler, W. Kutschera, C. Lederer, A. Mengoni, A. Priller, R. Reifarth, P. Steier, L. Szentmiklosi: "Precise Measurement of the Neutron Capture Reaction 54Fe(n,γ)55Fe via AMS"; Journal of Physics: Conference Series, 202 (2010), S. 1 - 4.

M. West, A. T. Ellis, P. J. Potts, C. Streli, Christine Vanhoof, D. Wegrzynek, P. Wobrauschek: "Atomic spectrometry update-X-ray fluorescence spectrometry"; Journal of Analytical Atomic Spectrometry, 25 (2010), S. 1503 - 1545.

56 Beiträge in Conference proceedings 254 Talks and Conference contributions (38 invited conference talks)

Bücher und Buchbeiträge P.M. Fischer, M. Bichler, V.M.F. Hammer: "An Early Bronze Age Necklace from Tell Abu Al-Kharaz, Jordan Valley"; in: "Tell Abu al-Kharaz in the Jordan Valley", Manfred Bietak, Hermann Hunger (Hrg.); Verlag der Österr. Akademie der Wissenschaften, Wien, 2008, ISBN: 978-3-7001-3880-8, S. 387 - 389.

110  

M. Tschurlovits: "Verlagerung der Themenschwerpunkte in der Strahlenschutz-Ausbildung zur Sicherstellung des Kompetenzerhalts in den verschiedenen Ebenen"; in: "Kompetenz im Strahlenschutz - Ausbildung, Weiterbildung und Lehre -", R. Michel, M. Täschner, H.G. Vogt (Hrg.); IRPA, 2008, ISSN: 1013-4506, S. 190 - 197.

K. Foster, J. Sterba, G. Steinhauser, M. Bichler: "The Thera eruption and Egypt: pumice, texts and chronology"; in: "Time´s Up! Dating the Minoan eruption of Santorini.", D. Warburton (Hrg.); Monographs of the Danish Institute at Athens, Athen, 2009, ISBN: 978-87-7934-024-4, S. 171 - 180.

R. Dams, K. Strijckmans, M. Bichler: "Activation Analysis"; in: "Ullmann's Encyclopedia of Industrial Chemistry", Wiley-VCH, 2010, ISBN: 9783527306732, 19 S.

P.R.J. Saey: "Xenon"; in: "Encyclopedia of Inorganic Chemistry" volume "Radionuclides in the Environment",", D. Atwood (Hrg.); John Wiley & Sons, Ltd., 2010, ISBN: 978-0-470-71434-8, S. 179 - 188.

P. Wobrauschek, C. Streli, E. Selin-Lindgren: "Energy Dispersive, X-ray Fluorescence Analysis"; in: "Encyclopedia of Analytical Chemistry", herausgegeben von: R.A. Meyers; John Wiley & Sons, Ltd., United States, 2010, S. 1 - 17.

Akademische Arbeiten Dissertationen

1. U. Dorda: "Compensation of long range beam-beam interaction at the CERN LHC"; Begutachter/in(nen): J. Aiginger; Atominstitut, 2008; Rigorosum: 02/06/2008.

2. F. Meirer: "Applications of Synchrotron radiation induced TXRF in Absorption Spectroscopy"; Begutachter/in(nen): C. Streli, M. Mantler; Atominstitut, 2008; Rigorosum: 25/06/2008.

3. S. A. Bamford: "Optimized Determination of Elemental Concentrations in Airborne Particulate Matter Using X-ray Emission Techniques"; Begutachter/in(nen): P. Wobrauschek; Atominstitut, 2008; Rigorosum: 25/06/2008.

4. L. Teymournia: "Optimierung und evaluierung unterschiedlicher Bestrahlungsmodalitäten mit Photonen und Protonen in der Strahlentherapie"; Begutachter/in(nen): J. Aiginger; Atominstitut, 2009; Rigorosum: 21/01/2009.

111 

5. H. F. Rasool: "Assessment and control of medical exposure in Pakistan"; Begutachter/in(nen): M. Tschurlovits; Atominstitut, 2009; Rigorosum: 02/09/2009.

Diplom- und Master-Arbeiten

1. P. Kügler: "Messung und Bewertung der Weltraumstrahlung an der Oberfläche eines Satelliten"; Betreuer/in(nen): N. Vana, M. Hajek; Atominstitut, 2008; Abschlussprüfung: 2008.

2. I. Schwingschlögl: "Die Rolle von Thermolumineszenzdetektoren in der Dosimetrie"; Betreuer/in(nen): N. Vana, M. Hajek; Atominstitut, 2008; Abschlussprüfung: 2008.

3. G. Buzanich: "Portables Röntgenlfuoreszenzspektrometer mit Vakuumkammerzur in situ Analyse von Objekten aus Kunst und Archäometrie"; Betreuer/in(nen): P. Wobrauschek; Atominstitut, 2008; Abschlussprüfung: 01/2008.

4. B. Pemmer: "Studien zur Quantifizierung: Invivo energiedispersive Röntgenfluoreszenzanalyse von Blei im menschlichen Knochen"; Betreuer/in(nen): P. Wobrauschek; Atominstitut, 2008; Abschlussprüfung: 01/2008.

5. K. Wartmann: "Instrumentelle Neutronenaktivierungsanalyse und Herkunftsbestimmung von Spuren vulkanischer Asche im Grabungsprofil von Pailaikastro, Kreta (Griechenland)"; Betreuer/in(nen): M. Bichler; Atominstitut, 2008; Abschlussprüfung: 21/01/2008.

6. J. Matejcek: "Entwicklung und Evaluierung einer Probenvorbereitungstechnik bei der Neutronenaktivierungsanalyse von Holz"; Betreuer/in(nen): M. Bichler; Atominstitut, 2008; Abschlussprüfung: 27/10/2008.

7. E. Idl: "Evaluation of thermoluminescence glow curve kinetic parameters for different phospors"; Betreuer/in(nen): N. Vana, M. Hajek; Atominstitut, 2009; Abschlussprüfung: 14/01/2009.

8. C. Taylor: "Thermisch und optisch stimulierte Luminsezenz zur Alterbestimmung von Proben aus Oberösterreich - Ein Vergleich"; Betreuer/in(nen): N. Vana, M. Hajek; Atominstitut, 2009; Abschlussprüfung: 14/01/2009.

9. B. Großmayer: "Softwarepaket zur quantitativen Röntgenfluoreszenzanalyse mittels fundamentaler Parometern bei Verwendung von Röntgenoptiken";

112  

Betreuer/in(nen): P. Wobrauschek; Atominstitut, 2009; Abschlussprüfung: 14/01/2009.

10. P. Blamauer: "Software module for automated thermoluminescence dating"; Betreuer/in(nen): N. Vana, M. Hajek; Atominstitut, 2010; Abschlussprüfung: 18/03/2010.

11. K. Langer-Hansel: "Thermolumineszenzdosimetrie in gemischten Strahlenfeldern"; Betreuer/in(nen): N. Vana; Atominstitut, 09/06/2010.

12. S. Probst: "Dosimetrie und Phantomkörper zur Erfassung der Strahlenexposition im Weltraum"; Betreuer/in(nen): N. Vana, M. Hajek; Atominstitut, 2010; Abschlussprüfung: 08/2010.

13. M. Karacson: "Monte Carlo simulation of the activation of air at the MedAustron project"; Betreuer/in(nen): J. Aiginger; Atominstitut, 2010; Abschlussprüfung: 06/10/2010.

14. F. Stadlbauer: "Entwicklung und Realisierung einer computergestu tzten Nanoliter-Applikationseinheit zur exakten Positionierung von reproduzierbaren Flussigkeitsvolumina auf Probenträgern fu r die Totalreflexions-Röntgenfluoreszenz-Analyse"; Betreuer/in(nen): C. Streli; Atominstitut, 2010; Abschlussprüfung: 24/11/2010.

113 

4.6 Low Temperature Physics and Superconductivity

Preise und Auszeichnungen Honorarprofessur an der Southwest Jiaotong University, Chengdu, China (Harald W. Weber)

PASREG Award of Excellence for outstanding contributions to the development and charactersiation of bulk high temperature superconductors (Michael Eisterer)

Gastwissenschaftler MSc Anna Kortyka Institute of Physics, Warszawa

01.01.2008 30.06.2008 01.04.2009 31.12.2009 01.03.2010 31.05.2010

MSc Vitalyi Antal Institute of Experimental Physics, Kosice

01.07.2008 31.10.2008 17.07.2009 31.08.2009

Dr. V. Marchenkov RAS, Ekaterinburg

03.07.2008 29.09.2008 02.07.2009 28.08.2009 12.12.2009 28.12.2009 01.07.2010 30.08.2010

MSc M. Kulich IEE / Bratislava

01.11.2008 31.01.2009

MSc Daniela Volochova Institute of Experimental Physics, Kosice

01.10.2009 31.12.2009

MSc Oleksandr Tkachenko ILTSR, Wroclaw

12.01.2010 14.02.2010

Dr. Raquel González-Arrabal Universidad Politécnica de Madrid

28.05.2010 06.06.2010

Gastvortragende

2008 7. Jänner A. KORTYKA Institute of Physics, Warszawa Influence of low Pr substitution on the superconducting parameters of Y-

123 31. März T. PRIKHNA Institute for Superhard Materials, Kiev

114  

Nano-structural MgB2- and YBCO-based materials with high critical currents 2. Juni G. BURKHART CERN, Geneva Key components of a dilution refrigerator 17. November R. DINNER Cambridge Scanning Hall probe microscopy of super-currents in YBCO 2009 12. Jänner C. SBORCHIA F4E, Barcelona EU procurement strategies for the ITER magnets 25. Mai J. KARPINSKI ETH Zurich Single crystals of LnFeAsO1-xFx (Ln=La, Pr, Nd, Sm, Gd) and Ba1-xRbxFe2As2:

growth, structure and superconducting properties 27. Mai D.V. KHVESHCHENKO University of North Carolina, Chapel Hill Dirac fermions in graphene, cuprates, and elsewhere 8. Juni A. KORTYKA Institute of Physics, Warszawa Superconducting state anisotropy and lock-in effect in low level Pr doped

YBa2Cu3O7-δ 15. Juni A. VOSTNER F4E Barcelona Results of the European ITER TF conductor qualification samples 16. November M. WEIGAND Cambridge Influence of grain boundaries and vicinality on coated conductor

performance 30. November A. Wisniewski Warszawa Magnetic properties of manganite and cobaltite nano-particles 2010 1. März J. PEDARNIG JK Univ. Linz Deposition, ion modification, and Jc characterization of YBCO based thin

films 31. Mai R. GONZALEZ-ARRABAL Universidad Politécnica de Madrid Development of materials for fusion applications: the problem of gas

bubble formation 22. November E. PARDO IEEE Bratislava Ac magnetization scans on coated conductors and Roebel cables 6. Dezember J. H. SHI University of Cambridge Top Seeded Melt Growth (TSMG) of single grain REBCO superconductors –

progress of fabricating bulk materials from "using no seeds" to "using thin films as seeds"

Co-Operations

Bernhard Holzapfel, Ludwig Schultz - Institut für Festkörper- und Werkstoffforschung, Dresden

Wolfgang Gawalek - Institut für Photonische Technologien, Jena

Mathias Noe, Walter Fietz, Wilfried Goldacker - Institut für Technische Physik, FZ Karlsruhe

Tabea Arndt - Siemens AG

Andrzej Zaleski - Institute of Low Temperature and Structure Research, Wroclaw

115 

Andrzej Wisniewski - Institute of Physics, Warszawa

Fedor Gömöry - Institute of Electrical Engineering, SAS, Bratislava, Slovak Republic

Pavel Diko - Institute of Experimental Physics, SAS, Kosice, Slovak Republic

Xavier Obradors - ICMAB, Barcelona

René Flükiger - DPMC, Genève

Janusz Karpinski - ETH, Zürich

Judith MacManus-Driscoll - Department of Materials Science and Metallurgy, University of Cambridge

David Cardwell - Engineering Department, University of Cambridge

Xiaoxing Xi - The Pennsylvania State University

Shixue Dou - Institute of Superconducting & Electronic Materials, Wollongong, Australia

Pingxiang Zhang - Northwest Institute of Nonferrous Metal Research, Xi’an, China

Yong Zhao - Superconductivity R&D Center, Southwest Jiaotong University, Chengdu, China

Tatiana Prikhna - Institute for Superhard Materials, National Academy of Sciences, Ukraine

Robert Buckley - Industrial Research Ltd., Lower, Hutt, New Zeeland

Luca Bottura, Christian Scheuerlein - CERN, Geneva, Switzerland

Takanobu Kiss - Department of Electric and Electronic Systems Engineering, Kyushu University, Japan

Publikationen Zeitschriftenartikel

M. Eisterer: "Calculation of the volume pinning force in MgB2 superconductors"; Physical Review B, 77 (2008), 144524; S. 144524-1 - 144524-5.

R. Fuger, M. Eisterer, F. Hengstberger, H. W. Weber: "Influence of neutron irradiation on high temperature superconducting coated conductors"; Physica C, 468 (2008), S. 1647 - 1651.

R. Fuger, M. Zehetmayer, M. Eisterer, S.I. Schlachter, W. Goldacker, C. Schmidt, H. W. Weber: "Scan measurements on ROEBEL assembled coated conductors (RACC)"; Journal of Physics: Conference Series, 97 (2008), 012222; S. 1 - 6.

F. Hengstberger, M. Eisterer, H. W. Weber, A. Kursumovic, J.L. MacManus-Driscoll: "Critical current anisotropy in nanostructured HLPE coated conductors"; Journal of Physics: Conference Series, 97 (2008), 012012; S. 1 - 5.

K. Humer, S. Raff, R. Prokopec, H. W. Weber: "Influence of reinforcement anisotropy on the stress distribution in tension and shear of a fusion magnet insulation system"; Advances in Cryogenic Engineering: Transactions of the Int. Cryogenic Materials Conf. - ICMC, Vol. 54 (2008), S. 60 - 67.

116  

N.I. Kourov, V. Marchenkov, V.G. Pushin, A.V. Korolev, E.B. Marchenkova, H. W. Weber: "Low-temperature properties of magnetic Ni50+xMn25-x+yGa25-y shape memory alloys"; Physics of the Solid State, 50 (2008), 11; S. 2127 - 2132.

N.I. Kourov, V. Marchenkov, V.G. Pushin, A.V. Korolev, L.N. Buinova, H. W. Weber: "Low-temperature properties of ordered Cu3Pd-based alloys"; Izvestija (Bulletin) Russian Academy of Sciences - Physical Series, 72 (2008), 8; S. 1231 - 1234.

C. Mitterbauer, G. Gritzner, N. Hörhager, H. W. Weber: "Yttrium-barium cuprate superconductors on titanium and rutile substrates"; Journal of Physics D: Applied Physics, 97 (2008), 012090; S. 1 - 5.

R. Prokopec, K. Humer, H. Fillunger, R. Maix, H. W. Weber: "Mechanical behavior of cyanate ester/epoxy blends after reactor irradiation to high neutron fluences"; Advances in Cryogenic Engineering: Transactions of the Int. Cryogenic Materials Conf. - ICMC, Vol. 54 (2008), S. 182 - 189.

K. Schöppl, H. W. Weber, J.H. Durrell: "Angular dependence of critical currents in YBa2Cu3O7-δ vicinal films"; Journal of Physics: Conference Series, 97 (2008), 012225; S. 1 - 5.

E. Shreder, S. Streltsov, A. Svyazhin, A. Makhnev, V. Marchenkov, A. Lukoyanov, H. W. Weber: "Evolution of the electronic structure and physical properties of Fe2MeAl (Me = Ti, V, Cr) Heusler alloys"; J. Phys.: Condens. Matter, 20 (2008), 045212; S. 1 - 7.

H. Sudra, G. Gritzner, N. Hörhager, H. W. Weber: "(Tl0,5Pb0,5)(Sr0,95Ba0,05)2(Ca0,8Gd0,2) Cu2Oz 1212 superconducting films on lanthanum aluminate"; Supercond. Sci. Technol., 21 (2008), S. 1 - 4.

M. Zehetmayer, N. Hörhager, H. W. Weber: "Non-destructive assessment of the critical current density in large superconducting pellets"; Supercond. Sci. Technol., 21 (2008), S. 1 - 4.

V. Antal, M. Kanuchova, M. Sefcikova, J. Kovac, P. Diko, M. Eisterer, N. Hörhager, M. Zehetmayer, H. W. Weber, X. Chaud: "Flux pinning in Al doped TSMG YBCO bulk superconductors"; Supercond. Sci. Technol., 22 (2009), 105001; S. 105001-1 - 105001-7.

M. Eisterer, J. Emhofer, S. Sorta, M. Zehetmayer, H. W. Weber: "Connectivity and critical currents in polycrystalline MgB2"; Supercond. Sci. Technol., 22 (2009), 034016; S. 1 - 7.

M. Eisterer, W. Häßler, P. Kovàc: "Critical currents in weakly textured MgB2: Nonlinear transport in anisotropic heterogeneous media"; Physical Review B, 80 (2009), 174516; S. 174516-1 - 174516-4.

117 

M. Eisterer, H. W. Weber: "Application prospects of MgB2 in view of its basic properties"; IEEE Transactions on Applied Superconductivity, 19 (2009), 3; S. 2788 - 2792.

M. Eisterer, H. W. Weber, J. Jiang, J.D. Weiss, A. Yamamoto, A.A. Polyanskii, E.E. Hellstrom, D.C. Larbalestier: "Neutron irradiation of SmFeAsO1-xFx"; Supercond. Sci. Technol., 22 (2009), 065015; S. 1 - 5.

M. Eisterer, M. Zehetmayer, H. W. Weber, J. Jiang, J.D. Weiss, A. Yamamoto, E.E. Hellstrom: "Effects of disorder on the superconducting properties of BaFe1.8Co0.2As2 single crystals"; Supercond. Sci. Technol., 22 (2009), 095011; S. 1 - 4.

R. Fuger, M. Eisterer, H. W. Weber: "YBCO coated conductors for fusion magnets"; IEEE Transactions on Applied Superconductivity, 19 (2009), 3; S. 1532 - 1535.

F. Hengstberger, M. Eisterer, M. Zehetmayer, H. W. Weber: "Assessing the spatial and field dependence of the critical current density in YBCO bulk superconductors by scanning Hall probes"; Supercond. Sci. Technol., 22 (2009), 025011; S. 1 - 6.

K. Humer, R. Prokopec, R. Maix, H. Fillunger, H. W. Weber: "Insulation systems for superconducting fusion magnets bases on cyanate ester blends"; Fusion Engineering and Design, 84 (2009), S. 960 - 963.

A. Kortyka, T. Doyle, R. Puzniak, A. Wisniewski, H. W. Weber, Y.Q. Cai, X. Yao: "Superconducting state parameters, pinning centres and their effectiveness for Y1-xPrxBa2Cu3O7-δ single crystals with low Pr contents"; Supercond. Sci. Technol., 22 (2009), S. 1 - 8.

A. Kortyka, R. Puzniak, A. Wisniewski, H. W. Weber, T. Doyle, Y.Q. Cai, X. Yao: "Influence of low-level Pr substitution on the superconducting properties of YBa2Cu3O7-δ single crystals"; Journal of Physics: Conference Series, 150 (2009), 052123; S. 1 - 4.

M. Kulich, P. Kovàc, M. Eisterer, I. Husek, T. Melisek, H. W. Weber, W. Häßler: "Effect of C and SiC additions into in situ or mechanically alloyed MgB2 deformed in Ti sheath"; Physica C, 469 (2009), S. 827 - 831.

E.B. Marchenkova, N.I. Kourov, V. Marchenkov, V.G. Pushin, A.V. Korolev, H. W. Weber: "Low temperature kinetic properties and structure of Ni50+xMn25-x+yGa25-y alloys with shape memory"; Journal of Physics: Conference Series, 150 (2009), 022054; S. 1 - 5.

T. Prikhna, W. Gawalek, Y. Savchuk, A. Kozyrev, M. Wendt, V. Melnikov, V. Turkevich, N. Sergienko, V. Moshchil, J. Dellith, C. Schmidt, S. Dub, T. Habisreuther, D. Litzkendorf, P. Nagorny, V. Sverdun, H. W. Weber, M. Eisterer, J. Noudem, U.

118  

Dittrich: "Formation of higher borides during high-pressure synthesis and sintering of magnesium diboride and their positive effect on pinning and critical current density"; IEEE Transactions on Applied Superconductivity, 19 (2009), 03; S. 2780 - 2783.

R. Prokopec, K. Humer, R. Maix, H. Fillunger, H. W. Weber: "Influence of various catalysts on the radiation resistance and the mechanical properties of cyanate ester/epoxy insulation systems"; Fusion Engineering and Design, 84 (2009), S. 1544 - 1547.

A.K. Shikov, V.I. Pantsyrny, N.I. Kozlenkova, L. Potanina, R. Vasilyev, I.N. Gubkin, E.V. Nikulenkov, J. Emhofer, M. Eisterer, H. W. Weber: "The effect of thermo-mechanical treatments on Jc(T,B) and Tcs of Nb-Ti strands"; IEEE Transactions on Applied Superconductivity, 19 (2009), 3; S. 2540 - 2543.

T. Withnell, K. Schöppl, J.H. Durrell, H. W. Weber: "Effects of irradiation on vicinal YBCO thin films"; IEEE Transactions on Applied Superconductivity, 19 (2009), 3; S. 2925 - 2928.

V. Antal, M. Kanuchova, M. Sefcikova, J. Kovac, P. Diko, M. Eisterer, N. Hörhager, M. Zehetmayer, H. W. Weber, X. Chaud: "Influence of Al doping and oxygenation on the superconducting properties of TSMG YBCO bulks"; Journal of Physics: Conference Series, 234 (2010), 012002; S. 1 - 5.

M. Bodea, J. Pedarnig, T. Withnell, H. W. Weber, D.A. Cardwell, N.H. Babu, A. Koblischka-Veneva: "Characterization of nano-composite M-2411/Y-123 thin films by electron backscatter diffraction and in-field critical current measurements"; Journal of Physics: Conference Series, 234 (2010), 012006; S. 1 - 5.

M. Chudy, M. Eisterer, H. W. Weber: "Asymmetric angular dependence of Jc in coated conductors prior to and after fast neutron irradiation"; Physica C, 470 (2010), S. 1300 - 1303.

P. Diko, V. Antal, M. Kanuchova, M. Sefcikova, J. Kovac, X. Chaud, M. Eisterer, N. Hörhager, M. Zehetmayer, H. W. Weber: "Influence of thermochemical treatments on TSMG YBCO bulks doped with Li and Al."; Journal of Physics: Conference Series, 234 (2010), 012011; S. 1 - 7.

M. Eisterer, R. Fuger, M. Chudy, F. Hengstberger, H. W. Weber: "Neutron irradiation of coated conductors"; Supercond. Sci. Technol., 23 (2010), 014009; S. 1 - 6.

M. Eisterer, H. W. Weber: "Consequences of the peculiar intrinsic properties of MgB2 on its macroscopic current flow"; Physica C, 470 (2010), S. 651 - 652.

119 

R. Fuger, M. Eisterer, S. Oh, H. W. Weber: "Superior properties of SmBCO coated conductors at high magnetic fields and elevated temperatures"; Physica C, 470 (2010), S. 323 - 325.

F. Hengstberger, M. Eisterer, H. W. Weber: "Numerical extension of the power law Jc(B) to zero field in thin superconducting films"; Physica C, 470 (2010), S. 1041 - 1042.

F. Hengstberger, M. Eisterer, H. W. Weber: "Thickness dependence of the critical current density in superconducting films: A geometrical approach"; Applied Physics Letters, 96 (2010), S. 022508-1 - 022508-3.

A. Kortyka, R. Puzniak, A. Wisniewski, H. W. Weber, C. Tang, X. Yao, K. Conder: "Irreversibility line and anisotropy of SmBa2Cu3O7-δ with varying oxygen content"; Physica C, 470 (2010), S. 217 - 218.

A. Kortyka, R. Puzniak, A. Wisniewski, M. Zehetmayer, H. W. Weber, C. Tang, X. Yao, K. Conder: "Evidence for a temperature dependent anisotropy of the superconducting state parameters in underdoped SmBa2Cu3Ox"; Physical Review B, 82 (2010), 054510; S. 1 - 9.

V. Marchenkov, V. Okulov, K.A. Okulova, H. W. Weber: "Anomalies in the galvanomagnetic properties of Fe1.9V1.1Al pseudogap semiconductors at high magnetic fields"; Journal of Low Temperature Physics, 159 (2010), S. 208 - 211.

E.B. Marchenkova, V. Marchenkov, N.I. Kourov, V.G. Pushin, A.V. Korolev, H. W. Weber: "High-field galvanomagnetic properties and structure of Ni-Mn-Ga nanocrystalline alloys with shape memory"; Journal of Low Temperature Physics, 159 (2010), S. 249 - 252.

A. Patra, M. Eisterer, R. Biele, S. Fähler, L. Schultz, V. Neu: "The temperature dependent anisotropy constants of epitaxially grown PrCo5+x"; Journal of Applied Physics, 108 (2010), 073912; S. 1 - 5.

T. Prikhna, W. Gawalek, Y. Savchuk, N. Sergienko, V. Moshchil, V. Sokolovsky, I. Vajda, V. Tkach, F. Karau, H. W. Weber, M. Eisterer, A. Joulain, J. Rabier, X. Chaud, M. Wendt, J. Dellith, N. Danilenko, T. Habisreuther, S. Dub, V. Meerovich, D. Litzkendorf, P. Nagorny, L. Kovalev, C. Schmidt, V. Melnikov, A. Shapovalov, A. Kozyrev, V. Sverdun, J. Kosa, A. Vlasenko: "Nanostructural superconducting materials for fault current limiters and cryogenic electrical machines"; Acta Physica Polonica A, 117 (2010), 1; S. 7 - 14.

T. Prikhna, W. Gawalek, Y. Savchuk, V. Tkach, N. Danilenko, M. Wendt, J. Dellith, H. W. Weber, M. Eisterer, V. Moshchil, N. Sergienko, A. Kozyrev, P. Nagorny, A. Shapovalov, V. Melnikov, S. Dub, D. Litzkendorf, T. Habisreuther, C. Schmidt, A. Mamalis, V. Sokolovsky, V. Sverdun, F. Karau, A. Starostina:

120  

"Higher borides and oxygen-enriched Mg-B-O inclusions as possible pinning centers in nanostructural magnesium diboride and the influence of additives on their formation"; Physica C, 470 (2010), S. 935 - 938.

T. Prikhna, W. Gawalek, V. Tkach, N. Danilenko, Y. Savchuk, S. Dub, V. Moshchil, A. Kozyrev, N. Sergienko, M. Wendt, V. Melnikov, J. Dellith, H. W. Weber, M. Eisterer, C. Schmidt, T. Habisreuther, D. Litzkendorf, I. Vajda, A. Shapovalov, V. Sokolovsky, P. Nagorny, V. Sverdun, J. Kosa, F. Karau, A. Starostina: "Effect of higher borides and inhomogeneity of oxygen distribution on critical current density of undoped and doped magnesium diboride"; Journal of Physics: Conference Series, 234 (2010), 012031; S. 1 - 14.

R. Prokopec, K. Humer, H. Fillunger, R. Maix, H. W. Weber: "Mechanical characterization of the ITER mock-up insulation after reactor irradiation"; Advances in Cryogenic Engineering: Transactions of the Int. Cryogenic Materials Conf. - ICMC, 56 (2010), S. 155 - 161.

R. Prokopec, K. Humer, H. Fillunger, R. Maix, H. W. Weber: "Property changes of cyanate ester / epoxy insulation systems caused by an ITER-like double impregnation and by reactor irradiation"; Advances in Cryogenic Engineering: Transactions of the Int. Cryogenic Materials Conf. - ICMC, 56 (2010), S. 119 - 126.

R. Prokopec, K. Humer, R. Maix, H. Fillunger, H. W. Weber: "Characterization of advanced cyanate ester/epoxy insulation systems before and after reactor irradiation"; Fusion Engineering and Design, 85 (2010), S. 227 - 233.

M. Weigand, M. Eisterer, E. Giannini, H. W. Weber: "Mixed state properties of Bi2Sr2Ca2Cu3O10+δ single crystals before and after neutron irradiation"; Physical Review B, 81 (2010), S. 014516-1 - 014516-7.

M. Zehetmayer, M. Eisterer, H. W. Weber, J. Jiang, J.D. Weiss, A. Yamamoto, A.A. Polyanskii, E.E. Hellstrom, D.C. Larbalestier: "Disorder induced effects on the critical current density of iron pnictide BaFe1.8Co0.2As2 single crystals"; Physica C, 470 (2010), S. 452 - 453.

M. Zehetmayer, H. W. Weber: "Experimental evidence for a two-band superconducting state of NbSe2 single crystals"; Physical Review B, 82 (2010), 014524; S. 1 - 5.

M. Eisterer, H. W. Weber: "The influence of weak texture on the critical currents in polycrystalline MgB2"; Supercond. Sci. Technol., 23 (2010), 034006; S. 1 - 5.

V. Antal, K. Zmorayova, J. Kovac, V. Kavecansky, P. Diko, M. Eisterer, H. W. Weber: "Influence of annealing in flowing argon on microstructural and superconducting

121 

properties of Al doped YBCO bulks"; Supercond. Sci. Technol., 23 (2010), 065014; S. 1 - 7.

A. Kortyka, R. Puzniak, A. Wisniewski, M. Zehetmayer, H. W. Weber, Y.Q. Cai, X. Xao: "Anisotropy of the superconducting state parameters and intrinsic pinning in low-level Pr-doped YBa2Cu3O7- single crystals"; Supercond. Sci. Technol., 23 (2010), 065001; S. 1 - 7.

M. Eisterer, M. Zehetmayer, H. W. Weber, J. Jiang, J.D. Weiss, A. Yamamoto, E.E. Hellstrom, D.C. Larbalestier, N.D. Zhigadlo, J. Karpinski: "Disorder effects and current percolation in FeAs based superconductors"; Supercond. Sci. Technol., 23 (2010), 054006; S. 1 - 7.

T.A. Prikhna, W. Gawalek, Y.M. Savchuk, M. Serga, T. Habisreuther, A. Soldatov, S. You, M. Eisterer, H. W. Weber, J. Noudem, V. Sokolovsky, F. Karau, J. Dellith, M. Wendt, M. Tomsic, V.N. Tkach, N.I. Danilenko, I.P. Fesenko, S.N. Dub, V.E. Moshchil, N.V. Sergienko, C. Schmidt, D. Litzkendorf, P.A. Nagorny, V.B. Sverdun, I. Vajda, J. Kosa: "The effect of oxygen distribution inhomogeneity and presence of higher borides on the critical current density improvement of nanostructural MgB2"; Adv. Sci. Technol., 75 (2010), S. 161 - 166.

T.A. Prikhna, W. Gawalek, Y.M. Savchuk, A. Mamalis, V. Tkach, H. Weber, T. Habisreuther, M. Eisterer, F. Karau, M. Wendt, N. Sergienko, V. Moshchil, A. Kozyrev, P. Nagorny, C. Schmidt, V. Melnikov, J. Dellith, D. Litzkendorf, J. Noudem, X. Chaud, V. Sverdun, A. Shapolvalov, A. Starostina: "High pressure synthesized magnesium diboride- and dodecaboride-based superconductors: structure and properties"; Materials Science Forum, 670 (2010), S. 21 - 27.

90 Talks and Conference contributions (20 invited talks)

Akademische Arbeiten Dissertationen

1. D. Bridi: "Neutral Beam Emission Spectroscopy and Simulation for Fusion Plasma Diagnostics"; Begutachter/in(nen): F. Aumayr, H. W. Weber; Institut für Allgemeine Physik, 2008; Rigorosum: 13.03.2008.

2. R. Fuger: "Analysis of high temperature superconducters for applications in fusion magnets"; Begutachter/in(nen): H. W. Weber; Atominstitut, 2008; Rigorosum: 15.10.2008.

3. F. Hengstberger: "Critical Currents in High-Temperature Superconducting Films and in Coated Conductors"; Begutachter/in(nen): H. W. Weber, E. Bauer; Atominstiut, 2009; Rigorosum: 17.06.2009

122  

4. K. Schöppl: "Grain Boundaries in High Temperature Superconducters "; Begutachter/in(nen): H. W. Weber; Atominstitut, 2009; Rigorosum: 17.06.2009

5. G. Burghart: "Baseline design of the cryogenic system for EURECA"; Begutachter/in(nen): H. W. Weber; Atominstitut, 2010; Rigorosum: 16.06.2010

6. N. Hörhager: "Massive Hochtemperatursupraleiter zur Speicherung hoher Magnetfelder für die industrielle Herstellung"; Begutachter/in(nen): H. W. Weber; Atominstitut, 2010; Rigorosum: 19.01.2010

Diplom- und Master-Arbeiten

1. J. Emhofer: "Stromperkolation in polykristallinen MgB2 Supraleitern"; Betreuer/in(nen): H. W. Weber; Atominstitut, 2008; Abschlussprüfung: 19.11.2008.

2. T. Baumgartner: " Transport current anisotropy in melt-textured high-temperature superconductors "; Betreuer/in(nen): M. Eisterer; Atominstitut, 2010; Abschlussprüfung: 10.03.2010.

3. C. Trauner:

" Einfluss künstlicher Verankerungszentren auf das Flussliniengitter von V3Si Einkristallen"; Betreuer/in(nen): H. W. Weber; Atominstitut, 2010; Abschlussprüfung: 14.06.2010.

123 

4.7 Junior Research Groups Quantum metrology (Schumm)

als eigenständige Gruppe seit Ende 2010, davor “Atomphysik, Quantenoptik”

Preise und Auszeichnungen START Preis of the Autrian Ministry of Sciences/FWF (2009)

ERC starting grant (2010)

Elected member of „Junge Kurie“ of the Austrian Academy of Science (2011)

Gastwissenschaftler Thomas Plisson, Stage de l’ècole Polytechnique (8 Monate Wissenschaftsprojekt im Rahmen eines PhD Programmes, Experimentalphysik), Juli 2008 – März 2009, Institut d’Optique Graduate School, Compus Polytechnique, Palaiseau, France Claudia deGrandi, 4 Monate Austauschprogramm mit Boston University, Experimentalphysik, Juni 2008 – Oktober 2008, Boston University, USA

Gastvortragende Siehe CoQuS Program, identisch mit „Atomphysik, Quantenoptik“ Gastprofessoren Identisch mit „Atomphysik, Quantenoptik“

Co-Operations Identisch mit „Atomphysik, Quantenoptik“

Public Relations, Öffentlichkeitsarbeit

Press release Austrian Ministry for Science and Research (bmwf) on ERC grant (18.08.2010) “Salzburger Nachrichten” on ERC grant (11.08.2010) “DerStandard” on ERC grant (10.08.2010) Press release TU Wien on ERC grant (10.08.2010) Press relaes “Informationsidienst Wissenschaft” on ERC grant (10.08.2010) “DiePresse” on the Thorium Clock (25.10.2009) “DerStandard” on START/Wittgenstein (19.10.2009) “DieKleineZeitung” on START Price (19.10.2009) APA Press release on START Price (19.10.2009) Press release TU Wien on START price (19.10.2009)

124  

Press release Austrian Ministry for Science and Research (bmwf) on START/Wittgenstein (19.10.2009)

Publikationen Zeitschriftenartikel

S. Hofferberth, I. Lesanovsky, Thorsten Schumm, A. Imambekov, V. Gritsev, E. Demler, H.-J. Schmiedmayer: "Probing quantum and thermal noise in an interacting many-body system"; Nature Physics, 4 (2008), S. 489 - 495.

I. Mazets, Thorsten Schumm, H.-J. Schmiedmayer: "Breakdown of integrability in a quasi-one-dimensional ultracold bosonic gas"; Physical Review Letters, 100 (2008), S. 1 - 4.

W. Rohringer, R. Bücker, S. Manz, Th. Betz, C. Koller, M. Göbel, A. Perrin, H.-J. Schmiedmayer, Thorsten Schumm: "Stochastic optimization of a cold atom experiment using a genetic algorithm"; Applied Physics Letters, 93 (2008), 264101; S. 264101-1 - 264101-3.

M. Trinker, S. Groth, S. Haslinger, S. Manz, Th. Betz, S. Schneider, I. Bar-Joseph, Thorsten Schumm, H.-J. Schmiedmayer: "Multilayer atom chips for versatile atom micromanipulation"; Applied Physics Letters, 92 (2008), 254102; S. 1 - 3.

R. Bücker, A. Perrin, S. Manz, Th. Betz, C. Koller, T. Plisson, J. Rottmann, Thorsten Schumm, H.-J. Schmiedmayer: "Single-particle-sensitive imaging of freely propagating ultracold atom"; New Journal of Physics, 11 (2009).

D. Gallego, S. Hofferberth, Thorsten Schumm, P. Krüger, H.-J. Schmiedmayer: "Optical lattice on an atom chip"; Optics Letters, 34 (2009), 22; S. 3463 - 3465.

A. Gottlieb, Thorsten Schumm: "Quantum noise thermometry for bosonic Josephson junctions in the mean-field regime"; Physical Review A, 79 (2009), 063601; S. 063601-1 - 063601-7.

A. Imambekov, I. Mazets, D. Petrov, V. Gritsev, S. Manz, S. Hofferberth, Thorsten Schumm, E. Demler, H.-J. Schmiedmayer: "Density ripples in expanding low-dimensional gases as a probe of correlations"; Physical Review A, 80 (2009), S. 1 - 14.

S. Manz, R. Bücker, Th. Betz, C. Koller, S. Hofferberth, I. Mazets, A. Imambekov, E. Demler, A. Perrin, H.-J. Schmiedmayer, Thorsten Schumm: "Two-point density correlations of quasicondensates in free expansion"; Physical Review A, 81 (2010), S. 031610-1 - 031610-4.

1 Beiträge in Conference proceedings 45 Talks and Conference contributions (17 invited conference talks)

125 

Akademische Arbeiten Diplom- und Master-Arbeiten

1. M. Schreitl: "Creating and purifying ultracold degenerate gases using hyperfine transitions"; Betreuer/in(nen): H.-J. Schmiedmayer; Atominstitut, 2010; Abschlussprüfung: 09/2010.

2. G. Winkler: "A Dipole Trap on an Atom Chip"; Betreuer/in(nen): H.-J. Schmiedmayer; Atominstitut, 2010; Abschlussprüfung: 09/2010.

126  

4.8 TRIGA Reactor

Gastwissenschaftler

Jaime S. Lagos INGEOMINAS, Bogota, Colombia, IAEA Fellow 01.04.2008 15.06.2008

Arian Fonseca INGEOMINAS, Bogota, Colombia, IAEA Fellow 01.04.2008 15.06.2008

Afaf Quardi CNESTEN, Rabat, Morocco, IAEA Fellow

01.07.2008 30.09.2008

Syed M. Hossain INST, AERE, Dhaka, Bangladesh, IAEA Fellow

19.10.2009 19.12.2009 Manjur Rahman INST, ROMU, Dhaka, Bangladesh, IAEA Fellow

19.10.2009 19.12.2009 Ilham Elounani CNESTEN, Rabat, Morocco, IAEA Fellow

01.10.2010 31.10.2010

Gastvortragende

2008

7. April Karin EISENHUT Universität Wien Windkraftwerke: Analyse der Herstellungs- und Transportkosten, Wartung,

Förderungen, Kosten pro KWh 2. Juni Gert SDOUZ ARC Seibersdorf ARNET - Ein europäisches Forschungsprogramm über schwere

Reaktorunfälle 2009 27. April Gert SDOUZ ARC Seibersdorf Neue Entwicklungen bei Entscheidungs-hilfen für nukleare Unfälle 18. Mai K. CHITUMBO former IAEA Director Safeguarding Nuclear Reactors 20. November P. ANDRASKO Slovenské elektrárne General information about the Mochovce Units 3&4 Completion Project F. PEINETTI ENEL Mochovce 3&4 NPP - new design with proven technology 2010 15. März W. BINNER ÖKTG

127 

Beschleunigter Rückbau von Leichtwasserreaktoren 26. April M. LECHERMANN Universität Wien

Die Emission radioaktiver Xenonisotope von einem TRIGA Reaktor 10. Mai Gert SDOUZ ARC Seibersdorf Das Internationale Nukleare Informationssystem der IAEO 19. November Clement HILL French Nuclear Attaché, IAEA Current status of French research activities in the field of partitioning for

GEN IV fuel cycle: Advanced separation processes for Minor Actinides

Co-Operations IAEA

Eastern European Research Reactor Initiative (EERRI)

Pablo Adelfang, Division of Nuclear Fuel Cycle and Waste Technology

Danas Ridikas, Division of Physical and Chemical Sciences

Günter Hillebrand, Nuclear Engineering Seibersdorf

The Comprehensive Nuclear-Test-Ban Treaty - CTBTO Michel Giot, Studiecentrum voor Kernenergie – Centre d'Etude de l'Energie Nucléaire

Areva Deutschland, Erlangen

Joint Research Center / Institut for TransUranium elements (ITU), JRC

Joint Research Center / Ispra, Decommissioning and Waste Management, JRC

Karlsruhe University

Gabriele Hampel, Johannes Gutenberg Universität Mainz, Institut für Kernchemie

Iro Auterinen, Valtion teknillinen tutkimuskeskus / Technical Research Center (VTT)

Gilles Bignan, Commissariat à l’Energie Atomique (CEA), Cadarache

Andrea Borio di Tigliole, Nuclear Research Centre of the University of Pavia “Laboratorio Energia Nucleare Applicata” – LENA

Johannes Hammer, ENSI Eidgenössisches Nuklearsicherheitsinspektorat

Forschungsreaktor Universität Basel

Luka Snoj, Jožef Stefan Institute

John Billows, The Dalton Institute, University of Manchester

Mitglied der deutschsprachigen Arbeitsgemeinschaft für Forschungsreaktorn (AFR)

Mitglied der europäischen Research Reactor Operators Group (RROG)

Public Relations, Öffentlichkeitsarbeit PA: „Zehntausendster Betriebstag des Forschungsreaktors am Atominstitut“ (Jänner 2010) PA „TU-Team sichert sich Auftrag der IAEO“ (November 2010): Eine Forschungsgruppe am Atominstitut wird eine Anlage für Neutronenaktivierungsanalyse am Forschungsreaktor in der vietnamesischen Stadt Dalat installieren.

PA:“50 Jahre Grundsteinlegung Atominstitut am 27. August 1959“( August 2009)

128  

Publikationen Zeitschriftenartikel

H. Böck: "Atomkraftwerke - Ausweg aus der Klimaproblematik?"; Wirtschaft & Umwelt, 3 (2008), S. 32.

R. Khan, H. Böck: “Status and Patterns of European Nuclear Education and its Best Practices”, European Nuclear Society News 23 (2009), S. 1-19.

G. Steinhauser, G. Giester, N. Leopold, C. Wagner, M. Villa: "Nitrogen-rich compounds of the lanthanoids: the 5,5´-azobis[1H-tetrazol-1-ides] of the light rare earths (Ce, Pr, Nd, Sm, Eu, Gd)."; Helvetica Chimica Acta, 92 (2009), S. 2038 - 2051.

R. Khan, H. Böck, M. Villa: "The status and patterns of nuclear education in an anti-nuclear environment, Austria"; International Journal of Nuclear Knowledge Management, 4 (2010), 3; S. 211 - 219.

R. Khan, S. Karimzadeh, H. Böck: "TRIGA fuel burn-up calculations and its confirmation"; Nuclear Engineering and Design, 240 (2010), S. 1043 - 1049.

G. Steinhauser, G. Giester, N. Leopold, C. Wagner, M. Villa, A. Musilek: "Nitrogen-rich compounds of the lanthanoids: Highlights and summary"; Helvetica Chimica Acta, 93 (2010), S. 183 - 202.

M. Villa, M. Hayden, G. Steinhauser, H. Böck: "Accident scenarios of the TRIGA Mark II reactor in Vienna"; Nuclear Engineering and Design, 240 (2010), S. 4091 - 4095.

12 Beiträge in Conference proceedings 61 Talks and Conference contributions (10 invited conference talks)

Bücher und Buchbeiträge H. Böck, A. Musilek, M. Villa, F. Meyer: "Spent fuel situation at the ASTRA Seibersdorf and the TRIGA Vienna Research Reactor"; in: "Return of Research Reactor Spent Fuel to the Country of Origin: Requirements for Technical and Administrative Preparations and National Experiences", IAEA, Wien, 2008, ISBN: 978-92-0-105508-8, S. 63 - 65.

H. Böck, M. Villa: "Examples Of In-Service Inspections And A Typical Maintenance Schedule for Low-Power Research Reactors"; in: "Optimization of Research Reactor Availability and Reliability: Recommended Practices", IAEA, Wien, 2008, ISBN: 978-92-0-105208-7, S. 31 - 47.

129 

H. Böck, D. Drabova: "Transboundary Risks: The Case of Temelin"; in: "Negotiated Risks", R. Avenhaus, G. Sjöstedt (Hrg.); Springer-Verlag, Berlin, 2009, ISBN: 978-3-540-92992-5, S. 181 - 202.

H. Böck, M. Villa et al.: "Ageing Management for Research Reactors (No. SSG-10)"; in Buchreihe "Specific Safety Guide", Herausgegeben von: IAEA; IAEA Safety Standards, Wien, 2010, ISBN: 978-92-0-102810-5, 72 S.

H. Böck, M. Villa et al.: "TRIGA Conferences 1970 - 2008"; International Atomic Energy Agency (IAEA), Wien, 2010.

H. Böck, C. Forstner, M. Villa: "Von friedlichen Atomen zum Streit um das Kernkraftwerk Zwentendorf"; in: "die 60er. Beatles, Pille und Revolte", H. Etzlstorfer (Hrg.); Schallaburg Kulturbetriebsges.m.b.H., Niederösterreich, 2010, 9008895009253, S. 210 - 217.

H. Böck, M. Villa: "Experience with modernization and refurbishment of the Vienna Triga mark II reactor I&C system"; in: "Research Reactor - Modernization and Refurbishment", IAEA, Wien, 2010, ISBN: 978-92-0-109609-8, S. 17 - 24.

Akademische Arbeiten

Dissertationen

1. K. Breitenecker: "Das Verhalten von Transuranelementen in Erdböden - Theorie, Beprobung und radiochemische Analysen"; Begutachter/in(nen): H. Böck; Atominstitut, 2008; Rigorosum: 18/06/2008.

2. M. Lesar: "Estimation of radioactive exposure for the reactor staff during the dismanteling of a TRIGA research reactor "; Begutachter/in(nen): H. Böck; Atominstitut, 2008; Rigorosum: 18/06/2008.

3. R. Werzi: "Improving the sensitivity of radionuclide monitoring stations "; Begutachter/in(nen): H. Böck; Atominstitut, 2008; Rigorosum: 18/06/2008.

4. M. Magistris: "Radiological characterization of radioactive waste at CERN "; Begutachter/in(nen): H. Böck; Atominstitut, 2008; Rigorosum: 25/06/2008.

5. M. Fürstner: "Studies of high level dosimetry systems in mixed radiation fields occurring at CERN"; Begutachter/in(nen): N. Vana, H. Böck, M. Hajek; Atominstitut, 2008; Rigorosum: 15/10/2008.

130  

6. M. Hassan Pour: "Influence of physical parameters on the properties of thermoluminescence phosphors"; Begutachter/in(nen): N. Vana, H. Böck, M. Hajek; Atominstitut, 2008; Rigorosum: 15/10/2008.

7. M. Wind: "Interaction of ionizing radiation fields with integrated electronic components"; Begutachter/in(nen): H. Böck; Atominstitut, 2009; Rigorosum: 27/04/2009.

8. P. Saey: "Worldwide Atmospheric Radioxenon Background Measured with Systems Newly Developed for Treaty Verification Purposes"; Begutachter/in(nen): H. Böck; Atominstitut, 2009; Rigorosum: 20/01/2010.

9. M. Nikkinen: "Software Based Solutions to Ensure Quality and Correctness within Gamma Ray Spectrum Analysis"; Begutachter/in(nen): H. Böck; Atominstitut, 2010; Rigorosum: 22/06/2010.

10. R. Khan: "Neutronics Analysis of the TRIGA Mark II Reactor Core and its Experimental Facilities"; Begutachter/in(nen): H. Böck; Atominstitut, 2010; Rigorosum: 29/06/2010.

Diplom- und Master-Arbeiten

1. J. Lechner: "Vergleich von LaBr3 und NaJ Szintillatoren im Hinblick auf die Identifizierung unbekannter Quellen"; Betreuer/in(nen): H. Böck; Atominstitut, 2008; Abschlussprüfung: 09/10/2008.

2. F. Kneidinger: "Monte Carlo Simulationen in der Gammaspektrometrie unter Verwendung des Programms PECS"; Betreuer/in(nen): H. Böck; Atominstitut, 2009; Abschlussprüfung: 22/06/2009.

3. B. Siebenhofer: "Meaning of the Confidence Index displayed on Radionuclide Identification Devices and Spectrometric Personal Radiation Detectors"; Betreuer/in(nen): H. Böck; Atominstitut, 2009; Abschlussprüfung: 07/10/2009.

4. M. Haydn: "Accident Scenarios with Environmental Impact of the TRIGA Mark II Reactor Vienna"; Betreuer/in(nen): H. Böck; Atominstitut, 2009; Abschlussprüfung: 18/11/2009.

5. V. Kleinrath: "A Study of Gamma Interference Scenarios for Nuclear Security Purposes"; Betreuer/in(nen): H. Böck; Atominstitut, 2010; Abschlussprüfung: 09/06/2010.

6. V. Schwarz: "Hardware and ID Software Test to identify selected Isotopes under preset

131 

Conditions"; Betreuer/in(nen): H. Böck; Atominstitut, 2010; Abschlussprüfung: 06/10/2010.

132  

5 Teaching / Lehrveranstaltungen

133 

Unser aktuelles Vorlesungsangebot finden sie unter folgender Adresse:

https://tiss.tuwien.ac.at/course/courseList.xhtml

 

141.851 SE Arbeitsgemeinschaft Didaktik der Physik 2.0 Fuchs, Georg 141.106 LU Archäometrie: Datierung, Spurenelement-

Bestimmung 2.0 Hajek, Michael

141.399 VO Archäometrie: Physikalische Methoden der Altersbestimmung

2.0 Vana, Norbert

142.053 VO Atom-, Kern- u. Teilchenphysik I (f. Lehramt) 2.0 Markum, Harald 141.212 VO Atoms - Light - Matter Waves 2.0 Schmiedmayer,

Hannes-Jörg 141.276 PA Atomuhren und Quantenmetrologie 8.0 Schumm, Thorsten 142.081 VO Biological and Medical Applications of Nuclear

Physics I 2.0 Badurek, Gerald

141.068 VO Chemie für LA Physik 2.0 Bichler, Max 141.263 VO Complex Quantum Systems Summerschool 2.0 Schmiedmayer,

Hannes-Jörg 141.244 VO Experimental Quantum Optics - Atomic Physics 2.0 Schmiedmayer,

Hannes-Jörg 141.274 VO Experimentelle und konzeptuelle Grundlagen der

Quantenphysik und Quanteninformation 2.0 Zeilinger, Anton

141.234 VO Fundamental Physics with Coherent X-Rays and Neutrons

2.0 Hasegawa, Yuji

141.161 PR Graphical Programming and Experiment Control 4.0 Badurek, Gerald 141.259 VO Gravitation: Einstein im Test 2.0 Abele, Hartmut 141.380 SE Grundlagen der Quantenmechanik 2.0 Zeilinger, Anton 141.277 SV Kernbrennstoff-Kreislauf 2.0 Kronenberg, Andreas141.271 SE Kolloquium: Complex Quantum Systems 2.0 Schmiedmayer,

Hannes-Jörg 141.058 SE Low Temperature Physics Seminar 2.0 Weber, Harald 141.225 VO Medizinische Physik in der Radiologie 2.0 Homolka, Peter 141.217 VO Nachhaltige Energieträger 2.0 Summhammer,

Johann 142.318 VO Neutronen- und Kernphysik 2.0 Jericha, Erwin 141.543 SE Neutronen-und Festkörperphysik 2.0 Rauch, Helmut 142.637 VO Nukleare Astrophysik 2.0 Leeb, Helmut 141.323 VO Nukleare Umweltanalytik 1.0 Steinhauser, Georg 142.106 VU Numerische Methoden der Physik 4.0 Leeb, Helmut 142.072 VO Physics of Exotic Atoms 2.0 Marton, Johann 141.064 PR Praktikum aus Neutronenphysik 4.0 Badurek, Gerald 141.053 PR Praktische Übungen am Reaktor 4.0 Böck, Helmuth 141.416 PR Praktische Übungen aus Strahlenphysik 4.0 Streli, Christina 141.A09 VO Probing the New Standard Model 2.0 Ramsey-Musolf,

Michael 142.052 PA Projektarbeit Astrophysik 8.0 Oberhummer, Heinz 141.110 PA Projektarbeit Elektronen- und Röntgenphysik 8.0 Streli, Christina 141.096 PA Projektarbeit Experimente der Quantenmechanik 8.0 Zeilinger, Anton 142.026 PA Projektarbeit Experimentelle Hadronenphysik 8.0 Jericha, Erwin 142.082 PA Projektarbeit Experimentelle Hochenergiephysik 8.0 Wulz, Claudia-

Elisabeth

134  

142.039 PA Projektarbeit Experimentelle Teilchenphysik 8.0 Krammer, Manfred 141.012 PA Projektarbeit Experimentelle Tieftemperaturphysik 8.0 Weber, Harald 141.241 PA Projektarbeit Grundlagen der Supraleitung 8.0 Sauerzopf, Franz 141.008 PA Projektarbeit Hochtemperatursupraleiter 8.0 Eisterer, Michael 141.216 PA Projektarbeit Micro-Optics, Micro-Fabrication 8.0 Schmiedmayer,

Hannes-Jörg 141.051 PA Projektarbeit Neutronenaktivierungsanalyse 8.0 Ismail, Saleh 141.102 PA Projektarbeit Neutronenphysik 8.0 Summhammer,

Johann 142.025 PA Projektarbeit Nukleare Festkörperphysik 8.0 Badurek, Gerald 141.166 PA Projektarbeit Nukleare Umweltanalytik 8.0 Bichler, Max 142.030 PA Projektarbeit Numerische Methoden der

Kernphysik 8.0 Leeb, Helmut

141.039 PA Projektarbeit Physikalische Methoden in der Medizin

8.0 Aiginger, Johannes

141.095 PA Projektarbeit Quantenoptik 8.0 Zeilinger, Anton 141.167 PA Projektarbeit Radiochemie 8.0 Bichler, Max 141.087 PA Projektarbeit Radiologische Umweltmessung 8.0 Weber, Harald 141.080 PA Projektarbeit Reaktortechnik 8.0 Villa, Mario 141.153 PA Projektarbeit Röntgenanalytik 8.0 Streli, Christina 141.085 PA Projektarbeit Röntgenspektrometrie 8.0 Wobrauschek, Peter 142.048 PA Projektarbeit Simulationen komplexer Systeme 8.0 Rattay, Frank 142.045 PA Projektarbeit Starke Wechselwirkung 8.0 Faber, Manfried 141.018 PA Projektarbeit Strahlenschutz und Dosimetrie 8.0 Hajek, Michael 142.034 PA Projektarbeit Streutheorie 8.0 Leeb, Helmut 142.088 PA Projektarbeit Subatomare Physik 8.0 Faber, Manfried 141.214 PA Projektarbeit Ultra Cold Atoms and Spectroscopy 8.0 Schmiedmayer,

Hannes-Jörg 141.079 PA Projektarbeiten Angewandte Strahlenphysik 8.0 Aiginger, Johannes 141.123 VO Quanten-Interferometrie im Phasenraum I 2.0 Suda, Martin 142.197 VO Quantenchromodynamik I 2.0 Faber, Manfried 141.255 PA Quantensprünge im Gravitationsfeld der Erde 8.0 Abele, Hartmut 141.600 LU Radionuklidbestimmung in Umweltproben 4.0 Bichler, Max 141.281 VO Radioökologie 2.0 Maringer, Franz Josef141.537 VO Reaktorphysik 2.0 Villa, Mario 141.032 VO Reaktortechnik I - nuclear engineering I 2.0 Böck, Helmuth 141.075 UE Rechenmethoden des Strahlenschutzes I 1.0 Musilek, Andreas 142.069 SE Seminar über Atomare und Subatomare Physik 2.0 Leeb, Helmut 141.042 SE Seminar über neue Arbeiten am Atominstitut 2.0 Abele, Hartmut 142.340 SV Statistische Methoden der Datenanalyse 2.0 Frühwirth, Rudolf 141.905 SE Strahlenphys.Anw.in Technik u.Medizin 2.0 Aiginger, Johannes 141.599 VO Strahlenphysik und gesellschaftliche Aspekte des

Strahlenschutzes 2.0 Maringer, Franz Josef

141.611 VO Strahlenschutz und Dosimetrie 2.0 Hajek, Michael 141.685 VO Supraleitung 2.0 Weber, Harald 141.010 VO Techn.Strahlenschutz I 3.0 Musilek, Andreas 141.944 VO Teilchenbeschleuniger 2.0 Benedikt, Michael 142.091 VO Teilchenphysik: Konzepte und experimentelle

Tests 2.0 Fabjan, Christian

142.104 VU Theoretische Physik A LA 3.0 Faber, Manfried 142.099 VO Was ist Masse 2.0 Markum, Harald 141.272 SE Wiener Physikalisches Kolloquium 2.0 Schmiedmayer,

Hannes-Jörg

135 

141.257 PA der Beta-Zerfall des Neutrons 8.0 Abele, Hartmut 141.223 VO Alternative nukleare Energiesysteme 2.0 Rauch, Helmut 142.094 VO Astro-Teilchenphysik 2.0 Jeitler, Manfred 142.089 UE Atom-, Kern- und Teilchenphysik I 1.0 Faber, Manfried 142.086 VO Atom-, Kern- und Teilchenphysik I 2.0 Faber, Manfried 142.093 UE Atom-, Kern- und Teilchenphysik II 2.0 Zawisky, Michael 142.092 VO Atom-, Kern- und Teilchenphysik II 4.0 Abele, Hartmut 142.440 VO Biological and Medical Applications of Nuclear

Physics II 2.0 Badurek, Gerald

141.151 VO Data Analysis of Experiments with Particle Detectors

2.0 Schwanda, Christoph

142.084 VO Energy Supply Today and Tomorrow 2.0 Leeb, Helmut 141.368 VO Flüssigszintillations-Spektrometrie 1.0 Sterba, Johannes 141.134 VO Fullerenes: Solid State and Magnetic Properties 1.0 Buntar, Victor 141.236 VO Fundamental Physics with Polarized Neutrons 2.0 Hasegawa, Yuji 141.210 VO Geochemie 1.0 Bichler, Max 142.593 VO Gittereichtheorie 2.0 Markum, Harald 142.101 SE Graduierten Seminar Teilchen und

Wechselwirkungen 2.0 Leeb, Helmut

141.161 PR Graphical Programming and Experiment Control 4.0 Badurek, Gerald 141.250 VO Grundlagen der Teilchendetektoren 2.0 Fabjan, Christian 141.128 PR Herstellung und Charakterisierung von Solarzellen 3.0 Summhammer,

Johann 141.457 VO Hochtemperatursupraleiter 2.0 Weber, Harald 141.002 VO Instrumental Activation Analysis of Environmental 2.0 Ismail, Saleh 141.724 VO Isotopentechnik 2.0 Bichler, Max 141.271 SE Kolloquium: Complex Quantum Systems 2.0 Schmiedmayer,

Hannes-Jörg 141.231 VO Macroscopic Quantum Systems 2.0 Schmiedmayer,

Hannes-Jörg 141.044 VO Methods of Quantitative x-Ray Fluorescence

Analysis 2.0 Wobrauschek, Peter

141.242 VO Neutronen- und Röntgendiffraktometrie 2.0 Jericha, Erwin 141.543 SE Neutronen-und Festkörperphysik 2.0 Rauch, Helmut 141.158 VO Neutronenoptik und Tomographie 2.0 Zawisky, Michael 142.102 VO Numerische Methoden 2.0 Leeb, Helmut 141.126 VO Physik der Solarzelle 1.0 Summhammer,

Johann 141.115 PR Practical Course in X-Ray Analytical Methods 2.0 Streli, Christina 141.064 PR Praktikum aus Neutronenphysik 4.0 Badurek, Gerald 141.823 LU Praktikum aus Tieftemperaturphysik 4.0 Weber, Harald 141.504 PR Praktische Übungen aus Reaktorinstrumentierung 4.0 Böck, Helmuth 141.416 PR Praktische Übungen aus Strahlenphysik 4.0 Streli, Christina 141.016 PA Projektarbeit Archäometrie 8.0 Hajek, Michael 142.052 PA Projektarbeit Astrophysik 8.0 Oberhummer, Heinz 141.110 PA Projektarbeit Elektronen- und Röntgenphysik 8.0 Streli, Christina 141.096 PA Projektarbeit Experimente der Quantenmechanik 8.0 Zeilinger, Anton 142.026 PA Projektarbeit Experimentelle Hadronenphysik 8.0 Jericha, Erwin 142.082 PA Projektarbeit Experimentelle Hochenergiephysik 8.0 Wulz, Claudia-

Elisabeth 142.039 PA Projektarbeit Experimentelle Teilchenphysik 8.0 Krammer, Manfred 142.056 PA Projektarbeit Experimentelle Teilchenphysik 8.0 Fabjan, Christian 141.012 PA Projektarbeit Experimentelle Tieftemperaturphysik 8.0 Weber, Harald

136  

141.241 PA Projektarbeit Grundlagen der Supraleitung 8.0 Sauerzopf, Franz 141.008 PA Projektarbeit Hochtemperatursupraleiter 8.0 Eisterer, Michael 141.216 PA Projektarbeit Micro-Optics, Micro-Fabrication 8.0 Schmiedmayer,

Hannes-Jörg 141.051 PA Projektarbeit Neutronenaktivierungsanalyse 8.0 Ismail, Saleh 141.026 PA Projektarbeit Neutronenoptik 8.0 Hasegawa, Yuji

137 

6 Personnel and Organigram

138  

Professoren ABELE Hartmut Univ.Prof. Dipl.Phys.Dr. BADUREK Gerald Univ.Prof. Dipl.Ing.Dr. FABJAN Christian Univ.Prof. Dipl.Ing.Dr. RAUSCHENBEUTEL Arno Univ.Prof. Dr. SCHMIEDMAYER Hannes-Jörg Univ.Prof. Dipl.Ing.Dr. WEBER Harald Univ.Prof. Dr.phil.Dr.h.c. Universitätsdozenten/in BICHLER Max ao.Univ.Prof. Dr.phil. FABER Manfried ao.Univ.Prof. Dipl.Ing.Dr. ISMAIL Saleh ao.Univ.Prof. Dr.rer.nat. LEEB Helmut ao.Univ.Prof. Dipl.Ing.Dr. MARKUM Harald ao.Univ.Prof. Dipl.Ing.Dr. SAUERZOPF Franz ao.Univ.Prof. Dipl.Ing.Dr. STRELI Christina ao.Univ.Prof. Dipl.Ing.Dr. SUMMHAMMER Johann ao.Univ.Prof. Dipl.Ing.Dr. Assistant Professor HASEGAWA Yuji Assistant Prof. Dipl.-Ing.Dr. Senior Scientist MUSILEK Andreas SenSc. Dipl.Ing.Dr. VILLA Mario SenSc. Dipl.Ing.Dr. Universitätsassistenten/in EISTERER Michael Priv.Doz. Dipl.Ing.Dr. HAJEK Michael Univ.Ass. Dipl.Ing.Dr. JERICHA Erwin Ass.Prof. Dipl.Ing.Dr. MAJER Johannes Univ.Ass. Dipl.-Phys.Dr. POLJANC Karin Ass.Prof. Dipl.Ing.Dr. SCHNEIDER Stephan Univ.Ass. Dipl.Phys.Dr. SCHUMM Thorsten Univ.Ass. Dipl.Phys.Dr. STEINHAUSER Georg Univ.Ass. Mag.Dr. STERBA Johannes Univ.Ass. Dipl.Ing.Dr. TRUPKE Michael Univ.Ass. Dr.phil. MSc. ZAWISKY Michael Ass.Prof. Dipl.Ing.Dr. Allgemeines Personal Ang. allg. CERNY Friederike DIEM Herbert Ing. DRAXLER Gabriele ESSBÜCHL Rainer FERTL Barbara FLASCH Roman FOSTER Michaela B.Sc. FUGGER Manfred Ing. ADir. GERGEN Rudolf HABERL Eva HAINZ Dieter HARTMANN Herbert Ing.

139 

JINDRA Elfriede KLAPFER Ernst FOI KLIKOVICH Walter FOI KRATKY Günther LINZER Andreas MAGERLING Birgit MIEHLE Jörg Wolfgang Dipl.Ing.(FH) PÜHRINGER Georg RICHTER Helmut Ing. ROHRER Gerhard SCHACHNER Hans Ing. ADir. SCHUH Sonja SHRBENY Siegfried STÜWE Matthias SVOBODA Ernst FOI VEIT-ÖLLER Monika Ing. WILDOM Gilbert FOI ZACH Maximilian B.Sc. Forschungsassistenten/innen ADAM Mario AMSÜSS Robert Dipl.Ing. BAUMGARTNER Thomas Dipl.Ing. BERGMANN Robert Dipl.Ing. BERRADA Tarik MSc. BETZ Thomas Dipl.Ing. BÖCK Helmuth a.o.Univ.Prof.i.R.Dipl.Ing.Dr. BUCZAK Kathrin Mag. BÜCKER Robert Dipl.Phys. CRONENBERG Gunther Dipl.Ing. DIORICO Fritz Randulf MSc. DURSTBERGER-RENNHOFER Katharina Mag.Dr. EDER Fabienne Mag. EMHOFER Johann Dipl.Ing. ERDÖSI Daniel Dipl.Ing. ERHART Jacqueline Dipl.Ing. FILLUNGER Harald Dipl.Ing. FISCHER Dominik Dipl.Ing. GÖSSELSBERGER Christoph Dipl.Ing. GRING Michael Mag. HASLINGER Stefan Dipl.Ing. HENGSTBERGER Florian Dipl.Ing.Dr. HOFSTÄTTER Christina Jolanda HÖLLWIESER Roman Dipl.Ing.Dr. HORNTRICH Christine Dipl.Ing. HORVATH Miklos Dipl.Ing. HUFNAGEL Christoph Dipl.Phys. HUMER Karl Mag.Dipl.Ing.Dr. JENKE Tobias Dipl.Phys. KARIMZADEH Sam Dipl.Ing. KHAN Rustam Dr. KÖCHL Florian Dipl.Ing.Dr. KOLLER Christian Dipl.Ing.

140  

KUHNERT Maximilian Dipl.Ing. LANGEN Tim Dipl.Phys. LEMMEL Hartmut Dipl.Ing.Dr. LINS Tobias LOIDL Rudolf Dipl.Ing. MAIX Reinhard Kurt Dipl.Ing.Dr. MANZ Stephanie Dipl.Phys. MAZETS Igor Dr. MINNIBERGER Stefan Dipl.Ing. MITSCH Kevin NEUDECKER Denise Dipl.Ing. NÖBAUER Tobias Dipl.Ing. PEMMER Bernhard Dipl.Ing. PERRIN Aurelien Dr. POTOCAR Thomas Dipl.Ing. PROKOPEC Rainer Dipl.Ing.Dr. RAUCH Helmut EMo.Univ.Prof.Dipl.Ing.Dr. ROHRINGER Wolfgang Dipl.Ing. SAUL Heiko SCHRAMBÖCK Matthias Dipl.Ing.Dr. SCHREITL Matthias Dipl.Ing. SMITH David Dr. SMOLEK Stephan SPONAR Stephan Dipl.Ing. STUMMER Thomas SULYOK Georg Dipl.Ing. URICH Alexander Dipl.Phys. WANG Xiangzun M.Sc. WAUTISCHER Gregor WINKLER Georg Dipl.Ing. WOBRAUSCHEK Peter a.o.Univ.Prof.Dipl.Ing.Dr. ZEHETMAYER Martin Dipl.Ing.Dr. Nichtwissenschaftliches Projektpersonal BUCHBERGER Brigitta BUZANICH Günter Dipl.Ing. ELLMEIER Lucas Martin NIEDERMAIER Hans Hon.Prof SUDA Martin Dipl.Ing.Dr. Dem Institut zugeteilte Universitätsdozenten und Lehrbeauftragte BENEDIKT Michael Priv.Doz. Dipl.Ing.Dr. GEORG Dietmar Univ.Doz. Dipl.Ing.Dr. KRAMMER Manfred Priv.Doz. Dipl.Ing.Dr. MARINGER Franz Josef HR. Univ.Doz. Univ. Prof. Dipl.-Ing.Dr. MARTON Johann Priv.Doz. Dipl.Ing.Dr. WERNISCH Johann Ao.Univ.-Prof.i.R. Dipl.Ing.Dr. WULZ Claudia-Elisabeth Univ.Doz. Dipl.Ing.Dr.

141 

Emeritierte und pensionierte Mitarbeiter/innen AIGINGER Johannes EM.Univ.Prof. o Univ. Prof. Dipl.Ing.Dr. VANA Norbert o.Univ.Prof.i.R. Dipl.Ing.Dr. Im Berichtszeitraum ausgeschiedene Mitarbeiter/innen BALCAR Ewald o.Univ.Prof.Dipl.Ing.Dr. 2008-02-29 und 2009-08-31 BENEDIKT Michael Priv.Doz. Dipl.Ing.Dr.2008-02-29 und 2009-02-28 und 2010-02-28 BESSLER Sandford 2010-02-28 BITTERMANN Hartwig 2008-11-30 BÖCK Helmuth ao.Univ.Prof.Dipl.Ing.Dr. 2008-09-30 BUCHTELA Karl em.Univ.Prof.Dr.phil. 2008-02-29 BUNTAR Victor 2008-08-31 und 2010-08-31 BURGHART Gerhard Dipl.Ing. 2009-07-31 BUZANICH Günter Dipl.Ing. 2009-02-28 CHUDY Michal Mag. 2010-09-30 DRABEK Walter 2010-10-31 DURSTBERGER-RENNHOFER Katharina Mag.Dr. 2008-10-31 ELLMEIER Lucas Martin 2008-05-31 FILIPP Stefan Dipl.Ing.Dr. 2008-01-15 FISCHER Dominik 2008-07-31 FORET Franz Ing. 2010-06-30 FRÜHWIRTH Rudolf 2010-08-31 FUGER Rene Dipl.Ing. 2008-12-31 und Dipl.Ing.Dr. 2008-12-31 GATTRINGER Maximilian 2010-08-31 GÖBEL Martin Dipl.Phys. 2008-12-31 GUNDACKER Stefan Dipl.Ing. 2010-08-16 HAMMERL Markus Franz 2010-07-31 HASLINGER Stefan Dipl.Ing. 2009-04-30 HEINE Dennis Dipl.Phys. 2008-09-30 HENGSTBERGER Florian Dipl.Ing. 2010-12-31 und Dipl.Ing.Dr. 2010-12-31 HENSCHEL Kathrin Dipl.Phys. 2010-01-31 HESSMO Björn PhD. 2009-06-30 HEURITSCH Julia 2010-07-31 HORAK Lisa 2008-08-31 HÖRHAGER Norbert Dipl.Ing. 2010-03-31 und Dipl.Ing.Dr. 2010-03-31 INGERLE Dieter 2010-11-30 IVANOV Andrei Nickolaevich Dipl.-Ing.Dr. 2008-02-29 JÄKEL Martin Dipl.-Ing.Dr. 2008-07-31 JEITLER Manfred Doz.Mag.Dr.2008-02-29 und 2009-02-28 und 2010-08-31 JURSCHITSCH Tamara 2010-01-31 KAISER Alexandra 2009-08-26 und 2010-07-31 KAISER Romana 2008-07-30 und 2009-08-31 und 2010-07-31 KERBL Matthias 2008-08-31 KLEPP Jürgen Dipl.Ing. 2008-12-31 KORTYKA Anna MSc. 2008-06-30 und 2009-12-31 KORTYKA Anna MSc. 2010-05-31 KRAMMER Manfred Doz.Dipl.Ing.Dr. 2008-02-29 und 2010-02-28 KREGSAMER Peter Dipl.Ing.Dr. 2010-07-31 KUHNERT Maximilian Dipl.Ing. 2008-07-22 KULICH Miloslav Dipl.Ing. 2009-01-31 LEMMEL Hartmut Dipl.Ing.Dr. 2008-02-29 und 2008-05-31 LIEBHART Kurt 2008-05-31 LINS Tobias 2010-12-31

142  

LIPPOK Nils Dipl.Phys. 2010-08-31 LOIDL Rudolf Dipl.Ing. 2008-03-31 und 2010-12-31 MAYER Simon Dipl.-Ing.Mag.Dr. 2008-10-31 MAZETS Igor Dr. 2009-07-31 MEIRER Florian Dipl.Ing. 2010-04-30 MISTLBERGER Bernhard 2010-08-31 MITAROFF Winfried Zivil-Ing.Dipl.Ing.Dr. 2008-08-31 NIEDERMAIER Hans 2010-11-30 OBERHUMMER Heinz Ao.Univ.-Prof.i.R.Dr.phil. 2009-02-28 OESTERREICHER Thomas Dipl.Ing. 2009-04-12 PARDO Enric Dr. 2010-06-18 PAUKOVITS Maria 2008-02-29 PERRIN Aurelien Dr. 2009-01-31 PITSCHMANN Mario Dipl.Ing.Dr. 2010-11-30 POSCH Florian 2008-11-30 RAUCH Helmut EM.o.Univ.Prof.Dipl.Ing.Dr. 2010-12-31 REDL Heinz 2009-08-31 REGLER Meinhard Dipl.Ing.Dr. 2008-02-29 und 2009-08-31 RINGBAUER Astrid 2009-08-05 ROSECKER Veronika 2010-08-31 SASAMORI Sato 2008-11-30 SATTLECKER Bettina 2008-08-31 SCHÖPPL Karl Robert Dipl.Ing. 2008-06-30 SCHRÖDER Peter 2008-10-31 SCHWANDA Christoph Dipl.Ing.Dr. 2010-08-31 SEJFIC Advija 2010-08-31 SMOLEK Stephan 2008-11-30 SPRINGER Josef Dipl.Ing. 2010-02-28 und Dipl.Ing.Dr. 2010-02-28 STIX Barbara Dipl.Ing. 2008-07-16 TATLISU Halit Dipl.Ing. 2010-11-11 TEYMOURNIA Leila Dipl.Ing. 2009-01-31 TISCHLER Erich 2009-02-28 TRÖSTL Jasmin 2008-07-31 TSCHURLOVITS Manfred ao.Univ.Prof.i.R.Dr.phil. 2008-09-30 und 2009-08-31 VANA Norbert Univ.Prof. Dipl.Ing.Dr. 2010-02-28 VERDU Galiana Jose Luis Dr. 2008-12-31 VOLOCHOVA-PASAKOVA Daniela Mag. 2009-12-31 VOM Hagen Christoph Dipl.Phys. 2008-09-30 und Dipl.Phys.Dr. 2008-09-30 WERNISCH Johann Ao.Univ.-Prof.i.R. Dipl.Ing.Dr. 2009-02-28 WITHNELL Thomas David MEng. PhD.2010-08-31 ZÖGER Norbert Dipl.Ing.Dr. 2008-05-31

Organigramm: Atominstitut 141 Stand: 01. 02. 2012

Verwaltung

Institutsleitung

Vorstand Schmiedmayer

Vertreter: Abele, Rauschenbeutel,

Leeb, Musilek, Sauerzopf

Reaktor: Villa Steinhauser NWP: Klapfer Schachner

Betrieblicher Strahlenschutz: Musilek Sterba NWP: Hainz Shrbeny Veit-Öller

EDV: Sauerzopf NWP: Diem Pühringer Richter

Elek- tronik: Miehle NWP: Essbüchl Zach

Poljanc Sterba (Bau)

Werkstätte: Hartmann

NWP: Flasch Gergen Ru., Linzer, Klikovich

Zentrale Einrichtungen Technischer Dienst Shrbeny Wildom

Technischer Dienst

Sekretariat Buchberger Cerny Haberl König # Ryshkova # Schuh (Freihaus)

Buchhaltung/Sekretariat

Haus-dienste Kratky Rohrer Jindra IGK Mitarbeiterinnen

Hausdienste

Wissenschaftliche Nachwuchsgruppen (START, ERC)

Quantenmetrologie

Professoren: Schumm TP: keines

Atomphysik und Quantenoptik Leitung: Schmiedmayer Professoren: Schmiedmayer WP: Majer Schneider Trupke TP: Stüwe

Angewandte Quantenphysik Leitung: Rauschenbeutel Professoren: Rauschenbeutel WP: Schneeweiss Volz TP: Hoinkes

Tieftemperatur- physik und Supraleitung Leitung: Weber Professoren: Weber WP: Sauerzopf TP: Fertl Hartmann

Strahlenphysik Leitung : Streli WP: Hajek Ismail Steinhauser Streli TP: Foster Fugger Klikovich

Neutronen- und Quantenphysik Leitung: Abele Professoren: Abele Badurek WP: Hasegawa Jericha Konrad Lemmel Summhammer Zawisky TP: Gergen Ro.

Kern- und Teilchenphysik Leitung: Leeb Professoren: Fabjan WP: Faber Leeb Markum TP: keines

# finanziert durch §27 Projekte

Organization chart:

Institute of Atomic and Subatomic Physics 141 01. 02. 2012

Administration

Institute Management

Director Schmiedmayer

Deputies: Abele, Rauschenbeutel,

Leeb, Musilek, Sauerzopf

Reactor: Villa Steinhauser NSP: Klapfer Schachner

Radiation Protection: Musilek Sterba NSP: Hainz Shrbeny Veit-Öller

IT: Sauerzopf NSP: Diem Pühringer Richter

Elec- tronics: Miehle NSP: Essbüchl Zach

Poljanc Sterba (building work)

Workshop: Hartmann

NSP: Flasch Gergen Ru., Linzer, Klikovich

Central Facilities Technischer Dienst Shrbeny Wildom

Technical Services

Sekretariat Buchberger Cerny Haberl König # Ryshkova # Schuh (Freihaus)

Accounting/Secretariat

Haus-dienste Kratky Rohrer Jindra IGK employees

General Services

Junior Research Groups (START, ERC)

Quantum Metrology

Professors: Schumm TP: none

Atomic Physics and Quantum Optics Head: Schmiedmayer Professors: Schmiedmayer Scientific Personnel: Majer Schneider Trupke TP: Stüwe

Applied Quantum Physics Head: Rauschenbeutel Professors: Rauschenbeutel Scientific Personnel: Schneeweiss Volz TP: Hoinkes

Nuclear Physics and Nuclear Particle Physics Head: Leeb Professors: Fabjan Scientific Personnel: Faber Leeb Markum TP: none

Low Temperature physics, Super-conductivity Head: Weber Professors: Weber Scientific Personnel: Sauerzopf TP: Fertl Hartmann

Radiation Physics Head: Streli Scientific Personnel: Hajek Ismail Steinhauser Streli TP: Foster Fugger Klikovich

Neutron- and Quantum Physics Head: Abele Professors: Abele Badurek Scientific Personnel: Hasegawa Jericha Konrad Lemmel Summhammer Zawisky TP: Gergen Ro.

# financed by §27 projects