26
Developing for Modelling Structures in Fire Asif Usmani School of Engineering, University of Edinburgh with thanks to, Jian Zhang, Jian Jiang, Yaqiang Jiang and Panagiotis Kotsovinos Steel in Fire forum, 12 April 2011

Asif Usmani School of Engineering, University of Edinburgh with …fire-research.group.shef.ac.uk/steelinfire/downloads/AU... · 2011. 5. 2. · Asif Usmani School of Engineering,

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

  • Developing for Modelling Structures in Fire

    Asif Usmani

    School of Engineering, University of Edinburgh

    with thanks to,Jian Zhang, Jian Jiang, Yaqiang Jiang and Panagiotis Kot sovinos

    Steel in Fire forum, 12 April 2011

  • Why OpenSees?

    ♦ Difficult to continuously maintain, update and re-use research codes

    ♦ Commercial software expensive and restricted

    ♦ OpenSees is free, and

    – a good platform to test ideas and make implementations available

    – uses modern programming paradigms with greater granularity

    – excellent structural/geotechnical analysis capabilities developing all the time

    – HPC version

    – excellent wiki with lots of help for users including many example scripts

  • OpenSees Abstractions

    DomainModelBuilder Analysis

    Recorder

    Constructs the objects in the model and adds them to the domain.

    Monitors user defined parameters in the model during the analysis

    Moves the model from state at time tto state at time t + ∆∆∆∆t

    Holds the state of the model at time t and (t + ∆∆∆∆t)i

    Source: Frank McKenna (PEER/UC Berkeley)

  • Domain

    Domain

    Element Node TimeSeriesMP_Constraint SP_Constraint LoadPattern

    ElementalLoad NodalLoad SP_ConstraintTrussZeroLengthElasticBeamColumnNonlinearBeamColumn(force, displacement)BeamWithHingesQuad(std, bbar, enhanced, u-p)ShellBrick(std, bbar, 20node, u-p, u-p-U)JointGenericClientExperimentalElement

    ConstantLinearRectangularSinePath

    Source: Frank McKenna (PEER/UC Berkeley)

  • Material

    Source: Frank McKenna (PEER/UC Berkeley)

    Material

    UniaxialMaterial nDMaterial section

    ElasticElasticPPHardeningConcreteSteelHystereticPY-TZ-QZParallelSeriesGapFatigueMaterial

    ElasticJ2TemplateElasto-PlastoFluidSolidPorousPressureMultiYield(dependent, independent)

    ElasticFiber

  • Addition of “SiF” capability

    ♦ Objectives– All development consistent with OpenSees OOP and modular structure

    – Enable SiF analysis including fire and heat transfer calculations– Enable SiF analysis on “damaged” model after earthquake analysis

    CFD dataLocal / movingZoneParametricStandardFiresFlux orTemp. q(t) q(t) q(z,t) q(x,y,z,t) q(x,y,z,t)

    Hea

    t Tra

    nsfe

    r Sla

    bB

    eam

    Col

    umn

    T(z,t) T(z,t) T(z,t) T(x,y,z,t) T(x,y,z,t)

    T(y,z,t)T(x,z,t)

    T(y,z,t)T(x,z,t)

    T(y,z,t)T(x,z,t) T(x,y,z,t)

    T(x,y,z,t)

    T(x,y,t) T(x,y,t) T(x,y,z,t) T(x,y,z,t) T(x,y,z,t)

  • New thermo-mechanical classes

  • New heat transfer classes

  • Thermal benchmarks

    Phase change benchmark

    0.00 0.02 0.04 0.06 0.08 0.100

    10

    20

    30

    40

    50

    60 Analytical Solution 4-noded, dt = 2s 8-noded, dt = 2s

    T /

    °C

    x / m

    T = 100 sinπt

    40

    ◦CT = 100 sin

    πt

    40

    ◦C

    T = 0◦CT = 0

    ◦C

    x = 0.0mx = 0.0m x = 0.1mx = 0.1mx = 0.08mx = 0.08m

    (a) geometry and boundary conditions

    (b) FE discretised mesh

    0 20 40 60 80-30

    -20

    -10

    0

    10

    20

    30

    40

    Analytical Solution 4-noded, dt =2s 8-noded, dt = 2s

    T /

    °C

    t / s

    Transient boundary condition benchmark

    600

    550

    50045

    0

    400

    0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

    0.1

    0.2

    0.3

    300

    400

    500

    600

    Testing local fire

  • Thermo-mechanical Benchmark 1

    1 2 3

    1 2

    0T∆ ≠ 0T∆ =

    1m 1m

    0.1m

    0.1m

    1 2 3

    1 2

    0T∆ ≠ 0T∆ =

    1m 1m

    0.1m

    0.1m

    2.8e8

    σ

    ε

    E0

    Esh

    T=400

    2.8e8

    σ

    ε

    E0

    Esh

    T=400

    Left half of steel restrained beam subjected to a uniform temperature increment, ∆T = 1000oC

  • 0 100 200 300 400 500 600 700 800 9000.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    1.4

    1.6

    1.8

    2.0

    2.2

    2.4

    2.6

    Did

    plac

    emen

    t (m

    m)

    Temperature (oC)

    ABAQUS OpenSees

    0 100 200 300 400 500 600 700 800 9000

    20

    40

    60

    80

    100

    120

    140

    160

    180

    200

    220

    240

    260

    280

    300

    Temperature (oC)

    ABAQUS OpenSees

    Str

    ess

    (MP

    a)

    1 2 3

    1 2

    0T∆ ≠ 0T∆ =1 2 3

    1 2

    0T∆ ≠ 0T∆ =

    u

    Benchmark 1 result

  • 6m0.1m

    0.2mKr Kr

    Kt6m

    0.1m

    0.2mKr Kr

    Kt

    0 200 400 600 800 10000.0

    5.0x104

    1.0x105

    1.5x105

    2.0x105

    Mod

    ulus

    of e

    last

    icity

    (M

    Pa)

    Temperature (oC)

    Ttop=0

    Tbot=100oC-1000oC

    Single beam subjected to uniformly distributed load and thermal gradient

    Height of section

    Temperature distribution

    UDL=1kN/m

    Thermo-mechanical Benchmark 2

  • Free end Spring end Pin end

    0 200 400 600 800 10000

    2

    4

    6

    8

    10

    12

    Hor

    izon

    tal d

    ispl

    acem

    ent (

    mm

    )

    Temperature at the bottom of the beam (oC)

    ABAQUS-Free end ABAQUS-Spring end OpenSees-Free end OpenSees-Spring end

    0 200 400 600 800 10000

    50

    100

    150

    200

    250

    300

    350

    Temperature at the bottom of the beam (oC)

    Def

    lect

    ion

    at m

    id-s

    pan(

    mm

    )

    ABAQUS - free end ABAQUS - Spring end ABAQUS - Pin end OpenSees - free end OpenSees - Spring end OpenSees - Pin end

    Benchmark 2 results

  • 0 200 400 600 800 1000

    -1800

    -1600

    -1400

    -1200

    -1000

    -800

    -600

    -400

    -200

    0

    ABAQUS - Spring end ABAQUS - Pin end OpenSees - Spring end OpenSees - Pin end

    Temperature at the bottom of the beam (oC)

    Axi

    al fo

    rce

    (KN

    )

    0 200 400 600 800 10000

    50

    100

    150

    200

    250

    Temperature at the bottom of the beam (oC)

    ABAQUS - free end ABAQUS - Spring end ABAQUS - Pin end OpenSees - free end OpenSees - Spring end OpenSees - Pin end

    Mom

    ent a

    t mid

    -spa

    n (K

    N.m

    )

    Benchmark 2 results

  • 0 200 400 600 800 1000 1200

    0

    50

    100

    150

    200

    250

    300

    Temperature at the bottom of the beam ( oC)

    Def

    lect

    ion

    at m

    id-s

    pan(

    mm

    )

    ABAQUS - Pin end ABAQUS - Spring end ABAQUS - Fix end OpenSees - Pin end OpenSees - Spring end OpenSees - Fix end

    0 200 400 600 800 10000

    20

    40

    60

    80

    100

    120

    140

    160

    180

    200

    Temperature at the bottom of the beam (oC)

    Rot

    atio

    n of

    the

    end

    (10-

    3 rad

    )

    ABAQUS - Pin end ABAQUS - Spring end OpenSees - Pin end OpenSees - Spring end

    Pin end Spring end Fix end

    Benchmark 2 results

  • 0 200 400 600 800 1000

    -10000

    -8000

    -6000

    -4000

    -2000

    0

    ABAQUS - Pin end ABAQUS - Spring end ABAQUS - Fix end OpenSees - Pin end OpenSees - Spring end OpenSees - Fix end

    Temperature at the bottom of the beam (oC)

    Axi

    al fo

    rce

    (KN

    )

    0 200 400 600 800 1000 1200

    -300

    -200

    -100

    0

    100

    200

    300

    Temperature at the bottom of the beam (oC)

    ABAQUS - Pin end

    ABAQUS - Spring end

    ABAQUS - Fix end

    OpenSees - Pin end

    OpenSees - Spring end

    OpenSees - Fix endM

    omen

    t at m

    id-s

    pan

    (KN

    .m)

    Benchmark 2 results

  • 0 200 400 600 800 1000 1200

    -250

    -200

    -150

    -100

    -50

    0

    50

    100

    150

    200

    250

    300

    350

    Mom

    ent o

    f bea

    m a

    t mid

    -spa

    n (K

    N.m

    )

    Temperature at the bottom of the beam (oC)

    Kr=0 Kr=3e6 Kr=1.5e7 Kr=3e7 Kr=3e8 Kr=3e9 Kr=Infinite

    Kr KrKr Kr

    Benchmark 2 results

  • F1 F2

    1240

    1170

    v4

    u2

    F1=112kN

    F2=28kN

    F1 F2

    1240

    1170

    v4

    u2

    F1=112kN

    F2=28kN

    0 100 200 300 400 500 600

    0

    5

    10

    15

    20

    25

    30

    35

    40

    45

    Dis

    plac

    emen

    t (m

    m)

    Temperature (oC)

    EHR Frame u2: Test v4: Test u2: OpenSees v4: OpenSees

    0 100 200 300 400 500 600

    5

    10

    15

    20

    25

    30

    35

    40

    45

    Temperature (oC)

    Dis

    plac

    emen

    t (m

    m)

    ZSR Frame u1: Test u2: Test u1: OpenSees u2: OpenSees

    EHR Frame ZSR Frame

    Rubert and Schaumann, Fire Safety Journal, 10, 173-184, 1986

    Validation problem 1

  • 3000

    1500

    1300

    Raft top Raft top

    500

    Ventilationopening

    Fire level/Topof beam

    Typical column,300 x 300

    Plinth beam,230 x 230

    Footing,1100 x 1100 x 500

    Bricked box container filledwith sand with fuel tray on top

    (level with the top of beam)

    Roof slab120 thk

    Roof beam230 x 230

    Steel framingsystem

    Simulated gravityloading of 2nd and 3rdabove floor

    Superimposed live loadon floor 1

    Extendedcolumn

    Reactionwall

    4300

    5000

    Hydraulicjack

    Thermocouples at fivedifferent elevation levelsin three plan locations offire compartment

    Validation problem 2

    Full scale test of damagedRC frame subjected to fireIIT Roorkee, India (UKIERI funding)

  • 2D frame model & cyclic loading

  • Response over 13 cycles

    -200 -100 0 100 200

    -300

    -200

    -100

    0

    100

    200

    300

    Horizontal dsiplacement (mm)

    Tot

    al R

    eact

    ion

    For

    ce (

    kN)

    node1

    1 23

    displacement – force curve of control node 1

  • -80 -60 -40 -20 0 20 40 60 80-300

    -200

    -100

    0

    100

    200

    300

    App

    lied

    For

    ce (

    kN)

    Horizontal Dsiplacement (mm)

    node 1

    1 2

    3

    Comparison with test (5 cycles)

    -350

    -250

    -150

    -50

    50

    150

    250

    350

    -100 -80 -60 -40 -20 0 20 40 60 80 100

    Load

    (KN

    )

    Displacement (mm)

    Load-Displacement Plot for Roorkee Frame

  • Fire loading

    0 200 400 600 800 1000

    -140

    -130

    -120

    -110

    -100

    -90

    -80

    -70

    -60

    Hor

    izon

    tal d

    ispl

    acem

    ent (

    mm

    )

    Temperature at the edge of the beam toward fire (C)

    node1 node2

    1 23

    0 200 400 600 800 1000

    -30

    -25

    -20

    -15

    -10

    -5

    0

    5

    Mid

    -spa

    n de

    flect

    ion

    (mm

    )

    Temperature at the edge of the beam toward fire (C)

    node 3

    1 23

  • Residual strength testing

  • Final remarks

    ♦ 2D-3D truss and 2D beam-column element completed and tested

    ♦ New C++ OOP heat transfer code completed and tested

    ♦ Work progressing on 3D beam-column, shell and 3D heat transfer

    ♦ Interfacing fire-heat transfer-structural analysis should begin soon

    ♦ Fully functional capability expected by summer 2012

    ♦ All code (after exhaustive testing and benchmarking) will be offered to be included in OpenSees official release for free open-source access

    ♦ OpenSees is becoming a “community code” for the earthquake engineering, it makes sense for it to be adopted by the SiF community as well

  • 0 200 400 600 800 1000

    0

    50

    100

    150

    200

    250

    300

    Def

    lect

    ion

    at m

    id-s

    pan

    (mm

    )

    Temperature at the bottom of beam (oC)

    Theory - UDL only OpenSees - UDL only Theory - UDL+T,y OpenSees - UDL+T,y

    0 200 400 600 800 1000

    0

    5

    10

    15

    20

    Def

    lect

    ion

    at m

    id-s

    pan

    (mm

    )

    Temperature at the bottom of beam (oC)

    Theory - UDL only OpenSees - UDL only

    Benchmark 2 results