25
Modeling Cycles By ARMA Specification Identification (Pre-fit) Testing (Post- fit) Forecasting

Arma

Embed Size (px)

DESCRIPTION

arma model

Citation preview

  • Modeling Cycles By ARMA Specification Identification (Pre-fit) Testing (Post-fit) Forecasting

  • DefinitionsData =Trend + Season+Cycle + Irregular

    Cycle + Irregular = Data Trend Season (curves) (dummy variables) For this presentation, let: Yt = Cyclet + Irregulart

  • Stationary Process For CyclesCycle + Irregular =(A) Stationary Process =(A) ARMA(p, q)=(A) : Approximation

  • Stationary ProcessSeries Yt is stationary if: mt = m, constant for all tst = s, constant for all tr(Yt, Yt+h) = rh does not depend on t

    WN is a special example of a stationary process

  • Models For a Stationary ProcessAutoregressive Process, AR(p)

    Moving Average Process, MA(q)

    Autoregressive Moving Average Process, ARMA(p, q)

  • Parameters of ARMA ModelsSpecification ParametersfkAutoregressive Process Parameter

    qkMoving Average Process Parameter

    Characterization ParametersrkAutocorrelation Coefficient

    fkkPartial Autocorrelation Coefficient

  • AR ProcessAR (1) : (Yt - m ) = f1 (Y(t-1) - m ) + e t

    -1 < f1 < 1 (stationarity condition)AR (2) : (Yt - m) = f1 (Y(t-1) - m) + f2 (Y(t-2) - m ) + e t

    f2 + f1 < 1, f2 - f1 < 1 , -1 < f2 < 1(stationarity condition) e t is a WN (s)

  • MA ProcessMA (1) : Yt - m = et + q 1 e(t-1) - 1 < q 1 < 1 (invertibility condition)

    MA (2) : Yt - m = et + q 1 e (t-1) + q2 e (t-2) q2 + q1 >-1, q2 - q1 >- 1 , -1 < q2 < 1 (invertibility condition) e t is a WN (s)

  • ARMA (p, q) ModelsARMA(1, 1):

    (Yt - m ) = f1 (Y(t-1) - m ) + e t + q 1 e(t-1)

    ARMA(2, 1):

    (Yt - m ) = f1 (Y(t-1) - m ) + f2 (Y(t-2) - m ) + e t + q 1 e(t-1)

    ARMA(1, 2):

    (Yt - m ) = f1 (Y(t-1) - m ) + e t + q 1 e(t-1) + q 2 e(t-2)

  • Wold TheoremAny stationary process can be defined as a linear combination of a WN series, et

    means: with: sum( ) < inf.

  • Lag Operator, LLag Operator, L

    Then, the Wold Theorem can be written as:

  • ApproximationApproximation of B(L) by a Simple Rational Polynomial of L

  • Generating AR(1)Let:

  • Generating MA(1)Let:

  • Generating ARMA(1,1)Your Exercise

  • AR, MA or ARMA?Pre-Fitting Model IdentificationUsing ACF and PACF

  • Partial Autocorrelation Function:PACFNotation: The partial autocorrelation of order k is denoted asf kk

    Interpretation: f kk = Correlation (Yt, Y(t-k) Y(t-1) ,..., Y(t-k+1) ) Yt, {Y(t-1), Y(t-2), ... , Y(t-k+1)}, Y(t-k)

  • Patterns of ACF and PACFAR processes

    MA processes

    ARMA processes

  • Model Diagnostics Post FitResidual Check:Correlogram of the ResidualQLB Statistic (m - # of parameters)

    SE

    Test of Significance of Coefficients

    AIC, SIC

  • AIC and SIC(Maximized)(Minimized)

  • Truth is SimpleParsimonyUse a minimum number of unknown parameters

  • Importance of Parsimony In-Sample RMSE (SE) of Model Prediction vs.B. Out-of-Sample RMSE

    The two should not differ much.

  • Eview CommandsARls series_name c ar(1) ar(2)..

    MAls series_name c ma(1) ma(2).. ARMAls series_name c ar(1) ar(2).ma(1) ma(2).

  • Forecasting RulesSample range: 1 to T. Forecast T+h for h=1,2,

    Write the model, with all unknown parameters replaced by their estimates. Write the information set WT (only necessary part) The unknown errors are given 0. Use the chain rule.

  • Interval Forecast h=1Use SE of Regression for setting the upper and the lower limits h=2a) AR(1) b) MA(1) c) ARMA(1,1)