14
Hindawi Publishing Corporation Abstract and Applied Analysis Volume 2011, Article ID 759175, 13 pages doi:10.1155/2011/759175 Research Article A Study on Becker’s Univalence Criteria Maslina Darus and Imran Faisal School of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor D. Ehsan 43600, Malaysia Correspondence should be addressed to Maslina Darus, [email protected] Received 26 January 2011; Accepted 11 May 2011 Academic Editor: Allan C. Peterson Copyright q 2011 M. Darus and I. Faisal. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We study univalence properties for certain subclasses of univalent functions K, K 2 , K 2, and Sp, respectively. These subclasses are associated with a generalized integral operator. The extended Becker-typed univalence criteria will be studied for these subclasses. 1. Introduction and Preliminaries Let A denote the class of analytic functions f in the open unit disk U {z : |z| < 1} normal- ized by f 0 f 0 1 0. Thus, each f A has a Taylor series representation f z z k2 a k z k · 1.1 Let A 2 be the subclass of A consisting of functions of the form f z z k3 a k z k · 1.2 Let K be the univalent subclass of A which satisfies z 2 f z ( f z ) 2 1 < 1, z U. 1.3

A Study on Becker's Univalence Criteria - univie.ac.at · A Study on Becker’s Univalence Criteria Maslina Darus and Imran Faisal School of Mathematical Sciences, Faculty of Science

Embed Size (px)

Citation preview

Hindawi Publishing CorporationAbstract and Applied AnalysisVolume 2011, Article ID 759175, 13 pagesdoi:10.1155/2011/759175

Research ArticleA Study on Becker’s Univalence Criteria

Maslina Darus and Imran Faisal

School of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia,Bangi, Selangor D. Ehsan 43600, Malaysia

Correspondence should be addressed to Maslina Darus, [email protected]

Received 26 January 2011; Accepted 11 May 2011

Academic Editor: Allan C. Peterson

Copyright q 2011 M. Darus and I. Faisal. This is an open access article distributed under theCreative Commons Attribution License, which permits unrestricted use, distribution, andreproduction in any medium, provided the original work is properly cited.

We study univalence properties for certain subclasses of univalent functions K, K2, K2,μ, and S(p),respectively. These subclasses are associated with a generalized integral operator. The extendedBecker-typed univalence criteria will be studied for these subclasses.

1. Introduction and Preliminaries

Let A denote the class of analytic functions f in the open unit disk U = {z : |z| < 1} normal-ized by f(0) = f ′(0) − 1 = 0. Thus, each f ∈ A has a Taylor series representation

f(z) = z +∞∑

k=2

akzk· (1.1)

Let A2 be the subclass of A consisting of functions of the form

f(z) = z +∞∑

k=3

akzk· (1.2)

Let K be the univalent subclass of A which satisfies

∣∣∣∣∣z2f ′(z)(f(z))2 − 1

∣∣∣∣∣ < 1, z ∈ U. (1.3)

2 Abstract and Applied Analysis

Let K2 be the subclass of K for which f ′′(0) = 0. Let K2,μ be the subclass of K2 consisting offunctions of the form (1.2) which satisfy

∣∣∣∣∣z2f ′(z)(f(z))2 − 1

∣∣∣∣∣ < μ, 0 < μ ≤ 1, z ∈ U. (1.4)

Next, we define a subclass S(p) of A consisting of all functions f(z) that satisfy

∣∣∣∣∣

(z

(f(z)))′′∣∣∣∣∣ ≤ p, 0 < p ≤ 2, p ∈ R, z ∈ U. (1.5)

For functions f(z) = z +∑∞

k=2 akzk and g(z) = z +

∑∞k=2 bkz

k, the Hadamard product (orconvolution) f ∗ g is defined as usual by

(f ∗ g)(z) = z +

∞∑

k=2

akbkzk· (1.6)

Define the function ϕ(a, c; z) by

ϕ(a, c; z) = z2F(1, a, c; z) =∞∑

k=0

(a)k(c)k

zk−1, c /= 0,−1−, 2, . . . , (1.7)

where (a)kk is the famous Pochhammer symbol defined in terms of Gamma function. It iseasily seen that ϕ(2 − α, 2; z) is a convex function, since zϕ′(z) = ϕ(2 − α, 1; z) ∈ SV�(α)·

Using the fractional derivative of order α, Dαz [1], Owa and Srivastava [2] introduced

the operator Ωα : A → A which is known as an extension of fractional derivative and frac-tional integral, as follows:

Ωαf(z) = Γ(2 − α)zαDαzf(z), α /= 2, 3, 4, . . .

= z +∞∑

k=2

Γ(k + 1)Γ(2 − α)Γ(k + 1 − α)

akzk

= ϕ(2, 2 − α; z) ∗ f(z)·

(1.8)

Note that Ω0f(z) = f(z)·For a function f inA, we defineDn,ν

λ (α, β, μ)f(z) : A → A, the linear fractional differ-ential operator, as follows:

I0,νλ

(α, β, μ

)f(z) = f(z),

I1,νλ

(α, β, μ

)f(z) =

(ν − μ + β − λ

ν + β

)(Ωαf(z)

)+(μ + λ

ν + β

)z(Ωαf(z)

),

Abstract and Applied Analysis 3

I2,νλ

(α, β, μ

)f(z) = Iαλ

(I1,νλ

(α, β, μ

)f(z))

...

In,νλ

(α, β, μ

)f(z) = Iαλ

(In−1,νλ

(α, β, μ

)f(z))·

(1.9)

If f is given by (1.1), then by (1.8) and (1), we see that

In,νλ

(α, β, μ

)f(z) = z +

∞∑

k=2

((Γ(k + 1)Γ(2 − α)Γ(k + 1 − α)

)(ν +(μ + λ

)(k − 1) + β

ν + β

))n

akzk· (1.10)

From (1.8) and (1), Dn,νλ (α, β, μ)f(z) can be written in terms of convolution as

In,νλ

(α, β, μ

)f(z) =

[ϕ(2, 2 − α; z) ∗ gμ,ν

β,λ (z) · · ·ϕ(2, 2 − α; z) ∗ gμ,ν

β,λ (z)]

︸ ︷︷ ︸∗ f(z), (1.11)

where

gμ, ν

β,λ (z) =z − ((ν − μ + β − λ

)/(ν + β

))z2

(1 − z)2

= z −(ν − μ + β − λ

ν + β

)z2(1 + 2z + 3z2 + · · ·

)

= z +(1 +

μ + λ

ν + β

)z2 +(1 + 2

μ + λ

ν + β

)z3 · · ·

...

gμ, ν

β,λ (z) = z +∞∑

k=2

((ν +(μ + λ

)(k − 1) + β

ν + β

))zk,

(1.12)

ϕ(2, 2 − α; z) ∗ gμ,ν

β,λ (z) · · ·ϕ(2, 2 − α; z) ∗ gμ,ν

β,λ (z) = n-times product, (1.13)

which generalizes many operators. Indeed, if we choose suitably values of α, β, μ, and ν in(1.12), we have the following.

(i) β = 1, μ = 0, and α = 0, we obtain Dmα,λ

f(z) given by Aouf et al. [3].

(ii) ν = 1, β = 0, μ = 0, and α = 0, we obtain Dmλ f(z) given by Al-Oboudi [4].

(iii) ν = 1, β = 0, μ = 0, λ = 1, andα = 0, we obtain Dmf(z) given by Salagean [5].

(iv) ν = 1, β = 1, λ = 1,μ = 0, andα = 0, we obtain Imf(z) given by Uralegaddi andSomanatha [6].

(v) β = 1,λ = 1,μ = 0, andα = 0, we obtain Im(�)f(z) given by Cho and Srivastava [7]and Cho and Kim [8].

4 Abstract and Applied Analysis

(vi) ν = 1, β = 0,μ = 0,λ = 0, andn = 1, we obtain Owa and Srivastava differentialoperator [2].

(vii) ν = 1, β = 0, andμ = 0, we obtain Dn,αλ f(z) given by Al-Oboudi and Al-Amoudi

[9, 10].

(viii) β = l, μ = 0, andα = p, we obtain Inp (λ, l)f(z) given by Catas [11].

(ix) β = l, μ = 0, α = p, and λ = 1, we obtain Inp (λ, l)f(z) given by Kumar et al. andSrivastava et al., respectively [12, 13].

Next, we introduce a new family of integral operator by using generalized differential oper-ator already defined above.

Form ∈ N∪{0} and γ1, γ2, γ3, . . . , γn, ρ ∈ C\{0,−1,−2, . . .}, we define a family of integraloperators Υγi,η,λ(n, ρ, ν, α, β) : A

m → Am by

Υγi,η,λ

(n, ρ, ν, α, β : z

)=

⎧⎨

⎩ρ

∫z

0tρ−1

m∏

i=1

(In,νλ

(α, β, μ, η

)fi(t)

t

)1/γi

dt

⎫⎬

1/ρ

, fi ∈ A, (1.14)

which generalize many integral operators. In fact, if we choose suitable values of parametersin this type of operator, we get the following interesting operators.

(i) ν = 1, β = 0,μ = 0,α = 0, γi = 1/αi, and ρ = 1, we obtain I(f1, . . . , fm) given by Bulut[14].

(ii) n = 0, ν = 1, β = 0, μ = 0,α = 0, γi = 1/(α− 1), and ρ = n(α− 1) + 1, we obtain Fn,α(z)given by Breaz et al. [15].

(iii) n = 0, ν = 1, β = 0,μ = 0,α = 0, γi = 1/αi, and ρ = 1, we obtain Fα(z) given by D.Breaz and N. Breaz [16].

For our main result, we need the following lemmas.

Lemma 1.1 (see [17, 18]). Let c be a complex number, |c| ≤ 1, c /= − 1. If f(z) = z + a2z2 + · · · is a

regular function in U and

∣∣∣∣c|z|2 +(1 − |z|2

)zf ′′(z)f ′(z)

∣∣∣∣ ≤ 1, ∀z ∈ U, (1.15)

then the function f is regular and univalent in U.

Lemma 1.2 (Schwarz Lemma). Let the function f(z) be regular in the disk UR = {z ∈ C : |z| < R}with |f(z)| < M. If f(z) has one zero with multiply ≥ m for z = 0, then

∣∣f(z)∣∣ ≤ M

Rm|z|m, ∀z ∈ UR, (1.16)

and equality holds only if f(z) = eiθ(M/Rm)|z|m, where θ is constant.

Abstract and Applied Analysis 5

Lemma 1.3 (see [19]). Let δ be a complex number with Re δ > 0 such that c ∈ C, |c| ≤ 1, c /= − 1.If f ∈ A satisfies the condition

∣∣∣∣c|z|2δ +(1 − |z|2δ

)zf ′′(z)δf ′(z)

∣∣∣∣ ≤ 1, ∀z ∈ U, (1.17)

then the function

Fδ(z) ={δ

∫z

0tδ−1f ′(t)dt

}1/δ

(1.18)

is analytic and univalent in U.

Lemma 1.4 (see [20]). If a function f ∈ S(p), then

∣∣∣∣∣z2f ′(z)(f(z))2 − 1

∣∣∣∣∣ ≤ p|z|2, ∀z ∈ U. (1.19)

2. Univalence Properties

In this section, we will discuss the univalence properties of the new family of integraloperators mentioned above.

Theorem 2.1. Let c be a complex number, |In,νλ

(α, β, μ, η)fi(z)| ≤ Mi,Mi ≥ 1 for all i = {1, 2, 3, . . .}and In,ν

λ(α, β, μ, η)fi(t) ∈ S(pi) for i = {1, 2, 3, . . .} such that

R(ρ) ≥

∞∑

i=1

((Mi − 1)pi + 2

)Mi − 1

∣∣γi∣∣(Mi1)

, (2.1)

where ρ, γi are complex numbers. If

|c| ≤ 1 − 1Re(ρ)

∞∑

i=1

((Mi − 1)pi + 2

)Mi − 1

∣∣γi∣∣(Mi − 1)

, Mi ≥ 1, (2.2)

then the family Υγi,η,λ(n, ρ, ν, α, β : z) is univalent.

Proof. Since In,νλ (α, β, μ, η)fi(t) ∈ S(pi), so by Lemma 1.4, we have

∣∣∣∣∣∣

z2(In,νλ

(α, β, μ, η

)fi(t))′

(In,νλ

(α, β, μ, η

)fi(t))2 − 1

∣∣∣∣∣∣≤ pi|z|2, ∀z ∈ U. (2.3)

Now, by using hypothesis, we have

∣∣In,νλ

(α, β, μ, η

)fi(z)∣∣ ≤ Mi, (2.4)

6 Abstract and Applied Analysis

so by Lemma 1.3, we get

∣∣In,νλ

(α, β, μ, η

)fi(z)∣∣ ≤ Miz, ∵ R = 1. (2.5)

Let

In,νλ

(α, β, μ

)f(z)

z= 1 +

∞∑

k=2

((Γ(k + 1)Γ(2 − α)Γ(k + 1 − α)

)(ν +(μ + λ

)(k − 1) + β

ν + β

))n

akzk−1

/= 0

= 1 if z = 0,(2.6)

so

m∏

i=1

(In,νλ

(α, β, μ, η

)fi(z)

z

)1/γi

=

(In,νλ

(α, β, μ, η

)f1(z)

z

)1/γ1

· · ·(

In,νλ

(α, β, μ, η

)fm(z)

z

)1/γm

= 1.(2.7)

Let

F(z) =∫z

0

⎝(

In,νλ

(α, β, μ, η

)f1(t)

t

)1/γ1

· · ·(

In,νλ

(α, β, μ, η

)fm(t)

t

)1/γm⎞

⎠dt, (2.8)

which implies that

F ′(z) =

⎝(

In,νλ

(α, β, μ, η

)f1(t)

t

)1/γ1

· · ·(

In,νλ

(α, β, μ, η

)fm(t)

t

)1/γm⎞

⎠′

zF ′′(z)F ′(z)

=1γ1

(z(In,νλ

(α, β, μ, η

)f1(z)

)′

In,νλ

(α, β, μ, η

)f1(z)

− 1

)+ · · · + 1

γm

(z(In,νλ

(α, β, μ, η

)fm(z)

)′

In,νλ

(α, β, μ, η

)fm(z)

− 1

),

(2.9)

zF ′′(z)F ′(z)

=m∑

i=1

1γi

(z(In,νλ

(α, β, μ, η

)fi(z))′

In,νλ

(α, β, μ, η

)fi(z)

− 1

). (2.10)

This implies that

∣∣∣∣zF ′′(z)F ′(z)

∣∣∣∣ ≤∞∑

i=1

1∣∣γi∣∣

(∣∣∣∣∣z(In,νλ

(α, β, μ, η

)fi(z))′

In,νλ

(α, β, μ, η

)fi(z)

∣∣∣∣∣ + 1

), (2.11)

Abstract and Applied Analysis 7

or

∣∣∣∣zF ′′(z)F ′(z)

∣∣∣∣ ≤∞∑

i=1

1∣∣γi∣∣

∣∣∣∣∣∣

z(In,νλ

(α, β, μ, η

)fi(z))′

(In,νλ

(α, β, μ, η

)fi(z))2

∣∣∣∣∣∣

∣∣∣∣∣

(In,νλ

(α, β, μ, η

)fi(z))

(z)

∣∣∣∣∣ + 1

⎠· (2.12)

Using (2.5), we get

∣∣∣∣zF ′′(z)F ′(z)

∣∣∣∣ ≤∞∑

i=1

1∣∣γi∣∣

∣∣∣∣∣∣

z(In,νλ

(α, β, μ, η

)fi(z))′

(In,νλ

(α, β, μ, η

)fi(z))2

∣∣∣∣∣∣Mi + 1

⎠· (2.13)

This implies that

∣∣∣∣zF ′′(z)F ′(z)

∣∣∣∣ ≤∞∑

i=1

1∣∣γi∣∣

∣∣∣∣∣∣

z(In,νλ

(α, β, μ, η

)fi(z))′

(In,νλ

(α, β, μ, η

)fi(z))2 − 1

∣∣∣∣∣∣Mi +Mi + 1

⎠· (2.14)

By using (2.3), we get

∣∣∣∣zF ′′(z)F ′(z)

∣∣∣∣ ≤∞∑

i=1

1∣∣γi∣∣(pi|z|2Mi +Mi + 1

), (2.15)

which implies that

∣∣∣∣zF ′′(z)F ′(z)

∣∣∣∣ ≤∞∑

i=1

1∣∣γi∣∣(piMi +

(Mi +M2

i +M3i + · · ·

)+ 1), (2.16)

because Mi,M2i ,M

3i , . . . ,≥ 1 implies that

∣∣∣∣zF ′′(z)F ′(z)

∣∣∣∣ ≤∞∑

i=1

1∣∣γi∣∣

(piMi +

(Mi

Mi − 1

)+ 1)

=∞∑

i=1

1∣∣γi∣∣

(piMi +

(2Mi − 1Mi − 1

)),

∣∣∣∣zF ′′(z)F ′(z)

∣∣∣∣ ≤∞∑

i=1

1∣∣γi∣∣

((piM

2i − piMi + 2Mi − 1

Mi − 1

))≤

∞∑

i=1

1∣∣γi∣∣

(((piMi − pi + 2

)Mi − 1

Mi − 1

)),

∣∣∣∣zF ′′(z)F ′(z)

∣∣∣∣ ≤∞∑

i=1

1∣∣γi∣∣

((((Mi − 1)pi + 2

)Mi − 1

Mi − 1

))·

(2.17)

Now, we calculate

∣∣∣∣c|z|2ρ +(1 − |z|2ρ

)zF ′′(z)ρF ′(z)

∣∣∣∣ ≤ |c| + 1∣∣ρ∣∣

∣∣∣∣zF ′′(z)F ′(z)

∣∣∣∣ ≤ |c| + 1R(ρ)∣∣∣∣zF ′′(z)F ′(z)

∣∣∣∣. (2.18)

8 Abstract and Applied Analysis

This implies that

∣∣∣∣c|z|2ρ +(1 − |z|2ρ

)zF ′′(z)ρF ′(z)

∣∣∣∣ < |c| + 1R(ρ)

∞∑

i=1

1∣∣γi∣∣

((((Mi − 1)pi + 2

)Mi − 1

Mi − 1

))· (2.19)

By using (2.46), we conclude that

∣∣∣∣c|z|2ρ +(1 − |z|2ρ

)zF ′(z)ρF(z)

∣∣∣∣ ≤ |c| + 1∣∣ρ∣∣

∣∣∣∣zF ′′(z)F ′(z)

∣∣∣∣ ≤ 1· (2.20)

Hence, by Lemma 1.3, the family of integral operators Υγi,η,λ(n, ρ, ν, α, β : z) is univalent.

Corollary 2.2. Let c be a complex number, |In,νλ (α, β, μ, η)fi(z)| ≤ M,M ≥ 1 for all i = {1, 2, 3, . . .}and In,νλ (α, β, μ, η)fi(t) ∈ S(p), Mi = M ≥ 1, for all i = {1, 2, 3, . . .} such that

R(ρ) ≥

∞∑

i=1

((M − 1)p + 2

)M − 1

∣∣γi∣∣(M − 1)

, (2.21)

where ρ, γi are complex numbers. If

|c| ≤ 1 − 1Re(ρ)

∞∑

i=1

((M − 1)pi + 2

)M − 1

∣∣γi∣∣(M − 1)

, M ≥ 1, (2.22)

then the family Υγi,η,λ(n, ρ, ν, α, β : z) is univalent.

Corollary 2.3. Let c be a complex number, |In,νλ

(α, β, μ, η)fi(z)| ≤ M,M ≥ 1, for all i = {1, 2, 3, . . .}and the family In,νλ (α, β, μ, η)fi(t) ∈ S(p),Mi = M ≥ 1, |γi| = |γ |, for all i = {1, 2, 3, . . .} such that

R(ρ) ≥

∞∑

i=1

((M − 1)p + 2

)M − 1

∣∣γ∣∣(M − 1)

, (2.23)

where ρ, γi are complex numbers. If

|c| ≤ 1 − 1Re(ρ)

∞∑

i=1

((M − 1)pi + 2

)M − 1

∣∣γ∣∣(M − 1)

, M ≥ 1, (2.24)

then the family Υγi,η,λ(n, ρ, ν, α, β : z) is univalent.

Using the method given in the proof of Theorem 2.1, one can prove the followingresults.

Abstract and Applied Analysis 9

Theorem 2.4. Let c be a complex number, |In,νλ (α, β, μ, η)fi(z)| ≤ Mi,Mi ≥ 1 for all i = {1, 2, 3, . . .}and the family In,ν

λ(α, β, μ, η)fi(t) ∈ S(pi) for i = {1, 2, 3, . . .} and c such that

R(ρ) ≥

∞∑

i=1

(piMi − 1

)Mi + 1

∣∣γi∣∣piMi

, (2.25)

where ρ, γi are complex numbers. If

|c| ≤ 1 − 1Re(ρ)

∞∑

i=1

(piMi − 1

)Mi + 1

∣∣γi∣∣(piMi

) , Mi ≥ 1, (2.26)

then the family Υγi,η,λ(n, ρ, ν, α, β : z) is univalent.

Theorem 2.5. Let c be a complex number, |In,νλ (α, β, μ, η)fi(z)| ≤ Mi, Mi ≥ 1 for all i ={1, 2, 3, . . . , n} and In,ν

λ(α, β, μ, η)fi(t) ∈ S(pi) for i = {1, 2, 3, . . . , n} such that

R(ρ) ≥

n∑

i=1

(pi(Mi − 1) +Mn

i − 2)Mi + 1

∣∣γi∣∣(Mi − 1)

, (2.27)

where ρ, γi are complex numbers. If

|c| ≤ 1 − 1Re(ρ)

n∑

i=1

(pi(Mi − 1) +Mn

i − 2)Mi + 1

∣∣γi∣∣(Mi − 1)

, Mi ≥ 1, (2.28)

then the family Υγi,η,λ(n, ρ, ν, α, β : z) is univalent.

Theorem 2.6. Let c be a complex number, |In,νλ (α, β, μ, η)fi(z)| ≤ Mi, Mi ≥ 1 for all i = {1, 2,3, . . . , n} and In,ν

λ(α, β, μ, η)fi(t) ∈ S(pi) for i = {1, 2, 3, . . . , n} such that

R(ρ) ≥

n∑

i=1

(pi + (n(n + 1)/2)

)Mi − 1

∣∣γi∣∣ , (2.29)

where ρ, γi are complex numbers. If

|c| ≤ 1 − 1Re(ρ)

n∑

i=1

(pi + (n(n + 1)/2)

)Mi − 1

∣∣γi∣∣ , Mi ≥ 1, (2.30)

then the family Υγi,η,λ(n, ρ, ν, α, β : z) is univalent.

Theorem 2.7. Let c be a complex number, |In,νλ

(α, β, μ, η)fi(z)| ≤ Mi, Mi ≥ 1 for all i = {1, 2,3, . . . , n} and In,ν

λ(α, β, μ, η)fi(t) ∈ K2,μi , for i = {1, 2, 3, . . . , n} such that

R(ρ) ≥

n∑

i=1

(μi + n(n + 1)

)Mi∣∣γi

∣∣ , (2.31)

10 Abstract and Applied Analysis

where ρ, γi are complex numbers. If

|c| ≤ 1 − 1Re(ρ)

n∑

i=1

(μi + n(n + 1)

)Mi∣∣γi

∣∣ , Mi ≥ 1, (2.32)

then the family Υγi,η,λ(n, ρ, ν, α, β : z) is univalent.

Proof. Using the proof of Theorem 2.1, we have

∣∣∣∣zF ′′(z)F ′(z)

∣∣∣∣ ≤∞∑

i=1

1∣∣γi∣∣

∣∣∣∣∣∣

z(In,νλ

(α, β, μ, η

)fi(z))′

(In,νλ

(α, β, μ, η

)fi(z))2

∣∣∣∣∣∣Mi + 1

⎠. (2.33)

Since In,νλ

(α, β, μ, η)fi(t) ∈ K2,μi , so by using (1.4), we get

∣∣∣∣∣∣

z2(In,νλ

(α, β, μ, η

)fi(z))′

(In,νλ

(α, β, μ, η

)fi(z))2 − 1

∣∣∣∣∣∣< μi, 0 < μ ≤ 1, z ∈ U. (2.34)

So from (2.33), we get

∣∣∣∣zF ′′(z)F ′(z)

∣∣∣∣ ≤∞∑

i=1

1∣∣γi∣∣

∣∣∣∣∣∣

z(In,νλ

(α, β, μ, η

)fi(z))′

(In,νλ

(α, β, μ, η

)fi(z))2 − 1

∣∣∣∣∣∣Mi +Mi + 1

⎠, (2.35)

or

∣∣∣∣zF ′′(z)F ′(z)

∣∣∣∣ ≤∞∑

i=1

1∣∣γi∣∣(μiMi + 2Mi

), Mi > 1,

∣∣∣∣zF ′′(z)F ′(z)

∣∣∣∣ ≤∞∑

i=1

1∣∣γi∣∣(μiMi + 2Mi + 4Mi + · · · + n-times

), Mi > 1,

∣∣∣∣zF ′′(z)F ′(z)

∣∣∣∣ ≤∞∑

i=1

1∣∣γi∣∣(μiMi + n(n + 1)Mi

), Mi > 1.

(2.36)

Now, we evaluate the expression

∣∣∣∣c|z|2ρ +(1 − |z|2ρ

)zF ′′(z)ρF ′(z)

∣∣∣∣ ≤ |c| + 1∣∣ρ∣∣

∣∣∣∣zF ′′(z)F ′(z)

∣∣∣∣ ≤ |c| + 1R(ρ)∣∣∣∣zF ′′(z)F ′(z)

∣∣∣∣,

∣∣∣∣c|z|2ρ +(1 − |z|2ρ

)zF ′′(z)ρF ′(z)

∣∣∣∣ ≤ |c| + 1R(ρ)

∞∑

i=1

1∣∣γi∣∣(μiMi + n(n + 1)Mi

).

(2.37)

Abstract and Applied Analysis 11

Using (2.45) and (2.46), we conclude that

∣∣∣∣c|z|2ρ +(1 − |z|2ρ

)zF ′(z)ρF(z)

∣∣∣∣ ≤ 1. (2.38)

Hence by using Lemma 1.3, the family Υγi,η,λ(n, ρ, ν, α, β : z) is univalent.

Corollary 2.8. Let c be a complex number, |In,νλ (α, β, μ, η)fi(z)| ≤ M, M ≥ 1 for all i = {1, 2,3, . . . , n} and In,νλ (α, β, μ, η)fi(t) ∈ K2,μi , for i = {1, 2, 3, . . . , n} such that

R(ρ) ≥

n∑

i=1

(μi + n(n + 1)

)M

∣∣γi∣∣ , (2.39)

where ρ, γi are complex numbers. If

|c| ≤ 1 − 1Re(ρ)

n∑

i=1

(μi + n(n + 1)

)M

∣∣γi∣∣ , M ≥ 1, (2.40)

then the family Υγi,η,λ(n, ρ, ν, α, β : z) is univalent.

Corollary 2.9. Let c be a complex number, |In,νλ (α, β, μ, η)fi(z)| ≤ M, M ≥ 1, |γi| = |γ | for alli = {1, 2, 3, . . . , n} and In,ν

λ(α, β, μ, η)fi(t) ∈ K2,μi , for i = {1, 2, 3, . . . , n} such that

R(ρ) ≥

n∑

i=1

(μi + n(n + 1)

)M

∣∣γ∣∣ , (2.41)

where ρ, γi are complex numbers. If

|c| ≤ 1 − 1Re(ρ)

n∑

i=1

(μi + n(n + 1)

)M

∣∣γ∣∣ , M ≥ 1, (2.42)

then the family Υγi,η,λ(n, ρ, ν, α, β : z) is univalent.

Using a similar method as in the proof of Theorem 2.7, one can prove the followingresults.

Theorem 2.10. Let c be a complex number, |In,νλ (α, β, μ, η)fi(z)| ≤ Mi, Mi ≥ 1 for all i ={1, 2, 3, . . . , n} and In,ν

λ(α, β, μ, η)fi(t) ∈ K2,μi , for i = {1, 2, 3, . . . , n} such that

R(ρ) ≥

n∑

i=1

(μiMi − 1

)Mi +Mn

i Mi∣∣γi∣∣(Mi − 1)

, (2.43)

12 Abstract and Applied Analysis

where ρ, γi are complex numbers. If

|c| ≤ 1 − 1Re(ρ)

n∑

i=1

(μiMi − 1

)Mi +Mn

i Mi∣∣γi∣∣(Mi − 1)

, Mi ≥ 1, (2.44)

then the family Υγi,η,λ(n, ρ, ν, α, β : z) is univalent.

Theorem 2.11. Let c be a complex number, |In,νλ

(α, β, μ, η)fi(z)| ≤ Mi, Mi ≥ 1 for all i ={1, 2, 3, . . .} and In,ν

λ(α, β, μ, η)fi(t) ∈ K2,μi , for i = {1, 2, 3, . . .} such that

R(ρ) ≥

n∑

i=1

(μiMi − μi + 2

)Mi − 1

∣∣γi∣∣(Mi − 1)

, (2.45)

where ρ, γi are complex numbers. If

|c| ≤ 1 − 1Re(ρ)

n∑

i=1

(μiMi − μi + 2

)Mi − 1

∣∣γi∣∣(Mi − 1)

, Mi ≥ 1, (2.46)

then the family Υγi,η,λ(n, ρ, ν, α, β : z) is univalent.

Note that some other related work involving integral operators regarding univalencecriteria can also be found in [21–23].

Acknowledgment

The work presented here was partially supported by UKM-ST-06-FRGS0244-2010.

References

[1] S. Owa, “On the distortion theorems. I,” KyungpookMathematical Journal, vol. 18, no. 1, pp. 53–59, 1978.[2] S. Owa and H. M. Srivastava, “Univalent and starlike generalized hypergeometric functions,”

Canadian Journal of Mathematics, vol. 39, no. 5, pp. 1057–1077, 1987.[3] M. K. Aouf, R. M. El-Ashwah, and S. M. El-Deeb, “Some inequalities for certain p-valent functions

involving extended multiplier transformations,” Proceedings of the Pakistan Academy of Sciences, vol.46, no. 4, pp. 217–221, 2009.

[4] F. M. Al-Oboudi, “On univalent functions defined by a generalized Salagean operator,” InternationalJournal of Mathematics and Mathematical Sciences, no. 25–28, pp. 1429–1436, 2004.

[5] G. S. Salagean, “Subclasses of univalent functions,” in Complex Analysis—5th Romanian-FinnishSeminar, Part 1 (Bucharest, 1981), vol. 1013 of Lecture Notes inMathematics, pp. 362–372, Springer, Berlin,Germany, 1983.

[6] B. A. Uralegaddi and C. Somanatha, “Certain classes of univalent functions,” in Current Topics inAnalytic Function Theory, pp. 371–374, World Scientific, Singapore, 1992.

[7] N. E. Cho and H. M. Srivastava, “Argument estimates of certain analytic functions defined by a classof multiplier transformations,”Mathematical and Computer Modelling, vol. 37, no. 1-2, pp. 39–49, 2003.

[8] N. E. Cho and T. H. Kim, “Multiplier transformations and strongly close-to-convex functions,”Bulletin of the Korean Mathematical Society, vol. 40, no. 3, pp. 399–410, 2003.

[9] F. M. Al-Oboudi and K. A. Al-Amoudi, “On classes of analytic functions related to conic domains,”Journal of Mathematical Analysis and Applications, vol. 339, no. 1, pp. 655–667, 2008.

Abstract and Applied Analysis 13

[10] F. M. Al-Oboudi, “On classes of functions related to starlike functions with respect to symmetricconjugate points defined by a fractional differential operator,” Complex Analysis and Operator Theory.In press.

[11] A. Catas, “On certain classes of p-valent functions defined by multiplier transformations,” inProceedings of the International Symposium on Geometric Function Theory and Applications (GFTA ’07),S. Owa and Y. Polatoglu, Eds., vol. 91, TC Istanbul Kultur University Publications, Istanbul, Turkey,August 2007.

[12] S. S. Kumar, H. C. Taneja, and V. Ravichandran, “Classes multivalent functions defined by Dziok—Srivastava linear operaor and multiplier transformations,” Kyungpook Mathematical Journal, vol. 46,pp. 97–109, 2006.

[13] H. M. Srivastava, K. Suchithra, B. A. Stephen, and S. Sivasubramanian, “Inclusion and neighborhoodproperties of certain subclasses of analytic and multivalent functions of complex order,” Journal ofInequalities in Pure and Applied Mathematics, vol. 7, no. 5, pp. 1–8, 2006.

[14] S. Bulut, “Sufficient conditions for univalence of an integral operator defined by Al-Oboudidifferential operator,” Journal of Inequalities and Applications, Article ID 957042, 5 pages, 2008.

[15] D. Breaz, N. Breaz, and H. M. Srivastava, “An extension of the univalent condition for a family ofintegral operators,” Applied Mathematics Letters, vol. 22, no. 1, pp. 41–44, 2009.

[16] D. Breaz and N. Breaz, “Two integral operators,” Universitatis Babes-Bolyai, vol. 47, no. 3, pp. 13–19,2002.

[17] L. V. Ahlfors, “Sufficient conditions for quasiconformal extension,” in Discontinuous Groups andRiemann Surfaces (Proc. Conf., Univ. Maryland, College Park, Md., 1973), pp. 23–29, Princeton UniversityPress, Princeton, NJ, USA, 1974.

[18] J. Becker, “Lownersche differentialgleichung und Schlichtheitskriterien,” Mathematische Annalen, vol.202, pp. 321–335, 1973.

[19] V. Pescar, “A new generalization of Ahlfors’s and Becker’s criterion of univalence,” MalaysianMathematical Society. Bulletin. Second Series, vol. 19, no. 2, pp. 53–54, 1996.

[20] V. Singh, “On a class of univalent functions,” International Journal of Mathematics and MathematicalSciences, vol. 23, no. 12, pp. 855–857, 2000.

[21] N. Breaz, D. Braez, and M. Darus, “Convexity properties for some general integral operators onuniformly analytic functions classes,” Computers and Mathematics with Applications, vol. 60, pp. 3105–3017, 2010.

[22] A. Mohammed and M. Darus, “A new integral operator for meromorphic functions,” Acta Universi-tatis Apulensis, no. 24, pp. 231–238, 2010.

[23] A. Mohammed, M. Darus, and D. Breaz, “Some properties for certain integral operators,” ActaUniversitatis Apulensis, no. 23, pp. 79–89, 2010.

Submit your manuscripts athttp://www.hindawi.com

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttp://www.hindawi.com

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

CombinatoricsHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

The Scientific World JournalHindawi Publishing Corporation http://www.hindawi.com Volume 2014

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttp://www.hindawi.com

Volume 2014

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Stochastic AnalysisInternational Journal of