47948988 04 Breakwater

Embed Size (px)

Citation preview

  • 7/28/2019 47948988 04 Breakwater

    1/263

  • 7/28/2019 47948988 04 Breakwater

    2/263

  • 7/28/2019 47948988 04 Breakwater

    3/263

  • 7/28/2019 47948988 04 Breakwater

    4/263

  • 7/28/2019 47948988 04 Breakwater

    5/263

  • 7/28/2019 47948988 04 Breakwater

    6/263

  • 7/28/2019 47948988 04 Breakwater

    7/263

  • 7/28/2019 47948988 04 Breakwater

    8/263

  • 7/28/2019 47948988 04 Breakwater

    9/263

  • 7/28/2019 47948988 04 Breakwater

    10/263

  • 7/28/2019 47948988 04 Breakwater

    11/263

  • 7/28/2019 47948988 04 Breakwater

    12/263

  • 7/28/2019 47948988 04 Breakwater

    13/263

  • 7/28/2019 47948988 04 Breakwater

    14/263

  • 7/28/2019 47948988 04 Breakwater

    15/263

  • 7/28/2019 47948988 04 Breakwater

    16/263

  • 7/28/2019 47948988 04 Breakwater

    17/263

  • 7/28/2019 47948988 04 Breakwater

    18/263

  • 7/28/2019 47948988 04 Breakwater

    19/263

  • 7/28/2019 47948988 04 Breakwater

    20/263

  • 7/28/2019 47948988 04 Breakwater

    21/263

  • 7/28/2019 47948988 04 Breakwater

    22/263

  • 7/28/2019 47948988 04 Breakwater

    23/263

  • 7/28/2019 47948988 04 Breakwater

    24/263

  • 7/28/2019 47948988 04 Breakwater

    25/263

  • 7/28/2019 47948988 04 Breakwater

    26/263

  • 7/28/2019 47948988 04 Breakwater

    27/263

  • 7/28/2019 47948988 04 Breakwater

    28/263

  • 7/28/2019 47948988 04 Breakwater

    29/263

  • 7/28/2019 47948988 04 Breakwater

    30/263

  • 7/28/2019 47948988 04 Breakwater

    31/263

  • 7/28/2019 47948988 04 Breakwater

    32/263

  • 7/28/2019 47948988 04 Breakwater

    33/263

  • 7/28/2019 47948988 04 Breakwater

    34/263

  • 7/28/2019 47948988 04 Breakwater

    35/263

  • 7/28/2019 47948988 04 Breakwater

    36/263

  • 7/28/2019 47948988 04 Breakwater

    37/263

  • 7/28/2019 47948988 04 Breakwater

    38/263

  • 7/28/2019 47948988 04 Breakwater

    39/263

  • 7/28/2019 47948988 04 Breakwater

    40/263

  • 7/28/2019 47948988 04 Breakwater

    41/263

  • 7/28/2019 47948988 04 Breakwater

    42/263

  • 7/28/2019 47948988 04 Breakwater

    43/263

  • 7/28/2019 47948988 04 Breakwater

    44/263

  • 7/28/2019 47948988 04 Breakwater

    45/263

  • 7/28/2019 47948988 04 Breakwater

    46/263

  • 7/28/2019 47948988 04 Breakwater

    47/263

  • 7/28/2019 47948988 04 Breakwater

    48/263

  • 7/28/2019 47948988 04 Breakwater

    49/263

  • 7/28/2019 47948988 04 Breakwater

    50/263

  • 7/28/2019 47948988 04 Breakwater

    51/263

  • 7/28/2019 47948988 04 Breakwater

    52/263

  • 7/28/2019 47948988 04 Breakwater

    53/263

  • 7/28/2019 47948988 04 Breakwater

    54/263

  • 7/28/2019 47948988 04 Breakwater

    55/263

  • 7/28/2019 47948988 04 Breakwater

    56/263

  • 7/28/2019 47948988 04 Breakwater

    57/263

  • 7/28/2019 47948988 04 Breakwater

    58/263

  • 7/28/2019 47948988 04 Breakwater

    59/263

  • 7/28/2019 47948988 04 Breakwater

    60/263

  • 7/28/2019 47948988 04 Breakwater

    61/263

  • 7/28/2019 47948988 04 Breakwater

    62/263

  • 7/28/2019 47948988 04 Breakwater

    63/263

  • 7/28/2019 47948988 04 Breakwater

    64/263

  • 7/28/2019 47948988 04 Breakwater

    65/263

  • 7/28/2019 47948988 04 Breakwater

    66/263

  • 7/28/2019 47948988 04 Breakwater

    67/263

  • 7/28/2019 47948988 04 Breakwater

    68/263

  • 7/28/2019 47948988 04 Breakwater

    69/263

  • 7/28/2019 47948988 04 Breakwater

    70/263

  • 7/28/2019 47948988 04 Breakwater

    71/263

  • 7/28/2019 47948988 04 Breakwater

    72/263

  • 7/28/2019 47948988 04 Breakwater

    73/263

  • 7/28/2019 47948988 04 Breakwater

    74/263

  • 7/28/2019 47948988 04 Breakwater

    75/263

  • 7/28/2019 47948988 04 Breakwater

    76/263

  • 7/28/2019 47948988 04 Breakwater

    77/263

  • 7/28/2019 47948988 04 Breakwater

    78/263

  • 7/28/2019 47948988 04 Breakwater

    79/263

  • 7/28/2019 47948988 04 Breakwater

    80/263

  • 7/28/2019 47948988 04 Breakwater

    81/263

  • 7/28/2019 47948988 04 Breakwater

    82/263

  • 7/28/2019 47948988 04 Breakwater

    83/263

  • 7/28/2019 47948988 04 Breakwater

    84/263

  • 7/28/2019 47948988 04 Breakwater

    85/263

  • 7/28/2019 47948988 04 Breakwater

    86/263

  • 7/28/2019 47948988 04 Breakwater

    87/263

  • 7/28/2019 47948988 04 Breakwater

    88/263

  • 7/28/2019 47948988 04 Breakwater

    89/263

  • 7/28/2019 47948988 04 Breakwater

    90/263

  • 7/28/2019 47948988 04 Breakwater

    91/263

    Recent updates on parts of Conceptual design of Rubble Mound

    Breakwaters

    The papers can be downloaded from internet:

    www.infram.nl under products&services and then publications.

    Publication 1.A code for dike height design and examination based on wave run-up and waveovertopping.Update of sections 3.1 and 3.2

    Publication 21.Effectiveness of recurve walls in reducing wave overtopping on seawalls andbreakwatersUpdate of section 3.2 pages 28-30.

    Publication 22.Applications of a neural network to predict wave overtopping at coastalstructuresNew information on section 3.2.

    Publication 20.Wave transmission at low-crested structures, including oblique wave attackUpdate of section 3.3.

    Publication 2.Geometrical design of coastal structures

    Additional information to section 3.3 on percentage of overtopping waves.

    Publication 3.Application and stability criteria for rock and artificial unitsAdditional information to section 4.2 on probabilistic approach.Additional information to section 4.2.4 on effect of armour shape and grading.

    Publication 5.Design of concrete armour layersUpdate of section 4.3.

    http://www.infram.nl/http://www.infram.nl/
  • 7/28/2019 47948988 04 Breakwater

    92/263

  • 7/28/2019 47948988 04 Breakwater

    93/263

    1

    BREAKWATERS I

    UNESCO-IHE

    Dr J.W. van der Meer

    INFRAM BV

    Contents of lectures

    First day, 4 periods

    Introduction

    Functions, requirements,types

    Cross-section Sheet show

    Boundary conditions waves

    Second day, 4 periods

    Governing parameters

    Hydraulic response

    Stability formulae

    Rock armour stability

    Video

    Third day, 4 periods

    Concrete armour

    Low-crested structures

    Berm breakwaters

    Toe and head

    Video

    Functions

    House Breakwater

    Shelter (rain, Protection against waves

    cold, wind, heat Protection agains currents

    Privacy Provision dock/quay

    Comfort (sleep, Prevent channel siltation

    rest)

    Requirements

    House

    good location,position

    roof, walls,windows

    heating, airco

    rooms

    durable

    costs

    Breakwater

    lay-out

    permeability

    crest level

    access

    lee side

    reflection

    Types

    House

    apartment

    double house

    single house

    farm

    factory

    Breakwater

    rubble mound

    berm breakwater

    monolithic vertical

    vertically composite

    horizontally composite

    dams, low-crested

    seawalls

    (rubble) revetments

    Boundary conditions

    Soil bearing capacity; tests

    Hydrographic data bathymetry

    Water levels

    tides astronomical tidespring tide

    storm surge depression rise due toatmospheric pressure

    wind set-up stress by wind shear

    wave set-up by wave groups

  • 7/28/2019 47948988 04 Breakwater

    94/263

    2

    Boundary conditions: waves

    Wave seconds

    Sea state hours

    Daily wave climate year

    Extreme wave climate many years

    Part of wave record

    H

    T

    0.0

    1.0

    2.0

    3.0

    4.0

    5.0

    6.0

    0.0 0.1 0.2 0.3 0.4 0.5

    frequency (Hz)

    Energydensity(m2/Hz)

    P011

    P013

    P015

    Examples of spectra

    Wave heightsH1/3 = 1.43 m

    H1/10 = 1.82 m

    H2% = 2.00 m

    H1% = 2.17 m

    H0.1% = 2.65 m

    H2%/H1/3 = 1.40

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    probability of exceedance (%)

    waveheight(m)

    100 90 70 50 30 20 10 5 2 1 0.5 0.1

    Rayleigh distribution on deep water

    Wave heights

    H1/3 = 1.53 m

    H1/10 = 1.75 m

    H2% = 1.85 m

    H1% = 1.94 m

    H0.1% = 2.17 m

    H2%/H1/3 = 1.21

    0

    0.5

    1

    1.5

    2

    2.5

    3

    probability of exceedance (%)

    waveheight(m)

    100 90 70 50 30 20 10 5 2 1 0.5 0.1

    Double Weibull distribution on shallow water

    One wave versus sea state

    H H1/3; Hm0 = 4 m00.5

    surplus: H2%; H1/10; Hmax

    T Tm; Tp

    surplus: Tm-1,0 = m-1/m0

  • 7/28/2019 47948988 04 Breakwater

    95/263

    3

    0

    5

    10

    15

    20

    25

    1 10 100 1000

    Return period (years)

    Hs

    Bilbao

    Sines

    TripoliNorth Sea

    Follonica

    Pozallo

    Examples of extreme wave climates (deep water)

    From deep water to the coast

    Refraction

    Shoaling

    Breaking

    rule of thumb for gentle foreshore >1:50

    Hs/h = 0.5 0.6

    for breaker index: CIRIA/CUR p 211

    Breaker index Hs/h (CUR/CIRIA)

    sop=Hs/Lop=2Hs/(gTp2)

    h=local water depth

    Governing parametersbreakwater design

    Waves

    Hydraulic response parameters

    Cross-section

    Response of the structure

    Waves

    H1/3; Hm0; H2%; Tp; Tm; Tm-1,0

    wave steepness: s = H/L = 2H/(gT2)

    sop with Tp

    and som with Tm

    maxima: sop = 0.05; som = 0.07

    breaker parameter = tan/s0.5

    Hydraulic response parameters

    Run-up: RuRu2%/Hs

    Run-down: RdRd2%/Hs

    Overtopping: q q/(gHs3)0.5

    Transmission: Ct Ht/Hi

    Reflection: Cr Hr/Hi

  • 7/28/2019 47948988 04 Breakwater

    96/263

    4

    Parameters rock

    Nominal diameter Dn50

    Dn50 = V1/3 = (M50/r)1/3 = cubic size

    r= 2600 2700 kg/m3 (rock)r= 2400 kg/m3 (normal concrete

    Concrete units: Dn

    Relative buoyant density:

    = (r w)/ w = 1.4 1.6 in most situations

    Stability number

    Hs/Dn50

    Relation between wave

    attack (Hs) and size of

    unit (Dn50)

    Rock shape Rounding of rocks

    Examples of rock types Example of grading curve

    0

    10

    20

    30

    4050

    60

    70

    80

    90

    100

    100 1000

    Weight (g)

    Percentage

    exceeding

    grading box 2

    W15 (%) 234

    W85 (%) 390

    W85/W15 1.67

    Dn85/Dn15 1.19W50 (g) 302

    W50 cu rve (g) 30 3

  • 7/28/2019 47948988 04 Breakwater

    97/263

    5

    Example of shape curve

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    0 1 2 3 4

    largest/minimum dimension L/H

    Percentagelarger shape box 2

    > 2 L/H (%) 81

    > 3 L/H (%) 4

    Blockiness 0.41

    Response of the structure

    Damage level S

    S = Ae/Dn502

    number of squares that fit in erosion area

    Damage level Nodnumber ofdisplacedunits in

    a strip Dn wide

    slope initial

    damage

    intermediate

    damage

    failure (under

    layer visible)

    1:1.5 2 3-5 8

    1:2 2 4-6 8

    1:3 2 6-9 12

    1:4 3 8-12 17

    1:6 3 8-12 17

    Applicable damage levels S Damage level Nod

    Damage parameter Nod: the actual number of

    displaced units related to a width along the

    longitudinal axis of the breakwater of one

    nominal diameter Dn

    Example: cubes 15 ton; Dn = 1.84 m; stretch 100 m long

    Nod = 0.2 11 units In cross-section:

    Nod = 0.5 27 units 20 units: 0.5/20*100%=2.5%

    Nod = 1.0 54 units 40 units: 0.5/40*100%=1.25%

    Nod = 2.0 109 units

    Hydraulic response: run-up

    Ru2%/Hs breaker parameteropRecent developments: o with Tm-1,0

    Smooth slope: upper boundary

    Reductions by:

    roughness (rock!)

    berm

    angle of wave attack

    Run-up rock slope compared to smooth slope

    P>0.4

  • 7/28/2019 47948988 04 Breakwater

    98/263

    6

    Run-up rock slope: Weibull distributions

    Hs = 2 m

    Tm = 6 s

    P = 0.4

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4

    0 1 2 3 4 5 6 7 8 9 10

    breakerparameter o

    waverun-upRu2%/Hm

    0

    Run-up smooth slope, very shallow water; Tm-1,0

    Hydraulic response: wave run-down on rock slopes Hydraulic response: wave overtopping run-up

    Wave overtopping: basic formula

    1.E-05

    1.E-04

    1.E-03

    1.E-02

    1.E-01

    0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

    dimensionless crest height Rc/Hm0

    dimensionlessovertoppingq/(gH

    m0

    3)0.5

    Q=a exp(bR)

    b

    a

    1.E-07

    1.E-06

    1.E-05

    1.E-04

    1.E-03

    1.E-02

    1.E-01

    0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

    dimensionless crest height

    dimensionlesswaveovertopping

    Wave overtopping: breaking waves, all tests

    0.1 l/s/m

    1 l/s/m

    10 l/s/m

    100 l/s/m

  • 7/28/2019 47948988 04 Breakwater

    99/263

    7

    )1

    H

    R(-4.7

    0.06=

    gH

    q

    vfbops

    c

    opb3s

    exp

    tan

    )1

    H

    R(-2.30.=

    gH

    q

    fs

    c

    3

    s

    exp2

    with as maximum:

    breaking waves

    non-breaking waves

    Wave overtopping: general formulae Percentage of overtopping waves

    Hydraulic response: transmission

    Ct = Ht/Hi

    Ct Rc/Hm0

    and B, sop, Dn50

    Change of spectral shape

    Parameters wave transmission

    General trend wave transmission; large scatter

    for -2 < Rc/Hi < -1.13 Ct = 0.8

    for -1.13 < Rc/Hi < 1.2 Ct = 0.46 0.3 Rc/Hi

    for 1.2 < Rc/Hi < 2 Ct = 0.1

    de Jong (1996) and dAngremond et al. (1996):

    Ct = a 0.4 Rc/Hi

    with a maximum of Ct = 0.8

    and a minimum of Ct = 0.075

    The parameter a describes all the other relevant influences:

    a = (B/Hi)-0.31

    * (1 e-0.5) * Astr

    with: B = crest width

    = breaker parameterAstr = a coefficient depending on the type of

    structure:

    rock slopes and concrete units: Astr= 0.64

    smooth impermeable dam (asphalt) Astr= 0.80

    impermeable smooth block revetment Astr= 0.80

    block mattresses Astr= 0.75

    gabion matresses Astr= 0.70

    More accurate transmission formula

  • 7/28/2019 47948988 04 Breakwater

    100/263

    8

    Transmission, recent information

    Large influence ofberm width is only

    relevant forrubble mound structures

    Smooth structures: no influence

    New tests in EU-programme DELOS

    confirm the formula

    Spectral shape changes0.00

    0.05

    0.10

    0.15

    0.20

    0.25

    0.30

    0.35

    0.40

    0.45

    0.50

    -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

    Relative crest height Rc/Hm0,i

    transmissioncoefficientKt

    B = 2 m

    B = 4.5 m

    B = 15 m

    Influence crest width; smooth structures 1:4 slope

    0.0

    1.0

    2.0

    3.0

    4.0

    5.0

    6.0

    0.0 0.1 0.2 0.3 0.4 0.5

    frequency (Hz)

    Energydensity(m

    2/Hz)

    P014-Jonswap

    P014a-PM

    Incident spectra

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

    frequency (Hz)

    Energydensity(m

    2/Hz)

    P004

    P005

    Transmitted spectra

    0.00

    0.02

    0.04

    0.06

    0.08

    0.10

    0.12

    0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

    frequency (Hz)

    energydensity(m2/Hz)

    reduced incident spectrum

    proposed transmitted spectrum

    0,6m0,it

    0,4m0,it

    Transmitted spectrum; rough estimation Oblique wave transmission

    Does Ct change with direction?

    Yes!

    Does direction change?

    Yes!

    Difference between rubble mound and smooth

    structure?

    For sure, treat them differently

    Spectral change dependent on direction?

    No.

  • 7/28/2019 47948988 04 Breakwater

    101/263

    9

    Hydraulic response: wave reflection

    Hs/Dn50 = (KD cot)1/3

    Limitations Hudson formula (1958)

    the use of regular waves only,

    no account taken in the formula of wave period or storm duration, no description of the damage level, the use of non-overtopped and permeable core structures only.

    Hudson formula

    for plunging waves:

    and for surging waves:

    0.5-

    m

    0.2

    0.18

    50n

    s N

    SP6.2=

    D

    H

    P

    m

    0.2

    0.13-

    50n

    s cotN

    SP1.0=

    D

    H

    Van der Meer formulae

    0.5-

    m

    0.2

    0.18

    50n

    s N

    SP6.2=

    D

    H

    0.5-

    m

    0.2

    0.18

    50n

    s N

    SP6.2=

    D

    H

    Van der Meer formulae; influences

    Van der Meer formulae; S N

    N8000 maximum

    Van der Meer formulae: Hs S

  • 7/28/2019 47948988 04 Breakwater

    102/263

    10

    Reliability

    6.2 and 1.0 are stochastic variables

    normal distribution

    = 6.2 and 1.0 = 0.4 and 0.08 (V=6.5 and 8%) confidance intervals:

    90%: +/- 1.6495%: +/- 1.96

    Wave heightsH1/3 = 1.53 m

    H1/10 = 1.75 mH2% = 1.85 m

    H1% = 1.94 m

    H0.1% = 2.17 m

    H2%/H1/3 = 1.21

    0

    0.5

    1

    1.5

    2

    2.5

    3

    probability of exceedance (%)

    waveheight(m)

    100 90 70 50 30 20 10 5 2 1 0.5 0.1

    Double Weibull distribution on shallow water

    Shallow water: H2% or H1/10 better?

    0.5-

    m

    0.2

    0.18

    50n

    %2 N

    SP7.8=

    D

    H

    P

    m

    0.2

    0.13-

    50n

    %2cot

    N

    SP41.=

    D

    H

    plunging waves:

    surging waves:

    Shallow water equations

    Minimum crest width Bmin:

    Bmin = (3 to 4) Dn50

    The thickness of layers:

    ta = tu = tf= n kt Dn50

    The number of units per m2:

    Na = n kt (1 nv)/Dn502

    where:ta, tu, tf = thickness of armour, under layer or filtern = number of layerskt = layer thickness coefficientn

    v= volumetric porosity

    =packing density

    Crest width and thickness of layers

    = /Dn2

    Values of kt and nv (SPM, 1984)

    kt nv

    smooth rock, n = 2 1.02 0.38

    rough rock, n = 2 1.00 0.37rough rock, n > 3 1.00 0.40

    graded rock - 0.37

    cubes 1.10 0.47

    tetrapods 1.04 0.50

    dolosse 0.94 0.56

    Values of kt and nv

    Under layers and filters

    Geotechnical filterrules:

    roughly: D15A/D85f< 4 5

    SPM under layer:1/10 1/15 of W50A D15A/D85u = 2.2 2.3

    Large under layer gives large P and

    higher stability

    Smaller under layer can be cheaper

  • 7/28/2019 47948988 04 Breakwater

    103/263

    11

    Design of concrete armour layersIntroduction

    Hudson/Van der Meer (rock)

    Two-layer systems

    cubes

    tetrapods

    crest height

    packing density

    One-layer systems

    accropode

    core-loc

    cubes

    Overall view

    3/1)cot( Dn

    s KD

    H =

    Stability FormulaeHudson

    Van der Meer - rock: plunging and surging waves

    ),,,( PNSfD

    Hm

    n

    s =

    Hs/Dn = stability numberm = breaker parameterS = damage level

    N = number of waves

    P = notional permeability factor

    Concrete armour layers

    cot =1.5 sm remains; m disappears

    P = 0.4 (breakwater with under layer)

    Damage level Nod

    ),,( modn

    s sNNf

    D

    H=

    Two-layer systems

    Research 85 - 87

    Cubes

    1.0

    3.0

    4.0

    0.17.6

    +=

    mod

    n

    s sN

    N

    D

    H

    Tetrapods

    2.0

    25.0

    5.0

    85.075.3

    +=

    mod

    n

    s sN

    N

    D

    H

    Cubes 15 ton; = 1.35; sm = 0.04; N = 3000

    0

    0.5

    1

    1.5

    2

    2.5

    4 5 6 7 8 9

    Wave height Hs

    (m)

    DamageNod

    Formula

    Hudson, KD=7

    Stability formulae give damage curve

    Recent research Research 85 - 87:

    steep slope 1:1.5: no transitionplunging-surging waves

    De Jong (1996):

    MSc-student TUDelft

    research WL|Delft Hydraulics

    flume tests tetrapods

    also steeper waves

    influence crest height

    influence packing density

  • 7/28/2019 47948988 04 Breakwater

    104/263

    12

    De Jong: formula for plunging waves

    tetrapods

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4

    4.5

    5

    0 0.01 0.02 0.03 0.04 0.05 0.06wave steepness sm

    stabilitynumberHs/Dn

    Van der Meer (1987)

    De Jong (1996)

    plungingsurging

    surging:

    plunging:

    f(Rc/Dn) = influence of crest height

    Rc = crest freeboard

    f() = influence of packing density

    Na/A = n k (1 - nv)/Dn2 = /Dn2

    Total formula for tetrapods

    )/(s)(94.3+N

    N.68=D

    H 20.om

    5.0

    od

    n

    snc DRff

    )/(s)(0.85+3.75=D

    H 0.2-om

    5.0

    n

    s

    ncod DRff

    N

    N

    Influence of crest height

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    1.6

    1.8

    -2 -1 0 1 2 3 4 5 6 7

    Relative freeboard Rc/Dn

    Influenceofcrestheightf(Rc

    /Dn

    )

    f(Rc/Dn) = 1.0 + exp(-0.61 Rc/Dn )

    Influence of packing density

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    1.6

    1.5 2 2.5 3 3.5

    Stability number Hs/Dn

    DamagelevelNod

    = 1.02

    = 0.95

    = 0.88

    = 0.48

    Influence of packing density

    0

    0.2

    0.4

    0.6

    0.8

    1

    0 0.2 0.4 0.6 0.8 1 1.2

    Packing de nsity / SPM

    Reductioncoefficientf(

    )

    f() = 0.40 + 0.61/SPM

    one layer: Bhageloe, 1998

    One-layer systems

    Advantages (accropode, core-loc)

    strong units, no breaking; if breaking: 10% loss

    no rocking: packed

    under design: no damage! (safety factor)

    accropode: experience of 100 constructed breakwaters

    large saving in concrete

    CHEAP AND RELIABLE STRUCTURE

    Disadvantages

    strict placing pattern (not always possible)

    not yet much experience with core-loc

  • 7/28/2019 47948988 04 Breakwater

    105/263

    13

    One-layer systemsAccropode, core-loc, ..cubes

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4

    0 1 2 3 4 5

    stability number Hs/ Dn

    damageNod

    accropode

    start damage

    failure

    tetrapods

    One-layer systemsAccropode

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4

    0 1 2 3 4 5

    stability number Hs/ Dn

    damageNod

    accropode

    start damage

    failure

    design KD=12

    tetrapods

    One-layer systemsAccropode and core-loc

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4

    0 1 2 3 4 5

    stability number Hs/ Dn

    damageNod

    accropode

    start damage

    failure

    design KD=12

    core-loc KD=16

    tetrapods

    Overall view concrete units

    Accropode Core-Loc Tetrapod Cube Cube

    number of layers 1 1 2 2 1

    slope 1:4/3 1:4/3 1:1,5 1:1,5 1:1,5

    KD (breaking waves) 12 16 7 7 7

    Hs/Dn = Ns 2,5 2,8 2,2 2,2 2,2damage Nod 0 0 0,5 0,5 0

    damage % 0 0 5 5 0

    packing density 0,61 0,56 1,04 1,17 0,70concrete per m2 on slope 0,182Hs 0,148Hs 0,350Hs 0,370Hs 0,236Hs

    relative volume of concrete 100% 81% 208% 220% 140%

    Reef type (Ahrens): reduction in crest height Conventional structure: emerged, small damage

  • 7/28/2019 47948988 04 Breakwater

    106/263

    14

    Reef type: crest at still water level Reef type: crest below still water level

    Reef type: smaller material Reef type: wide crest

    Conventional low-crested structure Reef type: lowering of the crest

  • 7/28/2019 47948988 04 Breakwater

    107/263

    15

    Conventional low-crested structure; various crest heights Reef type (Ahrens): reduction in crest height

    Division of low-crested structure in three parts (Vidal) Low-crested structure: design of front, crest, rear

    Conventional breakwater

    Stable structure (damage S)

    Reliable design formulae

    Well-known structure

    Various/many gradings (armour, underlayer(s), toe, bedding layer, etc.)

    Heavy equipment (concrete units)

    Limited size of rock concrete(expensive)

    Berm breakwater,original concept

  • 7/28/2019 47948988 04 Breakwater

    108/263

    16

    Berm breakwater

    Use ofrock up to Hs = 6 m cheap (?)

    Two classes of rock: large and small

    Easy construction

    Not many in the world: around 30 (25 on Iceland)

    Initially unstable: profile reshaping. After

    reshaping statically stable.

    Design parameter: mound of berm

    Erosion gives gentle and stable slope

    Dynamic stability: S-shaped profile independent of

    ininital profile

    Schematised profile: BREAKWAT

    Three curves with BREAKWAT

    Basic design parameters

    Hs/Dn50 = 3.0

    Determine berm level

    Draw slope 1:4

    Redesign to berm profile

    Use BREAKWAT to determine berm

    length

  • 7/28/2019 47948988 04 Breakwater

    109/263

    17

    Crest height: rear side stability

    Rear side stability is very important for berm

    breakwaters: unstable rear side may cause

    failure of the breakwater

    Consider developed profile

    Rc/Hs * sop1/3 = 0.25: start of damage

    0.21: moderate damage

    0.17: severe damage

    A lower value gives more overtopping

    Erosion of berm breakwater head

    Head, St. George, Alaska. 3D tests

    Longshore transport

    Longshore transport during reshaping

    S(x) = number of rocks displaced per wave

    Maximum between 15-40 degrees attack

    Ho = Hs/Dn50

    Top = Tp/(gDn50)0.5 dimensionless period

    S(x) = 0 for HoTop < 105

    S(x) = 0.00005 (HoTop- 105)2

    Longshore transport: rock/gravel beach; Hs/Dn50 < 8 Longshore transport: onset

  • 7/28/2019 47948988 04 Breakwater

    110/263

    18

    Stable Berm Breakwaters,Sigurdur SigurdarsonIcelandic Maritime Administration

    Stability test of the Icelandic type,Juhl and Sloth (EU-programme)

    Some of the profiles tested

    Conventional

    Stability test of the Icelandic type,

    Juhl and Sloth

    conventional

    Husavik berm breakwater, 2001-2002

    Stone Classes and Quarry Yield Prediction.

    Stone wmin-wmax wmean wmax/ dmax/ Expected For Hs=6.8 m

    class (tonnes) (tonnes) wmin dmin quarry yield Ho HoTo

    I 16.030.0 20,7 1.9 1.23 5% 1.9 46II 10.016.0 12.0 1.6 1.17 5% 2.3 62

    III 4.0 10.0 6.0 2.5 1.36 9% 2.9 87

    IV 1.0 4.0 2.0 4.0 1.59 14% 4.2 151

    V 0.3 1.0 0.5 3.3 1.49 12% 6.5 291

    Grindavik berm breakwaters, 2001-2002

    Stone Classes and Quarry Yield Prediction.

    Stone wmin-wmax wmean wmax/ dmax/ Expected For Hs=4.4 m

    class (tonnes) (tonnes) wmin dmin quarry yield Ho HoTo

    I 15.030.0 20,0 2.0 1.26 5%

    II 6.015.0 9.0 2.5 1.36 9% 1.7 47III 1.5 6.0 6.0 4.0 1.59 17% 2.4 80

    IV 0.3 1.5 2.0 5.0 1.71 20% 3.9 166

    Sirevg berm breakwater, NorwayDesign by Icelandic Maritime Administration

  • 7/28/2019 47948988 04 Breakwater

    111/263

    19

    Sirevg berm breakwater, Norway

    Design wave height and worst casescenario

    Station number

    along thebreakwater (m)

    Design wave

    height 100 yearreturn period

    Worst case

    scenario 1000year return period

    Hs (m) Hs (m)

    0 to 70 4.8 5.3

    75 to 125 3.5 3.9

    145 to 210 6.2 6.8

    215 to 240 6.4 7.3

    245 to 275 6.2 6.8

    280 to 400 6.7 7.4

    Breakwater head 7.0 7.7

    Sirevg berm breakwater, Norway

    Quarry Yield PredictionSIREVG - QUARRY YIELD PRE DICTION

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    0,10 1,00 10,00 100,00

    Weightof s tones (tonnes)

    Quarry A: Yieldprediction

    Quarry B: Yieldprediction

    Quarries A, B, andC -weighed averages: Yieldprediction

    DesignCurve

    Sirevg berm breakwater, Norway

    Stability number, Ho, for various design

    wave heights, Hs

    Stone wmin - wmean dmax/ Ho for various Hs

    class wmax dmin 3.5 m 4.8 m 6.2 m 6.7 m 7.0 m

    I 20 - 30 23.3 1.14 1.05 1.45 1.87 2.02 2.11II 10 - 20 13.3 1.26 1.27 1.74 2.25 2.43 2.54

    III 4 - 10 6.0 1.36 1.66 2.27 2.94 3.17 3.31

    IV 1 - 4 2.0 1.59 2.39 3.28 4.23 4.57 4.78

    Stable berm breakwaters,concluding remarks (Sigurdarson)

    18 year experience

    27 structures have been built

    Design wave 2.5 to 7.0 m

    Constructed on 25 m water depth

    Breaking waves / non breaking

    On weak soil with large settlements

    More economical and more stable than the

    homogeneous berm breakwater

    Toe stability Different toe heights

  • 7/28/2019 47948988 04 Breakwater

    112/263

    20

    Different toe widths Damage definition Nod

    Toe stability: old results Toe stability: new results

    Hs/Dn50 * Nod-0.15 = 2 + 6.2 (h t/h)

    2.7

    Application area;

    0.4 < ht/h < 0.9

    3 < ht/Dn50 < 25

    Toe stability: final results (Infram publication nr 2) Damage location head (Jensen, 1984)

  • 7/28/2019 47948988 04 Breakwater

    113/263

    21

    Head stability

    No good formulae, too many parameters

    Rules of thumb:

    increase weight by 50% to 100%

    decrease slope angle

    increase radius of head

    or a combination

    3D-tests for important breakwaters

    Videos

    Scheveningen: land based construction

    Maasvlakte: construction from water

    Reina Sofia: caisson

  • 7/28/2019 47948988 04 Breakwater

    114/263

  • 7/28/2019 47948988 04 Breakwater

    115/263

  • 7/28/2019 47948988 04 Breakwater

    116/263

  • 7/28/2019 47948988 04 Breakwater

    117/263

  • 7/28/2019 47948988 04 Breakwater

    118/263

  • 7/28/2019 47948988 04 Breakwater

    119/263

  • 7/28/2019 47948988 04 Breakwater

    120/263

  • 7/28/2019 47948988 04 Breakwater

    121/263

  • 7/28/2019 47948988 04 Breakwater

    122/263

  • 7/28/2019 47948988 04 Breakwater

    123/263

  • 7/28/2019 47948988 04 Breakwater

    124/263

  • 7/28/2019 47948988 04 Breakwater

    125/263

  • 7/28/2019 47948988 04 Breakwater

    126/263

  • 7/28/2019 47948988 04 Breakwater

    127/263

  • 7/28/2019 47948988 04 Breakwater

    128/263

  • 7/28/2019 47948988 04 Breakwater

    129/263

  • 7/28/2019 47948988 04 Breakwater

    130/263

  • 7/28/2019 47948988 04 Breakwater

    131/263

  • 7/28/2019 47948988 04 Breakwater

    132/263

  • 7/28/2019 47948988 04 Breakwater

    133/263

  • 7/28/2019 47948988 04 Breakwater

    134/263

  • 7/28/2019 47948988 04 Breakwater

    135/263

  • 7/28/2019 47948988 04 Breakwater

    136/263

  • 7/28/2019 47948988 04 Breakwater

    137/263

  • 7/28/2019 47948988 04 Breakwater

    138/263

  • 7/28/2019 47948988 04 Breakwater

    139/263

  • 7/28/2019 47948988 04 Breakwater

    140/263

  • 7/28/2019 47948988 04 Breakwater

    141/263

  • 7/28/2019 47948988 04 Breakwater

    142/263

  • 7/28/2019 47948988 04 Breakwater

    143/263

  • 7/28/2019 47948988 04 Breakwater

    144/263

  • 7/28/2019 47948988 04 Breakwater

    145/263

  • 7/28/2019 47948988 04 Breakwater

    146/263

  • 7/28/2019 47948988 04 Breakwater

    147/263

  • 7/28/2019 47948988 04 Breakwater

    148/263

  • 7/28/2019 47948988 04 Breakwater

    149/263

  • 7/28/2019 47948988 04 Breakwater

    150/263

  • 7/28/2019 47948988 04 Breakwater

    151/263

  • 7/28/2019 47948988 04 Breakwater

    152/263

  • 7/28/2019 47948988 04 Breakwater

    153/263

  • 7/28/2019 47948988 04 Breakwater

    154/263

  • 7/28/2019 47948988 04 Breakwater

    155/263

  • 7/28/2019 47948988 04 Breakwater

    156/263

  • 7/28/2019 47948988 04 Breakwater

    157/263

  • 7/28/2019 47948988 04 Breakwater

    158/263

  • 7/28/2019 47948988 04 Breakwater

    159/263

  • 7/28/2019 47948988 04 Breakwater

    160/263

  • 7/28/2019 47948988 04 Breakwater

    161/263

  • 7/28/2019 47948988 04 Breakwater

    162/263

  • 7/28/2019 47948988 04 Breakwater

    163/263

  • 7/28/2019 47948988 04 Breakwater

    164/263

  • 7/28/2019 47948988 04 Breakwater

    165/263

  • 7/28/2019 47948988 04 Breakwater

    166/263

  • 7/28/2019 47948988 04 Breakwater

    167/263

  • 7/28/2019 47948988 04 Breakwater

    168/263

  • 7/28/2019 47948988 04 Breakwater

    169/263

  • 7/28/2019 47948988 04 Breakwater

    170/263

  • 7/28/2019 47948988 04 Breakwater

    171/263

  • 7/28/2019 47948988 04 Breakwater

    172/263

  • 7/28/2019 47948988 04 Breakwater

    173/263

  • 7/28/2019 47948988 04 Breakwater

    174/263

  • 7/28/2019 47948988 04 Breakwater

    175/263

  • 7/28/2019 47948988 04 Breakwater

    176/263

  • 7/28/2019 47948988 04 Breakwater

    177/263

  • 7/28/2019 47948988 04 Breakwater

    178/263

  • 7/28/2019 47948988 04 Breakwater

    179/263

  • 7/28/2019 47948988 04 Breakwater

    180/263

  • 7/28/2019 47948988 04 Breakwater

    181/263

  • 7/28/2019 47948988 04 Breakwater

    182/263

  • 7/28/2019 47948988 04 Breakwater

    183/263

  • 7/28/2019 47948988 04 Breakwater

    184/263

  • 7/28/2019 47948988 04 Breakwater

    185/263

  • 7/28/2019 47948988 04 Breakwater

    186/263

  • 7/28/2019 47948988 04 Breakwater

    187/263

  • 7/28/2019 47948988 04 Breakwater

    188/263

  • 7/28/2019 47948988 04 Breakwater

    189/263

  • 7/28/2019 47948988 04 Breakwater

    190/263

  • 7/28/2019 47948988 04 Breakwater

    191/263

  • 7/28/2019 47948988 04 Breakwater

    192/263

  • 7/28/2019 47948988 04 Breakwater

    193/263

  • 7/28/2019 47948988 04 Breakwater

    194/263

  • 7/28/2019 47948988 04 Breakwater

    195/263

  • 7/28/2019 47948988 04 Breakwater

    196/263

  • 7/28/2019 47948988 04 Breakwater

    197/263

  • 7/28/2019 47948988 04 Breakwater

    198/263

  • 7/28/2019 47948988 04 Breakwater

    199/263

  • 7/28/2019 47948988 04 Breakwater

    200/263

  • 7/28/2019 47948988 04 Breakwater

    201/263

  • 7/28/2019 47948988 04 Breakwater

    202/263

  • 7/28/2019 47948988 04 Breakwater

    203/263

  • 7/28/2019 47948988 04 Breakwater

    204/263

  • 7/28/2019 47948988 04 Breakwater

    205/263

  • 7/28/2019 47948988 04 Breakwater

    206/263

  • 7/28/2019 47948988 04 Breakwater

    207/263

  • 7/28/2019 47948988 04 Breakwater

    208/263

  • 7/28/2019 47948988 04 Breakwater

    209/263

  • 7/28/2019 47948988 04 Breakwater

    210/263

  • 7/28/2019 47948988 04 Breakwater

    211/263

  • 7/28/2019 47948988 04 Breakwater

    212/263

  • 7/28/2019 47948988 04 Breakwater

    213/263

  • 7/28/2019 47948988 04 Breakwater

    214/263

  • 7/28/2019 47948988 04 Breakwater

    215/263

  • 7/28/2019 47948988 04 Breakwater

    216/263

  • 7/28/2019 47948988 04 Breakwater

    217/263

  • 7/28/2019 47948988 04 Breakwater

    218/263

  • 7/28/2019 47948988 04 Breakwater

    219/263

  • 7/28/2019 47948988 04 Breakwater

    220/263

  • 7/28/2019 47948988 04 Breakwater

    221/263

  • 7/28/2019 47948988 04 Breakwater

    222/263

  • 7/28/2019 47948988 04 Breakwater

    223/263

  • 7/28/2019 47948988 04 Breakwater

    224/263

  • 7/28/2019 47948988 04 Breakwater

    225/263

  • 7/28/2019 47948988 04 Breakwater

    226/263

  • 7/28/2019 47948988 04 Breakwater

    227/263

  • 7/28/2019 47948988 04 Breakwater

    228/263

  • 7/28/2019 47948988 04 Breakwater

    229/263

  • 7/28/2019 47948988 04 Breakwater

    230/263

  • 7/28/2019 47948988 04 Breakwater

    231/263

  • 7/28/2019 47948988 04 Breakwater

    232/263

  • 7/28/2019 47948988 04 Breakwater

    233/263

  • 7/28/2019 47948988 04 Breakwater

    234/263

  • 7/28/2019 47948988 04 Breakwater

    235/263

  • 7/28/2019 47948988 04 Breakwater

    236/263

  • 7/28/2019 47948988 04 Breakwater

    237/263

  • 7/28/2019 47948988 04 Breakwater

    238/263

  • 7/28/2019 47948988 04 Breakwater

    239/263

  • 7/28/2019 47948988 04 Breakwater

    240/263

  • 7/28/2019 47948988 04 Breakwater

    241/263

  • 7/28/2019 47948988 04 Breakwater

    242/263

  • 7/28/2019 47948988 04 Breakwater

    243/263

  • 7/28/2019 47948988 04 Breakwater

    244/263

  • 7/28/2019 47948988 04 Breakwater

    245/263

  • 7/28/2019 47948988 04 Breakwater

    246/263

  • 7/28/2019 47948988 04 Breakwater

    247/263

  • 7/28/2019 47948988 04 Breakwater

    248/263

  • 7/28/2019 47948988 04 Breakwater

    249/263

  • 7/28/2019 47948988 04 Breakwater

    250/263

  • 7/28/2019 47948988 04 Breakwater

    251/263

  • 7/28/2019 47948988 04 Breakwater

    252/263

  • 7/28/2019 47948988 04 Breakwater

    253/263

  • 7/28/2019 47948988 04 Breakwater

    254/263

  • 7/28/2019 47948988 04 Breakwater

    255/263

  • 7/28/2019 47948988 04 Breakwater

    256/263

  • 7/28/2019 47948988 04 Breakwater

    257/263

  • 7/28/2019 47948988 04 Breakwater

    258/263

  • 7/28/2019 47948988 04 Breakwater

    259/263

  • 7/28/2019 47948988 04 Breakwater

    260/263

  • 7/28/2019 47948988 04 Breakwater

    261/263

  • 7/28/2019 47948988 04 Breakwater

    262/263

  • 7/28/2019 47948988 04 Breakwater

    263/263