22
RF PLLs and Synthesizers: Key Parameters and Specifications TI Precision Labs – Clocks and Timing Presented by Liam Keese Prepared by Noel Fung 1

3KDVH ORFN ORRS 3// RYHUYLHZ - TI Training...3UHVHQWHG E\ /LDP .HHVH 3UHSDUHG E\ 1RHO )XQJ 3KDVH ORFN ORRS 3// RYHUYLHZ 3KDVH ORFN ORRS 3// RYHUYLHZ &DUHIXOO\ GHVLJQ ORRS …

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: 3KDVH ORFN ORRS 3// RYHUYLHZ - TI Training...3UHVHQWHG E\ /LDP .HHVH 3UHSDUHG E\ 1RHO )XQJ 3KDVH ORFN ORRS 3// RYHUYLHZ 3KDVH ORFN ORRS 3// RYHUYLHZ &DUHIXOO\ GHVLJQ ORRS …

RF PLLs and Synthesizers: Key Parameters and SpecificationsTI Precision Labs – Clocks and Timing

Presented by Liam Keese

Prepared by Noel Fung

1

Page 2: 3KDVH ORFN ORRS 3// RYHUYLHZ - TI Training...3UHVHQWHG E\ /LDP .HHVH 3UHSDUHG E\ 1RHO )XQJ 3KDVH ORFN ORRS 3// RYHUYLHZ 3KDVH ORFN ORRS 3// RYHUYLHZ &DUHIXOO\ GHVLJQ ORRS …

Phase lock loop (PLL) overview

2

Page 3: 3KDVH ORFN ORRS 3// RYHUYLHZ - TI Training...3UHVHQWHG E\ /LDP .HHVH 3UHSDUHG E\ 1RHO )XQJ 3KDVH ORFN ORRS 3// RYHUYLHZ 3KDVH ORFN ORRS 3// RYHUYLHZ &DUHIXOO\ GHVLJQ ORRS …

Phase lock loop (PLL) overview

• Carefully design loop filter to meet phase noise, lock time and spurs requirement

• Key parameters and specifications for a design– Phase detector frequency

– Charge pump current

– VCO gain

– PLL and VCO noise

– Spurs

– Lock time

• Design tools– Clock Architect

– PLLatinum Sim

3

Page 4: 3KDVH ORFN ORRS 3// RYHUYLHZ - TI Training...3UHVHQWHG E\ /LDP .HHVH 3UHSDUHG E\ 1RHO )XQJ 3KDVH ORFN ORRS 3// RYHUYLHZ 3KDVH ORFN ORRS 3// RYHUYLHZ &DUHIXOO\ GHVLJQ ORRS …

PLL – Flicker noise and FOM

• Normalized PLL 1/f noise (Flicker noise)– Usually dominates at offset below 1 kHz

– Typical value better than -120 dBc/Hz

• Normalized PLL noise floor (FOM)– Determines phase noise at mid-range

offset

– Typical value better than -230 dBc/Hz

4

Offset (Hz)P

has

e n

ois

e (

dB

c/H

z)

-160

-140

-120

-100

-80

100 1k 10k 100k 1M 10M 100M

PLL FlickerPLL Flat

Page 5: 3KDVH ORFN ORRS 3// RYHUYLHZ - TI Training...3UHVHQWHG E\ /LDP .HHVH 3UHSDUHG E\ 1RHO )XQJ 3KDVH ORFN ORRS 3// RYHUYLHZ 3KDVH ORFN ORRS 3// RYHUYLHZ &DUHIXOO\ GHVLJQ ORRS …

PLL – N Divider noise

• Normalized PLL 1/f noise (Flicker noise)– Usually dominates at offset below 1 kHz

• Normalized PLL noise floor (FOM)– Determines phase noise at mid-range

offset

• N-counter– Added noise = 20log(N)

– e.g. added noise = 40 dB for N = 100

5

Offset (Hz)P

has

e n

ois

e (

dB

c/H

z)

-160

-140

-120

-100

-80

100 1k 10k 100k 1M 10M 100M

PLL FlickerPLL Flat + N

Page 6: 3KDVH ORFN ORRS 3// RYHUYLHZ - TI Training...3UHVHQWHG E\ /LDP .HHVH 3UHSDUHG E\ 1RHO )XQJ 3KDVH ORFN ORRS 3// RYHUYLHZ 3KDVH ORFN ORRS 3// RYHUYLHZ &DUHIXOO\ GHVLJQ ORRS …

PLL – Total PLL noise (in-band noise)

• Normalized PLL 1/f noise (Flicker noise)– Usually dominates at offset below 1 kHz

• Normalized PLL noise floor (FOM)– Determines phase noise at mid-range

offset

• N-counter– Added noise = 20log(N)

• Total noise determines PLL in-band noise

6

Offset (Hz)P

has

e n

ois

e (

dB

c/H

z)

-160

-140

-120

-100

-80

100 1k 10k 100k 1M 10M 100M

PLL FlickerPLL Flat + NTotal PLL Noise

Page 7: 3KDVH ORFN ORRS 3// RYHUYLHZ - TI Training...3UHVHQWHG E\ /LDP .HHVH 3UHSDUHG E\ 1RHO )XQJ 3KDVH ORFN ORRS 3// RYHUYLHZ 3KDVH ORFN ORRS 3// RYHUYLHZ &DUHIXOO\ GHVLJQ ORRS …

Phase detector frequency, fPD

• fPD = Reference clock frequency / R

• Rising edge of R-divider signal triggers phase comparison

• Max. fPD is usually less than 300 MHz

7

R

N

1 / fPD

time

Page 8: 3KDVH ORFN ORRS 3// RYHUYLHZ - TI Training...3UHVHQWHG E\ /LDP .HHVH 3UHSDUHG E\ 1RHO )XQJ 3KDVH ORFN ORRS 3// RYHUYLHZ 3KDVH ORFN ORRS 3// RYHUYLHZ &DUHIXOO\ GHVLJQ ORRS …

Charge pump current

• Constant current source

• Turn-on time is variable

• Current is configurable– 100 µA to a few mA per step

8

R

N

time

Current

Page 9: 3KDVH ORFN ORRS 3// RYHUYLHZ - TI Training...3UHVHQWHG E\ /LDP .HHVH 3UHSDUHG E\ 1RHO )XQJ 3KDVH ORFN ORRS 3// RYHUYLHZ 3KDVH ORFN ORRS 3// RYHUYLHZ &DUHIXOO\ GHVLJQ ORRS …

VCO gain, Kvco

• Use a varactor diode to change the oscillator frequency

• Tuning range is limited

• KVCO

– Changes in frequency against Vtune

– Varies across the whole VCO tuning range

– A few MHz/V to more than a 100 MHz/V

9

Vcc

Vtune

Load

A typical Colpitts oscillator

Page 10: 3KDVH ORFN ORRS 3// RYHUYLHZ - TI Training...3UHVHQWHG E\ /LDP .HHVH 3UHSDUHG E\ 1RHO )XQJ 3KDVH ORFN ORRS 3// RYHUYLHZ 3KDVH ORFN ORRS 3// RYHUYLHZ &DUHIXOO\ GHVLJQ ORRS …

VCO phase noise

• Determines closed-loop far-out phase noise

10

Poor phase noise

Good phase noise

Page 11: 3KDVH ORFN ORRS 3// RYHUYLHZ - TI Training...3UHVHQWHG E\ /LDP .HHVH 3UHSDUHG E\ 1RHO )XQJ 3KDVH ORFN ORRS 3// RYHUYLHZ 3KDVH ORFN ORRS 3// RYHUYLHZ &DUHIXOO\ GHVLJQ ORRS …

VCO phase noise

• Determines closed-loop far-out phase noise

• Phase noise– SSB power difference between the

carrier and an offset, normalized in 1 Hz

– Expressed in xx dBc/Hz@ yy Hz offset

– Carrier frequency specific

11

SSB

Offset

Pow

er

diffe

ren

ce

-121 dBc/Hz @ 100 kHz offset at 2.1 GHz carrier

Page 12: 3KDVH ORFN ORRS 3// RYHUYLHZ - TI Training...3UHVHQWHG E\ /LDP .HHVH 3UHSDUHG E\ 1RHO )XQJ 3KDVH ORFN ORRS 3// RYHUYLHZ 3KDVH ORFN ORRS 3// RYHUYLHZ &DUHIXOO\ GHVLJQ ORRS …

Spurs

• Phase detector spurs– Offset = fPD

• Fractional spurs– Offset = Nfrac x fPD

• Sub-fractional spurs– ½, ¼ of fractional spurs

• Crosstalk spurs– Crosstalk between

• Phase detector and VCO– Integer Boundary Spurs (IBS)

• Phase detector and output• Reference clock and output• Reference clock and VCO

12

Spurs

Page 13: 3KDVH ORFN ORRS 3// RYHUYLHZ - TI Training...3UHVHQWHG E\ /LDP .HHVH 3UHSDUHG E\ 1RHO )XQJ 3KDVH ORFN ORRS 3// RYHUYLHZ 3KDVH ORFN ORRS 3// RYHUYLHZ &DUHIXOO\ GHVLJQ ORRS …

Lock time

• Lock time is how long it takes to change one frequency to another and get within a certain frequency tolerance

• Wide loop bandwidth reduces lock time

• Lock time 4 / loop bandwidth

13

Time (s)F

req

uen

cy

(MH

z)-20 0 20 40 60 80 100

450

500

550

600

650

Loop bandwidth60 kHz40 kHz20k Hz

Page 14: 3KDVH ORFN ORRS 3// RYHUYLHZ - TI Training...3UHVHQWHG E\ /LDP .HHVH 3UHSDUHG E\ 1RHO )XQJ 3KDVH ORFN ORRS 3// RYHUYLHZ 3KDVH ORFN ORRS 3// RYHUYLHZ &DUHIXOO\ GHVLJQ ORRS …

Applying key parameters and specifications

14

Page 15: 3KDVH ORFN ORRS 3// RYHUYLHZ - TI Training...3UHVHQWHG E\ /LDP .HHVH 3UHSDUHG E\ 1RHO )XQJ 3KDVH ORFN ORRS 3// RYHUYLHZ 3KDVH ORFN ORRS 3// RYHUYLHZ &DUHIXOO\ GHVLJQ ORRS …

Phase detector frequency

15

fPD determines N-divider value

Page 16: 3KDVH ORFN ORRS 3// RYHUYLHZ - TI Training...3UHVHQWHG E\ /LDP .HHVH 3UHSDUHG E\ 1RHO )XQJ 3KDVH ORFN ORRS 3// RYHUYLHZ 3KDVH ORFN ORRS 3// RYHUYLHZ &DUHIXOO\ GHVLJQ ORRS …

Charge pump current

16

Charge pump gain

Page 17: 3KDVH ORFN ORRS 3// RYHUYLHZ - TI Training...3UHVHQWHG E\ /LDP .HHVH 3UHSDUHG E\ 1RHO )XQJ 3KDVH ORFN ORRS 3// RYHUYLHZ 3KDVH ORFN ORRS 3// RYHUYLHZ &DUHIXOO\ GHVLJQ ORRS …

VCO gain

17

VCO gain

Page 18: 3KDVH ORFN ORRS 3// RYHUYLHZ - TI Training...3UHVHQWHG E\ /LDP .HHVH 3UHSDUHG E\ 1RHO )XQJ 3KDVH ORFN ORRS 3// RYHUYLHZ 3KDVH ORFN ORRS 3// RYHUYLHZ &DUHIXOO\ GHVLJQ ORRS …

VCO phase noise

18

VCO noise

Page 19: 3KDVH ORFN ORRS 3// RYHUYLHZ - TI Training...3UHVHQWHG E\ /LDP .HHVH 3UHSDUHG E\ 1RHO )XQJ 3KDVH ORFN ORRS 3// RYHUYLHZ 3KDVH ORFN ORRS 3// RYHUYLHZ &DUHIXOO\ GHVLJQ ORRS …

PLL noise

19

PLL noise

Page 20: 3KDVH ORFN ORRS 3// RYHUYLHZ - TI Training...3UHVHQWHG E\ /LDP .HHVH 3UHSDUHG E\ 1RHO )XQJ 3KDVH ORFN ORRS 3// RYHUYLHZ 3KDVH ORFN ORRS 3// RYHUYLHZ &DUHIXOO\ GHVLJQ ORRS …

To find more technical resources and search products, visit ti.com/clocks

20

Page 21: 3KDVH ORFN ORRS 3// RYHUYLHZ - TI Training...3UHVHQWHG E\ /LDP .HHVH 3UHSDUHG E\ 1RHO )XQJ 3KDVH ORFN ORRS 3// RYHUYLHZ 3KDVH ORFN ORRS 3// RYHUYLHZ &DUHIXOO\ GHVLJQ ORRS …

Quiz

• True or false: VCO phase noise determines closed-loop close-in phase noise

• True or false: N-divider will increase PLL noise by 20log(N)

• True or false: Phase detector is triggered by the rising edge of the N-divider signal

• True or false: Turn-on time of the charge pump is proportional to the phase difference between the signals from R-divider and N-divider

• True or false: Phase detector spur frequency is not predictable

21

Page 22: 3KDVH ORFN ORRS 3// RYHUYLHZ - TI Training...3UHVHQWHG E\ /LDP .HHVH 3UHSDUHG E\ 1RHO )XQJ 3KDVH ORFN ORRS 3// RYHUYLHZ 3KDVH ORFN ORRS 3// RYHUYLHZ &DUHIXOO\ GHVLJQ ORRS …

Quiz

• True or false: VCO phase noise determines closed-loop close-in phase noise

• True or false: N-divider will increase PLL noise by 20log(N)

• True or false: Phase detector is triggered by the rising edge of the N-divider signal

• True or false: Turn-on time of the charge pump is proportional to the phase difference between the signals from R-divider and N-divider

• True or false: Phase detector spur frequency is not predictable

22