1 Weiner

Embed Size (px)

Citation preview

  • 7/29/2019 1 Weiner

    1/14

    MediterraneanArchaeologyandArchaeometry,Vol.10,No.2,pp.114Copyright2010MAA

    PrintedinGreece.Allrightsreserved.

    ANCIENTmtDNASEQUENCESANDRADIOCARBON

    DATINGOFHUMANBONESFROMTHECHALCOLITHIC

    CAVESOFWADIELMAKKUKH

    Salamon,M.1,3,Tzur,S.2,Arensburg,B.3,Zias,J.4,Nagar,Y.,5

    Weiner,S.1andBoaretto,E.6,7

    1DepartmentofStructuralBiologyandKimmelCenterforArchaeologicalScience,WeizmannInstituteofScience,Rehovot76100,Israel

    2InstituteofEvolution,UniversityofHaifa,Haifa31905,Israel3DepartmentofAnatomyandAnthropology,SacklerFacultyofMedicine,TelAvivUniversity,

    TelAviv69978,Israel4ScienceandArchaeologyGroup@TheHebrewUniversity,Jerusalem

    5IsraelAntiquitiesAuthority,Jerusalem91004Israel6RadiocarbonDatingandCosmogenicIsotopesLaboratory,KimmelCenterforArchaeologicalScience,

    WeizmannInstituteofScience,76100Rehovot,Israel7DepartmentofLandofIsraelStudiesandArchaeology,BarIlanUniversity,72900RamatGan,Israel

    Received:01/04/2010

    Accepted:06/08/2010 Correspondingauthor:[email protected]

    ABSTRACT

    DNA from fossilhumanbonescanprovidevaluable information forunderstanding intra and

    interpopulationrelationships.UsingtheDNApreservedinsidecrystalaggregatesfromhumanfos

    silbones containing relatively largeamountsof collagen,wedemonstrate thepresenceof repro

    duciblemtDNAcontrolregionsequences.Radiocarbondatesfromeachboneshowthattheburial

    caveswereusedforupto600yearsduringtheChalcolithicperiod(5th4thmillenniumBP).Acom

    parisonof theancientDNAsequenceswithmodernmtDNAdatabases indicates thatallsamples

    canmostlikelybeassignedtotheRhaplogroupsubclades,whicharecommoninWestEurasia.In

    fourcasesmorepreciseandconfidenthaplogroup identificationscouldbeachieved (H,U3aand

    H6). The H haplogroup is present in three out of the four assigned ancient samples. This hap

    logroupisprevalenttodayinWestEurasia.Theresultsreportedheretendtogeneticallylinkthis

    ChalcolithicgroupofindividualstothecurrentWestEurasianpopulations.

    Abbreviations:aDNA,ancientDNA;CRS,CambridgeReferenceSequence;mtDNA,mitochon

    drialDNA;HVSI,Hypervariablesegment1.

    Data deposition: The sequences reported in this paper have been deposited in

    theGenBankdatabase(accessionnos.EF060054EF060059,DQ020117).

    KEYWORDS: aDNA, bone crystal aggregates, population genetics, collagen preservation, hap

    logroups,ChalcolithicCaves,WadielMakkukh

  • 7/29/2019 1 Weiner

    2/14

    SALAMON,M. etal2

    INTRODUCTION

    ThesouthernLevant links the continentsof

    Africa, Europe and Asia. This hasbeen an at

    tractive region for settlement since prehistoric

    timesandservedasavitalcorridorofcommu

    nication, migration, and trade. Phylogenetic

    analysesofmodernhumanmitochondrialDNA

    (mtDNA) haplogroups in the Levant have fa

    cilitated reconstruction of human migrations

    through this corridor during prehistory

    (Richards et al., 1996). The objective of this

    studywastouseancientDNAtoprovidedirect

    informationon thegeneticsof individuals that

    once lived in this region, and in this way to

    learnmoreaboutpossiblepastmigrations.

    TheWadiMakkukhsitecomprises13caves.Thecavesare located in theJudeanDesertjust

    north of the Dead Sea (Hirschfeld and Riklin,

    2002). In three of the caves (nos. 1, 3 and 13)

    humanskeletal remainswere found, including

    atleast40individuals.Asingleburialofamale

    still in articulation was found in Cave 13

    (known as The Cave of the Warrior), together

    withgravegoods that included textiles, abas

    ket, wooden arrows and a woodenbowl (see

    reports in (Schick,1998)).The latterhavebeen

    dated to theChalcolithicPeriodabout6,700 to

    4,700BP (Jull et al., 1998;Rowan andGolden,

    2009).Theotherhumanboneswerenot found

    in articulation and there was no well defined

    stratigraphic organization. The presence of

    these organic artifacts indicates that preserva

    tionconditionsareextremelygoodatthis loca

    tion.

    Mostofthehumanlongbones(femurs)ana

    lysedfromthesecavescontainedrelativelyhigh

    contentsofwellpreservedcollagen.Thisisconsistent with good preservation conditions for

    organicmaterials.Oneof theobjectivesof this

    studywas todeterminewhether there isacor

    relation between the HCl insoluble collagen

    contentofthebonesandthepreservationofthe

    mitochondrial DNA, as this parameter could

    provetobeausefulprescreeningtechniquefor

    identifying fossil bones with well preserved

    DNA.Otherpropertiesof fossilbones thatare

    usedforthispurposeareracemizationofasparticacid inwholebone(Collinsetal.,1999)and

    C/Nratiosofcollagen (Colsonetal.,1997).We

    took advantageof another approach to extract

    better preserved DNA from fossil bones,

    namelytotreatthebonepowderwithastrong

    oxidizingagent (NaOCl)and thenextractonly

    theorganicmaterial, includingDNA, thatwas

    protected inside intergrown crystal aggregates(Salamonetal.,2005;Dissingetal.,2008).This

    approach also removes some authentic DNA

    andmostofthecontaminatingDNAandinhibi

    torsof thePCR reaction (Salamon et al., 2005;

    Malmstrmetal.,2007;Dissingetal.,2008).Us

    ing these twoapproaches,wewereable toob

    tain 12 sequences of mtDNA control region

    fromhuman femurs.Salamonetal. (2005)had

    previously shown that one femur from Wadi

    Makkukh did contain sequenceable DNA preparedinthismanner.

    The closed circular mtDNA molecule has

    several unique properties, such as high copy

    number,maternal inheritance, lackofrecombi

    nation andhighmutation rate (Pakendorf and

    Stoneking, 2005). These properties make it a

    powerful tool in population genetics and for

    understanding human history and evolution

    (Vigilant et al., 1991;Jorde et al., 1995)on the

    regionalscale (Mountainetal.,1995;Pereiraet

    al.,2005;Manwaringetal.,2006).Thehighcopynumber of mtDNA in a cell may improve its

    chance of survival in an aDNA sample. The

    mtDNAControlRegion(CR)isarapidlyevolv

    ingnoncoding region (Lopezetal.,1997) that

    includes the phylogenetically informative Hy

    pervariablesegmentI(HVSI,1602416383)and

    Hypervariable segment II (HVSII, 57372) re

    gions(Stoneking,2000).TheprocessofmtDNA

    genotypingisusuallybasedonthecombination

    of HVSI sequencing and the genotyping ofspecific coding region single nucleotide poly

    morphisms (SNPs). The phylogenetic informa

    tion isobtained from thealignmentofeachse

    quencewith themtDNACambridgeReference

    Sequence(CRS).Thisprovidesaseriesofmuta

    tionscalledhaplotypes.Agroupofsimilarhap

    lotypes isnamedHaplogroup (Hg)and isbest

    defined by a combination of coding region

    SNPs (Behar et al., 2007). The distribution of

    mtDNA haplogroups is well documented in

    different modern populations. This valuabledemographic informationcanbeusedasaref

    erenceforancientDNA(aDNA)studies.

  • 7/29/2019 1 Weiner

    3/14

    ANCIENTmtDNAFROMWADIELMAKKUKH 3

    MATERIALSANDMETHODS

    SamplesWestudied13leftfemorafromcaves1and3.

    Basedonanatomicalmeasurementsthe femora

    weretakenfrombothfemalesandmales(Table

    1). In cave no. 13, known as The Cave of the

    Warrior, an articulated skeleton was found. A

    femurandahumeruswereanalysed from this

    individual.

    Table1.Samplesanalysedinthisstudy.Cave1and3samplesarefemurs,whiletheCave13sampleisafemur

    andahumerusfromthesameindividual.Genderwasdeterminedbasedonanatomicalmeasurementsofthe

    femur(Bass,1995).WM25femurwasfragmented.Theinsolublecollagencontentforeachboneisshown.Inthis

    study14CdatingwasperformedonbonesfromCaves1and3(RTTlabel).ForCave1314Cdatingwasdetermined

    basedonlinenfabricthatwrappedthearticulatedskeleton(Julletal.,1998).Uncalibrated14Cagesarereported

    inconventionalradiocarbonyearsBPandcalibrateddateswerecalculatedbasedonReimeretal.(2009)bymeans

    ofthe2010versionOxCalv.4.1.5ofBronkRamsey.Calibratedrangesaregivenfor1 and2.Forsimplicity

    thetotalcalibratedrangeisgiven.Samplesareorderedbycaveandbyradiocarbonage.a)ageobtainedfrom

    linenfabric(607/75/1)bytheNSFAMSLaboratory,Tuscon(Julletal.,1998),b)samelinensampleasa)measured

    bydecaycountingattheRehovotLaboratory(Julletal.,1998).

    Cave Sample Gender Collagencontent(wt.%)

    RadiocarbonLab#

    14

    Cage1 yearBP

    Calibratedage1 yearBC

    Calibratedage2 yearBC

    WM10 female 4.9 RTT4889 565540 45404450 45854365

    WM11 female 9.5 RTT4890 563040 45054370 45404360

    1

    WM30 male 10.7 RTT4873 533035 42404065 43154045

    WM28 male 8.0 RTT4872 559540 44604365 45004345

    WM27 male 12.6 RTT4434 556080 44904335 45854245

    WM25 ? 8.5 RTT5149 547540 43604265 44454240

    WM6 male 9.0 RTT5147 540040 43304235 43454070

    WM1 male 5.5 RTT5146 536040 43254070 43304050

    WM19 female 6.3 RTT5148 535540 43154070 43254050

    WM2 male 7.2 RTT4874 530040 42304050 42553995

    WM29 male 14.6 RTT4435 524065 42303970 42553950

    WM3 male 3.0

    3

    WM8 female 0.5

    Notanalyzed

    13 CW male Femur10.0

    Humerus10.0

    AA22235

    RT1946

    514050a

    492550b40353810

    37653650

    40453795

    39053635

    PrecautionsregardingcontaminationDealingwithhumanbonesrequirespaying

    close attention tomodernDNA contamination

    in the laboratory, as ancient DNA is low in

    quantity and quality. Even though the use of

    DNA from bone powder treated with the

    oxidantsodiumhypochlorite(referredtoasthe

    aggregate fraction) should alleviate this

    problem, we followed references (Cooper and

    Poinar, 2000;Gilbert etal., 2005) andused the

    moststringentprecautionsforauthenticationof

    ancient DNA sequences and added several

    more.Theprecautionsusedwereasfollows:

    1.Physicalseparationbetweenthededicated

    DNAextractionlaboratory,theprePCRprepa

    rationareaandthepostPCRprocessinglabora

    tory.

    2. Sequences were obtained from samples

    withmorethan5weight%insolublecollagen.

    3.TheDNAwasextractedfromboneaggre

    gates after treating thebone powder with so

    diumhypochlorite.

    4. Two independent DNA extractions were

    carriedouton independentpartsofeachbone.Inonecase,sampleCW,itwaspossibletoana

    lyze two differentbones from the same indi

  • 7/29/2019 1 Weiner

    4/14

    SALAMON,M. etal4

    vidual. At least two amplifications were per

    formed,oneforeachextract.Twonegativecon

    trols for the extraction procedure and three

    negative controls for the PCR reaction were

    used.Positivecontrolswereneverused.

    5.Noreamplificationwascarriedout,toexcludecontaminationbyPCRproducts.

    6. The authentic sequence was determined

    from cloned sequences using different sets of

    primers.

    7. Sequences were obtained for amplifica

    tionswith >1000 copynumberof targetDNA,

    basedonacalibrationcurveusingtherealtime

    PCR.

    8. We did not observe amplifications of a

    human mtDNA 520bp fragment. Such largefragmentsarenotusuallypresent inaDNAex

    tracts. Furthermore, no human mtDNA se

    quence of 132bp could be obtained from ex

    tractsfromacatbone.Ontheotherhand,using

    specificprimerstheobtainedsequencesaligned

    well with previously published Felis catus se

    quence(Yoderetal.,2003).

    9.Onlyonebonewasprocessedatatimeand

    byasingleresearcher(M.S.).NotethattheHVSI

    (1603616498)sequenceofM.S.isidenticaltothe

    Cambridge Reference Sequence (CRS) and theHVSII (30429) contains the mutations A263G,

    309.1C,309.2C,315.1CcomparedtotheCRS.

    Determiningweightpercentinsolublecollageninbone

    Powdered bone (150 mg, particle size:

  • 7/29/2019 1 Weiner

    5/14

    ANCIENTmtDNAFROMWADIELMAKKUKH 5

    determinedby a comparison of PCR products

    with andwithout aDNA extract.We also ana

    lyzedallextractsformodernhumanDNAcon

    taminantsby amplifying a fragmentof 520bp

    (primers F15998R16498). The PCR products

    were cloned (pGEMT Easy vector, Promega),andsequencedonanAppliedBiosystems3700

    DNAanalyzermachine.

    RadiocarbondatingThecleaningprocedureofthebonecollagen

    andthecharacterizationoftherecoveredcolla

    gen followed the preparation procedure of

    (Yizhaqetal.,2005).All thesampleswerepre

    pared as graphite at the Radiocarbon Labora

    toryattheWeizmannInstitute(LabelRTT)andmeasured using Accelerator Mass Spectrome

    try.Prior to themeasurement, theweightper

    centpurifiedcollagenextractedforradiocarbon

    dating rangedbetween 2 and 7.7%.300 to600

    mgofbonepowderwasused for radiocarbon

    dating.Thequalityofthecollagenwaschecked

    again after extraction using infrared spectros

    copy. All the IR spectra did not indicate the

    presenceofothermaterialexceptcollagen.Ra

    diocarbondateswerecalibratedusingthelatest

    calibrationcurve(Reimeretal.,2009)bymeans

    of the software OxCal 4.1.5 Bronk Ramsey

    (2010) based on (Bronk Ramsey, 1995; Bronk

    Ramsey,2001).

    Haplogroupassignmentandacomparisontomodernpopulations

    In this study, only partial CR sequences

    were available, therefore, haplogroup assign

    ment could not be completely validated and

    each sequence was analyzed taking into account its given sequence range. In the first

    stage,we tried to identifyspecificHVSISNPs

    thatareknowntobeindicatorsforspecifichap

    logroups,basedonBeharetal.(2007).Wethen

    tried to predict a haplogroup affiliationbased

    on the fundamentals of the nearest neighbor

    method following Behar et al. (2007). The es

    senceof thismethod is to search formatching

    haplotypes in a large, high quality, reference

    database that contains haplotypes with theirsuitablehaplogroupaffiliations.Asa reference

    weusedthelargeststandardizedmtDNAdata

    base that is available, namely from the Geno

    graphicPublicParticipationProject (78,590HVSI

    genotypes). This public dataset contains

    mtDNAinformationofindividuals(HVSIhap

    loypeandhaplogroup),but lacks theirpopula

    tionaffiliations (Behar2007).Eventually,whena unique and highly reliable haplogroup was

    determined, we searched for its presence in

    modernpopulationdatasetsfromtheliterature.

    We define the HVSI positions here tobebe

    tween1602316569, similar to theGenographic

    study(Beharetal.,2007).

    RESULTS

    The bones in these caves (except for the

    skeleton in Cave 13) were not articulated and

    were not excavated in a well defined strati

    graphicorder.We thereforeonly analysed the

    leftfemora inordertoensurethateachbone is

    from a different individual. Furthermore, as

    bothChalcolithicandRomanartifactswerepre

    sentinthesecaves,allthebonesthatproduced

    DNA sequences were radiocarbon dated. The

    dates prove that they are all from theChalco

    lithic(Table1andFigure1).Radiocarbondates

    ofthe linen fabricthatwrapped thearticulatedskeleton from Cave 13 showed that it is also

    from theChalcolithic (Jull et al.,1998) andwe

    assume that thebonesof this individualareof

    thesameage.Table1alsoshows the insoluble

    collagencontentsofeachofthebonesanalysed

    andthesexidentifications.

    As contamination is always a seriousprob

    lem when analyzinghuman ancientDNA, we

    took many precautions (see Materials and

    Methods). The strategy used to sequence the

    mtDNA involvesanalyzingsuccessively longer

    fragments starting with the same forward

    primer. We noted a positive correlation be

    tween the longest reproducible PCR fragment

    thatcouldbeobtained fromeachboneand the

    insoluble collagen content of thebone (Figure

    2).This shows that the insoluble collagen con

    tentof thewholebone is agood indicationof

    DNApreservationintheaggregates.

    Figure 3 shows the mtDNA sequences ob

    tained. Four femora produced fragments of327bp,oneproducedfragmentsof239bpandin

    the remainderonlyshorter fragmentscouldbe

  • 7/29/2019 1 Weiner

    6/14

    SALAMON,M. etal6

    sequenced.Wenotethatalltheblanks inthese

    experimentsshowednoevidenceofcontamina

    tion.Inordertoexcludethepresenceofmodern

    human contamination in our system, we also

    analysedthesesamplesforthepresenceofa520

    bp fragment from the human HVSI region.

    Such a fragment isgreater than the length ex

    pected fromancienthumanDNAsamples.No

    suchfragmentwasobtained.

    Figure1: Probabilitydistributionof thecalibratedradiocarboncalibratedrangesforthesamplesinTable1.The

    datesareorderedbycaveandbyradiocarbonage.Notethattheonearticulatedskeletonfound,isalsothe

    youngestspecimendated.Thisisconsistentwiththisskeletonremaininginarticulation.

    We then analysed the HVSII region of the

    mitochondrial DNA in two of thebones that

    gave theCambridgeReferenceSequence (CRS)

    intheHVSIregion(WM28andCW).Notethat

    MS, thepersonwho performed the laboratory

    analyses,alsohas theCRSsequence in this region. In both samples, sequences that differ

    from theCRSwereobtained (Figure 4).These

    sequencesarethereforedifferentfromtheHVS

    II sequence of MS, thus excluding contamina

    tioninthelaboratoryfromMS.Furthermore,if

    modernDNAcontaminationhadoccurred,we

    would have expected the longer DNA frag

    ments tohave theCRS sequence andnotonlytheshorterfragments.Wewouldalsonothave

    expected there tobe a correlationbetween in

  • 7/29/2019 1 Weiner

    7/14

    ANCIENTmtDNAFROMWADIELMAKKUKH 7

    solublecollagencontentof thebonesand frag

    ment length. We are therefore of the opinion

    that thesequencesobtainedarenot from labo

    ratory contamination. Damage to the DNA is

    another serious source of confusion in aDNA

    studies. In our study we frequently obtainedreproducible sequences, implying relatively

    littlesequencevariationintheextract.Afewof

    theclones (6%)didhowevercontainvariations

    that did not reproduce. We regard sequence

    reproducibilityasan importantcriterionofau

    thenticity.

    r= 0.9, p>0.001

    0

    50

    100

    150

    200

    250

    300

    350

    400

    0 5 10 15 20

    Collagen content (Wt.%)

    LongestamplifiedDNA(bp)

    Figure2:Correlationbetweentheamountofinsoluble

    collagencontentandthelongestlengthofmtDNA

    PCRproductobtained.

    The mtDNA sequencing of thebones from

    12individuals(outofthe14tested)producedat

    leastfivedistincthaplotypesthatexcludedma

    ternal relationshipsbetween them (Figs. 3 and

    4). In four cases we could confidently assign

    themtospecifichaplogroups(H,H,U3a,H6).It

    was however impossible to assign a specific

    haplogroup for eight of the samples that con

    tained the CRS (Wm1, Wm2, Wm6, Wm10,

    Wm11,Wm19,Wm25)or16362C(Wm29)inthe

    rangeof thesequenced region,since toomany

    possibilitiesexistforHgassignments.

    Sample CW that was also sequenced for

    HVSII (CRS at: HVSI 1621016498 and 263G

    309.1C309.2C309.3C315.1Cat:HVSII30429)

    didnotcontainanyknownhaplogrouppredict

    ingmotif,andbasedonmatchingHVSIhaplo

    typesalone toomanyhaplogroupassignmentsare possible. We then searched for matching

    jointedhaplotypesofHVSIandHVSII in the

    literatureand inour laboratorydatabases (un

    published data), and found only two perfect

    matches thatbelong toHhaplogroup.The309

    C repeat is a hypermutable nucleotide string

    that may frequently change in its length. We

    thereforealsosearched forhaplotypes thatdidnot contain the rare mutation 309.3C. Most of

    thematchingsequences(19/20)alsobelongedto

    haplogroup H. Therefore, the sample CW is

    most likely assigned to H haplogroup, or its

    subclades.

    SampleWm28, thatwasalso sequenced for

    HVSII (CRS at: HVSI 1621016410 and 263G

    309.1C at:HVSII 30429), didnot contain any

    knownhaplogrouppredictingmotif,andbased

    onmatchingHVSIhaplotypesalone,toomanyhaplogroup assignments are possible. In addi

    tion, we could not find any matching haplo

    typesforthemutationsofHVSIandHVSIIin

    theliteratureandinourlaboratorydatabase.In

    thenextsearch,wealternatelydisregarded the

    mutable positions of C repeat strings, 309.2C

    and 315.1C. We then found 10 similar haplo

    types thatwere all assigned tohaplogroupH.

    SampleWm28 can thereforemost likelybeas

    signedtoHhaplogroup,oritssubclades.

    Sample Wm27 (16343G 16390A at: HVSI1621016498) contains the mutation 16343G

    which isacharacteristicofhaplogroupU3.We

    found 48 matching HVSI sequences in the

    Genographicdatabase.Theywerecomposedof

    sevendistinctsequencesandallofthembelong

    totheU3haplogroup.Inaddition,themutation

    16390A istypicalofhaplogroupU3a(Achilliet

    al., 2005). Sample Wm27 was therefore confi

    dentlyassignedtoU3ahaplogroup.

    Sample Wm30 (16311C 16362C 16482G at:HVSI 1621016498) contains the mutation

    16482G which is a characteristic of H6 hap

    logroup(Roostaluetal.,2007).Inthesearchfor

    matching haplotypes among the Genographic

    database15HVSIsequenceswere found (con

    sisting of two distinctive sequences). All of

    thembelongtoHhaplogrouporitssubclades.

    For estimating the frequency of 16482G in H

    haplogroup, we searched for this mutation in

    thisdatabase subset.Among the samples that

    contain thismutation,99.2% (n=365)belong toHhaplogroupor itssubclades.Matchinghap

    lotypesofH6haplogroup,thatcontainthemu

  • 7/29/2019 1 Weiner

    8/14

    SALAMON,M. etal8

    tation16311Cwere found recentlyandnamed

    as haplogroup H6a1a1 (Behar, 2008). Sample

    Wm30wasthereforeconfidentlyassignedtoH6

    andmostlikelybelongtoH6a1a1haplogroup.

    Figure3:SchemeshowingHVSIsequencesofincreasinglengthwithdotsrepresentingvariationsfromtheCRS

    (

    constant

    variant,

    sporadic

    variant).

    Total

    number

    of

    amplifications

    (amps.)

    and

    cloned

    sequences

    are

    shown.Thepositionandtypeofeachvariationarelisted.Mostofthesequencesobtainedfromamplificationsof

    differentfragmentlengthsandfromdifferentextractsareidentical.AnemptyboxmeansnoPCRproduct.The

    first5clonesoriginatedfromthefirstamplificationandthesecondfivefromthesecondamplification.Inthe

    caseofsampleCWthefirst10clonesoriginatedfromthefemurandthesecond10fromthehumerus.

    DISCUSSION

    WereportheresequencesofmtDNAcontrol

    region from 12 individuals from the Chalco

    lithic period. These sequences were obtained

    fromDNApreserved incrystalaggregates.We

    note a good correlationbetween the insoluble

    collagen contents and the DNA fragment

    lengths. In 4 cases a reliable haplogroup as

    signmentcouldbemade thatshows that these

    individuals are related to modern West Eura

    sianpopulations.

    ThisstudyshowsthattheHClinsolublecol

    lagen contentof fossilbones canbeused as arapid and easy prescreening method to iden

    tifybones more likely to have well preserved

  • 7/29/2019 1 Weiner

    9/14

    ANCIENTmtDNAFROMWADIELMAKKUKH 9

    DNA in theiraggregate fraction.Thechoiceof

    the best preserved bone samples available is

    important forsuccessfulaDNAanalysis.Other

    methods (amino acid racemization, C/N ratio)

    that monitor collagen diagenesis have been

    usedtopredictthestateofpreservationofDNAinbones (Colson etal., 1997;Badaetal.,1999;

    Collins et al., 1999; Poinar and Stankiewicz,

    1999).Collinsetal. (1999)noted thatracemiza

    tionisnotareliableaproxyforDNApreserva

    tionsincedenaturationofcollagenisnotalways

    consistentwithDNAdepurination. In a study

    of 34 fossil cattlebones from 4 archaeological

    sites,no correlationwasobservedbetween the

    D/LratioofasparticacidandmtDNApreserva

    tion (Buckley et al., 2008).Theuseof theC/Nratioisproblematic,asitisnotknownwhether

    thecalculatedvalue isbasedona lossofnitro

    genfromcollagenmoleculesoragainofcarbon

    (Tuross, 2002).Gtherstromet al. (2002)deter

    mined thestateofDNApreservationbasedon

    thepresenceorabsenceofPCRproductsofan

    expectedsize inagel. In thisstudyweusere

    producible cloned sequences to determine the

    stateofpreservationofancientDNA.Usingcol

    lagen from fossilbones forradiocarbondating,

    Hedges and van Klinken (Hedges and vanKlinken, 1992) characterized bone containing

    less than2% collagenaspoorlypreservedand

    not suitable for analysis (Hedges and van

    Klinken,1992;vanKlinken,1999).Thisvalueis

    similartothecutoffwefoundinthisstudyfor

    DNA analysis. The cutoff may varybetween

    different geographical regions. We therefore

    propose that selection of bones for aDNA

    analysiscouldfirstinvolveaprescreeningstep

    usingtheinsolublecollagencontentinordertoidentify the best preserved bones for aDNA

    analysis.Asimilarapproachprovedtobeeffec

    tive when choosing fossilbones most suitable

    for radiocarbondating (Yizhaq et al., 2005).A

    similar proposal was made by Buckley et al

    (Buckleyetal.,2008).

    MostancientDNAstudiesofhumanpopu

    lationassemblagesarecomposedofjustseveral

    individuals sometimesobtained from different

    periodsof time ina restrictedgeographicarea

    (Colsonetal.,1997;LaluezaFoxetal.,2004;Ricaut et al., 2004; Sampietro et al., 2006). In a

    study of 22 skeletons from Mycenae, Greece,

    authenticmtDNAwasidentifiedin4individu

    als,twoofwhomwereidentifiedasbrotherand

    sister (Bouwmanetal.,2008).Inasite inLaco

    nia, Greece, 8 bones out of 20 from Middle

    Bronze graves yielded authentic mtDNA

    (Chilversetal.,2008).

    Figure4:Schemeshowingtwoshortoverlapping

    fragmentsoftheHVSIIregion.Dotsrepresentvaria

    tionsfromtheCRS( constantvariant,xsporadic

    variant).Totalnumberofamplifications(amps.)and

    clonedsequencesareshown.Thepositionandtypeof

    eachvariationarelisted.Mostofthesequencesob

    tained

    from

    amplifications

    of

    different

    fragment

    lengthsandfromdifferentextractsareidentical.

    The 3 caves in Wadi Makkukh contained

    bonesfromatleast40individuals.Thequestion

    thereforearisesastowhetherthese individuals

    wereburiedinthecavetogetheroroverafairly

    longperiodoftime.Basedonthecalibratedra

    diocarbonresults themaximumperiodof time

    thatthecavewasusedasaburialsiteisaround

    600years,namelyfromthemiddletolateChal

    colithicperiodinthisregion.Thesecavescould

    therefore conceivably contain individuals from

    onegeneticallyrelatedfamily,orthatunrelated

    individualswereburiedthere.OurmtDNA in

    formation contains at least five distinctive se

    quences, therefore itcanbeconcluded thatnot

    allof the individualsareof thesamematernal

    lineage.

    HVSIdataaloneoftendonotcontainsuffi

    cient information for confident assignment of

    haplogroupaffiliation.Inourstudy itwaspos

    sible toassigna reliablehaplogroup affiliationforonly4ofthe12samples(haplogroups:H,H,

    U3a,H6).

  • 7/29/2019 1 Weiner

    10/14

    SALAMON,M. etal10

    All 12 samples most probably fall into R

    haplogroupsubclades,whicharecharacteristic

    of theWestEurasiaregion,andencompass90

    95% of the European population (Kivisild,

    2000).Wealsonote thatall12samplescontain

    theSNP16223CthatistypicalofRhaplogroupsubclades,andtheymightbelongtoanyof its

    subclades,namelyhaplogroups such asH,U,

    T,J,K,Vetc.(Finnilaetal.,2001).Itwasprevi

    ously shown that only 2.5% of the pre

    haplogroupRmtDNA genomeshave the SNP

    16223C, and only 1.1% of R haplogroup sub

    cladeshavetheSNP16223T(Beharetal.,2007).

    Theassignmentofoursamples into theRhap

    logroup subclades is consistent with the cur

    rentworlddistributionofthesehaplogroupsinmodern West Eurasian populations. The com

    mon haplogroups of WestEurasia are sorted

    into several major lineages. Most of them are

    subcladesof themajorRhaplogroup:H,J,U,

    K,T,V(encompassing9095%oftheEuropean

    lineages),andothersareoutside thisbranch:I,

    W, and X (Kivisild, 2000). These haplogroups

    incorporateabout95%ofthemtDNAvariation

    in European populations (Torroni et al., 1996;

    Richardsetal.,2000;Simonietal.,2000;Torroni

    et al., 2001; Richards et al., 2002). Most of theprevalent haplogroups of Europe are most

    likely of Near Eastern origin (Achilli et al.,

    2004). The haplogroups are thought to have

    formedtensofthousandsofyearsago,andcor

    respond to early human migrations and are

    usually associated to specific geographic re

    gions(Beharetal.,2007).SampleCWandWm28weremostlikelyas

    signedtohaplogroupH.Thishaplogroupisthe

    most commonhaplogroup inWestEurasia; itsfrequency in Europe is over 40%. In the Near

    East, the Caucasus and Central Asia this hap

    logroup frequency is about 1030%. The CRS

    sequence is the prevalent haplotype (25%) of

    haplogroup H (Roostalu et al., 2007). Hap

    logroup H divergence time in Europe was

    20,00030,000BP(Kivisild,2000).Itisthusinter

    estingthatHhaplogroupwasprominentinthis

    group of individuals from the Chalcolithic as

    well. (Inourstudy3of4haplogroupassigned

    samplesbelongtoHhaplogroup).Sinceitissowidespread inWestEurasia, it is impossible to

    locate this common haplotype in a specific

    modern population. For final H haplogroup

    validation,itisnecessarytogenotypetheSNPs

    2706A or 7028C.Hhaplogroup canbe further

    divided into its subclades (such H1, H2, H3,

    H4etc.)(Roostaluetal.,2007).

    Sample Wm27 was confidently assigned tohaplogroup U3 and it most likely belongs to

    haplogroupU3a.The frequencyofhaplogroup

    U3 inEurope is1%and intheNearEast is6%

    (Richard 2007). Few matching haplotypes of

    U3ahaplogroupwere found indifferentmod

    ernpopulations thatarepresentalloverWest

    Eurasia (Iran, Syria, Lebanon, Morocco,

    Ukraine, Russia, Poland, Germany, Iceland),

    and3sampleswerefoundinJewishcommuni

    ties fromPoland,Romania andTurkey (Behar2008). The estimated coalescence time of hap

    logroupU3 is about 1627,000 BP in the Near

    East and about 1227,000 BP in Europe

    (Richards et al., 2000). We therefore conclude

    that theU3haplogroupwasalreadypresent in

    theWestEurasiangenepoolaround 6,000BP,

    andprobablywithin itssubbranch,U3ahg,as

    well. For final haplogroup validation of this

    sample, it will be necessary to genotype the

    SNPs:14139Gor15454C forHgU3and2294G

    or4703CforU3aHg(Achilli2005).Sample Wm30 was confidently assigned to

    haplogroup H6 and it most likelybelongs to

    haplogroupH6a1a1.HaplogroupH6 is largely

    restricted to theNearEastand theSouthCau

    casusand is found invery low frequenciesall

    over Europe (Roostalu et al., 2007). It is most

    frequent in Central and Inner Asia (Loogvli

    2004).Itssubclade,haplogroupH6a1,isoneof

    theoldestcladesintheNearEastwithacoales

    cencetimeof20,20010,900BP,butinEuropeithas an extremely young expansion age of

    18001300BP(Roostalu2007).Remarkably,H6a

    haplotypes that contain the mutation 16311C

    were detected recently in 12 individuals from

    different Jewish communities from Turkey (5

    samples),Morocco(3samples),Poland,France,

    Tunisia and Algeria. The mtDNA of the H6a

    samples fromTurkishJewswascompletelyse

    quenced and assigned as haplogroup H6a1a1,

    withcoalescencetimeof1293BP(Behar,2008).

    Although position 16311 is relatively mutableand therefore could appear independently in

    distinct haplotypes (Stoneking, 2000), its pres

  • 7/29/2019 1 Weiner

    11/14

    ANCIENTmtDNAFROMWADIELMAKKUKH 11

    ence in separated and distant communities of

    thesameethnicitymay indicateacommonan

    cestry.Onlydeeper clade analysisof complete

    mtDNA sequences of this haplotype can con

    firm thispossibility.For finalhaplogroupvali

    dation of this sample, it is necessary to genotype the SNPs: 2706A and 7028C for H hap

    logroup, 3915A or 4727G for H6a haplogroup

    (Loogvali 2004), and 7325G or 11253C for

    H6a1a1haplogroup(Behar2008).

    CONCLUSIONS

    The information that isembedded inaDNA

    samplesmayprovidenovel insights regarding

    demographichistory,migrations,introgressions

    and genetic connections between ancient and

    modernpopulations.This informationcanalso

    validate accepted hypotheses based only on

    modern data. In this study of human bones

    fromaround6000BP,wefound12mtDNAsequences that most probablybelong to R hap

    logroup subclades that are typical of West

    Eurasia.We also foundahigh frequencyofH

    haplogroup, which is the most prevalent hap

    logroup today West Eurasia. The results re

    ported here thus tend to genetically link this

    Chalcolithic group of individuals to modern

    WestEurasianpopulations.

    ACKNOWLEDGEMENTS

    WethankthedepartmentofAnatomyandAnthropologyattheTelAvivUniversityandtheIs

    raelMuseumformakingavailablethebones.WethankEugeniaMintz(TheWeizmannInstituteof

    Science) for her help with the sample preparation for radiocarbon dating and we thank Israel

    Hershkovitz forhis comments.This studywas fundedby theKimmelCenter forArchaeological

    ScienceattheWeizmannInstitute.S.W.istheincumbentoftheDrWalterandDrTrudeBorchardt

    ProfessorialChairinStructuralBiology.

    REFERENCES

    Achilli, A., Rengo, C., Battaglia, V., Pala, M., Olivieri, A., Fornarino, S., Magri, C., Scozzari, R.,Babudri,N.,SantachiaraBenerecetti,A.S.,Bandelt,H.J.,Semino,O.Torroni,A., (2005).

    Saami andBerbersan unexpectedmitochondrialDNA link.AmericanJournal ofHuman

    Genetics76,883886.

    Achilli,A.,Rengo,C.,Magri,C.,Battaglia,V.,Olivieri,A.,Scozzari,R.,Cruciani,F.,Zeviani,M.,

    Briem,E.,Carelli,V.,Moral,P.,Dugoujon,J.M.,Roostalu,U.,Loogvli,E.L.,Kivisild,T.,

    Bandelt,H.J.,Richards,M.,Villems,R.,SantachiaraBenerecetti,A.S.,Semino,O.Torroni,

    A., (2004).ThemoleculardissectionofmtDNAhaplogroupH confirms that theFranco

    CantabrianglacialrefugewasamajorsourcefortheEuropeangenepool.AmericanJournal

    ofHumanGenetics75,910918.

    Bada,J.,Wang,X.Hamilton,H.,(1999).Preservationofkeybiomolecules inthefossilrecord:cur

    rentknowledgeandfuturechallenges.PhilosophicalTransactions

    of

    the

    Royal

    Society

    London

    BBiologicalScience354.

    Bass,W.M.1995.HumanOsteology:ALaboratoryandFieldManual.MissouriArchaeologicalSociety,

    Missouri.

    Behar,D.M.,Metspalu,E.,Kivisild,T.,Rosset,S.,Tzur,S.,Hadid,Y.,Yudkovsky,G.,Rosengarten,

    D.,Pereira,L.,Amorim,A.,Kutuev,I.,Gurwitz,D.,BonneTamir,B.,Villems,R.,Skorecki,

    K., (2008).Counting theFounders:TheMatrilinealGeneticAncestryof theJewishDias

    pora.PLoSONE3,e2062.

    Behar,D.M.,Rosset,S.,BlueSmith,J.,Balanovsky,O.,Tzur,S.,Comas,D.,Mitchell,R.J.,Quintana

    Murci,L.,TylerSmith,C.Wells,R.S.,(2007).TheGenographicProjectpublicparticipation

    mitochondrialDNAdatabasePLoSGenetics

    3,e104.

  • 7/29/2019 1 Weiner

    12/14

    SALAMON,M. etal12

    Bouwman,A.S.,Brown,K.A.,Prag,A.J.N.W.Brown,T.A.,(2008).Kinshipbetweenburialsfrom

    GraveCircleBatMycenaerevealedbyancientDNAtyping.JournalofArchaeologicalScience

    35,25802584.

    BronkRamsey,C.,(1995).Radiocarboncalibrationandanalysisofstratigraphy:theOxCalProgram.

    Radiocarbon37,425430.

    BronkRamsey,C.,(2001).DevelopmentoftheradiocarbonprogramOxCal.Radiocarbon43,355363.

    Buckley,M.,Anderung,C.,Penkman,K.,Raney,B.J.,Gotherstrom,A.,ThomasOates,J.Collins,M.

    J.,(2008).ComparingthesurvivalofosteocalcinandmtDNAinarchaeologicalbonefrom

    fourEuropeansites.JournalofArchaeologicalScience35,17561764.

    Chilvers,E.R.,Bouwman,A.S.,Brown,K.A.,Arnott,R.G.,Prag,A.J.N.W.Brown,T.A.,(2008).

    AncientDNA inhumanbonesfromNeolithicandBronzeAgesites inGreeceandCrete.

    JournalofArchaeologicalScience35,27072714.

    Collins,M.J.,Waite,E.R.vanDuin,A.C.,(1999).Predictingproteindecomposition:thecaseofas

    particacidracemizationkinetics.PhilosophicalTransactionsoftheRoyalSocietyLondonBBio

    logicalScience354,5164.

    Colson,I.B.,Bailey,J.F.,Vercauteren,M.,Sykes,B.C.R.E.M.,H., (1997).ThepreservationofancientDNAandbonediagenesis.AncientBiomolecules1,109117.

    Colson,I.B.,Richards,M.B.,Bailey,J.F.,Sykes,B.C.Hedges,R.E.M.,(1997).DNAAnalysisof

    sevenhumanskeletonsexcavatedfromtheTerpofWijnaldum.JournalofArchaeologicalSci

    ence24,911917.

    Cooper,A.Poinar,H.,(2000).AncientDNA:doitrightornotatall.Science289,1139.

    DeNiro,M.J.Weiner,S.,(1988).Chemical,enzymaticandspectroscopiccharacterizationofcollagen

    and other organic fractions from prehistoricbones.Geochimica etCosmochimicaActa 52,

    21972206.

    Dissing,J.,Kristindottir,M.A.Friis,C.,(2008).OntheeliminationofextraneousDNAinfossilhu

    manteethwithhypochlorite.JournalofArchaeologicalScience35,14451452.

    Finnila, S., Lehtonen, M. S. Majamaa, K., (2001). Phylogenetic network for European mtDNA.AmericanJournalofHumanGenetics68,14751484.

    Gilbert,M.T. P., Bandelt, H.J.,Hofreiter, M.Barnes, I., (2005).Assessing ancient DNA studies.

    TrendsinEcologyandEvolution20,541544.

    Hedges,R.E.M.vanKlinken,G.J.,(1992).Areviewofcurrentapproaches inthepretreatmentof

    boneforradiocarbondatingbyAMS.Radiocarbon34,279291.

    Hirschfeld,Y.Riklin,S.,(2002).SurveyandexcavationsintheupperWadiElMakkukcaves.Atiqot

    41,519.

    Jorde,L.B.,Bamshad,M.J.,Watkins,W.S.,Zenger,R.,Fraley,A.E.,Krakowiak,P.A.,Carpenter,

    K.D.,Soodyall,H.,Jenkins,T.Rogers,A.R.,(1995).Originsandaffinitiesofmodernhu

    mans:acomparisonofmitochondrialandnucleargeneticdata.American

    Journal

    of

    Human

    Genetics57,523538.

    Jull,A.J.T.,Donahue,D.J.,Carmi,I.Segal,D.(1998).Radiocarbondatingoffinds.InTheCaveofthe

    Warrior:AFourthMillenniumBurialintheJudeanDesert.(ed.Schick,T.),pp.110112.Is

    raelAntiquitiesAuthorityReport,Jerusalem.

    Kivisild,T.2000.TheoriginsofsouthernandwesternEurasianpopulations:anmtDNAstudy.PhD

    Thesis.,TartuUniversity.

    LaluezaFox,C.,Sampietro,M.L.,Gilbert,M.T.P.,Castri,L.,Facchini,F.,Pettener,D.Bertranpetit,

    J., (2004).Unravellingmigrations in the steppe:MitochondrialDNAsequences froman

    cientcentralAsiansroceedingsoftheRoyalSocietyLondonB.BiologicalSciences271,941947.

    Lopez,J.V.,Culver,M.,Stephens,J.C.,Johnson,W.E.OBrien,S.J., (1997).Ratesofnuclearand

    cytoplasmicmitochondrialDNAsequencedivergence inmammals.MolecularBiology

    and

    Evolution14,277286.

  • 7/29/2019 1 Weiner

    13/14

    ANCIENTmtDNAFROMWADIELMAKKUKH 13

    Malmstrm,H.,Svensson,E.M.,Gilbert,M.T.P.,Willerslev,E.,Gtherstrm,A.Holmlund,G.,

    (2007).Moreoncontamination:theuseofasymmetricmolecularbehaviorto identifyau

    thenticancienthumanDNA..MolecularBiologyandEvolution24,9981004.

    Manwaring,N.,Jones,M.M.,Wang,J.J.,Rochtchina,E.,Mitchell,P.Sue,C.M.,(2006).Prevalence

    ofmitochondrialDNAhaplogroupsinanAustralianpopulation.InternalMedicineJournal

    36,530533.Mountain,J.L.,Hebert,J.M.,Bhattacharyya,S.,Underhill,P.A.,Ottolenghi,C.,Gadgil,M.Cavalli

    Sforza,L.L.,(1995).DemographichistoryofIndiaandmtDNAsequencediversity.Ameri

    canJournalofHumanGenetics56,979992.

    Pakendorf,B.Stoneking,M., (2005).MitochondrialDNAandhumanevolution.AnnualReview of

    GenomicsandHumanGenetics6,165183.

    Pereira,L.,Richards,M.,Goios,A.,Alonso,A.,Albarrn,C.,Garcia,O.,Behar,D.M.,Glge,M.,

    Hatina,J.,AlGazali,L.,Bradley,D.G.,Macaulay,V.Amorim,A.,(2005).Highresolution

    mtDNAevidenceforthelateglacialresettlementofEuropefromanIberianrefugium.Ge

    nomeResearch15,1924.

    Poinar,H.N.Stankiewicz,B.A., (1999).ProteinpreservationandDNAretrieval fromancient tissues.ProceedingsoftheNatationalAcademyofSciences(USA)96,84268431.

    Reimer,P.J.,Baillie,M.G.L.,Bard,E.,Bayliss,A.,Beck,J.W.,Blackwell,P.G.,BronkRamsey,C.,

    Buck,C.E.,Burr,G.,Edwards,R.L.,Friedrich,M.,Guilderson,T.P.,Hajdas,I.,Heaton,T.

    J.,Hogg,A.G.,Hughen,K.A.,Kaiser,K.F.,Kromer,B.,McCormac,F.G.,Manning,S.,

    Reimer,R.W.,Richards,D.A.,Southon,J.R.,Talamo,S.,Turney,C.S.M.,vanderPlicht,

    J.Weyhenmeyer,C.E.,(2009).IntCal09andMarine09radiocarbonagecalibrationcurves,

    050,000yearscalBP.Radiocarbon51,11111150.

    Ricaut,F.X.,KeyserTracqui,C.,Bourgeois,J.,Crubezy,E.Ludes,B., (2004).Geneticanalysisofa

    ScythoSiberianskeletonanditsimplicationsforancientCentralAsianmigrations.Human

    Biology76,109125.

    Richards,M.,CrteReal,H.,Forster,P.,Macaulay,V.,WilkinsonHerbots,H.,Demaine,A.,Papiha,S., Hedges, R., Bandelt, H.J. Sykes, B., (1996). Paleolithic and Neolithic lineages in the

    Europeanmitochondrialgenepool.AmericanJournalofHumanGenetics59,185203.

    Richards,M.,Macaulay,V.,Hickey,E.,Vega,E.,Sykes,B.,Guida,V.,Rengo,C.al,e.,(2000).Trac

    ingEuropeanfounder lineages intheNearEasternmtDNApool.AmericanJournalofHu

    manGenetics67,12511276.

    Richards,M.,Macaulay,V.,Torroni,A.Bandelt,H.J.,(2002).Insearchofgeographicalpatternsin

    EuropeanmitochondrialDNA.AmericanJournalofHumanGenetics71,11681174.

    Roostalu,U.,Kutuev,I.,Loogvali,E.L.,Metspalu,E.,Tambets,K.,Reidla,M.,Khusnutdinova,E.,

    Usanga, E., Kivisild, T. Villems, R., (2007). Origin and expansion of haplogroup h, the

    dominanthumanmitochondrialDNAlineageinwesteurasia:theneareasternandcaucasianperspective.MolBiolEvol24,43648.

    Roostalu,U.,Kutuev,I.,Loogvali,E.L.,Metspalu,E.,Tambets,K.,Reidla,M.,Khusnutdinova,E.

    K.,Usanga,E.,Kivisild,T.Villems,R.,(2007).OriginandexpansionofhaplogroupH,the

    dominanthumanmitochondrialDNAlineageinWestEurasia:theNearEasternandCau

    casianperspective.MolecularBiologyandEvolution24,436448.

    Rowan,Y.M.andGolden,J., (2009).TheChalcolithicPeriodof theSouthernLevant:Asynthetic

    review.JournalofWorldPrehistory22,192.

    Salamon,M.,Tuross,N.,Arensburg,B.Weiner,S.,(2005).RelativelywellpreservedDNAispresent

    inthecrystalaggregatesoffossilbones.ProceedingsoftheNationalAcademyofScience(USA)

    102,1378313788.

    Sampietro,M.L.,Gilbert,M.T.P.,Lao,O.,Caramelli,D.,Lari,M.,Bertranpetit,J.LaluezaFox,C.,(2006).TrackingdownhumancontaminationinancienthumanteethMolecularBiologyand

    Evolution23,18011807.

  • 7/29/2019 1 Weiner

    14/14

    SALAMON,M. etal14

    Schick,T.1998.TheCaveoftheWarrior.IsraelAntiquitiesAuthority,Jerusalem.

    Simoni,L.,Calafell,F.,Bertranpetit,G.Barbujani,G.,(2000).GeographicpatternsofmtDNAdiver

    sityinEurope.AmericanJournalofHumanGenetics66,262278.

    Stoneking,M., (2000).Hypervariable sites in themtDNA control region aremutationalhotspots.

    AmericanJournalofHumanGenetics67,10291032.

    Torroni,A.,Bandelt,H.J.,Macaulay,V.,Richards,M.,Cruciani,F.,Rengo,C.,MartinezCabrera,V.al.,e.,(2001).AsignalfromhumanmtDNAofpostglacialrecolonizationinEurope.Ameri

    canJournalofHumanGenetics69,844852.

    Torroni, A., Huoponen, K., Francalacci, P., Petrozzi, M., Morelli, L., Scozzari, R., Obinu, D.,

    Savontaus,M.Wallace,D.,(1996).ClassificationofEuropeanmtDNAsfromananalysisof

    threeEuropeanpopulations.Genetics144,18351850.

    Tuross,N.,(2002).Alterationsinfossilcollagen.Archaeometry44,427434.

    vanKlinken,G.J., (1999).Bonecollagenquality indicators forpaleodietryandradiocarbonmeas

    urements.JournalofArchaeologicalScience26,687695.

    Vigilant,L.M.,Stoneking,M.,Harpending,H.,Hawkes,K.Wilson,A.C.,(1991).Africanpopula

    tionsandtheevolutionofhumanmitochondrialDNA.Science

    253,15031507.Weiner,S.,Goldberg,P.BarYosef,O.,(1993).BonepreservationinKebaraCave,Israelusingonsite

    Fouriertransforminfraredspectroscopy.JournalArchaeologicalScience20,613627.

    Weiner,S., (2010).Microarchaeology.Beyond theVisibleArchaeologicalRecord.CambridgeUni

    versityPress,pp.396.

    Yizhaq,M.,Mintz,G.,I.,C.,Khalally,H.,Weiner,S.Boaretto,E.,(2005).Qualitycontrolledradio

    carbon dating ofbones and charcoal from the early PrePottery Neolithic B (PPNB) of

    Motza(Israel).Radiocarbon47,193206.

    Yoder,A.D.,Burns,M.M.,Zehr,S.,Delefosse,T.,Veron,G.,Goodman,S.M.Flynn,J.J., (2003).

    SingleoriginofMalagasyCarnivorafromanAfricanancestor.Nature421,734737.