21
John Jechura – [email protected] Updated: January 4, 2015 Heat Cycles, Heat Engines, & Real Devices

02 Heat Cycles - Inside Minesinside.mines.edu/~jjechura/EnergyTech/02_Heat_Cycles.pdfcombustion chamber of a spark‐ignited engine ... Heat absorbed from hot reservoir & no work done

Embed Size (px)

Citation preview

Page 1: 02 Heat Cycles - Inside Minesinside.mines.edu/~jjechura/EnergyTech/02_Heat_Cycles.pdfcombustion chamber of a spark‐ignited engine ... Heat absorbed from hot reservoir & no work done

John Jechura – [email protected]: January 4, 2015

Heat Cycles, Heat Engines, & Real Devices

Page 2: 02 Heat Cycles - Inside Minesinside.mines.edu/~jjechura/EnergyTech/02_Heat_Cycles.pdfcombustion chamber of a spark‐ignited engine ... Heat absorbed from hot reservoir & no work done

Topics

• Heat engines / heat cycles

Review of ideal‐gas efficiency equations 

Efficiency upper limit – Carnot Cycle

• Water as working fluid in Rankine Cycle

Role of rotating equipment inefficiency

• Advanced heat cycles

Reheat & heat recycle

• Organic Rankine Cycle

• Real devices

Gas & steam turbines

2

Page 3: 02 Heat Cycles - Inside Minesinside.mines.edu/~jjechura/EnergyTech/02_Heat_Cycles.pdfcombustion chamber of a spark‐ignited engine ... Heat absorbed from hot reservoir & no work done

Heat Engines / Heat Cycles• Carnot cycle

Most efficient heat cycle possible

• Rankine cycle

Usually uses water (steam) as working fluid

Creates the majority of electric power used throughout the world

Can use any heat source, including solar thermal, coal, biomass, & nuclear

• Otto cycle

Approximates the pressure & volume of the combustion chamber of a spark‐ignited engine

• Diesel cycle

Approximates the pressure & volume of the combustion chamber of the Diesel engine

3

Hot Reservoir @ TH

Cold Sink @ TC

QH

QC

Wnet

net H Cth

H H

W Q QQ Q

Page 4: 02 Heat Cycles - Inside Minesinside.mines.edu/~jjechura/EnergyTech/02_Heat_Cycles.pdfcombustion chamber of a spark‐ignited engine ... Heat absorbed from hot reservoir & no work done

Carnot Cycle

• Most efficient heat cycle possible

• Steps

Reversible isothermal expansion of gas at TH. Combination of heat absorbed from hot reservoir & work done on the surroundings. 

Reversible isentropic & adiabatic expansion of the gas to TC. No heat transferred & work done on the surroundings.

Reversible isothermal compression of gas at TC. Combination of heat released to cold sink & work done on the gas by the surroundings.

Reversible isentropic & adiabatic compression of the gas to TH. No heat transferred & work done on the gas by the surroundings.

• Thermal efficiency

4

1H C H C Cth th

H H H

Q Q T T TQ T T

Page 5: 02 Heat Cycles - Inside Minesinside.mines.edu/~jjechura/EnergyTech/02_Heat_Cycles.pdfcombustion chamber of a spark‐ignited engine ... Heat absorbed from hot reservoir & no work done

Rankine/Brayton Cycle

• Different application depending on working fluid

Rankine cycle to describe closed steam cycle.

Brayton cycle approximates gas turbine operation. 

• Steps

Heat at constant PH. Heat absorbed from hot reservoir & no work done. 

Isentropic & adiabatic expansion to PL. Work done on surroundings.

Cool at constant PL. Heat released to cold sink & no work done.

Isentropic & adiabatic compression to PH. Work done on fluid by surroundings.

• Ideal gas thermal efficiency – not appropriate for condensing water

5

1 /

1 1L Lth

H H

T PT P

Page 6: 02 Heat Cycles - Inside Minesinside.mines.edu/~jjechura/EnergyTech/02_Heat_Cycles.pdfcombustion chamber of a spark‐ignited engine ... Heat absorbed from hot reservoir & no work done

Thermal Efficiency Ideal‐Gas Brayton Cycle

6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 5 10 15 20 25 30 35

Compression Ratio (P2/P1)

Thermal Efficiency ( )

Air, =1.4

Argon, =1.7

Propane, =1.1

Page 7: 02 Heat Cycles - Inside Minesinside.mines.edu/~jjechura/EnergyTech/02_Heat_Cycles.pdfcombustion chamber of a spark‐ignited engine ... Heat absorbed from hot reservoir & no work done

Otto Cycle

• Steps

Reversible isentropic compression from V1 to V2. No heat transferred & work done on the fluid. Initial conditions are TL & PL.

Heat at constant volume. Heat absorbed from hot reservoir & no work done. 

Reversible isentropic & adiabatic expansion from V2 to V1. No heat transferred & work done by the fluid on the surroundings.

Cool at constant volume to TL with resulting pressure PL. Heat released to cold sink & no work done.

• Thermal efficiency – ideal gas

• This cycle ignores input of new air/fuel mixture, change in composition with combustion, & exhaust of combustion products

7

1 21

11   where  /V  is the volumetric compression ratioth R V

R

Page 8: 02 Heat Cycles - Inside Minesinside.mines.edu/~jjechura/EnergyTech/02_Heat_Cycles.pdfcombustion chamber of a spark‐ignited engine ... Heat absorbed from hot reservoir & no work done

Thermal Efficiency Ideal‐Gas Otto Cycle

8

0%

10%

20%

30%

40%

50%

60%

0 5 10 15 20 25

Volumetric Compression Ratio

Ther

mal

Eff

icie

ncy

0

100

200

300

400

500

600

Tem

per

atu

re [

°C]

Inlet Conditions: 25°C & 1.0 bar=1.3 (typical air+fuel)

Page 9: 02 Heat Cycles - Inside Minesinside.mines.edu/~jjechura/EnergyTech/02_Heat_Cycles.pdfcombustion chamber of a spark‐ignited engine ... Heat absorbed from hot reservoir & no work done

Diesel Cycle

• Steps

Reversible isentropic compression from V1 to V2. No heat transferred & work done on the fluid. Initial conditions are TL & PL.

Heat at constant pressure. Heat absorbed from hot reservoir & no work done. Volume increases from V2 to V3. 

Reversible isentropic & adiabatic expansion from V3 to V1. No heat transferred & work done by the fluid on the surroundings.

Cool at constant volume to TL with resulting pressure PL. Heat released to cold sink & no work done.

• Thermal efficiency – ideal gas

where R=V1/V2 (the compression ratio) & =V3/V2 (the cut‐off ratio).

• This cycle ignores input of new air, injection of fuel, change in composition with combustion, & exhaust of combustion products

9

1

1 11

1th R

Page 10: 02 Heat Cycles - Inside Minesinside.mines.edu/~jjechura/EnergyTech/02_Heat_Cycles.pdfcombustion chamber of a spark‐ignited engine ... Heat absorbed from hot reservoir & no work done

Thermal Efficiency Ideal‐Gas Diesel Cycle

10

0%

10%

20%

30%

40%

50%

60%

70%

80%

0 5 10 15 20 25

Volumetric Compression Ratio

Ther

mal

Eff

icie

ncy

0

100

200

300

400

500

600

700

800

Tem

per

atu

re [

°C]

Inlet Conditions: 25°C & 1.0 bar=1.4 (air)

=3.0

Page 11: 02 Heat Cycles - Inside Minesinside.mines.edu/~jjechura/EnergyTech/02_Heat_Cycles.pdfcombustion chamber of a spark‐ignited engine ... Heat absorbed from hot reservoir & no work done

Example: Actual Gasoline Engine Thermal Efficiency

• BMW M54B30 (2,979 cc) engine stated to produce  228 hp @ 5900 rpm (with 10.2:1 compression ratio)

• Calculation steps to determine thermal efficiency

Unit conversion: 228 hp = 10,200 kJ/min  1.729 kJ/rev

2 revolutions needed for full volume displacement: 1.161 kJ/L

Air+fuel mix has LHV of 3.511 kJ/L (ideal gas)

• Assumptions

o Characterize air as 21 mol% O2 / 79 mol% N2 & gasoline as isooctane (iC8, C8H18, LHV of 5065 kJ/mol) 

o Air+fuel mix an ideal‐gas stoichiometric mixture of @ 1.0 bar & 25°C

o Air+fuel mix molar density is 0.0403 mol/L (i.g.) with 1.72 mol% iC8

• Thermal efficiency is 33% at these stated conditions

Ideal‐gas Otto Cycle shows upper limit of 50.2% (=1.3)

11

Page 12: 02 Heat Cycles - Inside Minesinside.mines.edu/~jjechura/EnergyTech/02_Heat_Cycles.pdfcombustion chamber of a spark‐ignited engine ... Heat absorbed from hot reservoir & no work done

Gasoline Thermal Efficiency Using Aspen Plus

• 44.7% thermal efficiency assuming isentropic compression & expansion 

Care must be taken to calculate heats & works from internal energy values, not enthalpy values

iC8 as model gasoline component

10:1 volumetric compression ratio

33% thermal efficiency & 33% lost heat to exhaust using 89% isentropic efficiency & 5% mechanical losses during compression & expansion 

12

HIERARCHY

FLAMEVAL

HIERARCHY

HEATVAL

3842460521.00

MIX-HP 2A

2511000.00

FUEL

Q-RESID

Q

267411664871.00

CMBSTGAS

251

59521.00

AIR

71

60521.00FUELMIX

W-12W

15447

64871.00

EXHAUST

W-34W

BURN-1

B1

B2

B4

Temperature (C)

Pressure (bar)

Molar Flow Rate (kmol/hr)

Vapor Fraction

Duty (kJ/sec)

Power(kW) LOSTHEAT

251

64870.89

AMBIENT

Page 13: 02 Heat Cycles - Inside Minesinside.mines.edu/~jjechura/EnergyTech/02_Heat_Cycles.pdfcombustion chamber of a spark‐ignited engine ... Heat absorbed from hot reservoir & no work done

Water as Working Fluid in Rankine Cycle

• Aspen Plus flowsheet

Flow system

• Energy considerations from enthalpy, not internal energy

Cycle represented by once‐through flow system

• LP‐WATER must match conditions of LP‐WATR2

• “Out” direction of Energy & Work streams represent calculated values

• Can use arbitrary flow rate for thermal efficiency calculation

Thermal efficiency from heat & work values 

13

 W‐TURBIN   W‐PUMP  Q‐BOILER 

netth

in

WQ

Page 14: 02 Heat Cycles - Inside Minesinside.mines.edu/~jjechura/EnergyTech/02_Heat_Cycles.pdfcombustion chamber of a spark‐ignited engine ... Heat absorbed from hot reservoir & no work done

Typical operating parameters• TURBINE exhaust fully condensed in CONDSR

Outlet saturated liquid (i.e., vapor fraction is zero) or subcooled

• No vapor to PUMP to prevent cavitation

Temperature controlled by available cooling media 

• 15 – 35oC (60 – 95oF) typical for cooling water

• 45 – 50oC (110 – 125oF) typical for air cooling

Pressure will “float” to match this saturation temperature

• PUMP increases pressure of water to high‐pressure conditions

Pressure chosen to match common TURBINE inlet pressures – 1500, 1800, & 2400 psig for large power applications

Real isentropic efficiencies 75 – 90% at optimal flowrates

• Inefficiency causes temperature rise in water 

Mechanical efficiency represents energy loss in drive train 

• BOILER increases temperature & changes phase (liquid  vapor) 

At minimum, exit at saturated vapor conditions (i.e., vapor fraction is one).

May be superheated to much higher temperature.

Exit temperature controlled by heat source available & materials of construction – maximum about 420 –580oC (790 – 1075oF)

• Highest temperatures require expensive nickel & cobalt alloys 

• Shaft work produced in TURBINE when pressure of steam let down to CONDSR inlet conditions

Very complicated rotating machinery that can have multiple number of stages, multiple entry & extraction points, …

Real isentropic efficiencies 70 – 90% at optimal flowrates

May be designed to exhaust gas phase or water/steam phase (condensing turbine) 

Mechanical efficiency represents energy loss in drive train 

14

Page 15: 02 Heat Cycles - Inside Minesinside.mines.edu/~jjechura/EnergyTech/02_Heat_Cycles.pdfcombustion chamber of a spark‐ignited engine ... Heat absorbed from hot reservoir & no work done

Example #1 Steam Turbine Operation• Operating conditions

Condenser outlet saturated liquid @ 35oC

• No pressure loss through exchanger

Pump outlet 1500 psig

• Ideal compression

Boiler outlet saturated vapor

• No pressure loss through exchanger

Turbine 

• Ideal expansion

No pressure losses through piping

No mechanical losses in rotating equipment

15

 W‐TURBIN   W‐PUMP  2789 29 0.388 Q‐BOILER  7111th

Page 16: 02 Heat Cycles - Inside Minesinside.mines.edu/~jjechura/EnergyTech/02_Heat_Cycles.pdfcombustion chamber of a spark‐ignited engine ... Heat absorbed from hot reservoir & no work done

Example #2 Steam Turbine Operation• Operating conditions

Condenser outlet saturated liquid @ 35oC

• No pressure loss through exchanger

Pump outlet 1500 psig

• 80% isentropic efficiency

Boiler outlet saturated vapor

• No pressure loss through exchanger

Turbine 

• 75% isentropic efficiency

No pressure losses through piping

No mechanical losses in rotating equipment

16

 W‐TURBIN   W‐PUMP  2092 36 0.289 Q‐BOILER  7104th

Page 17: 02 Heat Cycles - Inside Minesinside.mines.edu/~jjechura/EnergyTech/02_Heat_Cycles.pdfcombustion chamber of a spark‐ignited engine ... Heat absorbed from hot reservoir & no work done

Advanced Heat Cycles

• Reheat 

Multiple step expansion, turbine exhaust reheated before next step

Keep the steam gas‐phase for as much of the process as possible

Increased thermal efficiency with increased capital cost

• Heat recycle

Multiple step expansion, turbine exhaust split before next step

• Majority sent to low‐pressure turbine

• Remainder condensed against the high‐pressure boiler feed water

Trades off the heat of vaporization relative to power from expansion process 

17

Page 18: 02 Heat Cycles - Inside Minesinside.mines.edu/~jjechura/EnergyTech/02_Heat_Cycles.pdfcombustion chamber of a spark‐ignited engine ... Heat absorbed from hot reservoir & no work done

Example Steam Turbine With Reheat• Operating conditions

Condenser outlet saturated liquid @ 45oC

• No pressure loss through exchanger

Pump outlet 120 bar‐a

• Ideal compression

Boiler outlet 150oC superheat

• No pressure loss through exchanger

Turbine intermediate 24 bar

• 80% isentropic efficiency

Reheat to 475oC

• No pressure loss through exchanger

No pressure losses through piping

No mechanical losses in rotating equipment

18

921 2465 34

0.3418555 1277th

Page 19: 02 Heat Cycles - Inside Minesinside.mines.edu/~jjechura/EnergyTech/02_Heat_Cycles.pdfcombustion chamber of a spark‐ignited engine ... Heat absorbed from hot reservoir & no work done

Example Steam Turbine With Reheat

19

Page 20: 02 Heat Cycles - Inside Minesinside.mines.edu/~jjechura/EnergyTech/02_Heat_Cycles.pdfcombustion chamber of a spark‐ignited engine ... Heat absorbed from hot reservoir & no work done

Example Steam Turbine With Heat Recycle• Operating conditions

Condenser outlet saturated liquid @ 45oC

• No pressure loss through exchanger

Pump outlet 120 bar‐a

• Ideal compression

Boiler outlet 150oC superheat

• No pressure loss through exchanger

Turbine intermediate 10 bar

• 80% isentropic efficiency

10% split to recycle

No pressure losses through piping

No mechanical losses in rotating equipment

20

1306 1414 340.336

7986th

Page 21: 02 Heat Cycles - Inside Minesinside.mines.edu/~jjechura/EnergyTech/02_Heat_Cycles.pdfcombustion chamber of a spark‐ignited engine ... Heat absorbed from hot reservoir & no work done

Example Steam Turbine With Heat Recycle

21