Strategien für das Maßschneidern von Faserverbundstrukturen in der...

Preview:

Citation preview

Strategien für das Maßschneidern von Faserverbundstrukturen in der Luft- und Raumfahrt

Strategies for the design of CFRP structures in aerospace and space applications

Prof. Richard Degenhardt2,3, Prof. Axel Hermann1,Dr. Andreas Baar1

1CFK-Valley, Stade2DLR, Institut für Faserverbundleichtbau und Adaptronik 3Private Fachhochschule Göttingen (Standort Stade)

2

1. Introduction

2. Example 1 (Space):

Future design concept for unstiffened CFRP structures

3. Example 2 (Aerospace):

Exploitation of reserve capacities in the postbuckling area of CFRP fuselage panels

4. Private University of Applied Sciences Göttingen

5. CFK-Valley Stade

Overview

3

Examples for future structures made of CFRP

Transport / Energy

Space

Ariane 5 Int. space station ISS

Aerospace

4

Year

CFR

P

787 = 50%

A380 = 22%

Source: NASA, Airbus und Boeing

Composite structures in aerospace

A350 > 50%

5

1. Introduction

2. Example 1 (Space):

Future design concept for unstiffened CFRP structures

3. Example 2 (Aerospace):

Exploitation of reserve capacities in the postbuckling area of CFRP fuselage panels

4. Private University of Applied Sciences Göttingen

5. CFK-Valley Stade

Overview

Ariane 5 Int. space station ISS

6

Task: Maximal buckling load for 2 double layers

R = 250 mm

L = 510 mm

t1 = t2 = 0,25 mm

Fmax = 31,39 kN

Fmin = 17,59 kN

Optimisation of an unstiffened CFRP cylinderunder axial loading

7

Future design concept for unstiffened CFRP structures

Guideline NASA-SP 8007 based on empirical methodsvery conservative knock-down factorsNo guidelines for composite structures

State of art

8

Radial perturbation load

Position and magnitude are variableSeveral tests with different imperfections

Test procedure:1. radial perturbation load2. axial compression

Future design concept for unstiffened CFRP structures

9

0

5

10

15

20

25

0 2 4 6 8 10

Perturbation load P (N)

Buc

klin

g lo

ad N

(kN

)

0

10

20

0 0,1 0,2 0,3

Displacement (mm)

Load

(kN

)

Test results for cylinder Z07 and one perturbation position

Future design concept for unstiffened CFRP structures

10

0

5

10

15

20

25

0 2 4 6 8 10Perturbation load P (N)

Buc

klin

g lo

ad N

(kN

)

0

10

20

0 0,1 0,2 0,3

Displacement (mm)

Load

(kN

)

Test results for cylinder Z07 and one perturbation position

Each dot marks one testUnexpected horizontal curve progression

Future design concept for unstiffened CFRP structures

11

0

5

10

15

20

25

0 2 4 6 8 10Perturbation load P (N)

Buc

klin

g lo

ad N

(kN

)

P1

N1

N0line (a)

line (b)

line (c)

Test results for cylinder Z07 and one perturbation position

New approach:Idealization of curve progression by three linesLower boundary limit of buckling load for imperfect shells:„Load carrying capability N1“

Future design concept for unstiffened CFRP structures

12

Evaluation of the Knock-Down Factor

500

Classical Buckling Load

Measured Buckling Loads

ρ

0.32

0.650.5% Quantile

NASA

Project cylinder propertiesTotal length = 540 mmFree length = 500 mmRadius = 250 mmPly orientation = +24,-24,+41,-41Thickness = 0.5 mm

MCS Simulations

Buckling Load with Single Perturbation Load

13

Summary / Conclusions

The NASA SP 8007 guideline is very conservative if composite structures shall be designed.The Single-Pertubation load approach is a promissing alternative.The knowledge of the minimum pertubation is needed.A new empirical formula for the critical pertubation load P1, which is a good assumption for the minimum pertubation load, was developed. This formula was in a first step developed for metallic structures.In future work it will be extended for composite materials.

5.10 ≤< t

14

1. Introduction

2. Example 1 (Space):

Future design concept for unstiffened CFRP structures

3. Example 2 (Aerospace):

Exploitation of reserve capacities in the postbuckling area of CFRP fuselage panels

4. Private University of Applied Sciences Göttingen

5. CFK-Valley Stade

Overview

15

Next generation –All composite fuselage structure

The current research considers curvedCFRP panels which are understood as parts of a fuselage section.

Structures considered

16

Scale factor: 10

Scale factor: 8

Scale factor: 5

Scale factor: 3

1st global (stringer-based) buckling

1st local buckling

Scale factor: 5

Shortening

Load

Real curve

Collapse load

Simplified curve

What is collapse(Example: Axially compressed curved stiffened CFRP panel)

17

FBL

Collapse

OD

I

II

III

Shortening

Load

UL

LL

Future Design Scenario

Design Scenarios for Stiffened Panels

Ultimate Load (UL)

First Buckling Load (FBL)Limit Load (LL)

Collapse

Onset ofDegradation (OD)

I

II

III

Allowed underoperating flightconditions

Safety Region

Not allowed

Shortening

Load

Current Design Scenario

18

WP 1 Benchmarking - Example

0

20

40

60

80

100

120

140

0 0.5 1 1.5 2 2.5 3 3.5 4Shortening [mm]

Load

[kN]

Experiment P12Abaqus, Nominal, No ImperfectionsSOL 106, Compdat, No ImperfectionsSOL 106, Compdat, With ImperfectionsSOL 600, Compdat, No ImperfectionsLS-Dyna, Compdat, No Imperfections

Not correct because 1) Degradation is not considered2) Sensitive for modelling of the lateral boundary conditions

Collapse

19

0

20

40

60

80

100

120

0 0,5 1 1,5 2 2,5 3 3,5

Shortening [mm]

Load

[kN

]

Cycle 0001Cycle 0401Cycle 0801Cycle 1201Cycle 1601Cycle 2001Cycle 2401Cycle 2601Cycle 2801Cycle 3001Cycle 3201Cycle 3401Cycle 3601Cycle 3801 Collapse

WP 4 - Test Panel P29 – Load shortening curve with Thermography

20

Analysis

Fast toolsTools with analytical and semi-

analytical approach

For design process For certification

Slow toolsCommercial FE tools (e.g.

SAMCEF, NASTRAN, ABAQUS ,etc.)

Simulation Tools

21

0

20

40

60

80

100

120

140

0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0Shortening [mm]

Load

[kN

]

ABAQUS - No degradation

ABAQUS - With skin-stringer separation

Test results

Comparison Simulation - Test

22

1. Introduction

2. Example 1 (Space):

Future design concept for unstiffened CFRP structures

3. Example 2 (Aerospace):

Exploitation of reserve capacities in the postbuckling area of CFRP fuselage panels

4. Private University of Applied Sciences Göttingen

5. CFK-Valley Stade

Overview

Recommended