Circuit design with a commercial 0.13 m CMOS technology for high energy physics applications K....

Preview:

Citation preview

Circuit design with a commercial 0.13 m CMOS technology for high

energy physics applications

K. Hänsler, S. Bonacini, P. Moreira

CERN, EP/MIC

LECC 2003 Kurt Hänsler - CERN 2

Outline Background Technology presentation Test module Radiation tolerance Bandgap Dual port SRAM Time to digital converter Conclusions

LECC 2003 Kurt Hänsler - CERN 3

Background

Can we take profit from this new technology?– Radiation tolerance?– Higher functional density?– Use in high energy physics experiments?– Commercial libraries?– Costs?

LECC 2003 Kurt Hänsler - CERN 4

Technology presentation

Technology features• 0.13m generation CMOS technology• All copper technology, 4 – 8 metal levels• Core supply 1.2V & 1.5V• I/O voltages 2.5V & 3.3V• Triple gate oxide (1.7nm, 2.2nm, 5.2nm)• Non-epi p- substrate

Device options• Standard, low Vt, high Vt NMOS and PMOS, ZeroVt NMOS• Ultra thin gate oxide NMOS and PMOS• Thick oxide NMOS, PMOS and ZeroVt NMOS• n+ diffusion and p+ polysilicon resistors• Metal-insulator-metal precision capacitors

LECC 2003 Kurt Hänsler - CERN 5

Test module 5x5mm module in foundry

MPW – Test structures– Basic circuit building

blocks: SRAM, TDC, Bandgap, Serializer, Shift Register, AFP

Design start Jul-03Submission Nov-03Reception Mar-04

Cooperation with RAL and Imperial College London

LECC 2003 Kurt Hänsler - CERN 6

Radiation tolerance: TID, 30 Mrd

Linear transistors with 1.7 nm and 2.2 nm physical gate oxide thicknesses present a promising natural TID hardness.No worries for a number of environments.

Linear transistors with 5.2nm gate oxide are more sensitive: careful use.

Further information: K. Hänsler et al.

“TID and SEE performance of a commercial 0.13 m CMOS technology”

Proceedings RADECS 2003

LECC 2003 Kurt Hänsler - CERN 7

Radiation tolerance: SEE

SEU cross section in order of magnitude of older technologies.

Influence of supply voltage and TID on SEU cross section as foreseen and expected in the past.

Further information: K. Hänsler et al.

“TID and SEE performance of a commercial 0.13 m CMOS technology”

Proceedings RADECS 2003

LECC 2003 Kurt Hänsler - CERN 8

Bandgap: Structure

New structure required

due to low supply voltage.

Standard structure based on the sum of the built-in

voltage of a diode and of the thermal voltage.

LECC 2003 Kurt Hänsler - CERN 9

Bandgap: Structure

VVR

RVV BGBGref 25.1,

2

4

LECC 2003 Kurt Hänsler - CERN 10

Bandgap: Results

Reference Voltage: 0.587V

Power supply sensitivity: 14mV/V

Temperature sensitivity: 0.22mV/K

Minimum supply voltage: 1V

Current consumption: 310A @ 1.5V

LECC 2003 Kurt Hänsler - CERN 11

-10

0

10

20

30

40

0.1 1 10 100 1000

Dose [Mrd]

DV

ref

[mV

]Irradiation Annealing

24h,25 C

168h,100 C

Bandgap: Irradiation

Reference voltage before irradiation: 587mV

LECC 2003 Kurt Hänsler - CERN 12

Bandgap: Comparison with 0.25 m0.13 m 0.25 m

Die area 46 800 m2 110 000 m2

Nominal supply voltage 1.5 V 2.5 V

Operational supply voltage range 1.0…1.7 V 1.4…2.7V

Temperature sensibility of reference voltage

+0.22 mV/K -0.22 mV/K

Nominal reference voltage 0.587 V 1.175 V

Reference voltage variation over supply voltage range

< 10 mV < 1mV

LECC 2003 Kurt Hänsler - CERN 13

SRAM: Structure•1.5 V supply

•Memory size 256x9 bits

•Physical size: 553m X 129m

LECC 2003 Kurt Hänsler - CERN 14

SRAM: Memory cell2 cross-coupled inverters

2 enclosed NMOS

2 PMOS

2 PMOS pass transistors

Cell size 3.73m X 2.58m

LECC 2003 Kurt Hänsler - CERN 15

SRAM: Results

All cells fully functional for supply voltages above 1.6V and frequencies up to 75 MHz.

Read operation down to 0.8V Write operation: limited operation range Power consumption

– 3.84mW @ 25MHz– Increase rate 104W/MHz

in future: no enclosed layout, but EDAC

LECC 2003 Kurt Hänsler - CERN 16

SRAM: Comparison 0.25 m

0.13 m 0.25 m

Cell size 9.62 m2 m2

Nominal supply 1.6 V 2.5 V

Access time 5.1 ns 4.5 ns

Maximum operation frequency

75 MHz 70 MHz

LECC 2003 Kurt Hänsler - CERN 17

TDC: Structure

LVDS

DATA

DELAYLINE

LVDSRECEIVER

PHASEDETECTOR

CHARGEPUMP

HIT ANDREADOUT

LOGIC

HIT

LECC 2003 Kurt Hänsler - CERN 18

TDC: Delay Cell

IN OUT

VC+

VC-

VDD

Ib Ib

Ib Ib

LECC 2003 Kurt Hänsler - CERN 19

TDC: Results I

40

50

60

70

80

90

100

110

0 0.5 1 1.5

Control voltage [V]

Del

ay p

er d

elay

cel

l [p

s]

nom. process, slow modenom. process, fast mode

slow process, slow modeslow process, fast mode

78.125psps

bins

ns125.78

128

10

LECC 2003 Kurt Hänsler - CERN 20

40

50

60

70

80

90

100

0 0.5 1 1.5

Control voltage [V]

Del

ay p

er d

elay

cel

l [p

s]

pre-rad, slow modepre-rad, fast mode

75 Mrd, slow mode75 Mrd, fast mode

78.125ps

TDC: Results II

psbins

ns125.78

128

10

LECC 2003 Kurt Hänsler - CERN 21

TDC: Results III

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 16 32 48 64 80 96 112 128

BinDif

fere

nti

al N

on

lin

eari

ty D

NL

[b

in]

LECC 2003 Kurt Hänsler - CERN 22

Conclusions

Natural radiation tolerance

Higher functional density / Use in HEP experiments

3 prototypes, linear and enclosed designs, with satisfying results presented

CostsTechnology is in full production BUT still very high engineering costs

Low voltage design challenge

Use of commercial library possible

LECC 2003 Kurt Hänsler - CERN 23

Besten Dank für Ihre Aufmerksamkeit.Grazie per la vostra attenzione.Muito obrigado pela vossa atenção.

Thank you for your attention.Je vous remercie de votre attention.

Acknowledgements: J. Christiansen,F. Faccio, K. Kloukinas, A. Marchioro,R. Szczygiel, G. Cervelli, E. Murer

Recommended