43
Dr. Robin Ras, Aalto University, Finland Nonwe9ng surfaces: Robustness and applica@ons Dr. Robin Ras Molecular Materials Dept. Applied Physics Aalto University (formerly Helsinki Univ. Technology) Helsinki, Finland hJp://Ly.tkk.fi/molmat/ robin.ras@aalto.fi

Sirris Smart Coating workshop - Easy-to-clean and Self cleaning Coatings - 19 May 2011 - Non-wetting surfaces: robustness and applications - Robin Ras, Aalto University Finland

  • Upload
    sirris

  • View
    1.019

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Sirris Smart Coating workshop - Easy-to-clean and Self cleaning Coatings - 19 May 2011 - Non-wetting surfaces: robustness and applications - Robin Ras, Aalto University Finland

Dr.  Robin  Ras,  Aalto  University,  Finland  

Non-­‐we9ng  surfaces:    Robustness  and  applica@ons  

Dr.  Robin  Ras  Molecular  Materials    Dept.  Applied  Physics  

Aalto  University  (formerly  Helsinki  Univ.  Technology)  Helsinki,  Finland  

 

hJp://Ly.tkk.fi/molmat/   [email protected]  

Page 2: Sirris Smart Coating workshop - Easy-to-clean and Self cleaning Coatings - 19 May 2011 - Non-wetting surfaces: robustness and applications - Robin Ras, Aalto University Finland

Dr.  Robin  Ras,  Aalto  University,  Finland  

Milestones  of  superhydrophobicity  •  1940’s-­‐1950’s  

–  Theory  •  Wenzel  •  Cassie-­‐Baxter  

•  1977  (BarthloJ,  Univ.  Bonn)  –  plant  systema@cs  –  assessing  the  value  of  certain  surface  structures  for  taxonomic  differen@a@on  

•  1997  (BarthloJ  &  Neinhuis)  –  first  comprehensive  experimental  study  on  self-­‐cleaning  of  plant  surfaces  –  results  pointed  to  a  structural  basis  of  effec@ve  self-­‐cleaning  

 

“Superhydrophob*”  based  on  Web  of  Knowledge  -­‐  May  2011  

0  

100  

200  

300  

400  

500  

600  

700  

#  pu

blica@

ons  

Page 3: Sirris Smart Coating workshop - Easy-to-clean and Self cleaning Coatings - 19 May 2011 - Non-wetting surfaces: robustness and applications - Robin Ras, Aalto University Finland

Dr.  Robin  Ras,  Aalto  University,  Finland  

A droplet takes up the dirt while rolling down Water droplets roll down the

leaf of the Lotus flower

Glue rolls down the leaf of the Lotus flower hJp://www.youtube.com/watch?v=XXHSM8ePuZw  

Lotus  leaf:  archetype  of  a  self-­‐cleaning  surface  

Page 4: Sirris Smart Coating workshop - Easy-to-clean and Self cleaning Coatings - 19 May 2011 - Non-wetting surfaces: robustness and applications - Robin Ras, Aalto University Finland

Dr.  Robin  Ras,  Aalto  University,  Finland  

Loss  of  non-­‐we9ng:  caused  by  damage  Remember  the  two  requirements  for  the  Cassie  state  of  superhydrophobicity:  1.  Topography  at  nano/micronscale  2.  Hydrophobic  surface  chemistry  

Cassie  state:    •  low  contact  angle  hysteresis  (Δθ)  •  low  sliding  angle    Δθ  =  θadv  −  θrec  

Damage  to  1.  or  2.  leads  to  significantly  reduced  θrec  and  thus  increased  hysteresis  

The  maximum  lateral  force  Flat  that  a  distorted  pinned  droplet  can  build  up  depends  on  θadv  and  θrec    Flat  =  cos  θrec  −  cos  θadv  ≅  Δθ  sinθ  (for  small  θ)        

Droplet  pinning  

Low  fric@on  

Verho,  Ras  et  al.,  Adv.  Mater.  2011,  23,  673–678  

Page 5: Sirris Smart Coating workshop - Easy-to-clean and Self cleaning Coatings - 19 May 2011 - Non-wetting surfaces: robustness and applications - Robin Ras, Aalto University Finland

Dr.  Robin  Ras,  Aalto  University,  Finland  

Loss  of  non-­‐we9ng:  caused  by  we9ng  transi@ons  

•  The  Cassie  state  of  we9ng  is  in  general  most  desired.    •  Droplet  is  in  contact  mostly  with  air  

•  However,  transi@ons  from  Cassie  to  Wenzel  state  of  we9ng  are  possible.  •  e.g.  hydrosta@c  pressure,  dissolu@on  of  the  trapped  

air,  a  drop  falling  from  a  certain  height  •  This  also  leads  to  loss  of  non-­‐we9ng,  even  though  the  

contact  angle  can  s@ll  be  high  •  The  reverse  Wenzel-­‐to-­‐Cassie  transi@on  is  difficult,  

though  possible  in  some  cases.  

Not  only  damage  to  the  surface,  but  also  we9ng  transi@ons  can  lead  to  pinning  of  droplets    

Important  for  underwater  applica@ons  (long-­‐@me  contact  with  water)  e.g.  Ship  hull  •  prevent  bio-­‐fouling  (algae,  mussels,  …)  •  drag  reduc@on  

Wenzel  

Cassie  

transi@on  

Page 6: Sirris Smart Coating workshop - Easy-to-clean and Self cleaning Coatings - 19 May 2011 - Non-wetting surfaces: robustness and applications - Robin Ras, Aalto University Finland

Dr.  Robin  Ras,  Aalto  University,  Finland  

Damage  to  non-­‐we9ng  surfaces  (1)  

Two  types  of  damage  •  loss  of  roughness  (increases  the  area  of  contact  between  water  

and  the  surface)  –  Mechanical  abrasion  

•  intrinsic  hydrophobicity  of  the  surface  is  reduced  –  Damage  to  a  hydrophobic  surface  layer  

•  Mechanical  abrasion  •  Ultraviolet  radia@on  •  …  

–  Contamina@on  (organic/bio)  

 As  a  consequence,  the  Cassie  state  may  become  unstable  or  contact    angle  hysteresis  may  increase  due  to  hydrophilic  defects.  

Verho,  Ras  et  al.,  Adv.  Mater.  2011,  23,  673–678  

Page 7: Sirris Smart Coating workshop - Easy-to-clean and Self cleaning Coatings - 19 May 2011 - Non-wetting surfaces: robustness and applications - Robin Ras, Aalto University Finland

Dr.  Robin  Ras,  Aalto  University,  Finland  

Damage  to  non-­‐we9ng  surfaces  (2)  •  Most  superhydrophobic  surfaces  work  well  in  controlled  laboratory  condi@ons  •  But  fail  in  real-­‐life  applica@ons.  

The  requirements  for  durability  depend  on  the  area  of  applica@on.    Different  kinds  of  durability  •  Robustness  in  weather  condi@ons  (e.g.  windows  of  traffic  cameras,  coa@ng  of  

weather  sta@ons)  –  Fouling-­‐resistant  –  UV-­‐resistant  

•  Robustness  against  skin  contact  (e.g.  touch  screens)  –  Mechanically  durable  –  Resistant  against  finger  grease  

•  Food  packaging  /  kitchen  utensils  –  Resistant  against  oil-­‐contamina@on  –  (Mechanically  durable)  

•  …  

Page 8: Sirris Smart Coating workshop - Easy-to-clean and Self cleaning Coatings - 19 May 2011 - Non-wetting surfaces: robustness and applications - Robin Ras, Aalto University Finland

Dr.  Robin  Ras,  Aalto  University,  Finland  

Hierarchical  roughness  =  topography  at  two  or  more  length  scales  

Only  microroughness  is  present.  Abrasion  causes  the  bumps  to  wear  off,  making  the  Cassie  state  no  longer  stable.  

One  length  scale   Two  length  scales  

Microbumps  with  a  nanoroughness  on  them.  Most  of  the  nanoroughness  is  unaffected  by  wear  and  the  Cassie  state  remains  stable.  

Page 9: Sirris Smart Coating workshop - Easy-to-clean and Self cleaning Coatings - 19 May 2011 - Non-wetting surfaces: robustness and applications - Robin Ras, Aalto University Finland

Dr.  Robin  Ras,  Aalto  University,  Finland  

Hierarchical  roughness:  example  1  

•  PET  fabric  coated  with  nanofilaments  before  and  awer  a  wear  test  that  simulates  skin  contact.  

•  majority  of  the  filaments  are  protected  by  the  3D  microstructure  of  the  fabric  •  Since  the  residual  layer  awer  abrasion  is  also  s@ll  hydrophobic,  the  overall  

superhydrophobic  proper@es  of  the  tex@le  are  retained.  •  Contact  angle  hysteresis  has  increased  slightly  

Adv.  Funct.  Mater.  2008,  18,  3662–3669  

Page 10: Sirris Smart Coating workshop - Easy-to-clean and Self cleaning Coatings - 19 May 2011 - Non-wetting surfaces: robustness and applications - Robin Ras, Aalto University Finland

Dr.  Robin  Ras,  Aalto  University,  Finland  

Hierarchical  roughness:  example  2  

Despite  an  increase  in  contact  angle  hysteresis,  the  surface  remained  superhydrophobic,  showing  that  the  microscale  pyramids  protected  the  nanoscale  features  on  the  walls  of  the  pyramids  

Nanotechnology  21  (2010)  155705  

Micropyramids  with  nanoscale  roughness  

Abrasion  with  Technicloth  paper   Sand  abrasion  (6  min)  θ=168°  Δθ=2°   θ=167°  

Δθ=13°  θ=161°  Δθ=70°  

Hydrophilic    pinning  site  

θrec(Si02)=0°  

Page 11: Sirris Smart Coating workshop - Easy-to-clean and Self cleaning Coatings - 19 May 2011 - Non-wetting surfaces: robustness and applications - Robin Ras, Aalto University Finland

Dr.  Robin  Ras,  Aalto  University,  Finland  

Hierarchical  roughness:  example  2  

Nanotechnology  21  (2010)  155705  

Micropyramids  with  nanoscale  roughness  

Abrasion  with  Technicloth  paper   Sand  abrasion  (6  min)  θ=168°  Δθ=2°   θ=167°  

Δθ=13°  θ=161°  Δθ=70°  

Hydrophilic    pinning  site  

•  Hydrophilic  bulk  materials  lead  to  pinning  sites  when  worn  off  •  Solu@on:  hydrophobic  bulk  material  

Verho,  Ras  et  al.,  Adv.  Mater.  2011,  23,  673–678  

Page 12: Sirris Smart Coating workshop - Easy-to-clean and Self cleaning Coatings - 19 May 2011 - Non-wetting surfaces: robustness and applications - Robin Ras, Aalto University Finland

Dr.  Robin  Ras,  Aalto  University,  Finland  

Hydrophobic  bulk  material  

polishing  with  sandpaper  increased  the  contact  angle  hysteresis  only  from  4°  to  10°  even  though  scanning  electron  microscopy  showed  that  the  surface  had  suffered  considerable  damage.  

Applied  Physics  Express  (2009)  125003  

An  organoclay-­‐polymer  nanocomposite  before  and  awer  abrading  with  sand  paper  

hJp://www.youtube.com/watch?v=HxVnFlKiFRw  

Page 13: Sirris Smart Coating workshop - Easy-to-clean and Self cleaning Coatings - 19 May 2011 - Non-wetting surfaces: robustness and applications - Robin Ras, Aalto University Finland

Dr.  Robin  Ras,  Aalto  University,  Finland  

Weather  durability  (1)  

Conven@onal  (A–D)  and  Lotus-­‐Effect®  (E–F)  façade  paint  specimens  awer  six  years  of  exposure  under  deciduous  trees.  

Bioinsp.  Biomim.  2  (2007)  S126–S134  

Page 14: Sirris Smart Coating workshop - Easy-to-clean and Self cleaning Coatings - 19 May 2011 - Non-wetting surfaces: robustness and applications - Robin Ras, Aalto University Finland

Dr.  Robin  Ras,  Aalto  University,  Finland  

Weather  durability  (2)  

Colloids  and  Surfaces  A:  Physicochem.  Eng.  Aspects  302  (2007)  234–240  

12  months  exposure  

Untreated  glass  

Superhydrophobic  glass  

Organic  contamina@on  

Silicone  nanofilaments  

Awer  12  months  exposure  to  weather  elements  

Page 15: Sirris Smart Coating workshop - Easy-to-clean and Self cleaning Coatings - 19 May 2011 - Non-wetting surfaces: robustness and applications - Robin Ras, Aalto University Finland

Dr.  Robin  Ras,  Aalto  University,  Finland  

Laundering  Durability  of  Superhydrophobic  CoJon  Fabric  

Adv.  Mater.  2010,  22,  5473–5477  

1H,1H,2H,2H-­‐nonafluorohexyl-­‐1-­‐acrylate  grawed  onto  a  coJon  fabric.  

Grawing  =  polymeriza@on  onto  a  solid  surface  

Page 16: Sirris Smart Coating workshop - Easy-to-clean and Self cleaning Coatings - 19 May 2011 - Non-wetting surfaces: robustness and applications - Robin Ras, Aalto University Finland

Dr.  Robin  Ras,  Aalto  University,  Finland  

Laundering  Durability  of  Superhydrophobic  CoJon  Fabric  

Adv.  Mater.  2010,  22,  5473–5477  

Fluorinated  groups  are  covalently  bonded  to  the  coJon  fabric      superhydrophobicity  s@ll  retained  its  superhydrophobicity  awer  50  accelerated      laundering  cycles  (=  equivalent  to  250  commercial  or  domes@c  launderings).      binding  between  the  coJon  fiber  and  the  fluorinated  graw  chains  is  strong  enough    to  withstand  the  shear  force  of  the  water  and  the  stainless  steel  balls.  

Page 17: Sirris Smart Coating workshop - Easy-to-clean and Self cleaning Coatings - 19 May 2011 - Non-wetting surfaces: robustness and applications - Robin Ras, Aalto University Finland

Dr.  Robin  Ras,  Aalto  University,  Finland  Transparent,  Thermally  Stable  and  Mechanically  Robust  Superhydrophobic  Surfaces  Made  from  Porous  Silica  

Capsules  

The  coa@ng  retains  its  superhydrophobicity  under  adhesion  tape  peeling  and  sand  abrasion  

Adv.  Mater.  (2011)  DOI:  10.1002/adma.201100410  

Page 18: Sirris Smart Coating workshop - Easy-to-clean and Self cleaning Coatings - 19 May 2011 - Non-wetting surfaces: robustness and applications - Robin Ras, Aalto University Finland

Dr.  Robin  Ras,  Aalto  University,  Finland  

SuperHYDROphobic        superOLEOphobic  or  superOMNIphobic  ?  

Young  equa@on  γsg  –  γsl  =  γlg  cos  θ  •  The  interfacial  energy  for  water  

•     γlg=72.8  mN/m  (high)  •  The  interfacial  energy  for  oils  

and  organic  maJer  much  lower  •  hexadecane  γlg=27.5  mN/m  •  decane  γlg=23.8  mN/m  •  octane  γlg=21.6  mN/m  

•  Difficult  to  increase  contact  angle,  •  Remember:  The  lowest  known  are  for  fluorinated  

chemical  groups  •   γsg  =  6.7  mN/m  for  -­‐CF3,  a  bit  higher  for  –CF2-­‐  

Superoleophobic  surfaces:  The  contact  angle  >  150°  for  oils  

Three  requirements:  • Low  surface  energy  • Roughness  • Re-­‐entrant  curvature  

e.g.  Science  2007,  318,  1618.  

Page 19: Sirris Smart Coating workshop - Easy-to-clean and Self cleaning Coatings - 19 May 2011 - Non-wetting surfaces: robustness and applications - Robin Ras, Aalto University Finland

Dr.  Robin  Ras,  Aalto  University,  Finland  

Self-­‐healing  superhydrophobicity  (1):  a  property  from  nature  

Chem.  Commun.,  2011,  47,  2324–2326  

Page 20: Sirris Smart Coating workshop - Easy-to-clean and Self cleaning Coatings - 19 May 2011 - Non-wetting surfaces: robustness and applications - Robin Ras, Aalto University Finland

Dr.  Robin  Ras,  Aalto  University,  Finland  

Self-­‐healing  superhydrophobicity  (2)  

Angew.  Chem.  Int.  Ed.  2010,  49,  6129-­‐6133  

Page 21: Sirris Smart Coating workshop - Easy-to-clean and Self cleaning Coatings - 19 May 2011 - Non-wetting surfaces: robustness and applications - Robin Ras, Aalto University Finland

Dr.  Robin  Ras,  Aalto  University,  Finland  

Self-­‐healing  superhydrophobicity  and  superoleophobicity  (3)  

Chem.  Commun.,  2011,  47,  2324–2326  

Page 22: Sirris Smart Coating workshop - Easy-to-clean and Self cleaning Coatings - 19 May 2011 - Non-wetting surfaces: robustness and applications - Robin Ras, Aalto University Finland

Dr.  Robin  Ras,  Aalto  University,  Finland  

Superhydrophobicity  =    Water  repellency  

Superhydrophobic  applica@ons  

•  Self-­‐cleaning  •  No  water  absorp@on  (tex@le  remains  dry)  

–  Energy  efficient  •  An@-­‐icing  •  An@-­‐fogging  •  Dew  collec@on  •  Floata@on  

–  Locomo@on  •  Drag  reduc@on  •  Thermal  insula@on  •  Gas  extrac@on  from  water  

Superhydrophobicity    in  nature  • Plant  leaves  • Insect  wings  

• Insect  eyes  • Desert  beetle  • Water  strider  

 • Breathing  by  underwater  insects  

plastron  

Page 23: Sirris Smart Coating workshop - Easy-to-clean and Self cleaning Coatings - 19 May 2011 - Non-wetting surfaces: robustness and applications - Robin Ras, Aalto University Finland

Dr.  Robin  Ras,  Aalto  University,  Finland  

Staying  dry  

Cicada  wings  

Ras  et  al.  JACS  (2008)  130,  11253  

Clothing  

Adv.  Funct.  Mater.  2008,  18,  3662–3669  

Silicone  nanofilaments  

Page 24: Sirris Smart Coating workshop - Easy-to-clean and Self cleaning Coatings - 19 May 2011 - Non-wetting surfaces: robustness and applications - Robin Ras, Aalto University Finland

Dr.  Robin  Ras,  Aalto  University,  Finland  

Superhydrophobic  Tracks  for  Low-­‐Fric@on,  Guided  Transport  of  Water  Droplets  

•  A  water  droplet  does  not  penetrate  through  a  hole/groove  in  a  superhydrophobic  surface  

•  Track  edge  keeps  the  drop  inline  with  the  track  

Mertaniemi,  Ras  et  al.  Advanced  Materials  (2011)  in  press.        DOI:10.1002/adma.201100461  

gravita@on   Electrosta@c  force   Superhydrophobic  knife  

Page 25: Sirris Smart Coating workshop - Easy-to-clean and Self cleaning Coatings - 19 May 2011 - Non-wetting surfaces: robustness and applications - Robin Ras, Aalto University Finland

Dr.  Robin  Ras,  Aalto  University,  Finland  

An@-­‐Icing  Superhydrophobic  Coa@ngs  

Langmuir  2009,  25(21),  12444–12448  Langmuir  2011,  27(1),  25–29   hJp://www.youtube.com/watch?v=mxQy73rL3a8  

Note:  also  robustness  is  a  problem  here,  as  the  growing  ice  crystals  may  damage  the  nano/micronscale  topography  

Page 26: Sirris Smart Coating workshop - Easy-to-clean and Self cleaning Coatings - 19 May 2011 - Non-wetting surfaces: robustness and applications - Robin Ras, Aalto University Finland

Dr.  Robin  Ras,  Aalto  University,  Finland  

Delayed  Freezing  on  Water  Repellent  Materials  

Ini@al  water  temperature  25°C  Copper  plate  at  -­‐7°C  

Figure  1.  Comparison  between  two  water  drops  (Ω  =  1200  μL)  deposited  on  microtextured  superhydrophobic  (black)  copper  (lew)  and  flat  (orange)  copper  (right),  both  at  a  temperature  T  =  -­‐7  C.  First  row:  the  drops  were  just  deposited;  their  colors  reflect  the  substrates.  Second  row:  the  drop  on  flat  copper  has  frozen.  Third  row:  both  drops  are  frozen.  There  is  no  difference  in  contact  angle  between  the  drops,  because  a  thin  ring  (of  radius  R  =  10  mm)  has  been  etched  in  both  plates,  providing  pinning  for  the  contact  line  and  allowing  us  to  compare  the  freezing  of  drops  of  same  volume  and  same  surface  area.  

Langmuir  2009,  25(13),  7214–7216  

Roughened  fluorinated  copper  =superhydrophobic  

Smooth  fluorinated    copper  Normal  copper  

The  drop  on  a  superhydrophobic  surface  contacts  more  air  than  solid    Insula@ng  proper@es  

Page 27: Sirris Smart Coating workshop - Easy-to-clean and Self cleaning Coatings - 19 May 2011 - Non-wetting surfaces: robustness and applications - Robin Ras, Aalto University Finland

Dr.  Robin  Ras,  Aalto  University,  Finland  

An@-­‐fogging  

Adv.  Mater.  2007,  19,  2213–2217  

Prevents  moisture  from  nuclea@ng  

Page 28: Sirris Smart Coating workshop - Easy-to-clean and Self cleaning Coatings - 19 May 2011 - Non-wetting surfaces: robustness and applications - Robin Ras, Aalto University Finland

Dr.  Robin  Ras,  Aalto  University,  Finland  Harvesting of water by a desert beetle

10  µm  Superhydrophobic

Hydrophilic peaks

 Applica@on:  Fog  harves@ng  Tent  fabrics  and  roof  @les  to  collect  moisture  in  arid  areas.  

Nature  (2001)  414,  33  

Page 29: Sirris Smart Coating workshop - Easy-to-clean and Self cleaning Coatings - 19 May 2011 - Non-wetting surfaces: robustness and applications - Robin Ras, Aalto University Finland

Dr.  Robin  Ras,  Aalto  University,  Finland  

Floata@on  on  water  using  surface  tension  forces  

Advances  in  Insect  Physiology  (2008)  34,  117  

Page 30: Sirris Smart Coating workshop - Easy-to-clean and Self cleaning Coatings - 19 May 2011 - Non-wetting surfaces: robustness and applications - Robin Ras, Aalto University Finland

Dr.  Robin  Ras,  Aalto  University,  Finland  

Floata@on  on  water  using  surface  tension  forces  

Hydrophilic  claws  to  grab  the  water  surface  

Dimple:  stretching  of  the  water  surface  

Advances  in  Insect  Physiology  (2008)  34,  117  

Page 31: Sirris Smart Coating workshop - Easy-to-clean and Self cleaning Coatings - 19 May 2011 - Non-wetting surfaces: robustness and applications - Robin Ras, Aalto University Finland

Dr.  Robin  Ras,  Aalto  University,  Finland  

Meniscus-­‐climbing  

Nature  (2005)  437,  733  

Page 32: Sirris Smart Coating workshop - Easy-to-clean and Self cleaning Coatings - 19 May 2011 - Non-wetting surfaces: robustness and applications - Robin Ras, Aalto University Finland

Dr.  Robin  Ras,  Aalto  University,  Finland  

Water  strider  look-­‐alikes:  water-­‐walking  devices  

Exp  Fluids  (2007)  43:769–778  IEEE  TRANSACTIONS  ON  ROBOTICS,  VOL.  23,  NO.  3,  JUNE  2007   hJp://www.youtube.com/watch?v=756Tk9y0aNg  

hJp://nanolab.me.cmu.edu/projects/waterstrider/  

Page 33: Sirris Smart Coating workshop - Easy-to-clean and Self cleaning Coatings - 19 May 2011 - Non-wetting surfaces: robustness and applications - Robin Ras, Aalto University Finland

Dr.  Robin  Ras,  Aalto  University,  Finland  

Content Superhydrophobic  and  Superoleophobic  Nanocellulose  Aerogel  Membranes  

as  Bioinspired  Cargo  Carriers  on  Water  and  Oil  

Chemical  vapor  deposi@on  of  perfluorinated  trichlorosilane  

•  Low-­‐surface-­‐energy  coa@ng  •  Roughness  from  nano-­‐  to  microscale  •  Overhangs  

Jin,  KeJunen,  Laiho,  Pynnönen,  Paltakari,  Marmur,  Ikkala,  Ras,  Langmuir  (2011)  1930.  

Nanocellulose  aerogel  

Page 34: Sirris Smart Coating workshop - Easy-to-clean and Self cleaning Coatings - 19 May 2011 - Non-wetting surfaces: robustness and applications - Robin Ras, Aalto University Finland

Dr.  Robin  Ras,  Aalto  University,  Finland  TiO2-­‐coated  nanocellulose  aerogel  

KeJunen  (née  Pääkkö),  Silvennoinen,  Houbenov,  Nykänen,  Ruokolainen,  Sainio,  Pore,  Kemell,  Ankerfors,  Lindström,  Ritala,  Ras,  Ikkala,                                Adv.  Funct.  Mater.    (2011)  510.  

Nanocellulose aerogel (highly porous solvent-free network)

TiO2-coated nanocellulose aerogel (coated by chemical vapor deposition CVD or atomic layer deposition ALD)

Precursor:

TiO2 thickness ca. 7 nm on nanocellulose fibril

ALD  or  CVD  

Korhonen,  Hiekkataipale,  Malm,  Karppinen,  Ikkala,  Ras,  ACS  Nano  (2011)  1967.  

Page 35: Sirris Smart Coating workshop - Easy-to-clean and Self cleaning Coatings - 19 May 2011 - Non-wetting surfaces: robustness and applications - Robin Ras, Aalto University Finland

Dr.  Robin  Ras,  Aalto  University,  Finland  Op@cally  controlled  water  absorp@on  within  TiO2-­‐coated  cellulose  aerogel  

No illumination Ultraviolet illumination λ = 350 nm

After ultraviolet illumination

Rejects water Absorbent Rejects water

High contact angle on surface

Water expelled from the pores

High contact angle on surface

Water expelled from the pores

Zero contact angle on surface

Water absorbed in the pores: 16 x water vs the aerogel weight

Recovering slowly

KeJunen  (née  Pääkkö),  Silvennoinen,  Houbenov,  Nykänen,  Ruokolainen,  Sainio,  Pore,  Kemell,  Ankerfors,  Lindström,  Ritala,  Ras,  Ikkala,                                Adv.  Funct.  Mater.    (2011)  510.  

Page 36: Sirris Smart Coating workshop - Easy-to-clean and Self cleaning Coatings - 19 May 2011 - Non-wetting surfaces: robustness and applications - Robin Ras, Aalto University Finland

Dr.  Robin  Ras,  Aalto  University,  Finland  

Humidity  sensing  using  TiO2  nanotube  aerogels  

Korhonen,  Hiekkataipale,  Malm,  Karppinen,  Ikkala,  Ras,  ACS  Nano  (2011)  1967.  

Nanotube  films  act  as  fast  resis@ve  humidity  sensors.    

Page 37: Sirris Smart Coating workshop - Easy-to-clean and Self cleaning Coatings - 19 May 2011 - Non-wetting surfaces: robustness and applications - Robin Ras, Aalto University Finland

Dr.  Robin  Ras,  Aalto  University,  Finland  

Plastron:  a  thin  layer  of  trapped  air  at  the  surface  of  an  immersed  superhydrophobic  surface  

SoL  MaMer,  2010,  6,  714      Angew.  Chem.  Int.  Ed.  2007,  46,  1710  –1712  

Mirror-­‐like  silvery  appearance  Reflec@vity  96%  Bioinsp.  Biomim.  2  (2007)  S126–S134  

Page 38: Sirris Smart Coating workshop - Easy-to-clean and Self cleaning Coatings - 19 May 2011 - Non-wetting surfaces: robustness and applications - Robin Ras, Aalto University Finland

Dr.  Robin  Ras,  Aalto  University,  Finland  

Slip  and  drag  reduc@on:  lower  fric@on  of  flowing  water  

To  analyze  con@nuum  liquid  flows,  a  so-­‐called  “no-­‐slip”  boundary  condiUon  is  typically  made.  This  condiUon  implies  that  the  flow  velocity  of  a  given  fluid  at  a  solid  wall  is  zero.  

True  for  most  surfaces,  not  for  superhydrophobic  surfaces  

Page 39: Sirris Smart Coating workshop - Easy-to-clean and Self cleaning Coatings - 19 May 2011 - Non-wetting surfaces: robustness and applications - Robin Ras, Aalto University Finland

Dr.  Robin  Ras,  Aalto  University,  Finland  

Superhydrophobic  Copper  Tubes  with  Possible  Flow  Enhancement  and  Drag  Reduc@on  

Page 40: Sirris Smart Coating workshop - Easy-to-clean and Self cleaning Coatings - 19 May 2011 - Non-wetting surfaces: robustness and applications - Robin Ras, Aalto University Finland

Dr.  Robin  Ras,  Aalto  University,  Finland  

Underwater  breathing:  plastron  func@ons  as  external  lung  

O2  

CO2  

J.  Fluid  Mech.  (2008),  vol.  608,  pp.  275–296.  

Page 41: Sirris Smart Coating workshop - Easy-to-clean and Self cleaning Coatings - 19 May 2011 - Non-wetting surfaces: robustness and applications - Robin Ras, Aalto University Finland

Dr.  Robin  Ras,  Aalto  University,  Finland  

Gas  extrac@on  from  water  

APPLIED  PHYSICS  LETTERS  89,  104106  (2006)  

A  sphere  of  3m  diameter  would  provide  enough  oxygen  for  a  human  to  survive    

Page 42: Sirris Smart Coating workshop - Easy-to-clean and Self cleaning Coatings - 19 May 2011 - Non-wetting surfaces: robustness and applications - Robin Ras, Aalto University Finland

Dr.  Robin  Ras,  Aalto  University,  Finland  

Conclusion  •  Robustness  of  superhydrophobic  surfaces  was  long  @me  ignored  •  Last  two  years  progress  made  towards  robust  superhydrophobic  surfaces  •  Some  promising  routes,  but  more  work  needed  

•  We  can  learn  a  lot  from  nature  (=biomime@cs)  •  Wide  range  of  applica@ons  beyond  self-­‐cleaning  for  non-­‐we9ng  surfaces  

Page 43: Sirris Smart Coating workshop - Easy-to-clean and Self cleaning Coatings - 19 May 2011 - Non-wetting surfaces: robustness and applications - Robin Ras, Aalto University Finland

Dr.  Robin  Ras,  Aalto  University,  Finland  

Acknowledgements  Aalto  Univ.  (Finland)  •  O.  Ikkala,  H.  Mertaniemi,  T.  Verho,  H.  Jin,  M.  KeJunen  (née  

Pääkkö),  J.  Korhonen,  P.  Hiekkataipale,  A.  Laiho.,  M.  Karppinen,  J.  Malm,  S.  Franssila,  V.  Jokinen,  L.  Sainiemi.  

Technion  (Israel)  •  A.  Marmur  Nokia  Research  Center  -­‐  Cambridge  (UK)  •  P.  Andrew  and  C.  Bower    Funding  •  Nokia  Research  Center,  UPM  Kymmene,  TEKES,  Acad.  Finland.  

Dr.  Robin  Ras  Aalto  University,  Helsinki,  Finland  [email protected]  hJp://Ly.tkk.fi/molmat/