48
FUNCTIONAL DIVERSITY: Trait-based Approaches for Bioengineering Multifunctional Agroecosystems Fabrice DeClerck (and friends)

Icraf seminar(de clerck)

Embed Size (px)

DESCRIPTION

 

Citation preview

Page 1: Icraf seminar(de clerck)

FUNCTIONAL DIVERSITY:Trait-based Approaches for Bioengineering

Multifunctional Agroecosystems

Fabrice DeClerck (and friends)

Page 2: Icraf seminar(de clerck)

Version 2.8 B

Upgrade:Now includesProvisioning, Cultural, Regulating and Support Services

Free support from more than 2 million species*

Constantly Evolving!

OS®

PhylogenyXP

experience the best of the biosphere

OS

Ph

ylog

eny

XP V

ersion

2.8 B

*number of species may be greater than 100 million

Page 3: Icraf seminar(de clerck)

Agrobiodiversity

Agricultural biodiversity includes all components of biological diversity of relevance to food and agriculture, and all components of biological diversity that constitute the agroecosystem.

CBD definition of Agricultural Diversity

Page 4: Icraf seminar(de clerck)

Loss of functional diversity under land use intensification across multiple taxa. Ecology Letters 12:22-33

Dan Flynn, Melanie Gogol-Prokurat, Brenda Lin, Nicole Molinari, Theresa Nogeire, Bárbara Trautman Richers,  Nicholas Simpson,  Margie Mayfield and Fabrice DeClerck

Page 5: Icraf seminar(de clerck)

Tilm

an e

t al

199

6

Page 6: Icraf seminar(de clerck)

Diaz and Cabido (2001)

Page 7: Icraf seminar(de clerck)

Flynn et al. Ecology Letters (2009) 12:22-33 DeClerck NCEAS DGS

Flynn et al. Ecology Letters (2009) 12:22-33 DeClerck NCEAS DGS

Does land use intensification reduce functional diversity?

Page 8: Icraf seminar(de clerck)

Live Fence

Forest

Landuse Intensity

[ ]

PastureLow tree density

2°Forest

PastureHigh Tree Density

Sanchez et al

Page 9: Icraf seminar(de clerck)

How is functional diversity lost with intensification?

Flynn et al. Ecology Letters (2009) 12:22-33 DeClerck NCEAS DGS

71 Species Total

Page 10: Icraf seminar(de clerck)

x

x

x

x

xx

x

x

x

xxx

x

xxx

x

x

xx

What is functional redundancy within

taxonomic groups with land use change?

Flynn et al. Ecology Letters (2009) 12:22-33 DeClerck NCEAS DGS

Forest Fragment: 25 extinct

Page 11: Icraf seminar(de clerck)

x

x

x

x

x

x

x

x

x

x

x

x

xx

x

x

x

xxx

x

xxx

x

x

xx

xx

x

x

x

xx

xxxx

xx

x

x

Live Fence: 41 extinctForest Fragment: 25 extinct

Page 12: Icraf seminar(de clerck)

x

x

x

x

x

x

x

x

x

x

x

x

xx

x

x

x

xxx

x

xxx

x

x

xx

xx

x

x

x

xx

xxxx

xx

x

x

Live Fence: 41 extinctForest Fragment: 25 extinct

Page 13: Icraf seminar(de clerck)

x

x

x

x

x

x

x

x

x

x

x

x

xx

x

x

x

xxx

x

xxx

x

x

xx

xx

x

x

x

xx

xxxx

xx

x

x

x

x

x

x

x

x

x

xxx

x

xx

x

x

Live Fence: 41 extinctForest Fragment: 25 extinct Pasture: 64 extinct

Page 14: Icraf seminar(de clerck)

Functional Diversity Decreases with landuse Intensity

Flynn et al. Ecology Letters (2009) 12:22-33 DeClerck NCEAS DGS

Page 15: Icraf seminar(de clerck)

Agrobiodiversity and Human Nutrition

Fabrice DeClerck1,2, Jessica Fanzo2,3,

Cheryl Palm2 and Roseline Remans2

1CATIE and 2The Earth Institute at Columbia University, 3 Bioversity

Page 16: Icraf seminar(de clerck)

Deckelbaum, Palm, Mutuo and F. DeClerck

Econutrition: the interrelationships among nutrition, human health, agriculture and food production, environmental health, and economic production

Page 17: Icraf seminar(de clerck)

Hypotheses

• Biodiversity drives ecosystem functioning

• Human health is an ecosystem function

• Agrobiodiversity should impact human health

• The study of agrobiodiversity and human health can lead to important considerations for both sustainable development, and theoretical ecology.

F. DeClerck

Page 18: Icraf seminar(de clerck)

Sauri Agrobiodiversity

• Over 146 plant species found• 39 Edible Species • Mean of 14 edible species per farm• Ranging from 5 - 22 edible plant species• Mean 1.5 cattle, half a sheep, a quarter

goat and 7 chickens.

F. DeClerck

Page 19: Icraf seminar(de clerck)

Seven Traits

1) Protein2) Energy3) Vitamin A4) Vitamin C5) Iron6) Zinc7) Folates

F. DeClerck

Page 20: Icraf seminar(de clerck)

High Protein

High Energy

High Vitamin A

F. DeClerck

Page 21: Icraf seminar(de clerck)

Species Richness

FD

Field species richness, and functional diversity are related: r2 0.49, p<0.001

F. DeClerck, Remans, Fanzo and Palm (2010)

Page 22: Icraf seminar(de clerck)

Farm 103801Species Richness = 19FD = 0.66

Farm 201201Species Richness = 18FD = 0.99

Farm 600102Species Richness = 10FD = 0.76

Species Richness

FD

F. DeClerck, Remans, Fanzo and Palm (2010)

Page 23: Icraf seminar(de clerck)

Farm 201201Species Richness = 18FD = 0.99

Farm 103801Species Richness = 19FD = 0.66

Farm 600102Species Richness = 10FD = 0.76

F. D

eC

lerc

k, R

em

an

s, F

an

zo a

nd

Pa

lm (

20

10

)

Page 24: Icraf seminar(de clerck)

High functional agrobiodiversity decreases probability of anemia

Species richness and anemia, R2 =0.05

Functional diversity and anemia R2= 0.13

F. D

eC

lerc

k, R

em

an

s, F

an

zo a

nd

Pa

lm (

20

10

)

Page 25: Icraf seminar(de clerck)

Table 1. Nutrients and nutrient groups taken into account for calculation of FD metrics. From the 51 required nutrients for human diets, 17 nutrients that are key for human diets and for which reliable plant composition data were available in the literature were selected. Because plants are not a proven source for Vitamin B12 and Vitamin D, these were not included.

Macronutrients Minerals Vitamins

Protein Calcium (Ca) Vitamin A

Carbohydrates Iron (Fe) Vitamin C

Dietary fibre Potassium (K) Thiamin

Fat Magnesium (Mg) Riboflavin

Manganese (Mn) Folate

Zinc (Zn) Niacin

  Sulfur (S)  

Remans, Flynn, DeClerck et al. PloS One (2010)

Page 26: Icraf seminar(de clerck)

Zinc

F. DeClerck F. D

eC

lerc

k, R

em

an

s, F

an

zo a

nd

Pa

lm (

20

10

)

Page 27: Icraf seminar(de clerck)

Zinc

F. DeClerck F. D

eC

lerc

k, R

em

an

s, F

an

zo a

nd

Pa

lm (

20

10

)

Page 28: Icraf seminar(de clerck)

Zinc

F. DeClerck F. D

eC

lerc

k, R

em

an

s, F

an

zo a

nd

Pa

lm (

20

10

)

Page 29: Icraf seminar(de clerck)

Zinc

F. DeClerck F. D

eC

lerc

k, R

em

an

s, F

an

zo a

nd

Pa

lm (

20

10

)

Page 30: Icraf seminar(de clerck)

0 5 10 15 20 25 30 350.6

0.65

0.7

0.75

0.8

0.85

Number of Nutritional Functions

Co

ntr

ibu

tio

n o

f B

D t

o N

utr

itio

n

F. D

eC

lerc

k, R

em

an

s, F

an

zo a

nd

Pa

lm (

20

10

)

Page 31: Icraf seminar(de clerck)

Figure 2. Nutritional Functional Diversity and Species richness for 170 farms in Sauri (☐), Mwandama (Δ) and Ruhiira ()

Remans, Flynn, DeClerck et al. PloS One (2010)

Page 32: Icraf seminar(de clerck)

Figure 3. Observed versus expected Nutritional Functional Diversity for 170 farms in Sauri (☐), Mwandama (Δ) and Ruhiira (). Farms that have observed FD values that significantly differ from expected FD values are in bold.

Remans, Flynn, DeClerck et al. PloS One (2010)

Page 33: Icraf seminar(de clerck)

Land-use intensification reduces functional redundancy and response diversity in plant communities. Ecology Letters 13:76-86

Etienne Laliberté, Jessie Wells, Fabrice DeClerck, Dan Metcalfe, Isabelle Aubin, Carla Catterall, Cibele Queiroz, Stephen Bonser, Yi Ding, Sean McNamara, Jen Fraterrigo, John Morgan,

Peter Vesk, Margie Mayfield.

Page 34: Icraf seminar(de clerck)

Response diversity

“Of increasing concern is the loss of species that have similar ecosystem effects but differ in their environmental responses. This latter role of diversity (…) may be one of the most important mechanisms by which we sustain the long-term functioning of ecosystems and the services they provide to society.”

Chapin et al. 1997 Science

Page 35: Icraf seminar(de clerck)

Ecological redundancy

1

2

3

4

5

6

• Redundancy = number of species within a functional group• High redundancy = high resilience to environmental change• Why? compensatory responses

Functionalgroups 1 to 6

Group 6: higherredundancy& resilience

Group 6: lowerredundancy& resilience

Page 36: Icraf seminar(de clerck)

Measuring response diversity

• Volume of the minimum convex hull formed by species within a functional group, in response trait space

• From 2 to n response traits

• Represents the range of “response strategies” found within a functional group

• Larger volume = higher resilience

Convex hull volume

Page 37: Icraf seminar(de clerck)

Measuring response diversity

Convex hull volume

Page 38: Icraf seminar(de clerck)

Functional trait Effect ResponseSpecific leaf area (SLA) XWood density XGrowth form XHeight XLeaf phenology X XNutrient uptake strategy X XPhotosynthetic pathway X XRaunkiaer life form XClonality XDispersal mode XLeaf size XMaximum propagule longevity XPhysical defense XPollination syndrome XResprouting ability XSeed mass XLifespan X

Page 39: Icraf seminar(de clerck)

Costa Rica728(3)

Nicaragua240(2)

Quebec243 (1)

New Zealand54(1)

Australian RF1028 (4)

China453 (2)

USA, NC 38(1)

Australian WL52(1)

Portugual110 (1)

Laos 53(1)

Study Sites, Species Richness (landscapes)

± 3000 species; 17 landscapes; 17 functional traits

Page 40: Icraf seminar(de clerck)

a) Species in effect trait space

Page 41: Icraf seminar(de clerck)

a) Species in effect trait space

b) Functional effect groups

1

2

3

4

5

6

Page 42: Icraf seminar(de clerck)

a) Species in effect trait space

b) Functional effect groups

1

2

3

4

5

6

Nat

ura

lS

emi-

nat

ura

lL

ow

-in

ten

sity

agri

cult

ura

lH

igh

-in

ten

sity

agri

cult

ura

l

c) Species in each land use

Page 43: Icraf seminar(de clerck)

a) Species in effect trait space

b) Functional effect groups

1

2

3

4

5

6

Nat

ura

lS

emi-

nat

ura

lL

ow

-in

ten

sity

agri

cult

ura

lH

igh

-in

ten

sity

agri

cult

ura

l

c) Species in each land use

e) Spearmanρbetween land use intensity and response

diversity

Res

po

nse

div

ersi

ty

Land use intensity

ρ = -0.9

d) Functional dispersion (response diversity) for

each effect group in each land use

Effect size formeta-analysis

Page 44: Icraf seminar(de clerck)

r = -0.22p = 0.0003

Redundancy decreases with land use intensification

Page 45: Icraf seminar(de clerck)

Correlation coefficientr

-1.0 -0.5 0.0 0.5 1.0

Nicaragua (Matiguas)Australia sub-tropics 1Nicaragua (Rivas)Australia WT (Atherton)China (Hainan lowland)USA (North Carolina)New ZealandAustralia sub-tropics 2Costa Rica (La Palma)China (Hainan montane)Australia WL (NSW)PortugalCosta Rica (Las Cruces)LaosQuebecAustralia WT (Tully)Costa Rica (Puerto Jimenez)

Summary

r = -0.091p = 0.048

Response diversity decreases as well, but less so

Page 46: Icraf seminar(de clerck)

Correlation coefficientr

-1.0 -0.5 0.0 0.5 1.0

Nicaragua (Matiguas)Australia sub-tropics 1Nicaragua (Rivas)Australia WT (Atherton)China (Hainan lowland)USA (North Carolina)New ZealandAustralia sub-tropics 2Costa Rica (La Palma)China (Hainan montane)Australia WL (NSW)PortugalCosta Rica (Las Cruces)LaosQuebecAustralia WT (Tully)Costa Rica (Puerto Jimenez)

Summary

Correlation coefficientr

-1.0 -0.5 0.0 0.5 1.0

Nicaragua (Matiguas)Australia sub-tropics 1Nicaragua (Rivas)Australia WT (Atherton)China (Hainan lowland)USA (North Carolina)New ZealandAustralia sub-tropics 2Costa Rica (La Palma)China (Hainan montane)Australia WL (NSW)PortugalCosta Rica (Las Cruces)LaosQuebecAustralia WT (Tully)Costa Rica (Puerto Jimenez)

Summary

Redundancy Response diversity

Page 47: Icraf seminar(de clerck)

Towards Multifunctional Landscapes

• Ecological Aspects– What are the driving mechanisms behind ES

• Species richness, composition, functional diversity arrangement.

• Social and Economic Drivers– How do communities organize to impact change– Integration of multiple stakeholders in ecoagricultural

landscapes.• Does the ES paradigm provide conservation and

development goals?

Page 48: Icraf seminar(de clerck)

Thanks!

THANKS!!!