37
1 1.0 INTRODUCTION This chapter discuss about background of study, statement of problem, purpose, objective and significance of the study. 1.1 BACKGROUND OF THE STUDY This section will present detailed explanation of National Inflation Rate for Indonesia. Inflation is the rate to measuring increase of goods price. There are certain processes to calculate the Inflation in economic like we calculate GDP. So Inflation rate is important for the government, academician, consumer also businessman to know economy situation for the country. The rational why I am choose this topic is to open our mind and to know about our neighbour economy. Then, with reference that I have in QMT 463 I can forecast one step ahead with suitable models. 1.2 STATEMENT OF PROBLEM The main problem in this case, is to choose the best fitted models to generate the forecast for National Inflation Rate in Indonesia. By this guide it easy for me and other forecaster or researcher to do this task.

Forecast Modelling (Single Variable)

Embed Size (px)

DESCRIPTION

Fundamental Of Forecast Modeling

Citation preview

Page 1: Forecast Modelling (Single Variable)

1

1.0 INTRODUCTION

This chapter discuss about background of study, statement of problem, purpose, objective and

significance of the study.

1.1 BACKGROUND OF THE STUDY

This section will present detailed explanation of National Inflation Rate for Indonesia.

Inflation is the rate to measuring increase of goods price. There are certain processes to calculate

the Inflation in economic like we calculate GDP. So Inflation rate is important for the

government, academician, consumer also businessman to know economy situation for the

country. The rational why I am choose this topic is to open our mind and to know about our

neighbour economy. Then, with reference that I have in QMT 463 I can forecast one step ahead

with suitable models.

1.2 STATEMENT OF PROBLEM

The main problem in this case, is to choose the best fitted models to generate the forecast for

National Inflation Rate in Indonesia. By this guide it easy for me and other forecaster or

researcher to do this task.

Page 2: Forecast Modelling (Single Variable)

2

There are 10 stages in forecasting procedure that I must follow to complete this task.

i. Determine the purpose and objective of the forecasting exercise.

ii. Selection of relevant theory

iii. Collection data

iv. Getting to know your data

v. Initial model estimation

vi. Model evaluation and revision

vii. Initial forecast presentation

viii. Final revision

ix. Forecast distribution

x. Establish monitoring system

1.3 PURPOSE OF STUDY

The purpose of this assignment is to identify, choose, calculate the best fitted model for the set

data that I have. This study also explains the related graph which can explain the National

Inflation Rate in Indonesia.

1.4 OBJECTIVES OF STUDY

The objectives of this study are:

1.4.1 To study about National Inflation Rate of Indonesia.

1.4.2 To measure the one step ahead forecast with suitable model.

1.4.3 To analyze the data set and discuss on the component of time series (graph) that related to

the data set.

1.4.4 To search best fit model for the set data that I have.

Page 3: Forecast Modelling (Single Variable)

3

Page 4: Forecast Modelling (Single Variable)

4

1.5 SIGNIFICANCE OF THE STUDY

The study of will present detailed explanation of National Inflation Rate for Indonesia.

Inflation is the rate to measuring increase of goods price. There are certain processes to calculate

the Inflation in economic like we calculate GDP. So Inflation rate is important for the

government, academician, consumer also businessman to know economy situation for the

country. The Government, academician, consumer also businessman can use this information to

the industry and society to increase the level of awareness of economy.

Page 5: Forecast Modelling (Single Variable)

5

2.0 METHODOLOGY

This chapter describes the methodology used to carry out the study on the benefit of eggshell

technology in industries. Only secondary research was used to get the data for the study. One set

data of National Inflation rate in Indonesia obtain through internet research will used as source of

information. The data was synthesized and summarized for the report, no primary research was

done, no interviews were conducted, no questionnaire will distribute and no observations will

make. These are the limitations of the study.

Page 6: Forecast Modelling (Single Variable)

6

3.0 FINDINGS AND DISCUSSIONS

I have search through the internet to get the data set which has 36 month data. This data set I get

from Indonesia Statistic Ministry Web. This data set is called External Data because obtained

outside the normal operational activities of the firms and are beyond the management’s control.

When data obtained from secondary sources they are known as “Secondary Data”. The data set

can be seen in Figure1 and Table1.

From the data set that I have, in this task, I must use five models and then choose the best fitted

model.

i. Naïve Model

ii. Simple exponential smoothing Model

iii. Decomposition Method

iv. ARRES Method

v. Holt-Winters

Page 7: Forecast Modelling (Single Variable)

7

Figure1 (National Inflation of Indonesia Graph)

The graph in Figure1 shows that the National Inflation of Indonesia from January 2002 to

December 2004. The highest rate in January 2002 and the lowest data in March 2003. The trend

for the graph is decrease.

The table1 in the next page shows that all data set that I get obtain through internet. This data set

about the National Inflation Rate of Indonesia.

National Inflation of Indonesia

-0.50

0.00

0.50

1.00

1.50

2.00

2.50

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

Month

Inflation

Inflation

Page 8: Forecast Modelling (Single Variable)

8

Table1 (Data set of Inflation Rate of Indonesia from January 2002-Disember2004)

Year Month Inflation

2002 1 1.99

2 1.50

3 -0.02

4 -0.24

5 0.80

6 0.36

7 0.82

8 0.29

9 0.53

10 0.54

11 1.85

12 1.20

2003 1 0.80

2 0.20

3 -0.23

4 0.15

5 0.21

6 0.09

7 0.03

8 0.84

9 0.36

10 0.55

11 1.01

12 0.94

2004 1 0.57

2 -0.02

3 0.36

4 0.97

5 0.88

6 0.48

7 0.39

8 0.09

9 0.02

10 0.56

11 0.89

12 1.04

Page 9: Forecast Modelling (Single Variable)

9

3.1 NAIVE MODEL

Naïve with Trend Model

The application of this model is fairly common among organizations. One reason for its

popularity is that can be used even with fairly short time series. Thus, overcoming the common

problem in most organizations where insufficient data is a common phenomenon. Insufficient

data would prohibit the application of sophisticated modeling technique.

The one step ahead forecast is represented as, Ft+1 = yt (yt/ yt-1) where yt is the actual value at time

t, and yt-1 is the actual value in preceding period. This model implies that all future forecast can

be set to the equal the actual observed value in the most recent time period plus the growth rate

that is the trend value as measured by yt/ yt-1. Hence, if yt is greater than yt-1 then the trend is

upward and conversely if yt is less than yt-1 then trend is downward.

This model is highly sensitive to the change in the actual value. As such a sudden drop or sharp

increase in the value will severely affect the forecast. Furthermore, fitting this model type will

result in the loss of the first two observations in the series. On the other hand,this model can also

be used for short time series.

Fitting The Naïve With Trend Model With Excel

Table2 in the next page shows that how I am fitting Naïve with Trend Model with using Excel.

Firstly set the data like Table1. Then, make the column name fitted and type (D3*D3)/D2 in the

3rd

row. Then drag the box until one step ahead. Then, calculate its MSE to compare with other

model. The forecast value that I get for January 2005 is 1.22 .The MSE show that 24.23 and

the value of MAPE is 8.92 .

Page 10: Forecast Modelling (Single Variable)

10

Table2 (Fitting Naïve with Trend Model with Excel)

Year Month t Inflation Fitted

2002 1 1 1.99

2 2 1.50

3 3 -0.02 1.13

4 4 -0.24 0.00

5 5 0.80 -2.88

6 6 0.36 -2.67

7 7 0.82 0.16

8 8 0.29 1.87

9 9 0.53 0.10

10 10 0.54 0.97

11 11 1.85 0.55

12 12 1.20 6.34

2003 1 13 0.80 0.78

2 14 0.20 0.53

3 15 -0.23 0.05

4 16 0.15 0.26

5 17 0.21 -0.10

6 18 0.09 0.29

7 19 0.03 0.04

8 20 0.84 0.01

9 21 0.36 23.52

10 22 0.55 0.15

11 23 1.01 0.84

12 24 0.94 1.85

2004 1 25 0.57 0.87

2 26 -0.02 0.35

3 27 0.36 0.00

4 28 0.97 -6.48

5 29 0.88 2.61

6 30 0.48 0.80

7 31 0.39 0.26

8 32 0.09 0.32

9 33 0.02 0.02

10 34 0.56 0.00

11 35 0.89 15.68

12 36 1.04 1.41

2005 1 37 1.22

Page 11: Forecast Modelling (Single Variable)

11

Table2 ( Continue )

et et² (et/yt)*100

0

0

-1.15 1.32 5753

-0.24 0.06 100

3.68 13.54 460

3.03 9.16 841

0.66 0.43 80

-1.58 2.49 544

0.43 0.18 81

-0.43 0.18 79

1.30 1.69 70

-5.14 26.40 428

0.02 0.00 3

-0.33 0.11 167

-0.28 0.08 122

-0.11 0.01 76

0.31 0.09 147

-0.20 0.04 227

-0.01 0.00 29

0.83 0.69 99

-23.16 536.39 6433

0.40 0.16 72

0.17 0.03 17

-0.91 0.84 97

-0.30 0.09 53

-0.37 0.13 1828

0.36 0.13 100

7.45 55.50 768

-1.73 3.01 197

-0.32 0.10 66

0.13 0.02 33

-0.23 0.05 252

0.00 0.00 4

0.56 0.31 99

-14.79 218.74 1662

-0.37 0.14 36

Page 12: Forecast Modelling (Single Variable)

12

3.2 SIMPLE EXPONENTIAL SMOOTHING MODEL

Some people call this model Single Exponential Smoothing Technique. But one thing is sure, it

is the simplest form of model within the family of the exponential smoothing technique. The

model requires only one parameter, that is the smoothing constant α to generate the fitted values

and hence forecast.

The advantage of this procedure is that it takes into account the most recent forecast. In Simple

Exponential Smoothing Model, the forecast for the next and all subsequent periods are

determined by adjusting the current period forecast by apportion of the difference between the

current forecast and current actual value. This is described in term of minimum errors.

Hence, if the recent forecast proves to be accurate, then it seems reasonable to base the

subsequent forecast on these estimates. Likewise, if recent predictions have been subjected to

large errors, then new forecast will also take this into consideration.

Another advantage of this technique is that it is requires the retention of only a limited amount

the data. There is no need to store data for many periods, because the historical profile is

recorded in concise form in the current smoothed statistic.

Ft+m = α yt + (1-α)Ft

The main thing in simple exponential smoothing is to choose best value of α. The first procedure

relies heavily not only on ones personal knowledge about the problem being evaluated and but

also on the amount of past experience one has with regard to the variable involved. For instance,

if one’s experience leads one to believe that past values can still contribute significantly the

necessary information needed to generate the forecast values, the small value of α is assigned.

Conversely, large value of α is used when one believes that only the most recent information are

important to generate the forecast value.

Page 13: Forecast Modelling (Single Variable)

13

The second procedure that require the application of certain measurement criterion that can be

used to determined the best value of α. This is called “error measurement”. Some people called it

Mean Square Error (MSE), Root Mean Square Error (RMSE) and Mean Absolute Percent Error

(MAPE). The main purpose of this procedure is to generate a set fitted values associated with

each value. This is with objective of choosing the alpha value such that when it applied to the

model it minimizes the error. More specifically, it is to search far an alpha that result I the

smallest error measurement.

Fitting The Exponential Using Excel

Firstly key in the data like Table3. Then, in the fitted column write the equation =(E3*C2)+((1-

E3)*D2) to get the fitted value. Then ,drag the box to get fitted data. From the Table3, forecast of

the January 2005 one step ahead is 1.22 . After that, calculate error, MSE and MAPE to compare

with other model.

Page 14: Forecast Modelling (Single Variable)

14

Table3 (Fitting Simple Exponential Smoothing Model with α = 0.9)

Year Month t Inflation Fitted

2002 1 1 1.99

2 2 1.50

3 3 -0.02 1.13

4 4 -0.24 0.00

5 5 0.80 -2.88

6 6 0.36 -2.67

7 7 0.82 0.16

8 8 0.29 1.87

9 9 0.53 0.10

10 10 0.54 0.97

11 11 1.85 0.55

12 12 1.20 6.34

2003 1 13 0.80 0.78

2 14 0.20 0.53

3 15 -0.23 0.05

4 16 0.15 0.26

5 17 0.21 -0.10

6 18 0.09 0.29

7 19 0.03 0.04

8 20 0.84 0.01

9 21 0.36 23.52

10 22 0.55 0.15

11 23 1.01 0.84

12 24 0.94 1.85

2004 1 25 0.57 0.87

2 26 -0.02 0.35

3 27 0.36 0.00

4 28 0.97 -6.48

5 29 0.88 2.61

6 30 0.48 0.80

7 31 0.39 0.26

8 32 0.09 0.32

9 33 0.02 0.02

10 34 0.56 0.00

11 35 0.89 15.68

12 36 1.04 1.41

2005 1 37 1.22

Page 15: Forecast Modelling (Single Variable)

15

Et et² (et/yt)*100

0

0

-1.15 1.32 5753

-0.24 0.06 100

3.68 13.54 460

3.03 9.16 841

0.66 0.43 80

-1.58 2.49 544

0.43 0.18 81

-0.43 0.18 79

1.30 1.69 70

-5.14 26.40 428

0.02 0.00 3

-0.33 0.11 167

-0.28 0.08 122

-0.11 0.01 76

0.31 0.09 147

-0.20 0.04 227

-0.01 0.00 29

0.83 0.69 99

-23.16 536.39 6433

0.40 0.16 72

0.17 0.03 17

-0.91 0.84 97

-0.30 0.09 53

-0.37 0.13 1828

0.36 0.13 100

7.45 55.50 768

-1.73 3.01 197

-0.32 0.10 66

0.13 0.02 33

-0.23 0.05 252

0.00 0.00 4

0.56 0.31 99

-14.79 218.74 1662

-0.37 0.14 36

Total 872.12 ∑|(et/yt)*100| 321

MSE 24.23 MAPE 8.92

Page 16: Forecast Modelling (Single Variable)

16

3.3 DECOMPOSITION METHOD

The process of generating the forecast values using this methodology is basically the reverse of

the process of decomposing the components. What is done here is to integrate the individual

components that have been identified and isolated earlier using past data points in the forecast

periods. This is made on the basis of either one assumptions used when the data were initially

analyze. For instance, if these components are assumed to be related in multiplicative manner,

such that y = T.S.C.I , then the forecast is simply the product of these components. Similarly, if

the assumption takes the additive form, y = T+S+C+I.

It should be note that the application of the decomposition method is basically made on a very

important assumption. It is assumed that the patterns or characteristics of the data as exhibited in

the past will be repeated in the future. Even if there is any change, it is not expected to seriously

affect the future estimates.

To make the job more easier in decomposition method, I have use a simple linear trend for this

purpose which can easily be extrapolated by using excel.

Where

T = α + βt

Page 17: Forecast Modelling (Single Variable)

17

Figure2 (Linear Trend for National Inflation in Indonesia)

Inflation and Trend

y = -0.0071x + 0.7099

R2 = 0.0202

-0.50

0.00

0.50

1.00

1.50

2.00

2.50

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

Month

Infl

ati

on

Inflation Linear (Inflation)

From the graph in figure2, we can see downward trend over 36 month period from January 2002

to December 2004. Based on adjusted seasonal indices, it is determined that the highest rate of

inflation in Indonesia is November. The highest being the month of November, recording an

index of 219.32 percent. The lowest rate is in March as evident with lowest index with 9.59

percent.

Y = -0.0071x + 0.0799

From the estimated linear equation, it ca be conclude that over the period time the National

Inflation Rate of Indonesia have been increase at average monthly rate of 0.0799.

Page 18: Forecast Modelling (Single Variable)

18

Table4 (Decomposition Method)

Year Month t Inflation Moving Total Centered MT C.M.Average

2002 1 1 1.99

2 2 1.50

3 3 -0.02

4 4 -0.24

5 5 0.80

6 6 0.36

7 7 0.82 9.62 18.05 0.75

8 8 0.29 8.43 15.56 0.65

9 9 0.53 7.13 14.05 0.59

10 10 0.54 6.92 14.23 0.59

11 11 1.85 7.31 14.03 0.58

12 12 1.20 6.72 13.17 0.55

2003 1 13 0.80 6.45 12.11 0.50

2 14 0.20 5.66 11.87 0.49

3 15 -0.23 6.21 12.25 0.51

4 16 0.15 6.04 12.09 0.50

5 17 0.21 6.05 11.26 0.47

6 18 0.09 5.21 10.16 0.42

7 19 0.03 4.95 9.67 0.40

8 20 0.84 4.72 9.22 0.38

9 21 0.36 4.50 9.59 0.40

10 22 0.55 5.09 11.00 0.46

11 23 1.01 5.91 12.49 0.52

12 24 0.94 6.58 13.55 0.56

2004 1 25 0.57 6.97 14.30 0.60

2 26 -0.02 7.33 13.91 0.58

3 27 0.36 6.58 12.82 0.53

4 28 0.97 6.24 12.49 0.52

5 29 0.88 6.25 12.38 0.52

6 30 0.48 6.13 12.36 0.52

7 31 0.39 6.23

8 32 0.09

9 33 0.02

10 34 0.56

11 35 0.89

12 36 1.04

2005 1 37 -2.09

Page 19: Forecast Modelling (Single Variable)

19

Table4 (continue)

Unadjusted SI Adjusted SI Linear Trend Deseasonalised Data

109.20 0.64 0.0182

15.89 0.57 0.0944

9.59 0.50 -0.0021

92.86 0.43 -0.0026

92.51 0.35 0.0086

49.17 0.28 0.0073

109.03 50.04 0.21 0.0164

44.73 113.16 0.14 0.0026

90.53 77.59 0.07 0.0068

91.08 90.68 0.00 0.0060

316.46 219.32 -0.07 0.0084

218.68 165.46 -0.14 0.0073

158.55 109.20 -0.21 0.0073

40.44 15.89 -0.28 0.0126

-45.06 9.59 -0.36 -0.0240

29.78 92.86 -0.43 0.0016

44.76 92.51 -0.50 0.0023

21.26 49.17 -0.57 0.0018

7.45 50.04 -0.64 0.0006

218.66 113.16 -0.71 0.0074

90.09 77.59 -0.78 0.0046

120.00 90.68 -0.85 0.0061

194.08 219.32 -0.92 0.0046

166.49 165.46 -0.99 0.0057

95.66 109.20 -1.07 0.0052

-3.45 15.89 -1.14 -0.0013

67.39 9.59 -1.21 0.0375

186.39 92.86 -1.28 0.0104

170.60 92.51 -1.35 0.0095

93.20 49.17 -1.42 0.0098

50.04 -1.49 0.0078

113.16 -1.56 0.0008

77.59 -1.63 0.0003

90.68 -1.70 0.0062

219.32 -1.78 0.0041

165.46 -1.85 0.0063

109.20 -1.92

Page 20: Forecast Modelling (Single Variable)

20

Table5 (Adjusted Seasonal Indices)

Year 1 2 3 4 5 6 7 8 9 10 11 12

2002 109.03 44.77 90.53 91.08 316.46 218.68

2003 158.55 40.44 -45.06 29.78 44.76 21.26 7.45 218.66 90.09 120.00 194.08 166.49

2004 95.66 -3.45 67.39 186.39 170.60 93.20

Total 254.21 36.99 22.33 216.17 215.36 114.46 116.48 263.43 180.62 211.08 510.54 385.17

Mean 127.11 18.50 11.17 108.09 107.68 57.23 58.24 131.72 90.31 105.54 255.27 192.59

Adj Mean 109.20 15.89 9.59 92.86 92.51 49.17 50.04 113.16 77.59 90.68 219.32 165.46

Page 21: Forecast Modelling (Single Variable)

21

Figure3 (Inflation, Deseasonalized Data and Linear Trend)

Infla

tion,

Des

easo

nalis

ed d

ata

and

Line

ar T

rend

-2.5

0

-2.0

0

-1.5

0

-1.0

0

-0.5

0

0.00

0.50

1.00

1.50

2.00

2.50

13

57

911

1315

1719

2123

2527

2931

3335

Mon

th

Inflation

Infla

tion

Line

ar T

rend

Dese

ason

alise

d Da

ta

Page 22: Forecast Modelling (Single Variable)

22

3.4 ADDAPTIVE RESPONSE RATE EXPONENTIAL SMOOTHING (ARRES)

ARRES is different from other exponential method. It is because, other exponential method

discussed that, the value of parameter alpha used assumed constant for all time periods.

However, over time events may take place that affect the subsequent data behaviour. Some of

these events have been described earlier. For example, people may change their desire to buy a

certain product or there is change in the level of output as a result of technology change.

In these situation, to maintain the same value for alpha for all time periods may not be realistic

decision. Thus, the development of ARRES is an attempt to overcome this problem by

incorporating the effect of the changing pattern of the data series.

Ft+1 = αt yt + (1-αt) Ft

This indicates that the value of alpha is only appropriate at a particular period t, and maybe

different at different value of t.

As in any exponential smoothing technique, the appropriate initial values are required to start the

algorithm. In this case, value are for F0, α0, E0 and AET0.

Fitting ARRES With Excel

Firstly set up the data in the Table6,the make assumption alpha and beta with certain number

between 1 and 0. then in the fitted column write the equation =$H$2*C2+(1-$H$2)*C2 then drag

the box to the down. After that, calculate the MSE and retest the alpha and beta which have

smallest MSE.

Page 23: Forecast Modelling (Single Variable)

23

Table6 ( Fitting ARRES with Excel )

Year Month Inflation Fitted Et Et

2002 1 1.99 1.99 0.00 0.00

2 1.50 1.99 -0.49 -0.05

3 -0.02 1.50 -1.52 -0.20

4 -0.24 -0.02 -0.22 -0.20

5 0.80 -0.24 1.04 -0.07

6 0.36 0.80 -0.44 -0.11

7 0.82 0.36 0.46 -0.05

8 0.29 0.82 -0.53 -0.10

9 0.53 0.29 0.24 -0.07

10 0.54 0.53 0.01 -0.06

11 1.85 0.54 1.31 0.08

12 1.20 1.85 -0.65 0.00

2003 1 0.80 1.20 -0.40 -0.04

2 0.20 0.80 -0.60 -0.09

3 -0.23 0.20 -0.43 -0.13

4 0.15 -0.23 0.38 -0.08

5 0.21 0.15 0.06 -0.06

6 0.09 0.21 -0.12 -0.07

7 0.03 0.09 -0.06 -0.07

8 0.84 0.03 0.81 0.02

9 0.36 0.84 -0.48 -0.03

10 0.55 0.36 0.19 -0.01

11 1.01 0.55 0.46 0.04

12 0.94 1.01 -0.07 0.03

2004 1 0.57 0.94 -0.37 -0.01

2 -0.02 0.57 -0.59 -0.07

3 0.36 -0.02 0.38 -0.02

4 0.97 0.36 0.61 0.04

5 0.88 0.97 -0.09 0.03

6 0.48 0.88 -0.40 -0.02

7 0.39 0.48 -0.09 -0.02

8 0.09 0.39 -0.30 -0.05

9 0.02 0.09 -0.07 -0.05

10 0.56 0.02 0.54 0.01

11 0.89 0.56 0.33 0.04

12 1.04 0.89 0.15 0.05

2005 1 1.04

Page 24: Forecast Modelling (Single Variable)

24

AEt α β e² (et/yt)*100

0.00 0.90 0.10 0.00 0

1.05 0.90 0.10 0.24 33

1.05 0.90 0.10 2.31 7600

0.92 0.22 0.10 0.05 92

1.01 0.07 0.10 1.08 130

0.94 0.12 0.10 0.19 122

0.95 0.06 0.10 0.21 56

0.96 0.11 0.10 0.28 183

0.93 0.07 0.10 0.06 45

0.91 0.07 0.10 0.00 2

1.04 0.07 0.10 1.72 71

0.96 0.00 0.10 0.42 54

0.94 0.04 0.10 0.16 50

0.97 0.10 0.10 0.36 300

0.95 0.13 0.10 0.18 187

0.94 0.08 0.10 0.14 253

0.91 0.07 0.10 0.00 29

0.92 0.07 0.10 0.01 133

0.91 0.07 0.10 0.00 200

0.99 0.02 0.10 0.66 96

0.95 0.03 0.10 0.23 133

0.92 0.01 0.10 0.04 35

0.95 0.04 0.10 0.21 46

0.91 0.03 0.10 0.00 7

0.95 0.01 0.10 0.14 65

0.96 0.07 0.10 0.35 2950

0.94 0.03 0.10 0.14 106

0.97 0.04 0.10 0.37 63

0.91 0.03 0.10 0.01 10

0.95 0.02 0.10 0.16 83

0.91 0.03 0.10 0.01 23

0.94 0.05 0.10 0.09 333

0.91 0.06 0.10 0.00 350

0.96 0.01 0.10 0.29 96

0.94 0.04 0.10 0.11 37

0.92 0.05 0.10 0.02 14

∑e² 10.27 ∑|(et/yt)*100| 9826.65

MSE 0.27 MAPE 272.96

Page 25: Forecast Modelling (Single Variable)

25

3.5 HOLT-WINTER’S METHOD

All earlier exponential models are good as long as they deal with non seasonal data. When

seasonality exists, a more suitable model is needed. Holt-Winters is one such technique that takes

into account the trend and seasonality factors.

Fitting Holt-Winters Using Excel

Holt-Winters consist of three basic equation that define the level component, the trend

component and the seasonality component. Two assumption can be made with regard to the

relationship of these component.

Level Component

Lt = α ( yt / st-s ) + ( 1-α ) ( Lt-1 + bt-1 )

Trend Component

bt = β ( Lt Lt-1 ) + ( 1-β ) bt-1

Seasonal Component

St = γ (yt / Lt ) + (1-γ) St-s

The forecast

Ft+m = (Lt + bt * m) St-s+m

As usual, when fitting the model, some initial value are required. For ease of computation, some

simple technique will discuss here.

Determine the Initial Value

To determine the initial value, a simple procedure used to take the average of the first 12 quarters

(month).

Page 26: Forecast Modelling (Single Variable)

26

b0 = 1/s ( (ys+1 – y1 ) / s) + (ys+2 – y1 ) / s2) + ......

where s = 12 (represent the number of month in year)

The initial value of the seasonal component of the first 12 month are calculated by using the ratio

of the actual values to the mean of the first 12 values as represent by Lo in which

St = Yt / Lt

Page 27: Forecast Modelling (Single Variable)

27

Table7 ( Fitting Holt winter using excel )

Year Month Inflation Lt bt St

2002 1 1.99 1.18

2 1.50 0.89

3 -0.02 -0.01

4 -0.24 -0.14

5 0.80 0.48

6 0.36 0.21

7 0.82 0.49

8 0.29 0.17

9 0.53 0.32

10 0.54 0.32

11 1.85 1.10

12 1.20 1.68 -0.39 0.71

2003 1 0.80 0.80 -0.83 1.17

2 0.20 0.17 -0.65 0.92

3 -0.23 15.36 13.61 -0.01

4 0.15 4.95 -8.01 -0.13

5 0.21 -0.26 -5.49 0.35

6 0.09 -0.81 -1.05 0.18

7 0.03 -0.32 0.34 0.43

8 0.84 3.90 3.83 0.18

9 0.36 2.46 -0.91 0.30

10 0.55 1.68 -0.79 0.32

11 1.01 0.91 -0.77 1.10

12 0.94 1.08 0.08 0.73

2004 1 0.57 0.62 -0.41 1.14

2 -0.02 0.03 -0.58 0.75

3 0.36 -23.69 -21.41 -0.01

4 0.97 -15.20 5.50 -0.12

5 0.88 0.09 14.31 1.31

6 0.48 4.99 5.84 0.17

7 0.39 2.89 -1.30 0.40

8 0.09 0.72 -2.08 0.17

9 0.02 -0.22 -1.06 0.26

10 0.56 1.14 1.11 0.34

11 0.89 1.10 0.08 1.07

12 1.04 1.37 0.26 0.73

2005 1 1.86 1.63 0.26 1.14

Page 28: Forecast Modelling (Single Variable)

28

Fitted α β γ et e² (et/yt)*100

0.8 0.9 0.10 0 0 0

0.8 0.9 0.10 0 0 0

0.8 0.9 0.10 0 0 0

0.8 0.9 0.10 0 0 0

0.8 0.9 0.10 0 0 0

0.8 0.9 0.10 0 0 0

0.8 0.9 0.10 0 0 0

0.8 0.9 0.10 0 0 0

0.8 0.9 0.10 0 0 0

0.8 0.9 0.10 0 0 0

0.8 0.9 0.10 0 0 0

0.8 0.9 0.10 0 0 0

1.53 0.8 0.9 0.10 -0.73 0.53 91

-0.03 0.8 0.9 0.10 0.23 0.05 115

0.01 0.8 0.9 0.10 -0.24 0.06 102

-4.14 0.8 0.9 0.10 4.29 18.39 2859

-1.45 0.8 0.9 0.10 1.66 2.77 792

-1.23 0.8 0.9 0.10 1.32 1.75 1469

-0.91 0.8 0.9 0.10 0.94 0.88 3131

0.00 0.8 0.9 0.10 0.84 0.70 100

2.44 0.8 0.9 0.10 -2.08 4.32 577

0.50 0.8 0.9 0.10 0.05 0.00 10

0.98 0.8 0.9 0.10 0.03 0.00 3

0.10 0.8 0.9 0.10 0.84 0.70 89

1.35 0.8 0.9 0.10 -0.78 0.61 137

0.20 0.8 0.9 0.10 -0.22 0.05 1099

0.01 0.8 0.9 0.10 0.35 0.12 98

5.66 0.8 0.9 0.10 -4.69 22.02 484

-3.37 0.8 0.9 0.10 4.25 18.03 483

2.62 0.8 0.9 0.10 -2.14 4.57 445

4.66 0.8 0.9 0.10 -4.27 18.23 1095

0.28 0.8 0.9 0.10 -0.19 0.04 212

-0.41 0.8 0.9 0.10 0.43 0.18 2126

-0.41 0.8 0.9 0.10 0.97 0.94 173

2.48 0.8 0.9 0.10 -1.59 2.52 178

0.85 0.8 0.9 0.10 0.19 0.03 18

1.86 0.8 0.9 0.10 ∑e² 97.50 ∑|(et/yt)*100| 9448

MSE 2.71 MAPE 262.44

Page 29: Forecast Modelling (Single Variable)

29

4.0 CONCLUSSION

1. Where you need to find the initial value of the models that you have used. Why was

the method ?

Determine the Initial Value

To determine the initial value, a simple procedure used to take the average of the first 12 quarters

(month).

b0 = 1/s ( (ys+1 – y1 ) / s) + (ys+2 – y1 ) / s2) + ......

where s = 12 (represent the number of month in year)

The initial value of the seasonal component of the first 12 month are calculated by using the ratio

of the actual values to the mean of the first 12 values as represent by Lo in which

St = Yt / Lt

2. You are to find the best fitted model. In the other words to find the best parameter

value.

The smallest MSE among the model is ARRES which its MSE = 0.27 . So, the best parameter

value among the model that I have used is ARRES.

But the smallest MAPE that I have is NAÏVE model which is MAPE = 8.92 . But the main

disadvantage of this measure lies in its relevancy as it is valid only for ratio scale data ( data with

meaning full zero ) . For this reason , MAPE is potentially explosive for large forecast error

when the actual value observation close to the zero. In addition, percentage measure do not treat

errors of overestimate and underestimate.

Page 30: Forecast Modelling (Single Variable)

30

3. Present the result of your analysis. Which of the model do you think would perfom

the best forecast?

MODEL Naïve with Trend Single Exponential ARRES Method Holt Winters

α=0.9 α=0.9 α=0.9

β=0.1 β=0.1

γ=0.0

MSE 24.23 0.29 0.27 2.71

Forecast 1.22 1.02 1.04 1.86

From the table above, we can see the lowest MSE is 0.27 which is ARRES Method with α=0.9,

β=0.1 . So I choose ARRES Method as the best model in this task.

ARRES is different from other exponential method. It is because, other exponential method

discussed that, the value of parameter alpha used assumed constant for all time periods.

However, over time events may take place that affect the subsequent data behaviour. Some of

these events have been described earlier. For example, people may change their desire to buy a

certain product or there is change in the level of output as a result of technology change.

In this case, Inflation rate maybe change in certain time period because Income factor, GDP, cost

of production, price elasticity and other related factor.

In these situation, to maintain the same value for alpha for all time periods may not be realistic

decision. Thus, the development of ARRES is an attempt to overcome this problem by

incorporating the effect of the changing pattern of the data series.

Page 31: Forecast Modelling (Single Variable)

31

5.0 APPENDICES

Table1 ( Fitting Simple Exponential α=0.1 )

Year Month Inflation Fitted α Et et² (et/yt)*100

2002 1 1.99 1.99 0.10 0.00 0.00 0

2 1.50 1.99 0.10 -0.49 0.24 33

3 -0.02 1.94 0.10 -1.96 3.85 9805

4 -0.24 1.74 0.10 -1.98 3.94 827

5 0.80 1.55 0.10 -0.75 0.56 93

6 0.36 1.47 0.10 -1.11 1.24 309

7 0.82 1.36 0.10 -0.54 0.29 66

8 0.29 1.31 0.10 -1.02 1.03 351

9 0.53 1.20 0.10 -0.67 0.46 127

10 0.54 1.14 0.10 -0.60 0.36 111

11 1.85 1.08 0.10 0.77 0.60 42

12 1.20 1.15 0.10 0.05 0.00 4

2003 1 0.80 1.16 0.10 -0.36 0.13 45

2 0.20 1.12 0.10 -0.92 0.85 462

3 -0.23 1.03 0.10 -1.26 1.59 548

4 0.15 0.91 0.10 -0.76 0.57 503

5 0.21 0.83 0.10 -0.62 0.38 295

6 0.09 0.77 0.10 -0.68 0.46 753

7 0.03 0.70 0.10 -0.67 0.45 2233

8 0.84 0.63 0.10 0.21 0.04 25

9 0.36 0.65 0.10 -0.29 0.09 82

10 0.55 0.62 0.10 -0.07 0.01 13

11 1.01 0.62 0.10 0.39 0.15 39

12 0.94 0.66 0.10 0.28 0.08 30

2004 1 0.57 0.68 0.10 -0.11 0.01 20

2 -0.02 0.67 0.10 -0.69 0.48 3465

3 0.36 0.60 0.10 -0.24 0.06 68

4 0.97 0.58 0.10 0.39 0.15 40

5 0.88 0.62 0.10 0.26 0.07 30

6 0.48 0.64 0.10 -0.16 0.03 34

7 0.39 0.63 0.10 -0.24 0.06 61

8 0.09 0.60 0.10 -0.51 0.26 571

9 0.02 0.55 0.10 -0.53 0.28 2664

10 0.56 0.50 0.10 0.06 0.00 11

11 0.89 0.51 0.10 0.38 0.15 43

12 1.04 0.54 0.10 0.50 0.25 48

2005 1 0.59 0.10 Total 19.16 ∑|(et/yt)*100| 6063

MSE 0.53 MAPE 168.4109

Page 32: Forecast Modelling (Single Variable)

32

Table2 ( Fitting Simple Exponential α=0.5 )

Year Month Inflation Fitted α et et² (et/yt)*100

2002 1 1.99 1.99 0.50 0.00 0.00 0

2 1.50 1.99 0.50 -0.49 0.24 33

3 -0.02 1.75 0.50 -1.77 3.12 8825

4 -0.24 0.86 0.50 -1.10 1.22 459

5 0.80 0.31 0.50 0.49 0.24 61

6 0.36 0.56 0.50 -0.20 0.04 54

7 0.82 0.46 0.50 0.36 0.13 44

8 0.29 0.64 0.50 -0.35 0.12 120

9 0.53 0.46 0.50 0.07 0.00 12

10 0.54 0.50 0.50 0.04 0.00 8

11 1.85 0.52 0.50 1.33 1.77 72

12 1.20 1.18 0.50 0.02 0.00 1

2003 1 0.80 1.19 0.50 -0.39 0.15 49

2 0.20 1.00 0.50 -0.80 0.63 398

3 -0.23 0.60 0.50 -0.83 0.69 360

4 0.15 0.18 0.50 -0.03 0.00 23

5 0.21 0.17 0.50 0.04 0.00 20

6 0.09 0.19 0.50 -0.10 0.01 109

7 0.03 0.14 0.50 -0.11 0.01 364

8 0.84 0.08 0.50 0.76 0.57 90

9 0.36 0.46 0.50 -0.10 0.01 28

10 0.55 0.41 0.50 0.14 0.02 25

11 1.01 0.48 0.50 0.53 0.28 52

12 0.94 0.75 0.50 0.19 0.04 21

2004 1 0.57 0.84 0.50 -0.27 0.07 48

2 -0.02 0.71 0.50 -0.73 0.53 3632

3 0.36 0.34 0.50 0.02 0.00 5

4 0.97 0.35 0.50 0.62 0.38 64

5 0.88 0.66 0.50 0.22 0.05 25

6 0.48 0.77 0.50 -0.29 0.08 60

7 0.39 0.63 0.50 -0.24 0.06 60

8 0.09 0.51 0.50 -0.42 0.17 464

9 0.02 0.30 0.50 -0.28 0.08 1394

10 0.56 0.16 0.50 0.40 0.16 72

11 0.89 0.36 0.50 0.53 0.28 60

12 1.04 0.62 0.50 0.42 0.17 40

2005 1 0.83 0.50 Total 11.33 ∑|(et/yt)*100| 10742

MSE 0.31 MAPE 298.3958

Page 33: Forecast Modelling (Single Variable)

33

Table3 ( Fitting Simple Exponential α=0.8 )

Year Month Inflation Fitted α et et² (et/yt)*100

2002 1 1.99 1.99 0.80 0.00 0.00 0

2 1.50 1.99 0.80 -0.49 0.24 33

3 -0.02 1.60 0.80 -1.62 2.62 8090

4 -0.24 0.30 0.80 -0.54 0.30 227

5 0.80 -0.13 0.80 0.93 0.87 116

6 0.36 0.61 0.80 -0.25 0.06 70

7 0.82 0.41 0.80 0.41 0.17 50

8 0.29 0.74 0.80 -0.45 0.20 155

9 0.53 0.38 0.80 0.15 0.02 28

10 0.54 0.50 0.80 0.04 0.00 7

11 1.85 0.53 0.80 1.32 1.74 71

12 1.20 1.59 0.80 -0.39 0.15 32

2003 1 0.80 1.28 0.80 -0.48 0.23 60

2 0.20 0.90 0.80 -0.70 0.48 348

3 -0.23 0.34 0.80 -0.57 0.32 247

4 0.15 -0.12 0.80 0.27 0.07 177

5 0.21 0.10 0.80 0.11 0.01 54

6 0.09 0.19 0.80 -0.10 0.01 108

7 0.03 0.11 0.80 -0.08 0.01 265

8 0.84 0.05 0.80 0.79 0.63 95

9 0.36 0.68 0.80 -0.32 0.10 89

10 0.55 0.42 0.80 0.13 0.02 23

11 1.01 0.52 0.80 0.49 0.24 48

12 0.94 0.91 0.80 0.03 0.00 3

2004 1 0.57 0.93 0.80 -0.36 0.13 64

2 -0.02 0.64 0.80 -0.66 0.44 3315

3 0.36 0.11 0.80 0.25 0.06 69

4 0.97 0.31 0.80 0.66 0.43 68

5 0.88 0.84 0.80 0.04 0.00 5

6 0.48 0.87 0.80 -0.39 0.15 82

7 0.39 0.56 0.80 -0.17 0.03 43

8 0.09 0.42 0.80 -0.33 0.11 371

9 0.02 0.16 0.80 -0.14 0.02 684

10 0.56 0.05 0.80 0.51 0.26 92

11 0.89 0.46 0.80 0.43 0.19 49

12 1.04 0.80 0.80 0.24 0.06 23

2005 1 0.99 0.80 Total 10.37 ∑|(et/yt)*100| 10453

MSE 0.29 MAPE 290.3682

Page 34: Forecast Modelling (Single Variable)

34

Table4 ( Fitting ARRES with excel α=0.1 )

Yea

r

Mont

h

Inflatio

n

Fitte

d et Et

AE

t α β e² (et/yt)*100

200

2 1 1.99 1.99 0.00 0.00

0.0

0

0.1

0 0.10 0.00 0

2 1.50 1.99

-

0.49

-

0.05

1.0

5

0.1

0 0.10 0.24 33

3 -0.02 1.50

-

1.52

-

0.20

1.0

5

0.1

0 0.10 2.31 7600

4 -0.24 -0.02

-

0.22

-

0.20

0.9

2

0.2

2 0.10 0.05 92

5 0.80 -0.24 1.04

-

0.07

1.0

1

0.0

7 0.10 1.08 130

6 0.36 0.80

-

0.44

-

0.11

0.9

4

0.1

2 0.10 0.19 122

7 0.82 0.36 0.46

-

0.05

0.9

5

0.0

6 0.10 0.21 56

8 0.29 0.82

-

0.53

-

0.10

0.9

6

0.1

1 0.10 0.28 183

9 0.53 0.29 0.24

-

0.07

0.9

3

0.0

7 0.10 0.06 45

10 0.54 0.53 0.01

-

0.06

0.9

1

0.0

7 0.10 0.00 2

11 1.85 0.54 1.31 0.08

1.0

4

0.0

7 0.10 1.72 71

12 1.20 1.85

-

0.65 0.00

0.9

6

0.0

0 0.10 0.42 54

200

3 1 0.80 1.20

-

0.40

-

0.04

0.9

4

0.0

4 0.10 0.16 50

2 0.20 0.80

-

0.60

-

0.09

0.9

7

0.1

0 0.10 0.36 300

3 -0.23 0.20

-

0.43

-

0.13

0.9

5

0.1

3 0.10 0.18 187

4 0.15 -0.23 0.38

-

0.08

0.9

4

0.0

8 0.10 0.14 253

5 0.21 0.15 0.06

-

0.06

0.9

1

0.0

7 0.10 0.00 29

6 0.09 0.21

-

0.12

-

0.07

0.9

2

0.0

7 0.10 0.01 133

7 0.03 0.09

-

0.06

-

0.07

0.9

1

0.0

7 0.10 0.00 200

8 0.84 0.03 0.81 0.02

0.9

9

0.0

2 0.10 0.66 96

9 0.36 0.84

-

0.48

-

0.03

0.9

5

0.0

3 0.10 0.23 133

10 0.55 0.36 0.19

-

0.01

0.9

2

0.0

1 0.10 0.04 35

11 1.01 0.55 0.46 0.04

0.9

5

0.0

4 0.10 0.21 46

12 0.94 1.01 - 0.03 0.9 0.0 0.10 0.00 7

Page 35: Forecast Modelling (Single Variable)

35

0.07 1 3

200

4 1 0.57 0.94

-

0.37

-

0.01

0.9

5

0.0

1 0.10 0.14 65

2 -0.02 0.57

-

0.59

-

0.07

0.9

6

0.0

7 0.10 0.35 2950

3 0.36 -0.02 0.38

-

0.02

0.9

4

0.0

3 0.10 0.14 106

4 0.97 0.36 0.61 0.04

0.9

7

0.0

4 0.10 0.37 63

5 0.88 0.97

-

0.09 0.03

0.9

1

0.0

3 0.10 0.01 10

6 0.48 0.88

-

0.40

-

0.02

0.9

5

0.0

2 0.10 0.16 83

7 0.39 0.48

-

0.09

-

0.02

0.9

1

0.0

3 0.10 0.01 23

8 0.09 0.39

-

0.30

-

0.05

0.9

4

0.0

5 0.10 0.09 333

9 0.02 0.09

-

0.07

-

0.05

0.9

1

0.0

6 0.10 0.00 350

10 0.56 0.02 0.54 0.01

0.9

6

0.0

1 0.10 0.29 96

11 0.89 0.56 0.33 0.04

0.9

4

0.0

4 0.10 0.11 37

12 1.04 0.89 0.15 0.05

0.9

2

0.0

5 0.10 0.02 14

200

5 1 1.04

∑e²

10.2

7

∑|(et/yt)*10

0| 9826.6

5

MS

E 0.27 MAPE 272.96

Page 36: Forecast Modelling (Single Variable)

36

Table5 ( Fitting ARRES with excel α=0.5 )

Yea

r

Mont

h

Inflatio

n

Fitte

d et Et

AE

t α β e² (et/yt)*100

200

2 1 1.99 1.99 0.00 0.00

0.0

0

0.1

0 0.10 0.00 0

2 1.50 1.99

-

0.49

-

0.05

1.0

5

0.1

0 0.10 0.24 33

3 -0.02 1.50

-

1.52

-

0.20

1.0

5

0.1

0 0.10 2.31 7600

4 -0.24 -0.02

-

0.22

-

0.20

0.9

2

0.2

2 0.10 0.05 92

5 0.80 -0.24 1.04

-

0.07

1.0

1

0.0

7 0.10 1.08 130

6 0.36 0.80

-

0.44

-

0.11

0.9

4

0.1

2 0.10 0.19 122

7 0.82 0.36 0.46

-

0.05

0.9

5

0.0

6 0.10 0.21 56

8 0.29 0.82

-

0.53

-

0.10

0.9

6

0.1

1 0.10 0.28 183

9 0.53 0.29 0.24

-

0.07

0.9

3

0.0

7 0.10 0.06 45

10 0.54 0.53 0.01

-

0.06

0.9

1

0.0

7 0.10 0.00 2

11 1.85 0.54 1.31 0.08

1.0

4

0.0

7 0.10 1.72 71

12 1.20 1.85

-

0.65 0.00

0.9

6

0.0

0 0.10 0.42 54

200

3 1 0.80 1.20

-

0.40

-

0.04

0.9

4

0.0

4 0.10 0.16 50

2 0.20 0.80

-

0.60

-

0.09

0.9

7

0.1

0 0.10 0.36 300

3 -0.23 0.20

-

0.43

-

0.13

0.9

5

0.1

3 0.10 0.18 187

4 0.15 -0.23 0.38

-

0.08

0.9

4

0.0

8 0.10 0.14 253

5 0.21 0.15 0.06

-

0.06

0.9

1

0.0

7 0.10 0.00 29

6 0.09 0.21

-

0.12

-

0.07

0.9

2

0.0

7 0.10 0.01 133

7 0.03 0.09

-

0.06

-

0.07

0.9

1

0.0

7 0.10 0.00 200

8 0.84 0.03 0.81 0.02

0.9

9

0.0

2 0.10 0.66 96

9 0.36 0.84

-

0.48

-

0.03

0.9

5

0.0

3 0.10 0.23 133

10 0.55 0.36 0.19

-

0.01

0.9

2

0.0

1 0.10 0.04 35

11 1.01 0.55 0.46 0.04

0.9

5

0.0

4 0.10 0.21 46

12 0.94 1.01 - 0.03 0.9 0.0 0.10 0.00 7

Page 37: Forecast Modelling (Single Variable)

37

0.07 1 3

200

4 1 0.57 0.94

-

0.37

-

0.01

0.9

5

0.0

1 0.10 0.14 65

2 -0.02 0.57

-

0.59

-

0.07

0.9

6

0.0

7 0.10 0.35 2950

3 0.36 -0.02 0.38

-

0.02

0.9

4

0.0

3 0.10 0.14 106

4 0.97 0.36 0.61 0.04

0.9

7

0.0

4 0.10 0.37 63

5 0.88 0.97

-

0.09 0.03

0.9

1

0.0

3 0.10 0.01 10

6 0.48 0.88

-

0.40

-

0.02

0.9

5

0.0

2 0.10 0.16 83

7 0.39 0.48

-

0.09

-

0.02

0.9

1

0.0

3 0.10 0.01 23

8 0.09 0.39

-

0.30

-

0.05

0.9

4

0.0

5 0.10 0.09 333

9 0.02 0.09

-

0.07

-

0.05

0.9

1

0.0

6 0.10 0.00 350

10 0.56 0.02 0.54 0.01

0.9

6

0.0

1 0.10 0.29 96

11 0.89 0.56 0.33 0.04

0.9

4

0.0

4 0.10 0.11 37

12 1.04 0.89 0.15 0.05

0.9

2

0.0

5 0.10 0.02 14

200

5 1 1.04

∑e²

10.2

7

∑|(et/yt)*10

0| 9826.6

5

MS

E 0.27 MAPE 272.96