137
Estructura de hidrocarburos: Alcanos

Estructura de__hidrocarburos

Embed Size (px)

Citation preview

Page 1: Estructura  de__hidrocarburos

Estructura de hidrocarburos:

Alcanos

Page 2: Estructura  de__hidrocarburos

Clases de Hidrocarburos

Page 3: Estructura  de__hidrocarburos

HidrocarburosHidrocarburos

AromáticosAromáticosAlifáticosAlifáticos

Page 4: Estructura  de__hidrocarburos

HidrocarburosHidrocarburos

AromáticosAromáticosAlifáticosAlifáticos

AlcanosAlcanos AlquinosAlquinosAlquenosAlquenos

Page 5: Estructura  de__hidrocarburos

HidrocarburosHidrocarburos

AlifáticosAlifáticos

AlcanosAlcanos

Los alcanos son hidrocarburos en los cuales todos los enlaces son sencillos.

C CH H

H H

H H

Page 6: Estructura  de__hidrocarburos

HidrocarburosHidrocarburos

AlifáticosAlifáticos

AlquenosAlquenos

Los alquenos son hidrocarburos que contienen un doble enlace carbono-carbono.

C C

H H

H H

Page 7: Estructura  de__hidrocarburos

Hidrocarburos Hidrocarburos

AlifáticosAlifáticos

AlquinosAlquinos

Los alquinos son hidrocarburos que contienen un triple enlace carbono-carbono.

HC CH

Page 8: Estructura  de__hidrocarburos

HidrocarburosHidrocarburos

AromáticosAromáticos

Los hidrocarburos aromáticos más comúnes son los que contienen un anillo de benzeno.

H

H

H

H

H

H

Page 9: Estructura  de__hidrocarburos

CnH2n+2

Introducción a los Alcanos:Metano, Etano y Propano

Page 10: Estructura  de__hidrocarburos

Metano (CH4) CH4

Etano (C2H6) CH3CH3

Propano (C3H8) CH3CH2CH3

peb -160°C peb -89°C peb -42°C

Los Alcanos más Simples

Page 11: Estructura  de__hidrocarburos

Hibridación sp3 y

Enlaces en el Metano

Page 12: Estructura  de__hidrocarburos

Tetrahédrica

ángulos de enlace = 109.5°

longitud de enlace = 110 pm

sin embargo la estructura parece

inconsistente

con la configuración electrónica del carbono

Estructura del Metano

Page 13: Estructura  de__hidrocarburos

Configuración Electrónica del carbono

2s

2psolo dos electrones

desapareados

debe formar enlaces con solo dos átomos de

hidrógeno

los enlaces deben estar en

ángulo recto uno con

respecto

al otro

Page 14: Estructura  de__hidrocarburos

2s

2p

Se promueve un electrón del orbital 2s

al 2p

Hibridación Orbital sp3

30´s Linus Pauling

Page 15: Estructura  de__hidrocarburos

2s

2p 2p

2s

Hibridación Orbital sp3

Page 16: Estructura  de__hidrocarburos

2p

2s

Hibridación Orbital sp3

Mezclar (hibridizar) el orbital 2s y los tres orbitales 2p

Page 17: Estructura  de__hidrocarburos

2p

2s

Hibridación Orbital sp3

2 sp3

4 orbitales semillenos equivalentes son consistentes con cuatro enlaces y la geometría tetrahédrica

Page 18: Estructura  de__hidrocarburos

Hibridación Orbital sp3

Page 19: Estructura  de__hidrocarburos

Propiedades Nodales de los Orbitales

s

p + –

+

Page 20: Estructura  de__hidrocarburos

Forma de los orbitales híbridos sp3

s

p + –

+

Toma el orbital s y colócalo en la parte superior del orbital p

Page 21: Estructura  de__hidrocarburos

s + p + –+

Complemento de onda electrónica en regiones donde el signo es el mismo

Interferencia destructiva en regiones de signo opuesto

Forma de los orbitales híbridos sp3

Page 22: Estructura  de__hidrocarburos

híbrido sp

el orbital mostrado es híbrido sp

proceso analogo usando tres orbitales p y uno s da híbridos sp3

la forma de los híbridos sp3 es similar

+ –

Forma de los orbitales híbridos sp3

Page 23: Estructura  de__hidrocarburos

híbrido sp

- el orbital híbrido no es simétrico

- mayor probabilidad de encontrar un electrón en un lado del núcleo que en otro

- produce enlaces más fuertes

+ –

Forma de los orbitales híbridos sp3

Page 24: Estructura  de__hidrocarburos

+ –

El enlace C—H en el Metano

sp3s CH

H—C CH

produce un enlace .

Traslape en fase de un orbital semilleno 1s de hidrógeno con un orbital híbrido semilleno sp3 de carbono:

+

+

Page 25: Estructura  de__hidrocarburos

Justificación para la Hibridación Orbital

consistente con la estructura del metano

permite la formación de 4 enlaces en lugar de 2

los enlaces involucrados en los orbitales híbridos sp3

son

más fuertes que los involucrados en el traslape s-s o p-

p

Page 26: Estructura  de__hidrocarburos

Enlaces en el Etano

Page 27: Estructura  de__hidrocarburos

Estructura del Etano

CH3CH3

C2H6

geometría tetrahédrica en cada carbono

distancia de enlace C—H = 110 pm

distancia de enlace C—C = 153 pm

Page 28: Estructura  de__hidrocarburos

Traslape en fase de un orbital híbrido semilleno sp3 de un carbono con un orbital híbrido semilleno sp3

de otro.

El traslape es a lo largo del eje internuclear para dar un enlace .

El enlace C—C en el Etano

Page 29: Estructura  de__hidrocarburos

El enlace C—C en el Etano

Traslape en fase de un orbital híbrido semilleno sp3 de un carbono con un orbital híbrido semilleno sp3

de otro.

El traslape es a lo largo del eje internuclear para dar un enlace .

Page 30: Estructura  de__hidrocarburos

C4H10

Alcanos Isoméricos :Los Butanos

Page 31: Estructura  de__hidrocarburos

n-Butano CH3CH2CH2CH3

Isobutano (CH3)3CH

bp -0.4°C bp -10.2°C

Page 32: Estructura  de__hidrocarburos

n-Alcanos Superiores

Page 33: Estructura  de__hidrocarburos

CH3CH2CH2CH2CH2CH3

n-Pentano

n-Hexano

CH3CH2CH2CH2CH3

CH3CH2CH2CH2CH2CH2CH3

n-Heptano

Page 34: Estructura  de__hidrocarburos

Los Isómeros C5H12

Page 35: Estructura  de__hidrocarburos

n-Pentano

CH3CH2CH2CH2CH3

Isopentano

(CH3)2CHCH2CH3

Neopentano

(CH3)4C

C5H12

Page 36: Estructura  de__hidrocarburos

¿Cuántos isómeros?

El número de isómeros se incrementa al incrementar el número de carbonos.

No hay una manera sencilla de predecir cuántos isómeros hay para una fórmula molecular en particular.

Page 37: Estructura  de__hidrocarburos

Tabla 1 Número de Isómeros Constitucionales de

Alcanos

CH4 1

C2H6 1

C3H8 1

C4H10 2

C5H12 3

C6H14 5

C7H16 9

Page 38: Estructura  de__hidrocarburos

Tabla 1 Número de Isómeros Constitucionales de

Alcanos

CH4 1 C8H18 18

C2H6 1 C9H20 35

C3H8 1 C10H22 75

C4H10 2 C15H32 4,347

C5H12 3 C20H42 366,319

C6H14 5 C40H82 62,491,178,805,831

C7H16 9

Page 39: Estructura  de__hidrocarburos

Propiedades Físcas delos Alcanos y Cicloalcanos

Page 40: Estructura  de__hidrocarburos

Boiling Points of Alkanes

governed by strength of intermolecular attractive forces

alkanes are nonpolar, so dipole-dipole and dipole-induced dipole forces are absent

only forces of intermolecular attraction are induced dipole-induced dipole forces

Page 41: Estructura  de__hidrocarburos

Induced dipole-Induced dipole attractive forces

+–+

two nonpolar molecules

center of positive charge and center of negative charge coincide in each

Page 42: Estructura  de__hidrocarburos

+–+

movement of electrons creates an instantaneous dipole in one molecule (left)

Induced dipole-Induced dipole attractive forces

Page 43: Estructura  de__hidrocarburos

+–+–

temporary dipole in one molecule (left) induces a complementary dipole in other molecule (right)

Induced dipole-Induced dipole attractive forces

Page 44: Estructura  de__hidrocarburos

+–+ –

temporary dipole in one molecule (left) induces a complementary dipole in other molecule (right)

Induced dipole-Induced dipole attractive forces

Page 45: Estructura  de__hidrocarburos

+–+ –

the result is a small attractive force between the two molecules

Induced dipole-Induced dipole attractive forces

Page 46: Estructura  de__hidrocarburos

+– + –

the result is a small attractive force between the two molecules

Induced dipole-Induced dipole attractive forces

Page 47: Estructura  de__hidrocarburos

increase with increasing number of carbons

more atoms, more electrons, more opportunities for induced dipole-induceddipole forces

decrease with chain branching

branched molecules are more compact with

smaller surface area—fewer points of contact

with other molecules

Boiling Points

Page 48: Estructura  de__hidrocarburos

increase with increasing number of carbons

more atoms, more electrons, more opportunities for induced dipole-induceddipole forces

Heptanebp 98°C

Octanebp 125°C

Nonanebp 150°C

Boiling Points

Page 49: Estructura  de__hidrocarburos

decrease with chain branching

branched molecules are more compact with

smaller surface area—fewer points of contact

with other molecules

Octane: bp 125°C 2-Methylheptane: bp 118°C

2,2,3,3-Tetramethylbutane: bp 107°C

Boiling Points

Page 50: Estructura  de__hidrocarburos

All alkanes burn in air to givecarbon dioxide and water.

Propiedades Químicas:Combustión de Alcanos

Page 51: Estructura  de__hidrocarburos

increase with increasing number of carbons

more moles of O2 consumed, more

molesof CO2 and H2O formed

Heats of Combustion

Page 52: Estructura  de__hidrocarburos

4817 kJ/mol

5471 kJ/mol

6125 kJ/mol

654 kJ/mol

654 kJ/mol

Heptane

Octane

Nonane

Heats of Combustion

Page 53: Estructura  de__hidrocarburos

increase with increasing number of carbons

more moles of O2 consumed, more

molesof CO2 and H2O formed

decrease with chain branching

branched molecules are more stable(have less potential energy) than theirunbranched isomers

Heats of Combustion

Page 54: Estructura  de__hidrocarburos

5471 kJ/mol

5466 kJ/mol

5458 kJ/mol

5452 kJ/mol

5 kJ/mol

8 kJ/mol

6 kJ/mol

Heats of Combustion

Page 55: Estructura  de__hidrocarburos

Estructura de Alquenos

Page 56: Estructura  de__hidrocarburos

Alkenes

Alkenes are hydrocarbons that contain a carbon-carbon double bond

also called "olefins"

characterized by molecular formula CnH2n

said to be "unsaturated"

Page 57: Estructura  de__hidrocarburos

Hibridación sp2 y Enlaces en el Etileno

Page 58: Estructura  de__hidrocarburos

C2H4

H2C=CH2

planar

bond angles: close to 120°

bond distances: C—H = 110 pm

C=C = 134 pm

Structure of Ethylene

Page 59: Estructura  de__hidrocarburos

2s

2p

Promote an electron from the 2s

to the 2p orbital

sp2 Orbital Hybridization

Page 60: Estructura  de__hidrocarburos

2s

2p 2p

2s

sp2 Orbital Hybridization

Page 61: Estructura  de__hidrocarburos

2p

2s

sp2 Orbital Hybridization

Mix together (hybridize) the 2s orbital and two of the three 2p orbitals

Page 62: Estructura  de__hidrocarburos

2p

2s

sp2 Orbital Hybridization

2 sp2

3 equivalent half-filled sp2 hybrid orbitals plus 1 p orbital left unhybridized

Page 63: Estructura  de__hidrocarburos

sp2 Orbital Hybridization

Page 64: Estructura  de__hidrocarburos

sp2 Orbital Hybridization

2 sp2

p

Page 65: Estructura  de__hidrocarburos

Bonding in Ethylene

2 sp2

the unhybridized p orbital of

carbon is involved in bonding

to the other carbon

p

Page 66: Estructura  de__hidrocarburos

Bonding in Ethylene Bonding in Ethylene Bonding in Ethylene

2 2 spsp22

pp

each carbon has an unhybridized 2each carbon has an unhybridized 2pp orbital orbital

axis of orbital is perpendicular to the plane of the axis of orbital is perpendicular to the plane of the bonds bonds

Page 67: Estructura  de__hidrocarburos

Bonding in Ethylene Bonding in Ethylene Bonding in Ethylene

2 2 spsp22

pp

side-by-side overlap of half-filledside-by-side overlap of half-filled

pp orbitals gives a orbitals gives a bondbond

double bond in ethylene has a double bond in ethylene has a

component and a component and a component component

Page 68: Estructura  de__hidrocarburos

Isomerismo en Alquenos

Page 69: Estructura  de__hidrocarburos

Isomers are different compounds thathave the same molecular formula.

Isomers

Page 70: Estructura  de__hidrocarburos

Isomers Isomers

Constitutional isomersConstitutional isomers StereoisomersStereoisomers

different connectivity same connnectivity;different arrangementof atoms in space

Page 71: Estructura  de__hidrocarburos

Isomers Isomers

Constitutional isomersConstitutional isomers StereoisomersStereoisomers

consider the isomeric alkenes of molecular formula C4H8

Page 72: Estructura  de__hidrocarburos

2-Methylpropene1-Butene

cis-2-Butene trans-2-Butene

C C

H

H H

CH2CH3

H3C

C C

CH3

H

HH

CH3

C C

H3C

H

C C

H

HH3C

H3C

Page 73: Estructura  de__hidrocarburos

2-Methylpropene1-Butene

cis-2-Butene

C C

H

H H

CH2CH3

H

CH3

C C

H3C

H

C C

H

HH3C

H3C

Constitutional isomers

Page 74: Estructura  de__hidrocarburos

2-Methylpropene1-Butene

trans-2-Butene

C C

H

H H

CH2CH3

H3C

C C

CH3

H

H

C C

H

HH3C

H3C

Constitutional isomers

Page 75: Estructura  de__hidrocarburos

cis-2-Butene trans-2-Butene

H3C

C C

CH3

H

HH

CH3

C C

H3C

H

Stereoisomers

Page 76: Estructura  de__hidrocarburos

trans (identical or analogous substituents on opposite sides)

Stereochemical Notation

cis (identical or analogous substitutents on same side)

Page 77: Estructura  de__hidrocarburos

transcis

Interconversion of stereoisomericalkenes does not normally occur.

Requires that component of doublebond be broken.

Figure

Page 78: Estructura  de__hidrocarburos

transcis

Figure

Page 79: Estructura  de__hidrocarburos

Naming Steroisomeric Alkenesby the E-Z Notational System

Page 80: Estructura  de__hidrocarburos

Stereochemical Notation

cis and trans are useful when substituents are identical or analogous (oleic acid has a cis double bond)

cis and trans are ambiguous when analogies are not obvious

C C

CH3(CH2)6CH2 CH2(CH2)6CO2H

H H

Oleic acid

Page 81: Estructura  de__hidrocarburos

Example

What is needed:

1) systematic body of rules for ranking substituents

2) new set of stereochemical symbols other

than cis and trans

C C

H F

Cl Br

Page 82: Estructura  de__hidrocarburos

C C

E : higher ranked substituents on opposite sides

Z : higher ranked substituents on same side

higher

lower

The E-Z Notational System

Page 83: Estructura  de__hidrocarburos

C C

E : higher ranked substituents on opposite sides

Z : higher ranked substituents on same side

higher

lower

The E-Z Notational System

Page 84: Estructura  de__hidrocarburos

C C

E : higher ranked substituents on opposite sides

Z : higher ranked substituents on same side

Entgegen

higher

higherlower

lower

C C

Zusammen

lower

higher

lower

higher

The E-Z Notational System

Page 85: Estructura  de__hidrocarburos

C CC C

Answer: They are ranked in order of decreasing atomic number.

Entgegen Zusammen

higher

higherlower

lower

lower

higher

lower

higher

Question: How are substituents ranked?

The E-Z Notational System

Page 86: Estructura  de__hidrocarburos

The Cahn-Ingold-Prelog (CIP) System

The system that we use was devised byR. S. CahnSir Christopher IngoldVladimir Prelog

Their rules for ranking groups were devised in connection with a different kind of stereochemistry—one that we will discuss later—but have been adapted to alkene stereochemistry.

Page 87: Estructura  de__hidrocarburos

(1) Higher atomic number outranks lower atomic number

Br > F Cl > H

higher

lower

Br

F

Cl

H

higher

lower

C C

Table CIP Rules

Page 88: Estructura  de__hidrocarburos

(1) Higher atomic number outranks lower atomic number

Br > F Cl > H

(Z )-1-Bromo-2-chloro-1-fluoroethene

higher

lower

Br

F

Cl

H

higher

lower

C C

Table CIP Rules

Page 89: Estructura  de__hidrocarburos

(2) When two atoms are identical, compare the atoms attached to them on the basis of their

atomic numbers. Precedence is established

at the first point of difference. —CH2CH3 outranks —CH3

—C(C,H,H)

Table CIP Rules

—C(H,H,H)

Page 90: Estructura  de__hidrocarburos

(3) Work outward from the point of attachment, comparing all the atoms attached to a particular atom before proceeding furtheralong the chain.

—CH(CH3)2 outranks —CH2CH2OH

—C(C,C,H) —C(C,H,H)

Table CIP Rules

Page 91: Estructura  de__hidrocarburos

(4) Evaluate substituents one by one. Don't add atomic numbers within groups.

—CH2OH outranks —C(CH3)3

—C(O,H,H) —C(C,C,C)

Table CIP Rules

Page 92: Estructura  de__hidrocarburos

(5) An atom that is multiply bonded to another atom is considered to be replicated as a

substituent on that atom.

—CH=O outranks —CH2OH

—C(O,O,H) —C(O,H,H)

Table CIP Rules

Page 93: Estructura  de__hidrocarburos

A table of commonly encountered substituents ranked according to precedence is given on the inside back cover of the text.

Table CIP Rules

Page 94: Estructura  de__hidrocarburos

Propiedades Físicas de Alquenos

Page 95: Estructura  de__hidrocarburos

= 0 D

C C

H H

HH

= 0.3 D

H

H H

C C

H3C

Dipole moments

What is direction of dipole moment?

Does a methyl group donate electrons to the double bond, or does it withdraw them?

Page 96: Estructura  de__hidrocarburos

= 0 D

C C

H H

HH

= 1.4 D

C C

H H

ClH

= 0.3 D

H

H H

C C

H3C

Dipole moments

Chlorine is electronegative and attracts electrons.

Page 97: Estructura  de__hidrocarburos

= 1.4 D

C C

H H

ClH

= 0.3 D

H

H H

C C

H3C = 1.7 D

H

H Cl

C C

H3C

Dipole moments

Dipole moment of 1-chloropropene is equal to the sum of the dipole moments of vinyl chloride and propene.

Page 98: Estructura  de__hidrocarburos

= 1.7 D

= 1.4 D

C C

H H

ClH

= 0.3 D

H

H H

C C

H3C

H

H Cl

C C

H3C

Dipole moments

Therefore, a methyl group donates electrons to the double bond.

Page 99: Estructura  de__hidrocarburos

Alkyl groups stabilize sp2 hybridizedcarbon by releasing electrons

R—C+ H—C+is more stable than

is more stable thanR—C• H—C •

R—C is more stable than H—C

Page 100: Estructura  de__hidrocarburos

Estabilidades Relativas de Alquenos

Page 101: Estructura  de__hidrocarburos

Double bonds are classified according tothe number of carbons attached to them.

H

C C

R

H

H

monosubstituted

R'

C C

R

H

H

disubstituted

H

C C

R

H

R'

disubstituted

H

C C

R H

R'

disubstituted

Page 102: Estructura  de__hidrocarburos

Double bonds are classified according tothe number of carbons attached to them.

R'

C C

R

H

R"

trisubstituted

R'

C C

R

R"'

R"

tetrasubstituted

Page 103: Estructura  de__hidrocarburos

Electronic

disubstituted alkenes are more stable than monosubstituted alkenes

Steric

trans alkenes are more stable than cis alkenes

Substituent Effects on Alkene Stability

Page 104: Estructura  de__hidrocarburos

+ 6O2

4CO2 + 8H2O

2700 kJ/mol

2707 kJ/mol

2717 kJ/mol

2710 kJ/mol

Figure Heats of combustion of C4H8

isomers.

Page 105: Estructura  de__hidrocarburos

alkyl groups stabilize double bonds more than H

more highly substituted double bonds are morestable than less highly substituted ones.

Substituent Effects on Alkene Stability

Electronic

Page 106: Estructura  de__hidrocarburos

Give the structure or make a molecular model of the most stable C6H12 alkene.

C C

H3C

H3C CH3

CH3

Problem

Page 107: Estructura  de__hidrocarburos

trans alkenes are more stable than cis alkenes

cis alkenes are destabilized by van der Waalsstrain

Substituent Effects on Alkene Stability

Steric

Page 108: Estructura  de__hidrocarburos

cis-2-butene trans-2-butene

van der Waals straindue to crowding ofcis-methyl groups

Figure cis and trans-2-Butene

Page 109: Estructura  de__hidrocarburos

cis-2-butene trans-2-butene

van der Waals straindue to crowding ofcis-methyl groups

Figure cis and trans-2-Butene

Page 110: Estructura  de__hidrocarburos

Steric effect causes a large difference in stabilitybetween cis and trans-(CH3)3CCH=CHC(CH3)3

cis is 44 kJ/mol less stable than trans

C C

H H

CC CH3

CH3H3C

H3C

H3C CH3

van der Waals Strain

Page 111: Estructura  de__hidrocarburos

Cicloalquenos

Page 112: Estructura  de__hidrocarburos

Cyclopropene and cyclobutene have angle strain.

Larger cycloalkenes, such as cyclopenteneand cyclohexene, can incorporate a double bond into the ring with little or no angle strain.

Cycloalkenes

Page 113: Estructura  de__hidrocarburos

cis-cyclooctene and trans-cycloocteneare stereoisomers

cis-cyclooctene is 39 kJ/ mol more stablethan trans-cyclooctene

Stereoisomeric cycloalkenes

cis-Cyclooctene trans-Cyclooctene

H

H HH

Page 114: Estructura  de__hidrocarburos

trans-cyclooctene is smallest trans-cycloalkene

that is stable at room temperature

cis stereoisomer is more stable than trans through C11 cycloalkenes

Stereoisomeric cycloalkenes

trans-Cyclooctene

HH

Page 115: Estructura  de__hidrocarburos

When there are more than 12 carbons in thering, trans-cycloalkenes are more stable than cis.The ring is large enough so the cycloalkene behaves much like a noncyclic one.

Stereoisomeric cycloalkenes

trans-Cyclododecenecis-Cyclododecene

cis and trans-cyclododeceneare approximately equal instability

Page 116: Estructura  de__hidrocarburos

Structure and Bonding in Alkynes:

sp Hybridization

Page 117: Estructura  de__hidrocarburos

linear geometry for acetylene

C CH H

120 pm

106 pm 106 pm

C CCH3 H

121 pm

146 pm 106 pm

Structure

Page 118: Estructura  de__hidrocarburos

Cyclononyne is the smallest cycloalkyne stable enough to be stored at room temperaturefor a reasonable length of time.

Cyclooctyne polymerizeson standing.

Cycloalkynes

C C

Page 119: Estructura  de__hidrocarburos

Hibridación sp y Enlaces en el Acetileno

Page 120: Estructura  de__hidrocarburos

C2H2

linear

bond angles: 180°

bond distances: C—H = 106 pm

CC = 120 pm

Structure of Acetylene

HC CH

Page 121: Estructura  de__hidrocarburos

2s

2p

Promote an electron from the 2s

to the 2p orbital

sp Orbital Hybridization

Page 122: Estructura  de__hidrocarburos

2s

2p 2p

2s

sp Orbital Hybridization

Page 123: Estructura  de__hidrocarburos

2p

2s

sp Orbital Hybridization

Mix together (hybridize) the 2s orbital and one of the three 2p orbitals

Page 124: Estructura  de__hidrocarburos

2p

2s

sp Orbital Hybridization

2 sp

2 equivalent half-filled sp hybrid orbitals plus 2 p orbitals left unhybridized

2 p

Page 125: Estructura  de__hidrocarburos

sp Orbital Hybridization

Page 126: Estructura  de__hidrocarburos

sp Orbital Hybridization

2 sp

2 p

Page 127: Estructura  de__hidrocarburos

Bonding in Acetylene

the unhybridized p orbitals of

carbon are involved in separate

bonds to the other carbon

2 sp

2 p

Page 128: Estructura  de__hidrocarburos

Bonding in Acetylene Bonding in Acetylene Bonding in Acetylene

one one bond involves one of the p orbitals on each carbon bond involves one of the p orbitals on each carbon

there is a second there is a second bond perpendicular to this one bond perpendicular to this one

2 2 spsp

2 2 pp

Page 129: Estructura  de__hidrocarburos

Bonding in Acetylene Bonding in Acetylene Bonding in Acetylene

2 2 spsp

2 2 pp

Page 130: Estructura  de__hidrocarburos

Bonding in Acetylene Bonding in Acetylene Bonding in Acetylene

2 2 spsp

2 2 pp

Page 131: Estructura  de__hidrocarburos

H C C

Acidity of Acetylene

and Terminal Alkynes

Page 132: Estructura  de__hidrocarburos

In general, hydrocarbons are exceedingly weak acids

Compound pKa

HF 3.2

H2O 15.7

NH3 36

45

CH4 60

H2C CH2

Acidity of Hydrocarbons

Page 133: Estructura  de__hidrocarburos

Acetylene is a weak acid, but not nearlyas weak as alkanes or alkenes.

Compound pKa

HF 3.2

H2O 15.7

NH3 36

45

CH4 60

H2C CH2

HC CH 26

Acetylene

Page 134: Estructura  de__hidrocarburos

Electrons in an orbital with more s character are closer to the

nucleus and more strongly held.

Carbon: Hybridization and Electronegativity

C H H+ +pKa = 60

sp3C :–

H+ +sp2H

C C C C:

pKa = 45

H+ + spC C H C C :–

pKa = 26

Page 135: Estructura  de__hidrocarburos

Objective:

Prepare a solution containing sodium acetylide

Will treatment of acetylene with NaOH be effective?

NaC CH

H2ONaOH + HC CH NaC CH +

Sodium Acetylide

Page 136: Estructura  de__hidrocarburos

No. Hydroxide is not a strong enough base to deprotonate acetylene.

weaker acidpKa = 26

stronger acidpKa = 15.7

In acid-base reactions, the equilibrium lies tothe side of the weaker acid.

Sodium Acetylide

HO..

.. : HO H..

.. C CH–

H C CH+ + :–

Page 137: Estructura  de__hidrocarburos

Solution: Use a stronger base. Sodium amideis a stronger base than sodium hydroxide.

NH3NaNH2 + HC CH NaC CH +

Ammonia is a weaker acid than acetylene.The position of equilibrium lies to the right.

–H2N

..: H C CH H

..+ + C CH:

stronger acidpKa = 26

weaker acidpKa = 36

H2N

Sodium Acetylide